
OBSERVABILITY AND STAKEHOLDER CONFLICT 
IN RESOURCES MANAGEMENT 

Abstract. Heuristic learning from personal experience is hard-wired in humans, but overre-

liance on experiential samples may lead to biased beliefs when such samples are not represen-

tative of the population. Prominent examples include skepticism towards climate change and 

an increasingly vocal anti-vaccine movement. In turn, biased beliefs may lead to stakeholder 

confict when diferent parties hold competing views of reality and fnancial stakes are high. In 

this paper we focus on the commercial fshing industry. We develop a theoretical model to study 

harvesters’ incentives to challenge the science that informs management when the claims of of-

fcial science are at odds with their personal experience. In the empirical application, the case 

of the Georges Bank cod fshery, we estimate the distribution of extra profts industry would 

expect to earn if their view of science were incorporated into policy. Our fndings show strong 

incentives to lobby for lax regulations even when harvesters hold relatively low confdence in 

their own beliefs. An impatient industry would have strong incentives to challenge the ofcial 

science. While the stock would eventually collapse in this scenario, leading to welfare losses, 

the crash of the cod population would take time. The industry’s overreliance on frst-hand 

observations will ultimately undermine its own interests. This paper highlights the importance 

of efectively communicating and translating the technical aspects of science to the relevant 

audiences, particularly those directly impacted by its use in policy. 
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1. Introduction 

Personal experience plays a central role in how humans understand the world (Kolb 1984). A 

growing body of work suggests that biased perceptions drawn from personal experience dom-

inate even in the face of overwhelming scientifc evidence to the contrary. This phenomenon 

has been ascribed to the fact that processing statistical information is cognitively demanding, 
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whereas heuristic learning from personal experience is hard-wired into humans to be automatic 

and immediate (Barron and Erev 2005; Weber 2010). The divergence in cognitive cost leads indi-

viduals to rely heavily on personal experience when interpreting information, an issue which can 

be understood through the lens of bounded rationality (Lipman 1995, Conlisk 1996, Rubinstein 

1998, Kahneman 2003, Viale 2020). The role of samples in experiential learning has inspired 

the metaphor of the naive intuitive statistician (Fiedler and Juslin 2006, Juslin, Winman and 

Hanson 2007, Elwin 2013). Under this view, an agent is an “intuitive statistician” in his ability 

to accurately describe the properties of the experienced sample, but “naively” interprets that 

sample as representative of the whole population. Thus, unable to recognize and adjust for 

the biased experience, the non-representativeness of the sample is translated into biased beliefs. 

According to Elwin (2013), “. . . even though the experienced sample is often systematically bi-

ased because it is contingent on the individual’s own actions, the mind cannot adjust for the 

process by which the sample was produced” (p. 327). Fiedler refers to this phenomenon as 

“meta-cognitive myopia” (Fiedler 2000, Fiedler 2008). The dominant role personal experience 

has in shaping perception is highlighted by a 2019 Pew poll that estimated that only 60% of 

Americans think scientists should play an active role in policy debates on scientifc issues, and 

55% feel that scientists are no better, or worse, than the general public at making decisions on 

scientifc issues (Pew Research Center 2019). Likewise, according to an ABC poll, only 32% of 

Americans “. . . trust the things scientists say about the environment completely or a lot” (ABC 

News 2006). 

In this paper we contribute to the literature on the political economy of renewable resource 

extraction (Johnson and Libecap 1982, Karpof 1987, Turner and Weninger 2005). Concretely, 

we explore the bias towards personal experience as a key force driving confict between industry 

and regulators of marine resources. The idea that biased perceptions may drive this confict has 

been suggested in both the popular press (see, e.g. Cook and Daley 2003, Bergman 2020) and 

the academic literature (Neis et al. 1999, Harms and Sylvia 2001, Dobbs 2000, Anuchiracheeva, 

Shivakoti and K. 2003, Miller et al. 2004, Hartley and Robertson 2006, Boström 2006, Johnson 

and van Densen 2007, Johnson 2007, Wendt and Star 2009, DeCelles et al. 2017, Levin et al. 

2020). To illustrate, there has been a longstanding disagreement between fshermen and scientists 

on the status of cod stocks in the Gulf of Maine. Dr. Micah Dean of the Massachusetts Division 
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of Marine Fisheries states that “Many of our fshermen. . . have a difcult time believing the 

scientifc perspective on the cod stock. . . But there are good reasons why fshermen have this 

perspective. Regulations shape the way fshermen see the cod population” (Bergman 2020). In 

another example, this time on haddock, “. . . numerous fshers said the [stock] assessment doesn’t 

match what they’re seeing on the water, where haddock appear to them to be plentiful.. . . We 

seem to fnd plenty, but they [scientists] can’t” (Whittle 2023). Or, “. . . we fshermen cover 

far more water than does NOAA [National Oceanic and Atmospheric Administration]. We 

fsh hundreds of miles of marine habitat each voyage. Thus, we have the best sense of fsh 

stocks” (Leeman 2023). “You [NOAA]’ll damn the seaboard on 1/12 of 1% knowledge when the 

entire fshing feet is seeing no problem with the species rebuilding process” (Leeman 2022). In 

fact, only 7% of fshermen surveyed in the Northeast Multispecies fshery felt that the science 

supporting fsheries management decisions is accurate, while 29% disagreed and 61% strongly 

disagreed (Holland, Pinto da Silva and Wiersma 2010). 

Minimum mesh sizes such as those employed in the Gulf of Maine and Georges Bank are 

specifcally designed to left-truncate catch distributions and area closures keep fshermen away 

from spawning fsh. These input controls mean fshermen fail to receive signals over two critical 

components of the population that play key roles in the future, not current, productivity of the 

stock: juveniles and the number of spawning adults. In other words, diferent policy instruments 

determine how biased the sample that fshermen observed is, and thereby how biased their 

learning is regarding recruitment (i.e., number of new young individuals that enter the population 

in a given year). In turn, the fact that commercial fshermen exhibit extremely high self-

trust on their knowledge on fsheries management −above that of other stakeholders− (Eggert, 

Kataria and Lampi 2016) contributes to the confict with regulators. In fact, it is not uncommon 

for the fshing industry to contract its own scientifc consultants to contest the fndings of 

government scientists and to hire lobbyists to challenge regulations (Rosenberg 2003). Indeed, 

lobbying is far from rare in this industry. Examples include industry groups lobbying for higher 

fshing quotas in Europe (Corporate Europe Observatory 2017), seeking access to closed areas 

in the U.S. Mid-Atlantic region (Repetto 2001), or watering down groundfsh regulations in 

Alaska (Federman 2023). Similarly, the recently created New England Fishermen Stewardship 

Association, an industry advocacy group, “is leading the charge against. . . overregulation and 
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wind-turbine development in the Gulf of Maine” (Zymeri 2023). Confict is not uncommon 

in other sectors of the economy, but what sets commercial fshing apart is the possibility of 

regulatory capture, long observed in this industry (Peña Torres 1997, Costello and Grainger 

2018). If, motivated by biased beliefs on stock productivity and distrust of management, the 

industry is successful in challenging scientifc advice, over-harvesting and welfare loss may follow. 

Despite this longstanding and widespread recognition, there has been no formal economic 

investigation of the implications that biased perceptions may have for marine policy. This in 

spite of the economic profession’s recognition of the important role personal experience plays in 

shaping individuals’ attitudes towards redistributive policies such as tax reforms (Piketty 1995). 

In this paper, we develop a theoretical model of the feedback between fsheries management 

instruments and harvesters’ experiential perceptions on stock productivity (as shaped by the 

samples harvesters observe while fshing), with an eye towards industry lobbying incentives 

around management measures. We show that when management policies can diferentially 

impact fshermen’s perceptions, they have the potential to undermine the perceived validity of 

conservation measures and increase confict with the scientifc advice. To quote David Goethel, 

Hampton fsherman and former member of the New England Fishery Management Council, “It’s 

almost been handed down from fathers to sons that you can’t trust the scientists. . . They need 

to spend more time on the back decks of boats. . . They are looking at building more elegant 

computer models and I want them to spend more time at sea” (Cresta 2012). Our objective 

in this paper is to highlight the management implications of this wedge in beliefs on resource 

productivity between the regulator and the regulated industry. By doing so we highlight the 

novel proposition that when setting regulations, managers should consider the feedback between 

regulations and the beliefs of regulated entities, and thus ultimately the incentives to lobby 

against management. 

We use an empirical case study, cod on Georges Bank, to explore the incentives that can be 

generated under biased perceptions of stock status, driven by fshermen’s daily observations, 

and shed light on how understanding these incentives can assist management decision-making. 

Notably, our analysis relies on a real-world stock assessment of cod in Georges Bank, rather 

than on a simplifed representation of the biology of the stock, i.e., Gordon-Schaefer model, 
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as is commonly the case in economic applications.1 Specifcally, we simulate projections under 

three possible scenarios: (i) actual regulators’ assessment with current limits staying in place, 

(ii) alternate state of the world using fshermen’s perspective on the cod population and relaxed 

regulations, and (iii) actual regulators’ assessment of cod population with fshermen’s preferred 

relaxation of harvest limits. Our fndings confrm strong economic incentives for the industry to 

challenge the ofcial science in order to increase harvest quotas, even at low levels of impatience 

(discount rate) and confdence in their own observations. We demonstrate how upward-biased 

beliefs on stock abundance can easily lead to resource depletion and welfare losses over time. Our 

results highlight the importance of efectively communicating the ofcial science to the relevant 

stakeholders, especially those directly impacted by its use in policy, and the potential benefts of 

cooperative research (e.g., industry-led population surveys) in fostering mutual understanding 

and trust between scientists and industry. 

