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EXECUTIVE SUMMARY 
NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) is 

the authoritative source for accurate, reliable, and timely data on tides, water levels, and 

currents, as well as other coastal oceanographic and meteorological information. CO-OPS 

maintains and operates NOAA’s National Water Level Observation Network (NWLON), 

which provides real-time and historic water level observations at over 200 locations across 

U.S. coastlines. These observations enable monitoring and prediction of long-term sea level 

change, extreme events, and coastal flood frequency, which is essential information for 

preparing and planning for coastal hazards. While very useful, NWLON-based information is 

directly applicable to and representative of the conditions in the immediate vicinity of each 

water level station, creating extensive gaps in coverage in both densely populated areas and 

along remote or rural coastlines where distance between station locations can exceed 200 

miles. These data are only collected in locations with continuous inundation (i.e., open water 

areas) and do not provide information over land, within many estuaries, or along most streams 

and rivers.  

To bridge gaps in service and more equitably serve the Nation’s coastal communities, 

NOAA’s Coastal Ocean Reanalysis (CORA) couples long-term water level observations with 

hydrodynamic modeling to create historical information between tide stations. CORA water 

levels are simulated with ADvanced CIRCulation (ADCIRC) for ocean circulation modeling 

and coupled with a phase-averaging model called Simulating WAves Nearshore (SWAN) to 

produce surface gravity wave spectra and account for time-averaged wave contributions. 

Coastal water level observations from NOAA’s NWLON are low-pass filtered and assimilated 

into the model to account for long-term sea level variability and to reduce model errors. The 

domain of this reanalysis spans the Gulf of Mexico, Atlantic (East), and Caribbean coastlines 

(or CORA-GEC). Modeling and statistical analyses were conducted for a period of 44 years, 

1979-2022, with each year handled independently.  

Skill assessment performed by the University of Hawaii’s Sea Level Center found that 

CORA performed well when compared to NWLON observations. Modeled hourly water level 

errors across all 112 NWLON locations for the assimilated model run have a mean absolute 

error (MAE) of only 9.1 cm and a root mean squared error (RMSE) of only 11.4 cm. These 

errors are an improvement of roughly 40% compared to the initial unassimilated run. Hourly 

errors at stations used for the assimilation (MAE of 7.6 cm and RMSE of 9.4 cm) are 

unsurprisingly improved, and errors at stations withheld from the assimilation are still quite 

low (MAE of 10.6 cm and RMSE of 13.3 cm). Importantly, mean bias is acceptable regardless 

of assimilation status and is under 1 cm across all stations in the assimilation run. 

Model error is dependent on geography and time. Regional performance differences 

are presumably related to the density of water level stations available for assimilation, with 

areas having fewer stations showing lesser performance across most metrics (e.g., along the 

western Gulf Coast). CORA performance was consistently weakest at water level stations 

located up coastal rivers, most likely due to inadequate resolution of these water bodies in the 

ADCIRC grid, a lack of riverine inflow, and fewer stations for assimilation. With a typical 

coastal resolution of 400-500 m, the mesh is too coarse to capture some narrow inlets into bays, 

and errors can be relatively large. Temporal dependence to errors is also suspected due to the 

increasing availability of stations (more stations in later decades) for assimilation or validation, 

as well as dependence on seasonality and various water level forcings that may not be captured 

well in the model representation. Model resolution is key to improving accuracy under all 
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conditions and in all areas, but it is especially important for improving accuracy behind barrier 

islands and up river. 

CORA adeptly captures storm surges for many extratropical and tropical events, like 

hurricanes Sandy and Irma. However, CORA underperforms for some tropical systems, 

especially those that might be represented poorly by the relatively coarse weather forcing 

resolution (~30 km). This typically results in peak surge being lower than observed, especially 

in cases with storms that have strong, concentrated wind fields.  

Considering both longer-term water level variability and extreme events, CORA 

closely tracks observed water level variations. Looking at several example stations, spectral 

errors in water level are several orders of magnitude less than the modeled water level 

variability at time scales between 1 and 180 days. Similarly, a cursory extreme analysis shows 

that CORA simulated extremes at 5- and 10-year return intervals with errors within 10 cm of 

the observed water levels for the majority of comparison stations. 

Waves are an important aspect of CORA, as they are included to account for time-

averaged wave contributions to storm surge, known as “wave setup.” In addition to the coupled 

contributions of waves, SWAN spectral wave output is included in CORA, even though this 

was not a primary focus of CORA version 1.1. A limited skill assessment of waves 

demonstrates acceptable performance at a minimal number of coastal wave observation sites 

available in the study region, though a more comprehensive assessment of wave performance 

will be completed in the future. 

Derived coastal flood products are also an important aspect of CORA development. To 

enable continued development and enhancement of these products, the ADCIRC output is 

interpolated onto a 500 m grid to create continuous geospatial resolution. Decoupling the 

model mesh from the grid for applied products enables future updates to the mesh, or even the 

entire model structure, without needing to rederive the spatial delivery of downstream 

products. Geoprocessing tools are used to create a 500 m grid to include all ADCIRC nodes 

within 3 km of shore, with onshore grid points capturing the spatial extent of nodes that 

experience at least 1 flood event per year.  

Future enhancements to CORA-GEC include improved accuracy of tide simulations, 

meteorological forcing that includes low-frequency events like tropical cyclones, and increased 

model resolution. Increasing model resolution may be especially relevant to improve 

performance in complex coastal regions like those behind barrier islands and up rivers. 

Reanalysis of the Pacific domain began in 2024 and will be sectioned into 3 sub-regions: the 

Pacific Coast and Hawaiian Islands, Alaska, and the Pacific Islands. The Great Lakes are not 

yet a part of CORA datasets, though an approach has been drafted and the project team 

acknowledges that a reanalysis of the lakes will improve the resolution of 6-month Lake Level 

Predictions and add to the value of reanalysis datasets in the future.  

Data associated with this project and report are considered CORA-GEC version 1.1. 

Versioning is in place to identify the datasets analyzed here from previous and future versions 

of CORA, including version 0.9, which was assessed in a validation performed by the 

University of Hawaii’s Sea Level Center (Rose et al. 2024).  
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1. INTRODUCTION & BACKGROUND
NOAA’s Center for Operational Oceanographic Products and Services (CO-OPS) has 

a robust history of collecting, storing, archiving, and distributing authoritative oceanographic 

data from across the coastal United States. These authoritative datasets include coastal water 

level observations, which provide the foundation for research and products focused on many 

topics including sea level monitoring (Zervas 2009), mean sea level (MSL) projections (Sweet 

et al. 2022), extreme and minor high tide flooding (HTF; Sweet et al. 2018; Sweet et al. 2022), 

and subseasonal to seasonal flood prediction (Dusek et al. 2023). These research efforts and 

resulting products are made possible with NOAA’s National Water Level Observation 

Network (NWLON), a system of over 200 real-time water level stations with extensive, high-

quality long-term data records that in some cases extend over 100 years. Though these water 

level products are critical for monitoring, safety, and preparedness, as well as improving 

scientific understanding to make predictions about future coastal conditions, dependence on 

NWLON stations means these variables are almost exclusively provided at specific point 

locations, sometimes hundreds of miles apart. We are repeatedly reminded that researchers, 

partners, users, and stakeholders require water level data everywhere, not just where there 

happens to be a station. This raises the question: Can we use foundational NWLON observation 

and state-of-the-art numerical modeling to produce long-term water level data everywhere 

along the U.S. ocean coastline? 

NOAA answers this question through the development of the Coastal Ocean Reanalysis 

(CORA). CORA is a coastal hydrodynamic model reanalysis of hourly water levels and wind-

driven waves at a spatial resolution of approximately 200-500 m along the entire Gulf of 

Mexico, Atlantic (East), and Caribbean coastlines (CORA-GEC) from 1979-2022. Recent 

advancements in atmospheric (European Centre for Medium-Range Weather Forecasts 

[ECMWF] Reanalysis version 5 [ERA5]1) and hydrodynamic modeling (Luettich et al. 1992; 

Westerink et al. 2008; Booij et al. 1999; Zijlema 2010) enable improvements in accuracy and 

spatial resolution of depth and extent of coastal inundation modeling. NOAA’s robust, long-

term NWLON observations are then leveraged for data assimilation to account for long-term 

sea level variations, resulting in further improved model accuracy for hourly water level errors 

typically less than 10 cm. Applying reanalyzed modeled atmospheric forcings from the ERA52 

coastal hydrodynamic model allows for the development of long-term, multi-decadal, 

historical coastal water level and waves datasets for a variety of uses. Half of the NWLON 

observations used to produce CORA were assimilated into the modeling to increase accuracy 

by reducing error; the other half were intentionally set aside to enable independent model 

validation. 

CORA water levels are simulated with the ADvanced CIRCulation3 model (ADCIRC). 

ADCRIC’s 2-dimensional barotropic mode accounts for tides, wind, and atmospheric pressure-

driven surge and wind-wave characteristics via ADCIRC’s coupling with the phase-averaging 

Simulating WAves Nearshore model (SWAN; Dietrich et al. 2011a) that simulates surface 

1 ECMWF  Reanalysis: https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3803 
2 ERA5 Documentation: 

a. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT:

https://os.copernicus.org/articles/15/831/2019/

b. Improvements in storm surge representation: https://link.springer.com/article/10.1007/s00382-019-

05044-0
3 ADCIRC Publications: https://adcirc.org/home/documentation/adcirc-related-publications/ 

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3803
https://os.copernicus.org/articles/15/831/2019/
https://link.springer.com/article/10.1007/s00382-019-05044-0
https://link.springer.com/article/10.1007/s00382-019-05044-0
https://adcirc.org/home/documentation/adcirc-related-publications/
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gravity wave spectra and accounts for time-averaged wave contributions (wave setup) to 

coastal water levels4. Coastal water level observations are low-pass filtered and assimilated 

into the model following the method described in Asher et al. (2019). There are 112 NWLON 

stations within the Gulf, East, and Caribbean model domain, with 53 used for data assimilation 

and 59 used for an independent assessment of the assimilated model results. Validation of 

preliminary version 0.9 of CORA for the Gulf and East coasts (Rose et al. 2024) found the 

reanalysis compares closely with most non-assimilated water level observations. CORA 

version 0.9 demonstrates improved performance when compared to the state-of-the-art eddy-

resolving (1/12°) global ocean reanalysis (GLORYS12; Jean-Michel et al. 2021). 

CORA datasets are available through NOAA’s Open Data Dissemination Platform 

(NODD)5 via Amazon Web Services (AWS). Datasets have been optimized to enable rapid 

access and data retrieval. Python-based Jupyter Notebooks6 are available to guide users 

through accessing, analyzing, and visualizing CORA datasets through common use cases. In 

addition to CORA’s native ADCIRC datasets, gridded datasets are interpolated to a 500 m 

coastal grid to address the need for reduced file sizes, to provide a consistent framework for 

service delivery, and to streamline the development of downstream products and applications. 

Gridded data are being used to develop visualizations and statistics like daily maximums, 

event-driven water levels, seasonal variations, long-term trends, and spatial extent of flood 

exposure, among many others. Gridded datasets provide continuous geospatial resolution, a 

necessity for enhancing sea level trends, extreme water level prediction, and valuable coastal 

hazard planning and mitigation products like the NOAA Monthly HTF Outlook7 (Dusek et al. 

2022). National gridded datasets with continuous spatial resolution will help enhance the 

accuracy of the national flood frequency estimates and projections provided in the Interagency 

Sea Level Scenarios (Sweet et al. 2022) and the 5th National Climate Assessment (IPCC 2014). 

This report details the approach, results, and performance of CORA-GEC version 1.1. 

Please note that preliminary versions of CORA, like version 0.9 analyzed in Rose et al. (2024) 

and version 1.0 used for prototyping, are enhanced and superseded by CORA-GEC version 

1.1. Section 2 provides a project description, including details for different components of the 

project, naming conventions and future coverage expansion. Section 3 describes overall 

methods, including ADCIRC configuration, mesh, forcing, datums, and units of the model 

output. Section 4 includes the data acquisition, processing, and assimilation scheme, as well as 

how the error assessment was completed. Results are covered in Section 5 and include a 

comparison with NWLON observations, wave observations, an extremes analysis, and a 

summary of model limitations. Section 6 addresses grid development and interpolation and 

describes some initial downstream product development. Lastly, Section 7 provides 

acknowledgements, references, and appendices. 

4 Simulation WAves Nearshore (SWAN): https://swanmodel.sourceforge.io/ 
5 NOAA Open Data Dissemination (NODD) Platform via Amazon Web Services: 

https://registry.opendata.aws/noaa-nos-cora/ 
6 GitHub Repository for CORA’s Python Jupyter Notebooks: https://github.com/NOAA-CO-OPS/CORA-

Coastal-Ocean-Reanalysis 
7 NOAA Monthly High Tide Flooding Outlook: https://tidesandcurrents.noaa.gov/high-tide-flooding/monthly-

outlook.html 

https://github.com/NOAA-CO-OPS/CORA-Coastal-Ocean-Reanalysis
https://swanmodel.sourceforge.io/
https://registry.opendata.aws/noaa-nos-cora/
https://github.com/NOAA-CO-OPS/CORA-Coastal-Ocean-Reanalysis
https://github.com/NOAA-CO-OPS/CORA-Coastal-Ocean-Reanalysis
https://tidesandcurrents.noaa.gov/high-tide-flooding/monthly-outlook.html
https://tidesandcurrents.noaa.gov/high-tide-flooding/monthly-outlook.html
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2. PROJECT DESCRIPTION 
NOAA’s CORA is the culmination of collaborative efforts across the National Ocean 

Service (NOS), the Coastal Resilience Center and the Renaissance Computing Institute 

(RENCI) at the University of North Carolina (UNC) at Chapel Hill, and the University of 

Hawaii Sea Level Center (UHSLC) at the Cooperative Institute for Marine and Atmospheric 

Research (CIMAR). Though global atmosphere and ocean reanalyses are common, they have 

not been frequently utilized for high-resolution coastal applications. CORA-derived datasets 

mark a shift in the way NOAA provides impactful coastal oceanographic products and 

services. Most importantly, the increased resolution of CORA’s modeled historical water 

levels allows NOAA to more equitably provide valuable information to coastal communities 

located far from water level stations.  

Requirements for this collaborative project were drafted in 2020 and signed into 

agreement in 2021, establishing roles and responsibilities for each participant. CO-OPS leads 

and manages the project, provides verified hourly water levels for stations with a record from 

1979-2022, and supports model skill assessment, data access, and product development. 

NOAA’s Office of Coast Management (OCM) is responsible for developing the methodology 

for translating reanalyzed data from an unstructured triangular ADCIRC mesh to a uniformly 

gridded product with data points every 500 m along the coast, including riverine areas, 

estuaries, and bays. The Integrated Ocean Observing System (IOOS) funded collaboration with 

the RPS Group, who optimize data for cloud-based analysis and interpolate ADCIRC datasets 

to a grid, developing a JupyterHub environment to develop Jupyter Notebooks for analyses 

and product development, and brokering transition of data to the NODD. 

Outside of NOAA, partnership with the UNC RENCI propels the entire project by 

developing and testing methods, configuring numerical meshes needed for each reanalysis, 

performing several iterations of model runs, providing the high-performance computing (HPC) 

needed to run the models, and ensuring quality results through skill assessment. Additional 

academic collaboration with UHSLC CIMAR helped assess the skill of a preliminary version 

of CORA compared to water level observations and coastal sea levels from a global reanalysis 

(Rose et al. 2024). 

CORA will be a national dataset, including the U.S. Pacific Coast, Hawaii, affiliated 

Pacific Islands, Alaska, and U.S. Territories. Datasets are being developed in 3 major sections 

with reanalysis of the Gulf of Mexico, Atlantic Ocean, Puerto Rico, and U.S. Virgin Islands 

(i.e., GEC) occurring first. This approach is helpful for managing computation time and overall 

data management but is ultimately used because ADCIRC grids for this region already exist. 

ADCIRC grids for the Pacific reanalysis are distinct, disjointed, and occurring in 3 parts: the 

Pacific Coast and Hawaiian Islands, Alaska, and U.S. Territories.  

Data reviewed, analyzed, presented in this technical report, and available for public 

consumption are labeled “version 1.1.” The initial version of the CORA-GEC was labeled 

“version 0.9” and used for the published validation study (Rose et al. 2024). Several 

improvements were made from version 0.9 to version 1.0, however the update introduced some 

shortcomings with properly accounting for long-term sea level variability during periods of 

limited observations. Thus, some portions of the data assimilation process were further 

improved (as detailed in section 4) to establish version 1.1, marking the first full public release 

for operational use and application. 

The Great Lakes are not included in CORA datasets, though an approach has been 

drafted and the project team acknowledges that a reanalysis of the lakes will improve the 
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resolution of 6-month Lake Level Predictions and add to the value of reanalysis datasets in the 

future.  

3. METHODS  

Overall Reanalysis Workflow  

The following is an overview of the approach for generating this reanalysis. Modeling 

and statistical analyses are conducted over the 44-year period of 1979-2022, with each year 

handled independently. The general workflow for a year is shown in Figure 1. In step 1, an 

initial (prior) year-long prediction of historical water levels is computed with the ADCIRC 

model using only tides and meteorological forcing. From this, a prior error series is generated 

(step 2) by comparing the prior predicted water levels with observed water levels at specified 

locations. This error is analyzed and processed to generate additional forcing terms in ADCIRC 

that assimilate the errors into the model (step 3), resulting in a posterior prediction (step 4). 

The effectiveness or prediction skill of the assimilation is determined by comparing observed 

water levels to the posterior prediction (step 5).  

 

 
Figure 1. Sequence of steps in the reanalysis workflow, performed for each simulated year.  

 

Each year of the reanalysis is run independently to simplify overall simulation, staging, 

processing, and management of resources on HPC clusters. This also allows for concurrent 

simulation of multiple years. Each year’s simulation begins on 1 December at 00Z Coordinated 

Universal Time (UTC)8 of the previous year, followed by a 15-day spin-up period during which 

tidal and meteorological forcings are ramped up to full strength. Tide nodal factors and 

equilibrium arguments for each tidal harmonic are specified at values for the middle of each 

simulation year. Steps 1 and 4 are the computationally intensive steps, as they involve running 

the ADCIRC model for each year on a large spatial grid. Steps 2, 3, and 5 are largely statistical 

analysis of the errors determined in steps 1 and 4.  