2. The Model 

The industry harvests a fshery resource. A regulator manages the resource in order to limit 

fshing mortality by setting an aggregate catch limit, Q, each season. This catch limit is enforced 

with a set of management policies (e.g. efort limits, gear restrictions, area closures), compactly 

denoted by vector θ ∈ Θ, which determines how the industry “samples” the fsh population 

while harvesting the resource. Thus, each alternative vector of policy instruments in Θ will 

determine the extent to which the industry is able to infer the true parameter values describing 

the productivity of the fsh stock. As discussed below, we allow for the possibility that the 

information contained in the sample observed by the industry may be incomplete and induce 

biased beliefs on recruitment. In our setting, as in most real-world commercial fsheries, the 

regulator selects θ to ensure that aggregate harvest does not exceed Q, but is otherwise unaware 

of the informational role θ plays in shaping industry’s beliefs. In other words, the regulator 

does not purposely select θ to align industry beliefs with the fndings of ofcial science. Our 

1A stock assessment “is the scientifc process of collecting, analyzing, and reporting on the condition of a fsh 

stock and estimating its sustainable yield. Stock assessments are the backbone of sustainable fsheries manage-

ment” . For details, see https://www.fisheries.noaa.gov/insight/stock-assessment-model-descriptions# 

stock-assessment-models. 

https://www.fisheries.noaa.gov/insight/stock-assessment-model-descriptions
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objective is to show how disparity in beliefs between the regulator and industry may undermine 

resource management. 

Let Π(y, s) denote industry profts, where y is harvest and s stock biomass. We assume that 

Π is increasing and concave in both arguments, with Πys > 0. Without loss of generality, in 

what follows we specify a two-period model in which the industry is assumed to display foresight 

and maximize expected profts over the two seasons. 2 Harvesters attempt to maximize the two-

season profts given the current status of the stock and the regulations in place to enforce the 

catch limits. Thus, frms solve the following program 

� � 
(1) max Π(y1, s1) − aψ + βV2(s2; a) 

y1,a∈{0,1} 

s.t. s2 = R(s1 − y1|η) where η ∼ G(x|ρ, θ) 

y1 ≤ Q1 

where a ∈ {0, 1} denotes a costly action by the industry that, if undertaken in the frst period, 

increases the catch limit in period 2. What we have in mind here is that the industry has the 

option to lobby the regulators before period 2 starts in order to increase that season’s quota to 

Q2 + Λ, with Λ > 0.3 The cost of action a is given by c(a) = aψ, where ψ is a positive constant. 

Note that if this increased quota is indeed adopted by the regulator, it will be enforced with 

the set of policies θ ′ , which may or may not be equal to the original regulations. In program 

(1), η represents the state of the fshery environment in period 1, a random variable distributed 

2Assuming a longer time horizon would not change our results but add notation. Moreover, while fshermen 

exhibit heterogeneity in their attitudes towards the economic and biological tradeofs associated with the harvest 

of fsh stocks, most favor short-term proft considerations (see, for example, Harms and Sylvia 2001). 
3Under the US federal fshery management system, the industry may, for example, hire consultants to be part 

of the Advisory Panel that provides information relevant to the Stock Assessment Review process and Scientifc 

and Statistical Committee process in setting the Acceptable Biological Catch, the upper bound for the annual 

catch limits that must be set by the regional Fishery Management Councils. The industry may also attempt to 

infuence the quota setting process at the Council level, by limiting the precautionary quota bufers for management 

uncertainty. Of note is that regulations, including quotas, are set prior to the start of the fshing season in the 

vast majority of fsheries (see, e.g. https://www.fisheries.noaa.gov/new-england-mid-atlantic/commercial 

-fishing/sector-management-northeast-multispecies-fishery#annual-catch-entitlements). 

https://www.fisheries.noaa.gov/new-england-mid-atlantic/commercial
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on [η, η̄] according to the cumulative distribution function F , and where R denotes the stock-

recruitment relationship, which is assumed increasing in η and increasing and concave in residual 

stock (escapement) z = s − y for all η. We assume this function F is known by the manager 

since the manager has access to both fshery independent and fshery dependent data.4 On the 

other hand, the industry assesses η based on two informational channels: (i) the data available 

to harvesters, as given by the observed sample under policy instruments θ, which determines 

beliefs µ(·|θ); and, (ii) the claims of the manager regarding the distribution of η, F . We allow for 

the possibility that the industry puts only partial weight on the evidence provided by managers. 

This could be due, for example, to the industry’s mistrust towards the regulator and ofcial 

science (Hartley and Robertson 2011, Johnson and McCay 2012, Ford and Stewart 2021), and 

to confrmation bias leading to harvesters’ overconfdence on their ability to assess the stock 

via personal experience (Rabin and Schrag 1999, Kraak et al. 2014, Eggert, Kataria and Lampi 

2016, Dean et al. 2023). Consequently, the industry beliefs on η are given by the following fnite 

mixture distribution 

(2) G(·|ρ, θ) = ρµ(·|θ) + (1 − ρ)F 

where the mixing parameter ρ can be seen as the industry’s degree of mistrust towards the reg-

ulator (or, alternatively, as industry’s confdence on their own observations on the stock). We 

say that the industry operates under full information when G(·|ρ, θ) = F (·), which only occurs 

when ρ = 0 (i.e., complete trust on the regulator) or when the policies θ allow the industry 

to gather unbiased information on η, that is, when µ(·|θ) = F . Thus, our model accommo-

dates two types of frictions preventing the industry from knowing the true state of the stock, 

namely, overreliance on personal experience and nonrepresentative samples, and misgivings to-

wards management and the ofcial science used to inform policy. The larger ρ ∈ [0, 1], the less 

reliant beliefs are on third-party information. 

4The assumption that the regulator knows F is adopted for convenience and is not critical for our results. 

We could have alternatively assumed that the regular observes F with noise, but that would have only added 

notation. It is the misalignment between the industry’s and the regulator’s beliefs that matters for our purposes. 
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In eq. (1), V2(s2, a) is defned as follows 

(3) V2(s2; 0) = max EΠ(y2, s2) s.t. y2 ≤ Q2 
y2 Z 

=max Π(y2, R(s1 − y1|u)) dG(u|ρ, θ) s.t. y2 ≤ Q2 
y2 

when the industry does not lobby the regulator, i.e., a = 0. Thus, V2(s2; 0) represents the 

maximized expected profts in period 2 under status quo catch limit Q2 and beliefs G(·|ρ, θ). 

Conversely, if the industry undertakes lobbying activities to infuence the regulator, we have 

(4) V2(s2; 1) = max EΠ(y2, s2) s.t. y2 ≤ Q2 + Λ 
y2 Z 

=max Π(y2, R(s1 − y1|u)) dG(u|ρ, θ) s.t. y2 ≤ Q2 + Λ 
y2 

Since we are interested in the incentives that binding quotas create for the industry to contest 

the ofcial science, in what follows we assume that the industry expects the harvest limits in 

∗ ∗both periods to bind, i.e., Q1 < y and Q2 < y ≤ Q2 + Λ.5 Thus, from (3) and (4) it is1 2 

immediate that the industry will engage in costly lobbying if the following condition holds Z 
∗ (5) β [Π(y2 , R(s1 − Q1|u)) − Π(Q2, R(s1 − Q1|u))] dG(u|ρ, θ) > ψ 

According to (5), only if it pays for the industry to spend amount ψ lobbying to increase the 

catch limit in season 2, will the industry fnd it optimal to undertake the costly action a in 

period 1. This will occur when beliefs G(·|ρ, θ) lead the industry to expect (i) the catch limit Q2 

to bind; and (ii) that the discounted incremental expected proft associated with an increased 

catch limit Q2 + Λ will be larger than the cost ψ. This is intuitive since only when industry is 

led to believe that their optimal catch will be constrained by the proposed quotas will they have 

incentives to engage in lobbying. In addition, they will only do so if the return from lobbying is 

positive. Note that conditions (i) and (ii) depend on both θ, the vector of regulations in place to 

enforce catch limits, and on ρ, the degree of industry’s distrust towards the regulator-provided 

information. Thus, our specifcation allows for industry to exhibit upward or downward beliefs 

∗5If the unconstrained harvest optimum in 2 is higher than the increased quota, y2 > Q2 + Λ, then condition 

in (4) must hold for the constrained optimum y2 
c = Q2 + Λ rather than y2 

∗ . 
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about the growth potential of the fsh population depending on how quotas are enforced, and 

on the historical frictions between frms and management. 

For concreteness, assume frst that the industry operates under full information, G(·|ρ, θ) = F . 

In this case, as long as the manager sets policy taking into account the interests of the indus-

try, the optimal catch in period 2 will not exceed Q2 and inequality (5) will not be satisfed. 

Thus, industry lobbying will not take place. Conversely, assume, as it is typically the case, that 

(ρ, θ) lead the industry to overestimate s2 (Whittle 2023). This is consistent with the multiple 

testimonies by industry members quoted earlier, with the fact that fshermen oversample the 

areas where fsh are likely to aggregate (i.e., fshermen target the catch), and with confrmation 

bias whereby new evidence is interpreted as supporting industry’s beliefs on abundant stocks. 

Overestimation of the stock would occur if, for example, G(·|ρ, θ) frst-order stochastically dom-

inates F . 6 This later condition would make (5) more likely to hold for any cost level ψ. In this 

case, and contrary to the industry’s beliefs, the stock is less productive than expected and the 

optimum harvest under perfect information may be unconstrained by the original quota limit, 

∗ 7 argmaxy2 
EΠ(y2, s2; F ) ≤ Q2 < y2 . As a result, the industry would engage in wasteful spending 

of ψ on lobbying in return for an increase in the original catch limit Q2, which is not expected 

to bind under full information. Moreover, if harvesters must commit inputs for the entire season 

before the fshing actually starts, overestimation of stock biomass may lead to misallocation of 

efort, higher costs and lower expected profts than would be otherwise optimal. On the other 

hand, as the industry learns to trust the ofcial science, the incentives to lobby management 

identifed earlier will eventually vanish. 