ADCIRC, Grids, & Configuration 

This reanalysis uses the depth-integrated implementation of the storm surge and tide 

model ADCIRC9 (version 56) and its coupling to the SWAN wind wave model for all 

predictions and simulations. Specifically, version 56 was used to leverage an improved 

wetting/drying algorithm critical to capturing overland inundation. ADCIRC solves the 

shallow water equations using continuous Galerkin, linear finite elements (Luettich et al 1992; 

Westerink et al. 2008). It is coupled with the 3rd generation phase-averaged spectral wave 

model SWAN10 that solves the conservation of wave action equation in time and space (Booij 

                                                 
8 Coordinated Universal Time (Z-time): https://www.noaa.gov/jetstream/time 
9 https://adcirc.org/ 
10  https://swanmodel.sourceforge.io/features/features.htm 

https://www.noaa.gov/jetstream/time
https://adcirc.org/
https://swanmodel.sourceforge.io/features/features.htm
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et al. 1999; Zijlema 2010). Conveniently, SWAN operates on the same linear triangular mesh 

as ADCIRC. The 2 models are coupled through the exchange of total water depths and currents 

passed from ADCIRC to SWAN and by wave radiation stress gradients passed from SWAN 

to ADCIRC at each shared time step (Dietrich et al. 2011a,b). The coupled model is efficiently 

parallelized for execution on HPC systems (Tanaka et al. 2011; Dietrich et al. 2011a; Kerr et 

al. 2013), making it ideal for numerous coastal modeling applications, including tidal dynamics 

and prediction (e.g., Blanton et al. 2004; Hill et al. 2011), real-time and operational predictions 

(e.g., Fleming et al. 2008; Blanton et al. 2012; Dresback et al. 2013), short-term event-based 

studies (e.g., Kerr et al. 2013; Hope et al. 2013; Cyriac et al. 2018), and long-term hindcasts 

like this reanalysis.  

NOAA’s Hurricane Surge On-Demand Forecast System11 (HSOFS) grid (Riverside 

Technologies, Inc. and AECOM 2015) is used for the CORA simulations because of its 

intermediate coastal spatial resolution and its long history within NOAA for operational coastal 

water level and storm surge guidance programs and the Extratropical Surge and Tide 

Operational Forecast Systems (ESTOFS; Riverside Technologies, Inc. and AECOM 2015). 

The grid has 1.8 million nodes and 3.6 million elements (Figure 2), and it covers the western 

North Atlantic Ocean and all overland areas of the neighboring U.S. coast up to an elevation 

of approximately 10 m above global MSL (more detailed datum information is provided in a 

subsequent section). The mesh provides a detailed representation of inlets, rivers, barrier 

islands, roadways, and other key features. Elevation data is based on bathymetry and lidar-

derived topography available at the time the mesh was generated. Mesh resolution in coastal 

areas is typically 400-500 m and as high as 200 m in some areas, making it an intermediate-

resolution grid developed specifically for national-scale real-time storm surge applications (as 

opposed to a high-resolution [50-100 m] grid one might develop for regionally or locally 

focused applications). The offshore/deep ocean resolution ranges from about 10-30 km. The 

grid’s only open boundary extends from Nova Scotia out to the 55oW longitude down to the 

Suriname coast in northern South America (the easternmost curved boundary line). Details of 

the HSOFS grid development are available in Riverside Technologies, Inc. and AECOM 

(2015). 

ADCIRC is configured using standard physics and numerical parameters, with several 

key parameters set using ADCIRC’s nodal attribute functionality. Bottom friction is specified 

as a node-dependent Manning’s function. Due to increased frictional effects from canopy cover 

and upwind directional surface roughness lengths, wind stress reduction over land is specified 

for each ADCIRC node on land using land cover data from the 2006 NOAA Coastal Change 

Analysis Program (C-CAP) dataset. The HSOFS grid requires a 2-second timestep for stability. 

Lateral eddy viscosity is specified using the flow- and grid-scale dependent Smagorinsky 

mixing scheme (Smagorinsky 1963). Details of nodal attribute implementation in ADCIRC 

and data sources used to set frictional parameters are described in Westerink et al. (2008). 

                                                 
11 NOAA Hurricane Surge on Demand Forecast: https://www.weather.gov/sti/coastalact_surgewg  

https://www.weather.gov/sti/coastalact_surgewg


 

 

12 

 

Figure 2. NOAA’s Hurricane Surge On-Demand Forecast System (HSOFS) (ADCIRC) grid used for the 

reanalysis simulations. There are 1.8 million nodes and 3.6 million elements. Coastal resolution ranges from 200-

500 m. Black contour lines represent mean sea level in the grid. Resolution in the deep ocean ranges from about 

10-30 km. 

Forcing Functions 

Both prior and posterior simulations are forced with astronomical tides, atmospheric 

MSL pressure, and 10-m wind velocities. Tidal harmonics along the grid’s open boundary are 

extracted from the version 9 of the Oregon State University TPXO (Egbert et al. 2002) tidal 

solution for the 1/12° North Atlantic region12. The harmonics used are M2, S2, N2, K2, K1, O1, 

P1, Q1, MM, and MF. Nodal and equilibrium values are computed for the middle of each 

simulation year. Tidal potential forcing terms are also included for the same harmonics. 

For the meteorological forcing, the MSL pressure and 10-m U (east/west) and V 

(north/south) wind speeds from the ECMWF’s ERA5 “hourly data on single pressure levels” 

collection over the reanalysis period of 1979-2022 were acquired through the Copernicus 

Climate Change Service’s python application programming interface (API)13. Each hourly 

                                                 
12 North Atlantic region tidal forcing data source: https://www.tpxo.net/regional 
13 https://cds.climate.copernicus.eu 

https://www.tpxo.net/regional
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels
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global file is subsetted for the western North Atlantic Ocean and formatted for ADCIRC-

specific wind and pressure inputs14, specifically the Oceanweather Inc. (OWI)-formatted 

wind/pressure input type. A snapshot of the subsetted ERA5 fields for 06Z on 14 September 

2018 is shown in Figure 3.  
 

 

Figure 3. Snapshot of the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) 

surface pressure and 10-m elevation wind speed for 14 September 2018 at 0600Z, as Hurricane Florence made 

landfall along the North Carolina coast. The vector scale is shown in the upper left. The highest wind speed in the 

plotted area is about 30 m/s in the core of the cyclone.  

Datums & Units 

Modeled data typically provides units as metadata. In cases where no units are 

provided, the International System of Units are applied: m for lengths, s for time, and m/s for 

speed. Horizontal coordinates are in longitude and latitude. For cases where a horizontal datum 

is needed, the World Geodetic System 1984 (WGS 84) is used. For cases where a vertical 

datum is needed, MSL relative to the 1983-2001 national tidal datum epoch (NTDE) is used, 

and model results should be considered to be relative to MSL. Note that 2 water level stations 

used in the assimilation process are currently reported in Modified 5-year tidal datum epochs. 

This is discussed below in the Data Sources and Processing section. Due to the mesh resolution 

                                                 
14 https://adcirc.org/home/documentation/users-manual-v53/parameter-definitions#NWS 

https://adcirc.org/home/documentation/users-manual-v53/parameter-definitions#NWS
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of ~500 m, the exact horizontal reference frame is not as critical. However, the vertical 

reference frame merits further discussion. There are 2 ways to relate modeled water levels to 

a real-world datum. One is through the vertical datum used to develop the mesh. The other is 

through the vertical adjustments to water levels that result from the assimilation. Each is 

discussed in the following paragraphs.  

Topography and bathymetry used to build the mesh come from a variety of sources and 

datums, and are composited together and reprojected as necessary during the mesh construction 

process. For a more detailed description, see the mesh development and validation report 

(Riverside Technologies, Inc. and AECOM 2015). The mesh was constructed using The North 

American Vertical Datum of 1988 (NAVD 88), then converted to MSL once completed using 

a single surface provided by the NOAA Coast Survey Development Lab (CSDL) and derived 

from NOAA’s Vertical Datum Transformation (VDatum) tool15. The surface was provided to 

mesh developers at AECOM in 2014, however the precise creation date is not known. Recent 

spot checks comparing the datum conversions in the surface to what is currently provided by 

VDatum have shown some areas differ. However, these changes are not considered to be 

substantially better given other uncertainties such as how the datum transformation must be 

extrapolated inland to cover the full mesh. As such, the original conversion surface can be used 

as a datum conversion for modeled water levels, though in cases where datum information has 

changed noticeably, caution is advised. A file with the conversions used to go between 

NAVD88 and MSL at each node in the mesh, hsofs_nomad_msl2navd88.grd, is archived with 

the OCM and can be provided to interested users.  

A more relevant means of interpreting the vertical datum of modeled water levels 

comes from the assimilation during modeling. The ADCIRC numerical model solves for water 

levels resulting from forces acting upon it. If there is no forcing, all water levels are equal to 0 

everywhere; this is known as an equipotential surface. In this case, 0 can be likened to MSL, 

though it is not intrinsically tied to any particular vertical datum. ADCIRC does not include 

some of the physical processes driving changes in MSL, like vertical land motion or glacial 

melt. Rather, data assimilation is used to give water levels an exact reference frame by 

comparing simulated water levels with observations from a set of coastal NWLON water level 

stations, discussed in greater detail below. These corrections are what lead to the reproduction 

of processes like sea level rise in modeled water levels. Therefore, the NOAA stations data 

used for the assimilation, and particularly the spatial surfaces that result, are what best 

characterize the vertical datum of modeled results. As such, there may be some additional 

uncertainty in the modeled MSL in places far from an assimilation site, as discussed in the 

Limitations subsection under the Water Level Results section.  