6G frst-order stochastically dominates F , denoted G ⪰FSD F , if G(x) ≤ F (x) for all x, with strict inequality 

at some x. To verify that this condition on beliefs implies overestimation of s2 by harvesters, write the dif-R 
ference in mean biomass as E[s2, G)] − E[s2, F ] = R(s1 − y1|u)[g(u|ρ, θ) − f(u)]du. Integrating by parts, we R � � 

∂R(s1−y1|u)obtain E[s2, G)] − E[s2, F ] = − [G(u|ρ, θ) − F (u)du] ≥ 0, where the last inequality follows from � � 
∂u 

∂R(s1−y1|u) ≥ 0 and G(·|ρ, θ) ⪰F SD F . 
7If 

∂u 

G ⪰FSD F =⇒ y2 
∗ > argmax EΠ(y2, s2; F ). Indeed, note that 

R 
Πy [g(u|ρ, θ) − f(u)]du = R 

y2 

− ΠysRη [G(u|ρ, θ) − F (u)]du > 0 for all y, where the equality is obtained by integrating by parts, and the 

inequality follows from frst-order stochastic dominance and Πys, Rη ≥ 0. Thus, the unconstrained optimum 

harvest under beliefs G(·|ρ, θ) will be higher than that under F . 
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While we have referred to the “industry” as the relevant unit of analysis throughout this 

section for exposition purposes, in a catch share fshery condition (5) needs only hold for a 

subset or coalition of harvesters willing to aford the lobbying cost necessary to increase the 

industry’s catch limit in the next period. Examples of such coalitions include cooperatives or 

sectors that ensure coordination of the activities of their members, frms that own feets of 

vessels, or informal cliques of cooperative fshermen. If it pays for a given coalition to invest ψ 

to increase its quota in the following period, the coalition will do so thereby benefting the rest 

of harvesters by providing a club good of sorts (i.e. by efectively subsidizing the contribution 

of others, who will in turn expect to beneft from higher quotas). This follows from condition 

(5) by substituting the industry landings and catch limit by the coalition’s harvest and its 

allocated quota (given by the coalition’s quota share of Q2 + Λ). As long as the coalition is 

able to appropriate its share of the increased quota, either by harvesting it or selling it, it will 

have incentives to engage in lobbying.8 Thus, in this case the strategy of exerting lobbying 

efort to induce legislators to relax quotas is consistent with a Nash Equilibrium in which the 

largest coalition (e.g., frm or cooperative) contributes ψ while the rest of the fshery free rides 

(Freeman and Anderson 2017). It follows from our discussion that the behavior described in 

this section is more likely to arise in catch share fsheries where frms control multiple vessels 

or where cooperatives or sectors are present. Our application provides an example of such a 

setting. We will show that the largest businesses have strong incentives to individually lobby 

the regulator for higher quotas. 

3. Application 

3.1. The Cod Fishery on Georges Bank. Cod’s historical and cultural signifcance in New 

England is hard to overstate: the heart of immense mercantile wealth due to both its high quality 

and abundance led to an eponymous cape and the species depiction on the Massachusetts state 

capital building (Ropeik 2014). In federal waters, including our case study Georges Bank region, 

8When the quota is not allocated to individual frms or coalitions of frms, the incentives to lobby the regulator 

will be lessened and depend on each coalition’s ability to appropriate the benefts of lobbying by outcompeting 

others in the race for fsh. 
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cod are managed in concert with fourteen other groundfsh species as part of the New England 

Fishery Management Council’s Northeast Multispecies Fishery due to jointness in production. 

The fshery is comprised of hundreds of vessels targeting species managed under the Northeast 

Multispecies Fishery Management Plan. The fshery is managed through what is termed a sector 

system, in which loose cooperatives of fshermen are allocated a proportion of a catch ceiling, 

known as an Annual Catch Limit (ACL), to harvest based on its membership’s historical catch 

(Holzer and DePiper 2019, DePiper and Holzer 2024). This sector allocation is tradeable, and 

in practice functions akin to an individual transferable quota. In addition to these output 

controls, Northeast Multispecies are managed with input controls including both seasonal and 

year-round closed areas as well as mesh and other gear regulations that are intended to curb 

bycatch, targeting of spawning aggregations, and other issues unaddressed by the allocation of 

annual quotas. These input controls theoretically map to the vector θ in eq. (1) by afecting 

when, where, and how fshing occurs, and thus fshermen’s sampling regime and perception of 

stock status µ(·|θ). 

Initially, managers envisioned sectors as a loose business unit where administrative duties 

would be centralized and efciencies of scale and scope could be exploited, with the regulations 

stating that “sectors may pool harvesting resources and consolidate operations to fewer vessels, 

if they desire” (NEFMC 2010). Sectors may fsh in an area as long as they hold unused quota 

for all fsh stocks in that area. Coupled with jointness in production, this management system 

results in a phenomenon known as choke stocks: a single species at low abundance levels can close 

fsheries targeting other highly abundant species. Long the economic engine of the multispecies 

groundfsh fshery, in recent years cod has become a choke stock (Horgan 2019). What is more, 

a deep divide exists between the scientifc and fshermen’s perceptions of the abundance of these 

cod stocks. 

3.2. Industry Beliefs. Biases inherent in using data drawn from commercial fshing activities 

to estimate fsh abundance have long been recognized in the scientifc literature (Beverton and 

Holt 2012, Gulland 1964, J. E. 1964). These biases are driven in part by regulations, gear 

selectivity, and diferential targeting behavior (Reimer, Abbott and Wilen 2017), which lead to 

nonrandom sampling regimes. Assessing and correcting the degree of bias is a topic of ongoing 
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research (e.g. Saul, Brooks and Die 2020, Walter, Hoenig and Christman 2014). To deal with the 

bias of so-called fshery dependent data, biologists have long relied on stratifed random sampling 

regimes using scientifc surveys and standardized protocols to develop unbiased population-level 

inference. 

The marked diference between data produced from scientifc cruises versus fshing activity 

is also recognized by fshermen. However, their interpretation is that the stratifed random 

sampling of the survey biases population estimates downward. “Everyone everywhere is saying 

there is no cod, but I have been up and down the coast and on and of shore looking, and I 

have seen cod everywhere. I could’ve rowed my boat with cod, there was so much.” (Hudson 

2014, p. 42). The running arguments around cod population levels presents a vivid illustration 

of the issue. Vito Giacalone, a commercial fshery representative based in Gloucester, MA, has 

stated “You can’t just sample anywhere. You have to go to where the cod are supposed to be” 

(Abel 2017). More specifcally, the Center for Sustainable Fisheries, whose Board of Directors 

is populated predominantly by commercial fshing interests, has similarly stated that “Cod are 

not evenly dispersed and such random sampling can easily miss large aggregations” (Cuddy 

2023). Although there is obvious truth in the proposition that missing an aggregation of cod 

will impact population estimates, the number of standardized survey tows failing to catch cod 

has been increasing over time. In the 1970’s 42% of survey tows failed to catch cod, whereas 

in the 2010’s that proportion had increased to 65%, a statistically signifcant diference (χ2= 

164.99, df=1, p-value< 0.001) and strong signal that the population of cod has indeed declined. 

Moreover, the mean catch per positive tow has decreased signifcantly over time (20.2 kg/tow 

before 2000 versus 5.85 kg/tow after 2000; p-value < 0.001), suggesting that the biological survey 

is indeed capturing a decrease in the stock biomass rather than spatial aggregation alone. 

It may seem odd for biased beliefs to persist in the face of overwhelming scientifc evidence. 

However, these types of biases echo the “top of mind” biases that have been shown to be quite 

pervasive in human thinking. Similar reticence to changing beliefs can be seen in public dis-

courses around climate change (Weber and Stern 2011, Egan and Mullin 2012, Akerlof et al. 

2013, Myers et al. 2013, Herrnstadt and Muehlegger 2014) and the role of vaccinations in cases 

of autism (Davidson 2017), to name two high-profle examples. 
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Our illustration will assess the magnitude of economic incentives for industry to challenge 

ofcial science fowing from biased perceptions and mistrust of management. To that end, we 

construct a counterfactual scenario in which fshermen’s arguments against random sampling are 

taken at face value, as would occur if lobbying activity proved successful. We proceed by frst 

recovering industry’s beliefs on stock abundance, i.e., µ(·|θ) in eq. (2). This is accomplished by 

shifting the cumulative distribution of the scientifc survey catch of cod to mimic the cumulative 

distribution of commercial cod catch at the same locations and during the same time of the 

year. 

Figure 1 presents the mean commercial landings of cod on Georges Bank between 1996 and 

2011, overlayed with biological survey tows represented as either positive or negative for (catching 

and not catching) cod. The fgure highlights that a substantial number of survey tows on Georges 

Bank are negative for, or fail to catch, cod despite substantial commercial cod catch underlying 

the same area. Given the divergent aims of a commercial fshery and biological survey tows, this 

dichotomy is not unexpected and is likely attributable to (i) targeting behavior, seasonal and 

sub-seasonal changes in availability of the stock, gear selectivity and tow time, and (ii) restricted 

areas. Indeed, the fgure highlights restrictions that can afect fshermen’s perceptions in the 

form of two closed areas visible as discontinuous dark regions on both the western fank and 

eastern Canadian border of Georges Bank. These closed areas were originally implemented to 

avoid fshermen’s targeting of spawning cod and haddock aggregations (New England Fishery 

Management Council 2016) and clearly illustrate the impact that restricting access can have on 

fshing efort. These divergences highlight the bias in fshermen’s perceptions when compared to 

a random scientifc assessment. We exploit these facts to derive our counterfactual fshermen’s 

perspective on the stock. 
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Figure 1. Positive and negative survey tows layered over average commercial catch 

in Georges Bank, 1996 - 2011. Survey tows over white background (northeast of 

the map) occur in Canadian waters, where US fshermen are excluded. Triangular 

regions (in purple) indicate closed areas to directed groundfsh trips. 

Our cod case study is motivated by fshermen indicating the survey is not catching fsh, not 

that the size of the catch is low when the survey does encounter cod. Put another way, fshermen 

understand that a scientifc survey’s standardized speed, gear, and tow length impacts the total 

catch brought up in a haul and creates a divergence from the total catch their targeted and 

more fexible fshing activity achieves. However, fshermen expect that, conditional on this 

standardization, the relative catch between the biological survey and commercial tows should 

be similar. If fshermen are able to catch cod in a location, they expect that the survey should 

also be able to catch cod in that area. This rationale underlies the development of our empirical 

approach. The biological survey is conducted twice annually: once each in the fall and spring. 
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We therefore focus the development of our counterfactual within these two seasons. The top 

panel of Figure 3 presents two CDFs each for spring and fall: commercial catch of cod under 

negative survey tows (i.e., commercial catch at sites where the scientifc survey caught no cod) 

and commercial catch under positive survey tows for cod. We calculate the distance between 

these CDFs in probability space. This vertical distance represents the diference in probability 

fshermen see in catch between the two areas, and thus forms a realistic representation of what 

they would anticipate to see as the diference between survey tows across the two areas. This 

probability distance is then used to shift up the positive survey tows distribution, creating 

a hypothetical distribution of negative survey tows that more closely represents commercial 

fshermen’s perceptions of the stock across the two regions. Figure 2 illustrates this derivation 

of the CDF corresponding to the negative survey tows that would be consistent with fshermen’s 

perceptions. The left panel (labeled (i)), displays a pair of known CDFs, F1 and F2, and the 

vertical distances between them for diferent quantiles, qi, qj , qk . . . , qn (e.g., frst percentile, 

second percentile, etc.). These distances, shown as hi, hj , hk, in conjunction with the known 

distribution µ1, are used to fnd points a, b and c in the right-panel (panel (ii)). When this 

process is repeated for diferent quantiles, the resulting collection of points allows us to recover 

the CDF labeled as µ2 in (ii) and shown as a dashed curve. The resulting distributions µ1, µ2 

mimic, for the biological survey, the relative likelihood of catches −though not the magnitude 

of the catches themselves− that harvesters observe while fshing, as given by F1, F2. 

The bottom panel of Figure 3 presents two CDFs each for spring and fall, with the blue 

curve representing −in each case− the derived CDF for our application to the Georges Bank 

cod fshery (i.e., equivalent to µ2). Of note is that this probability shift implicitly encompasses 

not only diferential fshing activities between commercial fshermen and biological surveys, but 

also the impacts of input controls on commercial fshing activities. Given that U.S. commercial 

fshermen have no real ability to catch cod in Canadian waters, we ignore the eastern tip of 

Georges Bank for this exercise. These new survey distribution functions are used to develop a 

counterfactual stock assessment, while holding survey data from Canada at observed levels as 

described below. 

Annual indices of abundance provide information about the trend of the population. In the 

New England region, stock assessments frequently use a mean swept area index to inform the 



16 

 

𝑞𝑞𝑖𝑖  𝑞𝑞𝑗𝑗  𝑞𝑞𝑘𝑘 𝑞𝑞𝑛𝑛 

𝑭𝑭𝟐𝟐 

𝑭𝑭𝟏𝟏 

𝑞𝑞𝑖𝑖  𝑞𝑞𝑗𝑗  𝑞𝑞𝑘𝑘 𝑞𝑞𝑛𝑛 

𝝁𝝁𝟏𝟏 

0 

1 

𝝁𝝁𝟐𝟐 

ℎ𝑖𝑖  

ℎ𝑗𝑗  

ℎ𝑘𝑘 

ℎ𝑖𝑖  

ℎ𝑗𝑗  

ℎ𝑘𝑘 

𝑎𝑎 

𝑏𝑏 

𝑐𝑐 

(𝑖𝑖) (𝑖𝑖𝑖𝑖) 

Figure 2. Graphical derivation of industry beliefs µ(·|θ). The left panel (labeled (i)), 

displays two known CDFs, F1 and F2, and the vertical distances between them for 

diferent quantiles, qi, qj , qk . . . , qn (e.g., frst percentile, second percentile, etc.). These 

distances, hi, hj , hk, together with the known distribution µ1, are used to fnd points 

a, b and c in the right-panel (panel (ii)). When this process is repeated for diferent 

quantiles, the resulting collection of points allows us to recover the CDF labeled as µ2 

in (ii) and shown as a dashed curve. 

assessment model about increases and decreases in stock size over the modeled years. From the 

stratifed random sampling employed on the Northeast Fisheries Science Center Bottom Trawl 

Survey (NEFSC BTS), design based indices are calculated to obtain annual mean kg/tow or 

numbers per tow, and these means are then scaled up to the total area associated with a stock’s 

management unit assuming the gear has catchability of 1.0 (in reality, catchability is < 1.0, hence 

the magnitude of the indices are considered “minimum swept area” biomass or abundance). To 

generate indices that refect fshermen’s beliefs µ(·|θ), the following algorithm was used. In 

each season, negative tows (i.e., a tow where no cod were caught) from the BTS are replaced 

by drawing a random number [0,1], and that value is matched to the empirical CDF derived 

from the hypothetical distribution of negative survey tows described above. After all negative 

tows are flled in this manner, the design based index is calculated by weighting the individual 
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Figure 3. Cumulative distribution functions of commercial catch under positive and neg-

ative survey tows for cod (top panel), and the counterfactual survey index constructed by 

shifting the true survey cumulative probability up by the diference between commercial 

distributions (shown in blue in bottom panel), by season. 

strata-specifc means by the proportion of total area in each stratum. To better characterize the 

expected mean and variability from this hypothetical index, the process is repeated 100 times. 

The resulting indices when negative tows are simulated in this manner show an overall increased 

mean compared to the original index where negative tows were not removed (Figure A-1). 
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These indices are in units of biomass, but the stock assessment operates by tracking changes 

in abundance (numbers) and therefore the indices were converted to mean swept area abundance 

by dividing by the mean weight by year-season. The age composition (i.e. number of fsh in each 

age class) of each season’s annual index was assumed to be the same for the original and the 

simulated index, refecting a diference in population magnitude only. Although the survey data 

used are from 1978 to present, vessel trip reports (VTR) with landings by latitude-longitude 

are only available from 1996. Our simulated survey therefore uses the original index values for 

years 1978-1995, and appends 1996-2011 to generate the new index. 

3.3. Stock Assessments. A stock assessment is a model describing the population dynamics of 

a fsh population, where increases in the number of fsh in a given year are due to recruitment and 

decreases are due to both natural and fshing mortality. Although fshing mortality is estimated 

as an instantaneous rate, the rate of natural mortality is typically an assumed value because lack 

of direct observations of this process makes it challenging to estimate. The stock assessment 

provides estimates of abundance through the last year that data are available (typically one year 

earlier than the assessment is conducted), and then projections are made from the assessment 

results to explore sustainable levels of harvesting in future years. The assessments are reviewed 

by an external panel of experts, sensitivity of results are examined, and robustness of advice is 

explored.9 If the assessment passes this peer review, then the results are provided to managers 

who then oversee implementation of the assessment estimates of future ACLs. While no model 

is ever assumed to be 100% accurate, an assessment that passes rigorous peer review is treated 

as ‘Best Scientifc Information Available (BSIA)’ and is used as the basis for management.10 

Assessments are updated regularly, new information is evaluated for potential inclusion, and 

subsequent peer reviews are conducted. This provides frequent feedback on the assessment 

model, the data that inform the model, the appropriateness of assumptions, and the robustness 

of advice. 

The stock assessment model framework that had been used until recently to assess Georges 

Bank cod is the Age Structured Assessment Protocol (ASAP, Legault 1999), a forward projecting 

9See https://d23h0vhsm26o6d.cloudfront.net/NRCC_Assessment_Process_Version-18Feb2022_508.pdf 
10https://www.federalregister.gov/documents/2013/07/19/2013-17422/magnuson-stevens-act-provi 

sions-national-standard-2-scientific-information 

https://10https://www.federalregister.gov/documents/2013/07/19/2013-17422/magnuson-stevens-act-provi
https://d23h0vhsm26o6d.cloudfront.net/NRCC_Assessment_Process_Version-18Feb2022_508.pdf
https://management.10
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statistical catch-at-age model. The model is ftted to fshery catch (total landings and discards, 

and their estimated age composition), fshery independent data (mean annual abundance and 

age composition for spring and fall NEFSC BTS, and a spring BTS by the Department of 

Fisheries and Oceans, Canada). Total catch and mean annual indices are modeled assuming 

lognormal error, and age composition data are ftted assuming a multinomial distribution. Over 

the period for which data are available, the variance in spawning stock biomass (SSB) is low 

while the variability in estimated recruitment is large, contributing to the inability to ft a stock 

recruitment function other than a mean with lognormal annual deviations. The assessment 

model results are the estimates that maximize the joint log-likelihood from ftting each data 

component (catch, indices, and their associated age composition). For details see section A-

1 in the appendix. The estimated parameters for this illustration include: mean recruitment 

and annual deviations from that mean, a mean fshing mortality rate and annual deviations, a 

catchability for each survey index (there are 3 surveys), a selectivity for each index (this is a 

vector with probability at age that the vessel will capture each age class that it encounters), 

selectivity for the fshery (an age-specifc vector of capture probability, two separate time blocks 

assumed). Lastly, the initial numbers at age in the frst model year are estimated as deviations 

from an exponential decline. 

Two stock assessments were conducted using this modeling framework for the Georges Bank 

cod stock. The frst was simply rerunning the base model from the 2012 benchmark assessment, 

which we refer to as the “Manager’s Perspective” model below (Northeast Regional Stock As-

sessment Workshop 2013). The second was to replace the two NEFSC BTS indices with the 

simulated indices that refect fshermen’s beliefs, µ(·|θ), keeping all other assessment data and 

model settings the same (referred to as “Fishermen’s Perspective” below). Although this cod 

assessment took place 10 years ago, we use the 2012 benchmark because it was the last time 

that an age-based assessment was accepted for management use. When the model was updated 

in 2015, it was rejected by peer reviewers due to an extreme retrospective pattern and the stock 

is now assessed using a simpler method that sets quota by scaling recent quota by a three-year 

average trend of fshery independent surveys. This simple method has no projection capability 

and is therefore not suitable for exploring our counterfactual example. 
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Both assessment models converged, which was determined by the maximum gradient being 

less than 10−4 and the hessian being positive-defnite. Following the minimization routine, we 

perform Markov Chain Monte Carlo (MCMC) simulations retaining 1,000 iterations given a 

thinning rate of 200. The saved MCMC values characterize the uncertainty in model estimates, 

and also provide 1,000 unique estimates of numbers-at-age at the end of the fnal model year 

from which projections of future outcomes can be simulated. 