4. DATA ASSIMILATION  
The main goal for the CORA reanalysis of coastal water levels is to compute a superior 

prediction of coastal water levels based on a prior prediction, a prior error analysis, and a data 

assimilation approach for the ADCIRC model (Asher et al. 2019). We have focused on 2 

important “bands” for the error analysis and posterior prediction, namely a monthly-mean 

component and subtidal weather band.  

Given the importance of sea level increases over longer terms, incorporation of this 

component in the posterior is essential. Since the prior prediction (forced only by astronomical 

                                                 
15 NOAA Vertical Datum Transformation Tool: https://vdatum.noaa.gov/ 

https://vdatum.noaa.gov/
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tides and the ERA5 meteorological reanalysis surface pressure and winds) does not contain a 

sea level rise component, long-term sea level changes are introduced through analysis of the 

prior error and subsequent assimilation of a low-frequency term that represents sea level stand, 

expressed in monthly mean sea levels (relative to a specific tidal datum epoch).  

The subtidal weather band water level variability is due to several contributing factors, 

including meteorological forcing, astronomical tides, steric effects, and offshore influences on 

the coastal zone (e.g., Florida current or Gulfstream transport variations [Noble and 

Gelfenbaum 1992)]. In the prior prediction, only meteorology and tides are used as forcing. 

Thus, the data assimilation process improves the prior prediction irrespective of the physical 

source of the error (e.g., inaccurate meteorology, absent baroclinic forcing).  

In both cases, errors in the prior prediction of coastal water levels are analyzed and 

used to improve the accuracy of the posterior prediction in these 2 critical parts. As such, the 

observations are split into 2 components: monthly means and residuals. Monthly mean time 

series are analyzed and processed to develop a complete (no temporal gaps) dataset over the 

44-year period. The residual time series are filtered to remove tidal variability, after removing 

the monthly means, but gaps are not filled unless there is a nearby station that exhibits high 

correlation and little bias. The details of the data processing are given below.  

Data Sources and Processing 

The observational data source for the CORA reanalysis is the water level observations 

available from the CO-OPS NWLON stations data archive. Both verified hourly and monthly 

mean data were retrieved using the CO-OPS API16 and accessed using the python package 

noaa-coops (version 0.3.2)17. All data was retrieved in meters relative to MSL defined by the 

1983-2001 NTDE except for 2 stations (see below). Fifty-three stations were selected for 

assimilation based primarily on the criteria that 1) the station was within the model domain 

and 2) the station was in relatively open-coast conditions (Table 1). 
 

Table 1. National Water Level Observation Network (NWLON) stations used in development of the data 

assimilation component. 

ID Long Lat State Name 

8410140 -66.982903 44.904598 ME Eastport 

8413320 -68.204278 44.392194 ME Bar Harbor 

8418150 -70.24417 43.65806 ME Portland 

8443970 -71.05028 42.3539 MA Boston 

8447930 -70.671112 41.523613 MA Woods Hole 

8449130 -70.096703 41.285 MA Nantucket Island 

8461490 -72.095556 41.371667 CT New London 

8467150 -73.183969 41.175819 CT Bridgeport 

8510560 -71.959444 41.048333 NY Montauk 

                                                 
16 https://api.tidesandcurrents.noaa.gov/api/prod/ 
17 https://github.com/GClunies/noaa_coops 

https://api.tidesandcurrents.noaa.gov/api/prod/
https://github.com/GClunies/noaa_coops
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ID Long Lat State Name 

8516945 -73.7649 40.810299 NY Kings Point 

8518750 -74.014167 40.700556 NY The Battery 

8531680 -74.009399 40.4669 NJ Sandy Hook 

8534720 -74.418053 39.356667 NJ Atlantic City 

8536110 -74.959999 38.9683 NJ Cape May 

8551910 -75.571944 39.558333 DE Reedy Point 

8557380 -75.119278 38.782833 DE Lewes 

8570283 -75.091086 38.328267 MD Ocean City Inlet 

8574680 -76.5783 39.27 MD Baltimore 

8635750 -76.465556 37.996389 VA Lewisetta 

8638901 -76.083298 37.032902 VA Chesapeake Channel 

8651370 -75.746696 36.1833 NC Duck 

8656483 -76.671111 34.7175 NC Beaufort Duke Marine Lab 

8658163 -77.786667 34.213333 NC Wrightsville Beach 

8661070 -78.916389 33.655556 SC Springmaid Pier 

8665530 -79.923889 32.775 SC Charleston 

8670870 -80.903028 32.034694 GA Fort Pulaski 

8720030 -81.465842 30.671356 FL Fernandina Beach 

8720218 -81.427889 30.398167 FL Mayport (Bar Pilots Dock) 

8721604 -80.593056 28.415833 FL Trident Pier Port Canaveral 

8722670 -80.034167 26.612778 FL Lake Worth Pier Atlantic Ocean 

8723214 -80.161667 25.731667 FL Virginia Key Biscayne Bay 

8723970 -81.1065 24.711 FL Vaca Key Florida Bay 

8724580 -81.807899 24.5557 FL Key West 

8725110 -81.8075 26.131667 FL Naples Gulf of Mexico 

8726520 -82.626944 27.761111 FL St. Petersburg Tampa Bay 

8727520 -83.0317 29.135 FL Cedar Key 

8729108 -85.664444 30.149722 FL Panama City 

8729840 -87.211197 30.4044 FL Pensacola 

8735180 -88.075 30.250278 AL Dauphin Island 
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ID Long Lat State Name 

8747437 -89.3258 30.326342 MS Bay Waveland Yacht Club 

8761305 -89.673 29.8683 LA Shell Beach 

8761724 -89.956667 29.263333 LA Grand Isle 

8768094 -93.342889 29.768167 LA Calcasieu Pass 

8770822 -93.841797 29.689301 TX Texas Point Sabine Pass 

8772471 -95.294197 28.935699 TX Freeport Harbor 

8774770 -97.046667 28.021667 TX Rockport 

8775870 -97.21666 27.579999 TX Bob Hall Pier Corpus Christi 

8779770 -97.215528 26.061167 TX Port Isabel 

9751401 -64.753799 17.6947 VI Lime Tree Bay 

9751639 -64.925806 18.330583 VI Charlotte Amalie 

9755371 -66.116417 18.458944 PR San Juan La Puntilla San Juan Bay 

9759394 -67.162444 18.218833 PR Mayaguez 

9759938 -67.938208 18.089289 PR Mona Island 

 

Monthly Mean Observations 

The monthly mean time series for the 53 stations were further processed by merging 

data from nearby station locations to have as complete and practical a dataset with minimal 

gaps. This process was informed by Zervas (2009; Table 2) that defines groups of stations 

relatively close to each other and that are merged to temporally extend the monthly mean series 

beyond the currently active station times. The specific station pairs used for this data analysis 

is reported in Table 2.  

 

Table 2. List of stations and corresponding nearby station(s) used to merge monthly mean time series.  

Current/Active Station (as of December 2022) Augmenting Station(s) 

Station ID Name Station ID Name 

8419870 Seavey Island, ME 8423898 Fort Point, NH 

8516945 Kings Point, NY 8516990 Willets Point, NY 

8570283 Ocean City Inlet, MD 8570280 Ocean City, Fishing Pier, MD 

8638901 CBBT, Chesapeake Channel, VA 8638863 Chesapeake Bay Bridge Tunnel, VA 

8720218 Mayport, FL 8720220 Mayport (Ferry Depot), FL 

8723214 Virginia Key, FL 
8723080 

8723170 

Haulover Pier, N. Miami Beach, FL 

Miami Beach, FL 
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Current/Active Station (as of December 2022) Augmenting Station(s) 

Station ID Name Station ID Name 

8747437 Bay Waveland Yacht Club, MS 8747766 Waveland, MS 

8761724 Grand Isle, LA 8761720 Grand Isle, LA 

8770570 Sabine Pass North, TX 8770590 Sabine Pass, TX 

8770822 Texas Point, Sabine Pass, TX 8770570 Sabine Pass North, TX 

8771341 Galveston Bay Entrance, TX 8771510 Galveston Pleasure Pier, TX 

8772471 Freeport Harbor, TX 
8772447 

8772440 

USCG Freeport, TX 

Freeport, TX 

8779748 South Padre Island CG Station, TX 8779750 South Padre Island, Brazos Santiago Pass, TX 

 

An example of the merging result is shown in Figure 4 for Kings Point, NY (8516945), 

and Freeport Harbor, TX (8772471). In both cases, there exists some small temporal overlap 

of the contributing stations’ data used to adjust the monthly means in the composite series. 

Green vertical lines indicate where gaps still exist after the merging. These gaps are filled with 

the relevant monthly mean from the entire series, adjusted for the long-term trend. The most 

recent data of a station pair always takes precedence over older data. 

 

 

Figure 4. Example of merging data from nearby stations to extend the temporal record of each monthly mean 

time series. Green vertical lines indicate remaining gaps that are filled with the monthly mean from the record, 

adjusted for the long-term trend.  