The estimated trajectories of SSB are similar for the two models from 1978-2003, but they 

begin to diverge in 2004 and by 2007 there is almost no overlap in their estimated distribution 

of SSB. As expected, the SSB trajectory from the Fishermen’s Perspective model using the sim-

ulated indices is markedly higher than the Manager’s Perspective assessment SSB trajectory, 

which refects fshermen’s belief that abundance is higher than estimated by the scientist’s orig-

inal stock assessment. While the estimated SSB for the fnal model year (2011) is nearly double 

for the Fishermen’s Perspective assessment (47,310 metric tons vs 22,058 mt), both assessments 

have a retrospective pattern that requires adjusting the terminal year estimates prior to making 

stock projections (Mohn 1999; Legault 2009). A retrospective pattern is a diagnostic that com-

pares assessment estimates from the full time series of a given model, with estimates from the 

same model with y = 1, 2, . . . , 7 years removed (these models with sequentially removed years of 

data are often referred to as ‘peels’). When looking across the estimates available in each peel, 

one expects some variability. However, when the variability is unidirectional this is interpreted 

as ‘retrospective bias’, and indicative of a mismatch between data and model assumptions. Of-

ten, SSB estimates in the peels are seen to be adjusted downwards when an additional year of 

data is added. When averaging these deviations in sequential estimates relative to the full time 

series, a value near zero indicates no retrospective pattern. For this illustration, the Manager’s 

Perspective model had a value of 0.681 while the Fishermen’s Perspective model had a value of 

1.520, indicating a large and very large retrospective pattern, respectively. In the presence of 

retrospective bias, past research has demonstrated that bias in future catch advice is reduced 

if projections account for this terminal year pattern (Legault 2009; Brooks and Legault 2016). 

A scalar adjustment to the assessment model estimates of starting numbers at age in the frst 

projection year is calculated from the measure of retrospective pattern: scalar=1/(retrospective 
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value). For the two assessments conducted for this application, this leads to scaling the Man-

ager’s Perspective model by 0.595 and the Fishermen’s Perspective model by 0.397. This retro-

spective adjustment brings the fnal year estimates of the two models closer, but the estimate 

from the Fishermen’s Perspective model is still larger. 

Future quotas and population trajectories are calculated by projecting the stock dynamics into 

the future, where either catch or a fshing mortality rate is specifed each year. Below, we detail 

the standard approach used in the Northeast U.S. to set quotas and assess future population 

dynamics in federal fsheries management and employed in this research. The standard approach 

for estimating future catch is to use 75% of the fshing mortality rate (F) which generates 

Maximum Sustainable Yield (MSY), or its proxy. Because no functional form (e.g., Beverton-

Holt) is used for the stock recruit relationship, there is no defned MSY solution and instead a 

proxy based on expected lifetime reproduction is calculated. Specifcally, the fshing mortality 

rate that reduces expected lifetime reproduction to 40% of unexploited levels (F40%) is the 

FMSY proxy. The assessment was conducted in 2012, and therefore fshing in that year was 

already taking place, making it more practical to specify an expected amount of catch for the 

remaining months of the year rather than specifying a fshing mortality rate. The expected 

catch for the year 2012 was 2,910 mt; all subsequent years of the projection specifed a fshing 

mortality rate of 75% of F40% (0.135). In the projections, biological characteristics such as 

weight at age and maturity at age, as well as the fshery selectivity, are unknown quantities 

because there are no observations from which to estimate them. As is customary, projections 

employ a simple average of the most recent 3 years for each quantity. Future recruitment in 

year y is drawn from a 2-stage empirical CDF defned by whether SSB in (y − 1) was above or 

below a threshold of 50,000 mt (there is a greater probability of larger recruitment when SSB is 

above this threshold). From each of the saved 1,000 MCMC initial conditions, 100 population 

trajectories are simulated, producing a total of 100,000 simulated projections. Projections were 

made from the initial conditions for the Manager’s Perspective and Fishermen’s Perspective 

model. Once these projections were made, the results from the Fishermen’s Perspective model 

were used to specify a third projection scenario, which we refer to as the “Manager’s Perspective 

with Depletion” projection. Catch in 2012 was still set at 2,910 mt, but catches for years 

2013-2030 were set to the median catch from the Fishermen’s Perspective projection. This 
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Manager’s Perspective with Depletion scenario illustrates the outcome of removing the higher 

catches (premised on fshermen’s belief that population abundance is higher, as indicated by 

the simulated indices) from the expected Manager’s Perspective population trajectory. This 

scenario highlights the results of fshermen’s successful lobbying for higher quotas with biased 

beliefs in the true status of the stock. 

Projected catch and spawning stock biomass from both the Manager’s Perspective and Fish-

ermen’s Perspective assessments show increasing trajectories. Catch in the frst projection year 

(2012) is identical, due to the imposed assumption of what catch is likely to be taken in that 

year, but in subsequent years the median catch for the Fishermen’s Perspective scenario exceeds 

the upper 95% probability interval of the Manager’s Perspective assessment scenario for the next 

9 years (Figure 4). Similarly, median spawning stock biomass from the Fishermen’s Perspective 

scenario exceeds the upper 95% probability interval of the Manager’s Perspective scenario for 

the frst decade (Figure 5). When the median catches from the Fishermen’s Perspective projec-

tions are removed from the population as estimated from the Manager’s Perspective assessment 

model (Manager’s Perspective with Depletion scenario), we see that SSB increases more slowly 

than the other two projections, and by 2021 the population begins declining and has efectively 

crashed by 2025. The crash is driven by removing catches that are not sustainable, and we 

see that the Fishermen’s Perspective catches can only be consistently removed through 2021, 

and from 2022-2030 there are iterations where the full amount of catch specifed could not be 

removed from the population. 

3.4. Industry Incentives. Recall that the stock assessments project three diferent states of 

the world: the Manager’s Perspective scenario drawn from the scientifc survey, our counterfac-

tual Fishermen’s Perspective on the stock, and a third scenario of Manager’s Perspective with 

Depletion, in which the original stock dynamics drawn from the survey are subject to harvest at 

the higher rate dictated by fshermen’s perceptions. This latter scenario represents what would 

happen to the stock if lobbying was successful but fshermen’s perceptions were incorrect. Table 

1 shows the results of the Barrett and Donald (2003) tests for frst-order stochastic dominance, 

which confrm that the SSB distribution for the Manager’s Perspective scenario is stochastically 

dominated every year in the period 2013-2030 by the Fishermen’s Perspective SSB distribution. 
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Figure 4. Projected catch for Georges Bank cod for three scenarios: the Manager’s 

Perspective assessment (red), Fishermen’s Perspective model (blue), and the Man-

ager’s Perspective with Depletion model (black) where median catch from the Fish-

ermen’s Perspective model is removed from the population as estimated by the Man-

ager’s Perspective assessment. Catch in 2012 was specifed to be 2,910 mt for all 

models, and in subsequent years the distribution of catch from fshing at 75% of F40% 

(0.135) are calculated. Shaded regions indicate 5th and 95th percentiles, while solid 

line with solid circles indicates the median. 

As outlined in section 2, the stochastic dominance results indicate that fshermen’s expectation 

of stock status is signifcantly higher than the manager’s. 
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Figure 5. Projected spawning stock biomass (SSB) for Georges Bank cod for three 

scenarios: the Manager’s Perspective assessment (red), Fishermen’s Perspective 

model (blue), and the Manager’s Perspective with Depletion model (black) where 

median catch from the Fishermen’s Perspective model is removed from the popula-

tion as estimated by the Manager’s Perspective assessment. The diference in SSB in 

2012 refects the diferent initial population numbers, as estimated from the Fisher-

men’s Perspective and Manager’s Perspective assessments (i.e., blue is Fishermen’s 

Perspective initial conditions, while both red and black are the initial conditions 

from the Manager’s Perspective assessment). Shaded regions indicate 5th and 95th 

percentiles, while solid line with solid circles indicates the median. 
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We simulate the distribution of the Net Present Value (NPV) across scenarios and the pro-

jected time horizon as follows. Gross revenue on multispecies groundfsh trips landing Georges 

Bank cod are derived based on the value of all species landed during the trip, as recorded in the 

Federal commercial dealer database. This represents the legal record of all cod landings from 

the U.S. waters of Georges Bank. Variable costs for that same trip are then estimated based on 

the approach outlined in Werner et al. (2020). Table A-1 in the appendix presents parameter 

estimates of the cost model for Bottom Trawl, the most common gear used in the groundfsh 

fshery. Crew in this fshery are traditionally remunerated through the lay system, in which 

they receive a portion of either gross or net revenue for their services. Although a lack of lay 

standardization exists, we assume crew receive 50% of net revenue as their share. This is both 

a common split and sufces to highlight the magnitude of incentives at play within fsheries 

management (Georgianna et al. 2011, Murphy et al. 2015). We estimate net revenue for all 

Georges Bank cod trips occurring between 2013 and 2019. Table 2 presents summary statistics 

for the pooled data, defated to 2023 constant dollars. 



26 

Table 1. 2013 - 2030 Test of SSB First Order Stochastic Dominance 

Statistic FSD Observed p-value 

2013 Yes 1.0000 

2014 Yes 1.0000 

2015 Yes 1.0000 

2016 Yes 1.0000 

2017 Yes 0.9995 

2018 Yes 0.9995 

2019 Yes 1.0000 

2020 Yes 1.0000 

2021 Yes 1.0000 

2022 Yes 0.9990 

2023 Yes 0.9990 

2024 Yes 1.0000 

2025 Yes 1.0000 

2026 Yes 0.9990 

2027 Yes 1.0000 

2028 Yes 0.9980 

2029 Yes 1.0000 

2030 Yes 1.0000 

Note: If the null H0 : G ≽FSD F can-

not be rejected at conventional signif-

cance levels, the SSB distribution for the 

Fishermen’s Perspective model (G) frst-

order stochastically dominates the SSB 

distribution corresponding to the Man-

ager’s Perspective model (F ). 

The simulations employ block-sampling, in which we frst randomly select a year then draw 

with replacement from that year’s trips until the cumulative trip catch for cod achieves the 

annual catch limit as estimated from the stock assessments under each scenario. The block 

sampling controls for intra-year correlation in input and output prices, and the use of 2013 

- 2019 trip information ensures that results are not a quirk of unrepresentative economic or 

ecosystem conditions within a shorter time horizon. We exclude information beyond 2019 due 
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to the impacts of COVID-19 on seafood supply and demand. This approach is repeated for each 

of the projected years. We develop 4,000 replicate draws of ACLs and trips for each scenario. 

All simulations assume that cod remains the choke species in this fshery. Figure 6 presents 

the mean and 95% confdence intervals of the undiscounted owner’s share of simulation results. 

There is a clear separation of outcomes between the Manager’s Perspective and Fishermen’s 

Perspective scenarios, with fshermen’s perceptions dominating the original survey results. The 

mean net revenue from the Manager’s Perspective with Depletion scenario tracks the Fishermen’s 

Perspective outcome until a decade into the simulations, at which point the stock can no longer 

support the higher catch rates. Table 3 presents the NPV calculated across simulation scenarios. 

In the management context, stock assessments for cod are currently updated every two years 

using model projections to set regulations, and the stock assessment is not used to set regulations 

in the year they are run. This translates into a three year window in which the parameters of the 

stock are fxed and identifes the relevant time horizon of interest for assessing gains that could 

be derived from lobbying for higher quotas. Thus, in Table 3 we delineate NPV estimates for 

this three-year horizon. These estimates are undertaken using three diferent discount rates: 2% 

and 7%, as suggested by U.S. federal guidelines on implementing Cost-Beneft analyses, along 

with 11.6% which equals the 10 year average yield from the ICE BofA CCC & Lower US High 

Yield Index,11 e.g., risky assets. 

3.4.1. Manager’s vs Fishermen’s Perspective Scenarios. Even under a three year time horizon, 

the numbers are substantial with a mean diference between the Manager’s Perspective NPV 

and the Fishermen’s Perspective counterfactual ranging from a high of $85 million under a 2% 

discount rate to a low of $70 million under the 11.6% discount rate. This translates into a 

72-73% increase in value that is apparently (i.e., in the eyes of the industry), but not actually, 

achievable through lobbying activities across all three discount rates. As previously stated in 

Section 2, the decision to lobby for these increased ACLs does not depend on a Nash Equilibrium 

across all owners, merely that a subset of owners stand to gain enough to justify the investment. 

To highlight this issue empirically, table A-2 in the appendix presents the NPV estimates for 

the three largest fshing entities active in the Georges Bank cod fshery. For these three entities 

11Sept. 25, 2013 - Sept. 25, 2023; downloaded from https://fred.stlouisfed.org/series/BAMLH0A3HYCEY 

on September 25, 2023. 

https://fred.stlouisfed.org/series/BAMLH0A3HYCEY
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Figure 6. Time series of net revenue for all years of the simulations, by scenario. 

alone, a successful lobbying campaign could be expected to engender between $17 million and 

$20 million over a three year period, dwarfng the amount that would be needed to hire a full-

time lobbyist over that same time period. These fgures indicate that, were the industry to have 

100% confdence in their own observations and completely disregard the ofcial science, i.e., 

ρ = 1 and G(·|ρ, θ) = µ(·|θ), their beliefs would lead them to expect large returns to lobbying 

for more lax regulations. 
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Table 

2019) 

2. Net Revenue Summary Statistics (All Georges Bank cod trips 2013-

Variable Mean Median Std Dev Min Max N 

Gross Revenue 

Trip Costs 

Fifty Percent Owner Share Net Revenue 

$26,010 

$6,960 

$8,873 

$11,947 

$3,575 

$3,520 

$28,435 

$7,850 

$10,641 

$0 

$3 

-$9,105 

$181,621 

$39,912 

$78,488 

13,527 

13,527 

13,527 
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Table 3. Three-Year Net Present Value under diferent discount rates 

(Millions of dollars) 

Simulation Discount Rate Mean Median Std. Dev. Min Max 

Fishermen’s Perspective 0.020 $201 $193 $65 $54 $524 

Manager’s Perspective 0.020 $116 $111 $44 $12 $374 

Manager’s Perspective w/ Depletion 0.020 $196 $196 $37 $49 $311 

Fishermen’s Perspective 0.070 $182 $175 $59 $49 $476 

Manager’s Perspective 0.070 $106 $100 $40 $11 $340 

Manager’s Perspective w/ Depletion 0.070 $178 $178 $33 $47 $282 

Fishermen’s Perspective 0.116 $167 $161 $54 $45 $438 

Manager’s Perspective 0.116 $97 $92 $36 $10 $313 

Manager’s Perspective w/ Depletion 0.116 $164 $163 $31 $45 $259 

3.4.2. Manager’s Perspective vs Manager’s Perspective with Depletion Scenarios. As stated ear-

lier, the Manager’s Perspective with Depletion scenario illustrates the outcome of removing the 

higher catches from the expected Manager’s Perspective population trajectory. It highlights 

the consequences of fshermen’s successful lobbying for higher quotas (based on biased beliefs 

G(·|ρ = 1, θ) = µ(·|θ)) on the true status of the stock. How does this scenario compare with 

the Manager’s Perspective status quo scenario in which industry follows the prescriptions of the 

ofcial science and catch limits are set more conservatively? In Table 3 the Manager’s Per-

spective with Depletion scenario provides a better outlook in the in the eyes of the industry 

than the Manager’s Perspective scenario, with gains that range from $80 million under a 2% 

discount rate to $67 million under the 11.6% discount rate. The corresponding fgures for the 

three largest businesses range from $19 million under a 2% discount rate to $16 million under 

the 11.6% discount rate. Thus, in the short-term the incentives to lobby the regulator remain 

strong even in the presence of depletion. This is to be expected as a three-year time horizon is 

not long enough for the excess harvest resulting from lobbying to have a signifcant impact on 

stock status. 

In sum, as the comparisons in 3.4.1 and 3.4.2 illustrate, whether the industry is correct in its 

assessment of the stock (i.e., in which case Manager’s vs Fishermen’s Perspective is the relevant 
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comparison) or not (i.e., Manager’s Perspective vs Manager’s Perspective with Depletion is the 

relevant comparison), it pays for harvesters to engage in lobbying activities in the short-term. 

As we show next, those incentives remain strong when considering a longer time horizon. 

3.4.3. Longer Term Incentives. The appeal of lobbying for higher quotas comes down to two 

subjective issues: 1) fshermen’s discount rate (impatience); and 2) the degree of confdence 

fshermen have that they are correct in their beliefs. To the latter point, fshermen are likely 

to entertain some probability that the science is correct, that is, that the claims put forward 

by management regarding stock status are true. Although we cannot readily identify either a 

fsherman’s discount rate or confdence in their own beliefs, we can vary these parameters to 

assess their impact on a fsherman’s incentive to lobby. Concretely, we study how the incentives 

to lobbying vary as we change the industry’s discount rate and the probability (1 − ρ) harvesters 

attach of being wrong in eq. (2), that is, that the Manager’s Perspective with Depletion scenario 

comes to be. 

Moreover, since industry would anticipate learning about the true status of the stock as the 

seasons go by, we allow harvesters to adjust their beliefs based on the signals the receive while on 

the water. We proceed as follows. Fishermen observe the net revenue generated in any year, and 

assess where that value falls within the two relevant distributions of net revenue: the Fishermen’s 

Perspective based on µ(·|θ) and the Manager’s Perspective with Depletion based on F . These two 

distributions encapsulate the two possible outcomes when fshermen are successful in lobbying 

activities, the former if they are right and the latter if they are wrong. It is reasonable to assume 

that the weight placed on either scenario being correct should drop to zero if the observed net 

revenue falls outside of that scenario’s distribution. Given the motivation for this research, the 

learning is assumed to begin with the distribution of revenue from the Fishermen’s Perspective 

scenario. If the observed net revenue falls in the lower 50% of the Fishermen’s Perspective 

net revenue distribution, we assume ρ is decreased based on how close the observation is to 

exiting that distribution. Conversely, if the observed net revenue falls within the upper 50% 

of the Fishermen’s Perspective distribution, we assume ρ is increased based on how close the 

observation is to exiting the upper tail of net revenue generated by the Manager’s Perspective 

with Depletion scenario. 
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Discretizing the left-hand side of eq. (5) when beliefs each season t are given by G(·|ρt, θ) = 

ρtµ(·|θ) + (1 − ρt)F , fshermen will prefer lobbying over the status quo scenario if the NPV 

calculated using the linear combination of yearly fows from the Fishermen’s Perspective and 

Manager’s Perspective with Depletion scenarios, each weighted by the subjective probability at 

t of that scenario being correct, is at least as large as the NPV derived from the Manager’s Per-

spective scenario. To provide an assessment of the incentive to lobby within the fshery under 

diferent confdence levels and discount rates, we apply the corresponding analysis to the aggre-

gate NPV derived from each of the scenarios. The top panel of Figure 7 presents the diference 

between the NPV using the weighted fows from the Fishermen’s Perspective and Manager’s 

Perspective with Depletion scenarios and the NPV from the Manager’s Perspective scenario for 

discount rates ranging between 0.02 and 0.116. The weights are derived by varying the initial 

subjective probability of the Fishermen’s Perspective scenario being correct (ρ) from 0.01 to 

1.0, labeled as Confdence in Figure 7, and letting that initial weight be updated −increased or 

decreased− as the industry learns the true status of the stock. Under the learning algorithm 

described earlier, by 2027 harvesters will know with certainty that the Manager’s Perspective 

with Depletion is the true scenario and stop lobbying. However, by then the stock will already 

be depleted (i.e., the spawning stock biomass drops to zero in 83.7% of the draws in 2027), 

forcing the regulator to put the fshery into a rebuilding plan. 

The top panel of the Figure 7 highlights that fshermen’s confdence in their own beliefs need 

not be absolute in order to make lobbying for higher quotas an appealing strategy. In fact, 

even under the lowest discount rates and confdence levels ρ, fshermen will expect lobbying to 

lead to net gains. The fact that the diference in NPV is always positive and sizeable indicate 

that substantial incentives to lobby can exist even if fshermen have relatively low confdence 

in their beliefs on the status of the cod stock, and are able to update these beliefs based on 

signals derived from their own fshing activity. Critically, these are gains the industry expects 

based on biased beliefs and that do not materialize. As shown in the bottom panel of Figure 7, 

the actual consequences of lobbying and higher quotas on the stock are depletion and welfare 

losses. The foregone discounted revenues, i.e., the additional net revenues industry would have 

earned in 2013-2030 if trusting the ofcial science and refraining form lobbying, range from 

$520 million to $7.7 million depending on the discount rate. This stark diference between the 
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expected and realized consequences of lobbying in Figure 7, can be ascribed to both the industry 

overreliance on their own observations and the slow pace of their learning (i.e., convergence of 

ρ → 0) due to uncertainty in the system (see Figure 5 for uncertainty in the stock assessment). 

This uncertainty implies that harvesters receive noisy signals that may lead them to increase ρ 

in some seasons (i.e., beliefs change non-monotonically). Figure A-2 presents the same fgure for 

the top three businesses engaged in fshing for Georges Bank cod. It shows a similar pattern. 