 

Handling of Different Tidal Datum Epochs 

Of the 53 stations used for the assimilation, 2 stations are referenced to Modified 5-

Year epochs, not the current 1983-2001 period. This is due primarily to rates of change of 
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long-term water level means. Stations Rockport, TX (8774770), and Grand Isle, LA (8761724), 

are referenced to the 2002/2006 and 2012/2016 NTDEs, respectively. These stations’ monthly 

mean water levels were adjusted by 0.12 and 0.19 m, respectively, to put all stations onto the 

same 1983-2001 MSL reference level epoch. These offset values were determined by 

computing the average of the time series during the 1983-2001 epoch, thus effectively raising 

the water level to have approximately 0 mean during the current epoch. Figure 5 illustrates the 

results of this adjustment for Rockport and Grand Isle. 

 

 

Figure 5. Monthly mean water levels for 5 stations used in the data assimilation process. The tidal datum epoch 

for most stations is based on the current National Tidal Datum Epoch (NTDE) period of 1983-2001. Panel a) 

shows 3 stations in the 1983-2001 NTDE. The average of the monthly means in this period is (by definition) close 

to 0. Panels b) and c) show Rockport, TX, and Grand Isle, LA, monthly mean water levels, respectively, relative 

to their respective Modified 5-Year tidal datum epochs and the adjusted time series (red) adjusted to the 1983-

2001 NTDE.  

 

The above 2 steps (the compositing of monthly mean time series and datum adjustments 

for Rockport and Grand Isle) resulted in a complete 44-year set of monthly means referenced 

to the same tidal datum epoch. The consequence of this complete record is that the monthly 

MSL component is completely defined and imposed as a part of the posterior prediction 

process. Figure 6 shows the adjusted and augmented monthly mean dataset. Features of note 

are the broad trends of long-term increasing sea level, the different characteristics of the 

monthly mean water levels in the Puerto Rico area (last 5 stations), and the along-

coast/regional similarity of much of the variability. 
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Figure 6. Monthly mean water levels for the 53 National Water Level Observation Network (NWLON) stations. 

Data records are completed over the 44-year period by merging nearby highly correlated time series.  

Residual Time Series Processing 

The next data processing step was to compute the residual water level by removing the 

monthly means from the hourly data. Small gaps (<24 hrs) in the hourly data were filled by 

linear interpolation. Larger gaps were not filled. The residual was low-pass filtered with a 4th 

order Butterworth filter (Roberts and Roberts 1978), with a cutoff of 36 hrs, to remove tidal 

variations, errors which we do not want to assimilate. Data near the edges of large gaps were 

eliminated. The final data preparation step was to augment the (filtered) hourly residual data 



 

 

21 

in a similar manner where nearby stations could be identified that were highly correlated. For 

example, the Chesapeake Bay station 8638863 (Chesapeake Bay Bridge Tunnel [CBBT], VA) 

was retired on 28 September 2017, and 8638901 (CBBT, Chesapeake Channel, VA) was 

installed in October 2016, approximately 8 km to the northeast (Figure 7) toward the center of 

the bay entrance. The 2 stations are in generally the same physical environment with very 

similar tidal and non-tidal characteristics; the correlation is very high (0.99) with a mean 

difference (active-retired) of -0.04 m. In this case, the 2 time series were merged by adding the 

mean difference to the retired station data. 

Figure 7. Water level time series at the 2 Chesapeake Bay Bridge stations (Station IDs: 8638901, 8638863). The 

top panel shows data over the Coastal Ocean Reanalysis (CORA) time period. The bottom panel shows data in 

the overlap period and the locations of the 2 stations in the lower Chesapeake Bay. 

 

Figure 8 shows the station hourly water level availability for the study period after the 

merging of several stations similar to the processing of the lower Chesapeake Bay station. 

Nonetheless, large gaps still exist where companion stations could not be identified, notably 

Ocean City, MD; Wrightsville Beach, NC; Lake Worth Calcasieu Pass, LA; Mayaguez, PR; 

and Mona Island, PR. The consequence of these and smaller gaps are that the prior and 

posterior predictions, in the residual component of water levels, are the same since the error is 

assumed to be 0.  
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Figure 8. A plot of water level data availability for 53 stations used in the reanalysis process over the period of 

1979-2022, with station IDs on the left y-axis and a station name abbreviation on the right. Dates from 1980-2020 

are listed in 5-year increments with blue lines delineating completeness of each station’s water level time series. 

Stations are listed from Maine to Texas to Puerto Rico (last 5). 

Error Processing  

At the end of each annual prior prediction simulation, the time series of water levels at 

the assimilation stations are processed in a manner identical to how the observations were 

treated (except that there are no gaps in the modeled predictions). Each station’s prior 
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prediction is split into a monthly mean series and a residual series. The error is then computed 

as prior observations for each component, where negative errors indicate an under-prediction 

of the observations. Figure 9 illustrates the process for Fort Pulaski, GA (Station ID: 8670870), 

where each panel shows the residual and monthly mean water levels. Note that the hourly data 

is not shown for clarity. Observations, prior prediction, and the prior error are shown from top 

to bottom. Several important features are to be noted. There is a clear sea level rise signal in 

the observed monthly means (upward long-term trend, with larger increase from about 2010 

forward). The monthly mean in the prior prediction (middle panel) has clear seasonal 

variability but no long-term trend. This is consistent with the forcing in the prior simulations 

being only tides and ERA5 meteorology. The prior error (difference between middle and top 

panels) thus shows the long-term sea level component as a negative error. 

Figure 9. A time series of monthly means and residual water levels at the Fort Pulaski, GA, station (Station ID: 

8670870). Observations, prior prediction, and prior errors are shown from top to bottom, each panel showing 

residual and monthly mean water levels. For clarity, raw hourly data are not shown. 

The assimilation of errors into the posterior prediction occurs by specifying a dynamic 

water level correction (DWLC) field at each model node that accounts for the errors at each 

assimilation station every 6 hrs of model time (ADCIRC linearly interpolates between the error 

surfaces to the current model time). For each component of the error (monthly mean and 

residual), the errors for all assimilated stations are mapped onto the ADCIRC grid nodes using 

radial basis functions. The surface interpolation is constrained to be 0 offshore. Figure 10 

shows the error surfaces on 14 September 2018 at 00Z. The sum (right) is the field used in the 

posterior prediction simulations. At this specific time, the monthly mean error surface is 

negative everywhere, indicating that the prior prediction lacks the expected long-term sea level 

increase. Note also that the surface is very smooth in the along-coast direction, consistent with 

the relatively large scales associated with monthly mean water level variability. The residual 
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component exhibits much higher spatial variation, with areas of prior over-prediction on the 

upper middle Atlantic Bight and along the eastern Texas coast.  

Note that for all stations, the monthly mean prior error is defined for all times, resulting 

in the consistent incorporation of the long-term sea level signal. However, for stations with 

large gaps in the hourly data, the gaps persist in the residual error, meaning that no residual 

correction is made when and where these gaps exist.  
 

 

Figure 10. Error surfaces for the monthly mean (left), the residual (middle), and their sum (right) for 14 September 

2018 at 00Z. The sum is the dynamic water level correction applied in the posterior prediction simulations.  

 

Before the details of the statistical characteristics of the prior and posterior predictions 

are covered in the Water Level Results section (below), we show here the impact of the data 

assimilation process on the prior and posterior error. Figure 11 shows the prior and posterior 

errors at Fort Pulaski. The posterior errors are computed in the same manner as the prior errors 

by computing the posterior monthly mean prediction (for example) and subtracting off the 

observed monthly mean. The top panel shows the monthly mean prior (blue) and posterior 

(red) error. The prior error (same as Figure 9 above, lower panel) becomes more negative over 

time due to the long-term sea level component missing in the prior prediction, but the 

assimilation of the prior error into the posterior prediction has accounted for most of this error 

component. In the residual component, both the prior and posterior errors are relatively 

unbiased, but the variance in the posterior error has been substantially reduced, from about 11 

cm to 1 cm. 
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Figure 11. Time series of monthly mean and residual water level errors (model minus observations) at the Fort 

Pulaski, GA (8670870), station. Monthly means and residual errors are shown in the top and bottom panels, 

respectively, and each panel shows the prior (blue) and posterior (red) errors. For clarity, hourly raw errors are 

not shown. 

5. WATER LEVEL RESULTS 

Observation Data 

A total of 112 NOAA stations (Figure 12) were used to assess model performance, of 

which 53 stations were used in assimilation, as described above, and 59 stations were used for 

validation. There are many differences between the 2 sets of stations, an element important to 

consider when evaluating model performance. Stations used in assimilation are generally at or 

near the open coast to better represent conditions across a broader geographic range. 

Conversely, unassimilated stations tend to be in more sheltered areas, like estuaries or rivers. 

Such locations tend to be tougher to get good results at than the open coast because of local 

effects like the accuracy of local topobathy, sheltered winds, or rainfall. Many validation 

stations are concentrated in the Chesapeake Bay area.  
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Figure 12. Location of NOAA National Water Level Observation Network (NWLON) stations used to assess 

model performance.  