Again regardless of discount rate, not much confdence is needed in one’s own beliefs in order 

for lobbying to lead to substantial expected gains in the eyes of the industry. Thus, fshermen 

will expect high returns in seeking higher harvest quotas. Ultimately, however, this strategy if 

successful (e.g., under regulatory capture) would undermine fshermen’ own interests, as the cod 

depletion translates into long-term losses. 
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Figure 7. Top panel: diference between NPV calculated using weighted fows from the 

Fishermen’s Perspective and Manager’s Perspective with Depletion scenarios and NPV from 

the Manager’s Perspective scenario for varying discount rates and initial confdence in a 

Fishermen’s own beliefs over the science (ρ). That initial ρ is updated over time as harvesters 

receive signals on proftability (i.e., based on diferences in net revenue under the Fishermen’s 

Perspective and Manager’s Perspective with Depletion scenarios). Bottom panel: mean and 

95% confdence interval for the foregone (discounted) net revenue the industry would have 

earned over the period 2013-2030 if it had accepted the Manager’s Perspective and not 

engaged in lobbying. 

4. Conclusion 

Mistrust and confict between industry and regulators is a constant in commercial fsheries 

management. A common manifestation of such confict is the fshing industry’s hiring of consul-

tants and professional lobbyists to challenge the science that informs management. Divergence 

of objectives and incentives are typically invoked to explain this pervasive phenomenon: short-

term proft maximization in the case of the industry versus long-run resource sustainability in 
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the case of the manager (Parés, Dresdner and Salgado 2015). In this paper we explore an al-

ternative rationale for the ingrained friction between these stakeholder groups. We develop a 

theory to argue that harvesters’ overreliance on personal experience, a universal human ten-

dency (Barron and Erev 2005, Weber 2010), may contribute to the protracted confict between 

industry and regulators. Relying primarily on experiential samples, i.e., samples of the popula-

tion collected while fshing, harvesters form biased beliefs because they fail to recognize the lack 

of representativeness of those samples. Moreover, in an industry where the productivity of the 

fsh population is ever changing and hard to assess even for stock assessment experts, updating 

harvesters’ beliefs may be difcult. Thus, the confict stemming from the diferent views on re-

source productivity can be long-lasting (Adams, Brockington and Vira 2003). Frictions between 

the industry and the regulator are not a rarity in other sectors of the economy. However, the 

possibility of regulatory capture makes commercial fshing stand out (Peña Torres 1997, Turner 

and Weninger 2005, Costello and Grainger 2018). If industry’s challenge of the ofcial science 

prevails, biased beliefs on stock productivity may ultimately lead to over-harvesting and welfare 

loss. 

In the application of the theory to the Georges Bank cod fshery, we rely on fshermen’s own 

testimonies to elicit their beliefs on the results of a fshery-independent survey in a manner con-

sistent with their personal experience. We then use these adjusted survey results to update the 

latest stock assessment and set annual catch limits that would be consistent with industry beliefs 

on stock abundance. Finally, we use landings data and information on costs and expenditures 

at the trip level to estimate the distribution of extra profts the industry would expect in this 

scenario over the three years until the next stock assessment. For the industry, we fnd sizable 

short-term gains from engaging consultants who question the science that managers rely on to 

set policy: a mean of over $70 million in extra profts (roughly a 72% increase) over the three-

year period. This strategy would eventually lead to the collapse of cod, and to welfare losses 

under a realistic range of social discount rates. We show that even low confdence in their own 

beliefs could lead the fshing industry to lobby against their own long-term interests. Notably, 

our model does not rely on the existence of bad actors, as we show that challenging of the ofcial 

science can arise as a natural outcome of diferences inherent in fshermen’s on-the-water ex-

perience and scientifc sampling regimes. More problematically, management can inadvertently 
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exacerbate the bias in fshermen’s perceptions by instituting input controls specifcally aimed 

at changing when, where, and how fshing occurs. We conclude that the incentives associated 

with the additional profts that would be obtained if science were consistent with harvesters’ 

personal fshing experience help explain the common industry practice of hiring lobbyists to 

voice concerns at regional councils’ Scientifc and Statistical Committee meetings, as well as at 

the stock assessment meetings. 

Our fndings highlight the importance of efectively communicating and translating the tech-

nical aspects of science to the relevant audiences, particularly those directly impacted by its 

use in policy. As discussed in this paper, both the scientifc sampling methods and the stock 

assessment process central to fsheries management are technical in nature, and not accessible 

to those outside the feld. Hence, nonspecialists lack understanding and trust of the science that 

supports stock assessments (Calderwood et al. 2023). This lesson is not specifc to commercial 

fshing, as other industries share the key features of the setting we study: i) a changing stochastic 

environment that must be regulated; ii) reliance on science to set regulations; iii) complexity of 

the science involved; and, iv) discrepancy between regulated parties’ daily experience and the 

claims of ofcial science. Climate change adaptation policies and the fght against infectious 

diseases via vaccination programs are just two additional examples. There is a growing con-

sensus that for efectively communicating complex issues such as climate change, information 

must be presented with a focus on the real world rather than with abstractions, and aiming 

for a narrative structure that shows the human face behind the science (Simms 2015, Climate 

Outreach 2018). However, this is not enough, as who provides the information also matters. 

Recent experiences recruiting and training non-specialists to communicate the science to peers 

have proven efective. As an example, take the case of the Shots at the Shop program, which 

engages Black-owned barbershops and hair salons nationwide to act as health advocates and 

assist their clients in making informed COVID-related decisions, and hosting COVID-19 vac-

cination clinics in their shops (Linnan, Thomas and Passmore 2022).12 The Marine Resource 

Education Program (MRE) is a similar initiative in the context of commercial fsheries.Funded 

by NOAA and the National Marine Sanctuary Foundation, and administered by the Gulf of 

Maine Research Institute, MRE ofers workshops for fshermen to: “learn the nuts and bolts of 

12For further details see: https://sph.umd.edu/shotsattheshop 

https://sph.umd.edu/shotsattheshop
https://2022).12
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marine fsheries science and management, demystify acronyms and vocabulary, gain tools and 

insights into efective engagement in their regional Fishery Management Council, and connect 

with key regional fshery science and management experts.”13 

Moreover, long-term cooperative research among fsheries scientists, managers and industry, 

such as the Massachusetts Division of Marine Fisheries Industry-Based Survey14 , can help iden-

tify biases in the parties’s perspectives and lead to greater mutual understanding, trust, and 

likelihood of long-lasting partnerships (Hartley and Robertson 2006, Daw, Robinson and Gra-

ham 2011). However, to be efective, cooperative research must directly involve stakeholders, 

particularly the fshing industry, at each step of the project, from design through execution 

(Hare 2020, Dean et al. 2023). 

This paper shows that the policy instruments that managers adopt not only enforce conser-

vation measures, but also determine what dimensions of the resource users actually observe. 

In turn, the way users are allowed to sample the resource determines their beliefs on resource 

productivity and their incentives to challenge those regulations. Thus, when selecting policy 

instruments, managers should be mindful of both dimensions: i) the conservation, and the ii) 

informational (signalling) aspects of policy. As shown in this work, proceeding otherwise may 

undermine the very purpose of those policies. For example, managers may consider alternate 

conservation policies like rotational area closures that allow the industry to explore diferent 

aspects of the stock while achieving similar fshing mortality. Under this strategy, the regulator 

would need to adjust the precautionary quota bufers associated with management uncertainty 

to limit the probability of overfshing under the alternating policy options. 

13https://mrep.gmri.org/apply 

14For details see: https://www.mass.gov/info-details/industry-based-survey-for-gulf-of-maine-cod 

https://www.mass.gov/info-details/industry-based-survey-for-gulf-of-maine-cod
https://13https://mrep.gmri.org/apply
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5. Appendix 

A-1. Population Dynamics and Forecasting 

The age-structured population dynamics equations in the stock assessment software package 

ASAP (Legault 1999), used in this research, are as follows. The time step of the model is one 

year, and recruitment occurs at age 1. Recruitment can be modeled as a function of spawning 

biomass or as a constant with annual deviations. For this application to Georges Bank cod, a 

functional form was inestimable due to lack of sufcient variation in the time series of spawning 

biomass, and therefore the number of recruits at age 1 in year y + 1 was modeled as a logscale 

mean with annual deviations 

(A-1) log(N1,y) = logR + ϵy 

where ϵ ∼ N(0, σ2) and R is an estimated constant recruitment. Numbers at age for the rest of 

the population are given by 

−Ma−1,y−1−Fa−1,y−1(A-2) Na,y = Na−1,y−1e 1 < a < A 

−Ma−1,y−1−Fa−1,y−1 −MA,y−1−FA,y−1(A-3) NA,y = Na−1,y−1e + NA,y−1e a = A 

In Eq. (A-2) and (A-3), M and F are instantaneous natural and fshing mortality rates, and 

in Eq. (A-3), A is the plus group, where all individuals ≥ A are assigned the same biological 

parameters. Spawning stock biomass (SSB) is calculated as 

AX 
−(Ma,y +Fa,y )∆ts(A-4) SSBy = Na,yma,ywa,ye 

a=1 

where ma,y is the probability of being mature at age a in year y, and wa,y is weight at age in 

year y. Direct measures of fecundity (eggs produced) at age by year are not available for most 

fsh, and weight is used as a proxy instead because it is easy to measure and the data are widely 

available from both commercial catch and biological surveys. 

Data that are ftted for Georges Bank cod include annual index values for three fshery inde-

pendent surveys as well as the age composition of those surveys, and the annual total catch as 
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well as the age composition of the catch. Predicted values are calculated as 

ˆ (A-5) I = N q s e− (Ma,y +Fa,y )∆ti
i,a,y a,y i i,aXA  

 ˆ  ˆ(A-6) Ii,y = Ii,a,y 

a=1 

Fˆ a,y 
(A-7) Ca,y = N  a,y

a,y(1 − e− (Ma,y +F  ))
Ma,y + Fa,y XA  

ˆ(A-8)  Cy = ˆ Ca,y 

a=1 

For (A-5), Îi,a,y is the predicted value for survey i at age a in year y, and is calculated from 

the numbers at age in that year, scaled by index-specifc catchability (qi), the probability that 

the survey catches that age (index-specifc selectivity at age, si,a), and then decremented for 

the fraction of annual mortality that occurs prior to survey timing (∆ti). Predicted catch is 

simply the fraction of annual mortality at age in a given year that is due to fshing, Fa,y, which 

is modeled as a constant (log-scale mean) with annual deviations. Fishing mortality at a given 

age in a given year is the product of an instantaneous fshing mortality in a year Fy, and age-

specifc fshery selectivity in that year sa,y. For Georges Bank cod, selectivity was assumed to 

be constant within two temporal time blocks: 1978- 1993, and 1994-2011 (Northeast Regional 

Stock Assessment Workshop 2013). 

The index and total catch are assumed to have a lognormal distribution, with negative loglike-

lihood (NLL), ignoring constants, given by X 1 X log(obsy) − log(predy)
(A-9) NLL = log(σy) + 

2 σ2 
yy y 

Age composition data have a multinomial distribution, with NLL (again, ignoring constants) X 
(A-10) NLL = −ESS pobs,α,ylog(ppred,α,y) 

α 

In (A-9), σ2 
y is calculated from annually specifed coefcients    of variation (CVy), i.e. σ2 = 

log(CV 2 + 1). In (A-10), ESS is the efective sample size (a value that is input by the user), 

α are the ages that are included in the age composition, pobs,α,y are the observed proportion at 

age, and ppred,α,y are the predicted proportion at age. 
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The total objective function that is minimized is the sum of the individual negative loglikelihoods, 

all of which are assumed to have either lognormal (annual recruitment, annual fshing mortality, 

total catch, total index) or multinomial (age composition of catch, age composition of indices) 

distributions. 

Convergence is achieved if the absolute value of the maximum gradient is less than 10−4 , the 

hessian is positive-defnite, and there are no boundary solutions. 
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Figure A-1. Design based estimate of mean relative biomass (kg/tow) from the spring and fall 

Bottom Trawl Survey. Manager’s Perspective is the mean relative biomass using only tows from 

the fshery independent survey (including zero tows), while Fishermen’s Perspective refers to the case 

where zero tows were replaced with positive catch derived from the cumulative probability distribution 

in Figure 3. Darker shaded region is the interquartile range, lighter shading with dashed line border 

are the 5th and 95th percentiles. 
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A-2. Fishing Trip Costs 

Table A-1 presents the parameter estimates of the cost model for Bottom Trawl, which is the 

most common gear used in the groundfsh fshery. Historical estimates for the remaining gears 

utilized in the groundfsh fshery are presented in Werner et al. (2020). A Heckman selection 

model is employed to estimate multi-day trip costs due to the fact that the cost data are gathered 

on trips carrying human observers that are deployed for bycatch estimation. The stratifcation 

for bycatch estimation generates a selection issue for cost estimation for multi-day trips. A 

Wald test of independent equations rejects independence for the multi-day trip (χ2 = 1677.26, 

p-value< 0.001) specifcation. To address potential collinearity issues, we employ an exclusion 

restriction, the natural log of number of observers employed in each month, to the selection 

model. 

Table A-1. Bottom Trawl Trip Cost Model Estimate 

Day Trip 

Variable Coefcient t p > |z| 

Ln Cost 

Ln vessel horsepower 0.322*** 14.08 0.000 

Ln vessel gross tons 0.206*** 19.30 0.000 

Ln vessel age –0.057*** -3.10 0.002 

Ln hours absent 0.995*** 44.74 0.000 

Ln diesel price 0.354*** 7.06 0.000 

Ln average weekly wage –0.209*** –4.61 0.000 

Intercept 2.282*** 6.83 0.000 

Correlation of selection & outcome error terms 

No. of uncensored obs. 13,810 

Selection (probit) 

Ln vessel horsepower 

Ln vessel gross tons 

Ln vessel age 

Ln hours absent 

Multiday Trip 

Coefcient z p > |z| 

0.359*** 11.53 0.000 

0.349*** 36.19 0.000 

0.027 1.18 0.238 

0.926*** 75.22 0.000 

0.245*** 4.16 0.000 

-0.153*** -4.96 0.000 

2.193*** 9.75 0.000 

-0.887 

11,201 

0.096** 2.11 0.035 

0.109*** 2.77 0.006 

-0.027 -1.16 0.245 

0.026*** 3.06 0.002 
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Table A-1. Bottom Trawl Trip Cost Model Estimate 

Variable 

Day Trip 

Coefcient t p > |z| 

Multiday Trip 

Coefcient z p > |z| 

Ln diesel price 

Ln average weekly wage 

Sector ID 3 

Sector ID 5 

Sector ID 6 

Sector ID 7 

Sector ID 9 

Sector ID 10 

Sector ID 11 

Sector ID 12 

Sector ID 13 

Sector ID 15 

Sector ID 16 

Sector ID 17 

Sector ID 18 

Sector ID 19 

Sector ID 20 

Sector ID 21 

Sector ID 22 

Sector ID 26 

Sector ID 27 

Fleet 6 

Fleet 7 

Fleet 8 

Fleet 10 

Fleet 11 

Fleet 12 

Fleet 13 

0.208*** 

0.435*** 

-5.197*** 

0.335*** 

0.413*** 

0.208*** 

0.252*** 

-0.047 

-0.400*** 

0.338*** 

-5.007*** 

0.008 

0.057** 

0.346*** 

-0.0331** 

0.027 

0.3334*** 

-4.973*** 

0.191*** 

0.052 

0.027 

-0.0419 

-0.140*** 

0.242*** 

-4.934*** 

-5.085*** 

-0.396*** 

-4.868*** 

4.83 

4.47 

-33.21 

12.07 

8.54 

4.88 

17.50 

-0.50 

-5.89 

8.01 

-53.55 

0.05 

2.48 

7.41 

-2.46 

0.32 

6.22 

-40.57 

3.99 

0.96 

0.63 

-1.14 

-2.64 

9.49 

-43.38 

-52.18 

-4.22 

-45.37 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.614 

0.000 

0.000 

0.000 

0.964 

0.013 

0.000 

0.014 

0.75 

0.000 

0.000 

0.000 

0.338 

0.531 

0.254 

0.008 

0.000 

0.000 

0.000 

0.000 

0.000 
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Table A-1. Bottom Trawl Trip Cost Model Estimate 

Variable 

Day Trip 

Coefcient t p > |z| 

Multiday Trip 

Coefcient z p > |z| 

Fleet 14 

Fleet 15 

Fleet 16 

Fleet 19 

Fleet 20 

Fleet 21 

Fleet 23 

Fleet 24 

Fleet 25 

Fleet 27 

Fleet 28 

Fleet 29 

Fleet 31 

Fleet 32 

Fleet 35 

Fleet 38 

Fleet 41 

Fleet 42 

Fleet 56 

Fleet 60 

Fleet 62 

Fleet 66 

Fleet 75 

Fleet 80 

Fleet 82 

Fleet 85 

Fleet 86 

Fleet 92 

-5.017*** 

-5.081*** 

-0.425*** 

-4.986*** 

0.121*** 

0.228** 

-4.668*** 

0.452** 

-4.820*** 

-0.031 

0.323*** 

-5.184*** 

-4.940*** 

-1.164*** 

-5.193*** 

-0.035 

-5.179*** 

0.171 

-5.206*** 

0.105** 

0.553*** 

-4.814*** 

-5.232*** 

-0.5084*** 

0.084 

0.258 

-4.854*** 

-0.137*** 

-33.23 

-43.19 

-9.7 

-42.39 

6.06 

1.99 

-26.44 

2.05 

-43.11 

-0.35 

8.94 

-28.62 

-48.29 

-3.34 

-51.69 

-0.88 

-35.64 

1.17 

-50.81 

2.00 

4.45 

-26.66 

-43.24 

-5.39 

0.37 

1.24 

-46.75 

-5.37 

0.000 

0.000 

0.000 

0.000 

0.000 

0.047 

0.000 

0.040 

0.000 

0.729 

0.000 

0.000 

0.000 

0.000 

0.000 

0.378 

0.000 

0.244 

0.000 

0.046 

0.000 

0.000 

0.000 

0.000 

0.711 

0.217 

0.000 

0.000 
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Table A-1. Bottom Trawl Trip Cost Model Estimate 

Variable 

Day Trip 

Coefcient t p > |z| 

Multiday Trip 

Coefcient z p > |z| 

Ln no. of observers 

Intercept 

Correlation of selection & outcome error terms 

No. of censored obs. 

Total obs. 

0.341*** 

-7.154*** 

-0.887 

75,255 

86,456 

8.14 

-9.44 

0.000 

0.000 

The model includes seasonal (quarterly) and year fxed efects. 
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A-3. The Largest Fishing Businesses 

Table A-2. Three-Year Net Present Value for the three largest fshing businesses 

under diferent discount rates (millions of dollars). 

Simulation Discount Rate Mean Median Std. Dev. Min Max 

Fishermen’s Perspective 0.020 $48 $46 $15 $14 $124 

Manager’s Perspective 0.020 $28 $26 $10 $3 $89 

Manager’s Perspective w/ Depletion 0.020 $47 $46 $8 $13 $77 

Fishermen’s Perspective 0.070 $43 $42 $14 $13 $113 

Manager’s Perspective 0.070 $25 $24 $9 $3 $81 

Manager’s Perspective w/ Depletion 0.070 $42 $41 $7 $13 $70 

Fishermen’s Perspective 0.116 $40 $38 $13 $12 $104 

Manager’s Perspective 0.116 $23 $22 $8 $2 $75 

Manager’s Perspective w/ Depletion 0.116 $39 $38 $7 $12 $64 
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Figure A-2. Top panel: for the largest three businesses, diference between NPV calcu-

lated using weighted fows from the Fishermen’s Perspective and Manager’s Perspective with 

Depletion scenarios and NPV from the Manager’s Perspective scenario for varying discount 

rates and initial confdence in a Fishermen’s own beliefs over the science (ρ). That initial ρ 

is updated over time as harvesters receive signals on proftability (i.e., based on diferences 

in net revenue under the Fishermen’s Perspective and Manager’s Perspective with Depletion 

scenarios). Bottom panel: mean and 95% confdence interval for the foregone (discounted) 

net revenue the industry would have earned over the period 2013-2030 if it had accepted 

the Manager’s Perspective and not engaged in lobbying. 
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