 

Stations also have very different temporal coverages. Figure 13 shows the fraction of 

hourly data from 1979-2022 that is absent for each station. There are a total of 28,868,587 

observations18 across 112 stations, equaling close to 3293 years of hourly data. Most missing 

data is from time periods before a station was first installed, though some stations also have 

substantial gaps in the middle of their records. Data is especially sparse in the western Gulf of 

Mexico.  

18 To calculate this, a value is counted as missing if either an observation is missing or the modeled value is 

missing (i.e., the model is “dry” at that point in time). However, the model is dry at stations <0.001% of the time, 

so almost all the missing values are due to missing observations.  
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Figure 13. Fraction of missing data from 1979-2022 at each station: 0 indicates full data coverage over the 1979-

2022 time period, and 1 indicates no data at all. The left map shows assimilation sites and the right map shows 

validation sites.  

Model Performance 

To assess the model, simulated water levels were extracted at or near station locations, 

interpolating the solution on the selected triangular element of the mesh as is consistent with 

the finite element formulation of the model. Error distributions are shown in Figures 14 and 

15, and Table 3 shows summary statistics. Overall, errors are generally less than 20 cm for the 

baseline unassimilated model and are reduced by 30-60% in the assimilated model. Errors are 

about 2 cm larger at validation sites than assimilated sites in the unassimilated run, which may 

result from these being locations where water levels are harder to predict as noted in the 

previous section. Validation site errors are also larger in the assimilated run, by 2-3 cm, though 

the increased error here is also likely driven by the assimilation not being as accurate at these 

sites. Looking at the mean and standard deviation (STD) columns in Table 3, there is also a 

reduction in the variational error due to assimilation though the mean errors are substantially 

reduced. This pattern is also visible in Figure 14, where the breadth of the errors narrows and 

the low bias in the unassimilated simulation (primarily a result of sea level rise) is almost 

completely removed in the assimilated simulation. It should be noted that the slight increase in 

small positive errors in Figure 14 is a natural result of the bias removal and not caused by some 

tendency of the assimilation to overpredict.  
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Figure 14. Distribution of errors for all hourly water levels. Shown for unassimilated and assimilated runs at both 

assimilation sites and validation sites. 

 

Errors are shown geographically, with STD represented in Figure 15 and mean absolute 

error (MAE) in Figure 16. Geography also contributes to error trends, like the Gulf of Maine 

where errors are higher due (at least partly) to large tidal variations. Conversely, errors are 

particularly small in Puerto Rico and the U.S. Virgin Islands thanks to an especially small tidal 

range and nearly no shelf. Errors increase steadily up the Delaware River, likely due to a lack 

of riverine inflow and because mesh resolution does not support extending the river far into 

the domain.  
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Figure 15. Standard error (STD) in meters (m) at each station. Maps on the left show assimilated sites, and maps 

on the right show validation sites. The top row of maps show results for unassimilated simulations, while the 

bottom row of maps show assimilated sites. 
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Figure 16. Mean absolute error (MAE) at each station. Maps in the left column show assimilated sites, and maps 

on the right show validation sites. The top row of maps shows results for the unassimilated simulation, and the 

bottom row of maps shows assimilated simulation. 

 

Geographic patterns depend on how the data is viewed, however, as demonstrated in 

Figure 17. Here, the STD of error at each station has been normalized to that station’s STD of 

observed water levels. This shows that normalized errors are much smaller in areas dominated 

by more easily predicted tides; meanwhile, normalized errors are quite large for the 

unassimilated simulation at sites whose variability is strongly driven by seasonal water levels 

and sea level rise. Viewing results this way also strongly demonstrates the benefits of 

assimilation: errors exceed 70% (0.7 in the figures) at almost all stations in the Gulf and on 

islands before assimilation, but after assimilation, they are generally less than half that.  
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Figure 17. Standard deviation (STD) normalized to the STD of observed water levels at each station. The left 

column shows assimilated sites, and the right column shows validation sites. The top row shows results for the 

unassimilated simulation, and the bottom row shows assimilated sites.  

 

Table 3. Summary error statistics for all stations based on hourly data from 1979-2022. RMSE = root mean square 

error; MAE = mean absolute error; STD = standard deviation. 

errors (m) RMSE MAE mean STD 

unassimilated 

simulation 

all 0.187 0.151 -0.067 0.166 

assimilated 0.179 0.140 -0.050 0.172 

validation 0.205 0.155 -0.065 0.194 

assimilated 

simulation 

all 0.110 0.089 0.009 0.106 

assimilated 0.111 0.080 0.004 0.111 

validation 0.150 0.097 0.012 0.150 
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As noted in the Observation Data subsection, the differences in data availability 

through space and time can complicate interpreting model results. As an example of this, the 

top left pane of Figure 18 shows averaged MAE across all (available) stations through time as 

well as the number of stations available for the assimilated simulation. Data have been run 

through a 30-day moving mean window to make the figures less noisy (note that “high-

frequency” errors are deliberately not completely removed since the MAE is used). Errors are 

noticeably higher for the first ~3 years and again increase beginning in the early 2010’s. When 

we subset the data as shown in the other panes, these patterns change. Looking at the number 

of available stations, we can see a strong correlation with the changes in apparent errors. This 

implies that at least part of the change in average error is due to new stations coming online. 

What is consistent in these plots is that errors have a seasonal component such that they are 

highest in mid-to-late January and lowest in the summer months. This may be related to 

increased storminess in winter months and, at least at validation sites, to errors in seasonal 

water levels.  

 

 

Figure 18. Averaged mean absolute errors (MAEs) in the assimilated simulation over time for all stations and 

subsets of them, as noted in the subtitle of each pane. In all panes, yellow lines show the number of active stations. 

Purple lines indicate stations active before the year 2001, and blue lines denote all stations.  
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Spectral Errors & Effects of Assimilation 

Spectral analysis helps illustrate the different components of the water level signals. 

The power spectra19 for select Atlantic locations are plotted in Figure 19, while Gulf locations 

are shown in Figure 20. In all cases, the correction signal closely follows the error from the 

unassimilated (i.e., prior) simulation, as is expected, and the error in the assimilated (i.e., 

posterior) run drops off significantly around the correction’s cutoff frequency of 1.5 days. This 

shows that it adeptly removes low-frequency errors.  

Spectral signals for the unassimilated simulation and the correction itself help to 

illustrate the effects and relative importance of correction, which varies spatially and with 

frequency. This can be seen in the figures by comparing the magnitudes of the correction and 

the unassimilated water level and determining which of these more closely follows 

observations. The spectra can be characterized by 3 distinct regions in the Atlantic (Figure 19). 

In the Gulf of Maine, which includes northern Massachusetts, the correction’s effects are key 

for periods longer than 5-10 days. South of Cape Hatteras, NC, unassimilated water levels do 

poorly for periods longer than 1-3 days, although there is some skill for Georgia and Florida 

stations. For most of the mid-Atlantic Bight (e.g., Connecticut to upper North Carolina), the 

unassimilated simulation is fairly accurate for periods up to 90 or even 180 days. For the lowest 

frequencies, correction becomes more influential across the entire Atlantic coast. Similarities 

between observations and unassimilated water levels across a wide frequency band indicates 

that low-frequency simulations are driven by surface winds and pressure.  

Spectra for the Gulf of Mexico are plotted in Figure 20 and show similar patterns to the 

Atlantic, emphasizing the role of meteorology for fairly long-period signals, though correction 

tends to dominate for periods beyond 30-60 days, perhaps due to stronger steric effects. Gulf 

sites also have 2 erroneous spectral humps, centered roughly on 35 and 16 hours. These 

correspond to naturally excited modes in the Gulf of Mexico, and testing indicates they are due 

to reflections off the open boundary along the eastern (open ocean) edge of the mesh. An 

inverted barometer boundary condition along the open boundary was implemented to help limit 

this spurious energy; the hump was larger in preliminary versions of the reanalysis. The 

assimilation tamps down some of the remaining error introduced by the 35-hour resonance. It 

is worth noting that an earlier version of the reanalysis that used a 24-hour cutoff frequency 

for the correction also had limited success in modulating the 35-hour resonance. This implies 

that the phases of the resonances changed in response to the water level correction, and so they 

may be driven in part by the correction.  

In Puerto Rico and the U.S. Virgin Islands, at periods longer than ~2 days, there is 

about an order of magnitude more spectral energy than in observations for the unassimilated 

simulation. The cause of this is unknown; however, errors are removed during correction, and 

the assimilated solution closely matches observations.  

At higher frequencies where the correction does not come into play, the unassimilated 

and assimilated runs are nearly identical, as are their errors. The model does well representing 

the primary tidal harmonics at most sites, as is to be expected based on the original validation 

study (Riverside and AECOM 2015). However, it does underestimate some harmonics, 

particularly some of the lesser constituents like the J1.  

                                                 
19 To ensure a fair comparison between all signals, any time there is a gap in data in either the observations or the 

model, both were set to 0 prior to spectral analysis. This has the side effect of “smearing” some of the spectral 

energy, though this effect is barely visible in the figures and does not influence conclusions.  
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Figure 19. Water level spectra for Atlantic locations. Labeled vertical lines in the plots indicate the number of 

days corresponding to certain frequencies. Thick blue lines represent observations. Red lines represent prior 

simulations, and blue lines represent posterior simulations. Model error is noted in yellow for prior simulations 

and light blue for posterior simulations. Corrections are noted in purple.  
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Figure 20. Water level spectra for Gulf of Mexico locations. Labeled vertical lines in the plots indicate the number 

of days corresponding to specific frequencies. Thick blue lines represent observations. Red lines represent prior 

simulations, and blue lines represent posterior simulations. Model error is noted in yellow for prior simulations 

and light blue for posterior simulations. Corrections are noted in purple.  
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Extreme Value Analysis 

Much of the analysis thus far has focused on bulk statistics and other averaged 

properties, which, while informative, do not help understand the model’s performance under 

more extreme cases. Since such extremes, particularly major surge events, are of particular 

interest, this section presents an extreme value analysis to illuminate errors under these 

circumstances. Observed and modeled water levels are taken as-is, without detrending or other 

adjustments20. A block maxima approach, specifically annual maxima, was taken, and the 

generalized extreme value (GEV) distribution was fit to these data. As in other analyses in the 

Water Level Results section, only data for the 1979-2022 period are used, and whenever 

observed or modeled data are missing, the other dataset’s values (for the same time period) are 

also treated as missing. This ensures a fairer comparison between the model and observations 

and is particularly important since stations are often damaged during extreme events. Stations 

with less than 10 years of data were excluded to avoid poor fitting to small amounts of data. 

Note that these methods are somewhat simplistic, as this work is only meant to be illustrative. 

For instance, better methods might use more robust fitting techniques, evaluate other 

approaches like peaks-over-threshold, address stationarity concerns, consider seasonality and 

the existence of subpopulations, and address missing data, among other things.  

Results at select stations are shown in Figure 21. Overall, the modeled results closely 

follow the observations, and the assimilation improves results. Importantly, with assimilation, 

improvement is seen in both the individual peak water level estimates and the fitted 

distributions. Aggregated results at the 5- and 10-year levels in Figures 22 and 23 show that 

across almost all sites, estimated extreme water levels are improved compared to the 

unassimilated run. However, there is a small low bias compared to observations, averaging -

4.6 cm for the assimilated estimate of the 5-year water level and 6.3 cm for the 10-year.  
 

                                                 
20 Due to sea level rise, this violates the stationarity assumption of typical extreme value analyses, but the sea 

level rise signal is smaller than other trends that cannot be readily removed, such as interannual trends in sea 

levels and storminess.  
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Figure 21. Extreme value plots at select stations. Green titles indicate validation stations, yellow titles indicate 

assimilated stations. Empirical data plotted using the Weibull plotting position formula n/(N+1).  
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Figure 22. Comparison of observed and simulated estimates of 5- and 10-year water levels at all sites. 

 

 

Figure 23. Errors in estimated return period water levels. The top row shows geographic distributions for the 

assimilated run, and the bottom row shows histograms. For the histograms, red denotes unassimilated results, and 

blue denotes assimilated.  
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Limitations 

The meteorological forcing for this coastal water level reanalysis is from ECMWF’s 

ERA5. At a spatial resolution of 0.25°, its representation of tropical cyclones tends to be less 

intense than observed (e.g., Hodges et al. 2017; Dulac et al. 2024), particularly for peak winds 

associated with stronger and/or more concentrated storms. For instance, peak surges from 

Hurricane Sandy are well captured by the model because, although strong, Sandy was a very 

broad storm, with a radius of maximum winds (RMW) about 4 times ERA5’s ~30-km 

resolution. The highest surges in Hurricane Katrina, however, are underestimated. Katrina’s 

winds were much stronger than Sandy’s, and its RMW was considerably smaller. Hurricane 

Ike falls somewhere between Katrina and Sandy: It was both powerful and large, with a 30 

nautical mile (nm) radius of maximum winds at landfall. Model performance is also 

intermediate, with a good representation of the surge at most open-coast locations, though 

surge is low at Galveston Pier, TX, by about half a meter.  

Ike also exemplifies another key limitation of this reanalysis, which is the model’s 

resolution. Modern coastal flood models often have coastal resolutions an order of magnitude 

higher than the mesh used here (400-500 m). This likely causes an underestimation of wave 

setup, particularly during storms, which may have been a factor in the errors at Galveston Pier. 

Furthermore, the mesh is too coarse to capture narrow, deep channels, such as the heavily 

dredged shipping lanes of many Texas inlets. As a result, the modeled surges in Galveston Bay 

are much smaller than observed. Note that the validation study that developed this mesh 

(Riverside and AECOM 2015) demonstrated that with high-resolution meteorological forcing 

(i.e., meteorology that closely matches the storm), peak surges from Sandy and Katrina were 

accurate, as were those for Ike along the open coast; it was again in the bays where Ike’s surges 

were noticeably underpredicted. The next version of CORA, currently in development, will 

include more accurate representations of tropical cyclone wind and pressure fields. This should 

reduce errors associated with ERA5 tropical cyclone intensities but will not help errors due to 

mesh resolution/accuracy.  

A significant part of low-frequency water levels comes from the assimilation. Based 

on the spectral analysis previously presented, the assimilation represents the majority of the 

water level signal starting at periods around 2 to 90 days. Therefore, the quality of the model’s 

prediction of low-frequency water level characteristics (e.g., daily/monthly/annual averages, 

sea level trends) depends on: (A) the availability of nearby observations, (B) the quality of the 

assimilation methods, and (C) the spatial interpolation of the corrections between stations. For 

instance, along the 130 km of coast between the Sandy Hook and Atlantic City, NJ, NOAA 

stations, the long-term sea level rise rates in the assimilated model results are a result of the 

way corrections were interpolated between those stations, and so, to a degree, the sea level rise 

rates along that coast are also interpolated. Since rates generally vary slowly, this should be 

reasonable. But in inland waterways where sea levels may also be affected by rainfall/runoff, 

which is not part of the model, such trends are not captured in the model.  

Like many coastal hydrodynamic models, ADCIRC uses an algorithm to determine 

when to reposition the front between the edge of the ocean and the land as water levels rise 

and fall; in models, this is termed “wetting/drying.” The algorithm generally works well but 

can have trouble in low-gradient terrain, especially when neighbored by steep banks. As a 

result, places like southern Louisiana and other wide coastal marshes can sometimes retain 

water on top of these low-elevation areas. In such cases, the actual water level is better 

understood by looking at nearby channels that are draining properly.  
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In locations with large, localized changes in MSL and/or vertical land motion, the 

modeled results may not accurately reflect the local sea level change if there are no assimilated 

stations nearby. The highly localized and rapid subsidence at Pilots Station, LA (Figure 24), is 

an example of this. The nearest assimilation site is Grand Isle, and though modeled sea level 

trends at Pilottown, LA, are reasonable, those at Pilots Station, LA, seem to greatly 

underestimate the local subsidence-driven sea level rise.  

 

 

 

Figure 24. Time series of observed and modeled water levels at southern Louisiana stations and a map with select 

Gulf sites highlighted. 
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Water Level Results Summary 

Model performance is quite good overall with errors for hourly data and extremes 

typically within 10 cm, though accuracy can depend heavily on the location, time period, and 

use case of interest. No modifications were made to the modeled solution based solely on 

intermediate results at validation sites, so these can be considered a reasonably independent 

(relative to the modelers’ workflow and to the assimilated stations) estimate of model accuracy. 

Based on the model assessments herein, key areas for future improvement are in increased 

model resolution, better meteorological forcing for tropical cyclones, improved assimilation 

methods, and improved accuracy of tides. Model resolution is key to improving accuracy under 

all conditions and in all areas, but it is especially important to improve accuracy behind barrier 

islands and up rivers. A better representation of tropical cyclone winds and pressures is already 

under way and should be included in the next release of CORA. The assimilation methods have 

a powerful but difficult-to-quantify effect on the accuracy at un-gauged locations, and the 

current assimilation methods are relatively simple; although complex assimilation methods 

may be unnecessary, there is considerable room for improvement here (Asher et al. 2019). 

Though tidal accuracy is good, it is a limiting factor in the accuracy of the Gulf of Maine and 

plays a noteworthy role in errors in parts of the Atlantic.  

6. WAVE RESULTS 
The wind-wave model SWAN is formally coupled to ADCIRC (Dietrich et al. 2011a,b) 

and was included in the ADCIRC prediction to better account for the contribution of wave 

setup (Dean and Walton 2009) to the total water level at the coast. Although not the focus of 

this reanalysis, wave setup is an important contribution to coastal surge, particularly on 

relatively narrow continental shelves (Niedoroda et al. 2008, 2010), such as the southeastern 

Florida coast and the Cape Hatteras area of North Carolina.  

Bulk wave parameters (significant wave height, direction, and period) were included 

in the ADCIRC output configuration. In the coupled ADCIRC/SWAN system, both models 

share the same spatial finite element grid, substantially simplifying the overall modeling 

process. The coupling timestep between ADCIRC and SWAN was set to 30 minutes. The 

spectral grid was defined with 36 direction bins (a constant resolution of 10°) and 30 frequency 

bins, with a lower frequency cutoff of 0.03 Hz. Other key parameters are specified in Table 4.  

 

Table 4. Key settings for physics and numerics for Simulating WAves Nearshore (SWAN) model reanalysis.  

Wave Physics GEN3 KOMEN AGROW 

White Capping KOMEN 2.36E-5 3.02E-3 2.0 1.0 1.0 

Wave Breaking included 

Friction JONSWAP CFJON=0.038 

Propagation scheme BSBT (backward space, backward time) 

Spectral Grid 36 directions, 30 frequencies, flow=0.03 Hz 
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Observations of waves from National Data Buoy Center (NDBC) buoys 44097, 44014, 

44056, 41009, 41013, 42020, and 42022 were acquired using the NDBC21 python package. A 

summary of the SWAN wave model performance is described below for the year 2018 at the 

Frying Pan Shoals, NC, buoy location. Other buoys are reported in Appendix A2.  

Model Performance 

The bulk wave predictions were compared to the NOAA NDBC buoy observations at 

several locations for the year 2018. Figure 25 shows significant wave heights at the near coastal 

water station 41013 (Frying Pan Shoals, NC) for observations and SWAN. The model 

generally underpredicts the larger wave heights, noted by the linear fit (red line) in the 3-5 m 

range. (We note that at this location, the large peak in mid-September is due to Hurricane 

Florence for which the model overpredicts the observations.) The bias is -0.087 m, indicating 

an overall underprediction, and a root mean square error (RMSE) of 0.31 m. Mean wave 

directions are similar, with observations and SWAN showing that much of the bulk wave field 

arrives generally from the southeastern quadrant. The SWAN prediction for peak period is not 

as correlated with the observations and generally underpredicts periods. Wave model skill plots 

for additional buoy locations are reported in Appendix A2. 
 

 

Figure 25. Bulk wave characteristics at National Data Buoy Center (NDBC) buoy 41013 (Frying Pan Shoals, 

NC, 33 m water depth) for observations and SWAN for the year 2018. The left column shows the time series of 

significant wave heights [m] and peak periods [sec]. The middle column shows a scatter plot and statistics for 

root-mean-square error (RMSE), scatter index (SI), bias (B), and correlation coefficient (R) for significant wave 

heights and peak periods. The right column shows polar density plots of the wave direction (to which waves are 

propagating), plotted with 0° being true east and increasing angles in the counterclockwise direction. 

 

 

                                                 
21 National Data Buoy Center (NDBC) https://pypi.org/project/NDBC/ 

https://pypi.org/project/NDBC/
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7. APPLICATIONS AND USE CASES  

Background 

Datasets produced from this reanalysis are foundational in their own right. CORA is 

sustained by the authoritative data provided by NOAA’s NWLON then builds upon it by 

modeling the areas between observations with sound and validated modeling. In order to make 

both the datasets more accessible, geospatially compatible, and useful for flood assessment 

products and services, ADCIRC results are interpolated onto a grid to create a uniform and 

spatially continuous dataset.  

The 500-m grid structure developed as part of this effort represents a standardized and 

repeatable approach for data analysis and delivery of the underlying ADCIRC model output. 

ADCIRC relies on an unstructured mesh consisting of nodes. In and along coastal areas, the 

model nodes capture pertinent details of coastal features in order to correctly model the flow 

of water in and around these features. This approach allows the model to capture detail where 

needed and to reduce detail or resolution where it’s not needed, such as in the open ocean. One 

drawback of this approach is the lack of consistency in spatial detail and resolution along the 

coastline, which is often needed in geospatial applications. In addition, an unstructured mesh 

requires that users have the capacity and technical skill to transform the data in order to perform 

analysis with other geospatial datasets. By associating the model mesh with a standardized grid 

structure, model output and derived products can be delivered and analyzed in a consistent 

manner and can be more easily incorporated into geographic information systems and web 

applications. Further, decoupling the model mesh from the grid for associated products enables 

future updates to the mesh or even the entire model structure, without needing to rederive the 

spatial delivery of downstream products. A 500-m resolution was chosen as the grid resolution 

because it captures enough detail of coastal areas yet is still coarse enough to not over-represent 

model output, which generally has a point spacing of 250-400 m along the coast. The grid’s 

horizontal extent was specified to cover coastal areas out to 3 km offshore (Figure 26). 

Grid Development 

The 500-m grid for CORA-GEC version 1.1 was developed using geospatial software 

and standard geospatial data types. The first step was to develop a polygon dataset of 500-m 

by 500-m cells that covered the model extent in coastal areas and out to 3 km offshore. This 

was accomplished through the “Create Fishnet” tool in Esri’s ArcGIS Pro software. In order 

to ensure a consistent areal coverage of each grid cell throughout the CORA-GEC region, the 

polygon layer was created in the Albers Equal Area Projection, specifically the North 

American Datum of 1983 Conus Albers (EPSG: 5070)22, which has a horizontal unit of meters. 

This projection is commonly used in national datasets because of its preservation of area while 

minimizing distortion in shape in the mid-latitudes of the continental United States23. Using a 

projection also enables future seamless additions to the grid extent if needed. This is 

accomplished by specifying the origin coordinate of new features in 500-m increments. 

Due to the nature of how the Fishnet tool creates data, the output covered the full extent 

of the CORA-GEC study area (Maine to Texas), including inland areas. To refine the output 

to just coastal areas and out to 3 km, the ADCIRC model mesh was used to identify nodes that 

                                                 
22 https://epsg.io/5070-1252 
23 Snyder, J. P. (1987). Map Projections: A Working Manual. U.S. Geological Survey Professional Paper 1395. 

Washington, DC: United States Government Printing Office. https://doi.org/10.3133/pp1395 

https://epsg.io/5070-1252
https://epsg.io/5070-1252
https://doi.org/10.3133/pp1395
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had an elevation of 10 m or less. Once identified, these nodes were used to create a spatial 

footprint that, in combination with a 3-km offshore buffer, was used to select 500-m cells. The 

large spatial extent of the selected cells allows for changes to the inland extent of future 

modeled water levels without having to create a new 500-m grid. The result was consistent 

coastal coverage at a 500-m resolution (see Figure 27). 

Once the final set of 500-m cells was created, and in preparation for associating the 

model output with the grid through interpolation, the polygon data were converted to centroids, 

where a single point is created for each cell at the cell’s center. In addition, a unique ID was 

associated with each centroid to ensure that interpolated values can be tracked and associated 

with the correct cell. This step was needed in order to use a triangulated linear interpolation 

method to associate the model’s nodal output with each cell. This approach assigns a value to 

a location, in this case a cell centroid, based on where that location or point falls on a distance-

weighted triangular plane created from the model nodes. The triangular plane takes into 

account a centroid’s distance from each node and weights the resulting value based on those 

distances, where closer nodes have more influence over the final value. Further, all 3 nodes 

making up the triangular element that a centroid falls in need to be wetted in order for the 500-

m grid cell to be wetted for that time step. This spatially conservative approach to assigning 

values to the grid cells is appropriate due to the ADCIRC algorithms that define the models’ 

wetting front, as noted in the Limitations section above. 

 

 
Figure 26. Five hundred-meter grid coverage for the coast of South Carolina.  
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Figure 27. Five hundred-meter grid coverage and resolution (purple outlines) in Charleston, SC, compared to 

ADvanced CIRCulation (ADCIRC) model nodes (green points) that are wetted at least once a year. 

 

Potential Use Cases 

There are countless potential applications for data the CORA project has created, with 

the overall goal of helping coastal regions from state and federal initiatives to coastal 

community planning and preparedness and assistance for emergency responders.  

1. Flooding extent and severity during extreme events  

The use case noted in Rose et al. (2024) shows just how impactful coupling models 

with observations can be by illustrating elements associated with inundation along the Miami 

Beach, FL, coast in the wake of Hurricane Irma in 2017. The Rose et al. (2024) case study 

analyzes a roughly 20 x 30 km stretch of coastal Miami-Dade County centered around the 

Virginia Key, FL, tide station that provided hourly data when Category 4 Hurricane Irma made 

landfall. This example uses the posterior ADCIRC mesh to denote areas of land, ocean, and 

intertidal variability to illustrate where flooding took place during extreme water levels (Figure 

28). When coupled with a layer showing areas most susceptible to flooding, including those 

with critical facilities and high percentages of development, CORA data paints a picture of 

where flooding has happened and where it’s likely to occur during extreme weather events, 

evidence that can help emergency managers and city officials prioritize resilience.  

2. Monthly HTF Outlook 

We plan to utilize the 500-m gridded output to expand the NOAA monthly HTF 

outlook away from tide stations and to provide daily HTF likelihood every 500 m along most 

of the U.S. coastline. Comprehensive, high-resolution data will also greatly benefit sub-

seasonal to seasonal forecasting in flood-prone areas.  
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Figure 28. An example of water levels offshore Miami in the wake of Hurricane Irma in 2017. The ADvanced 

CIRCulation (ADCIRC) mesh is used to denote land (gray), areas susceptible to high tide (red), intertidal space 

(yellow), the ocean (blue), and flooding during extremes (purple).  

 

3. Annual HTF Outlook  

The Annual HTF Outlook analyzes the temporal trend of annual high tide flood 

frequency and assesses the influence of the El Nino Southern Oscillation (ENSO) phase (Sweet 

et al. 2018). Currently, the Annual HTF Outlook is only provided at NWLON water level 

stations. However, coastal flooding is hyperlocal, and the counts of flood days could be 

significantly different at locations a short distance away as influenced by local topography and 

distance to waterways. ENSO also brings changing wind, precipitation, and ocean patterns that 

can drive higher water levels at some locations. Assimilating water level observations will 

inherently include contributions from river discharge and other factors. CORA results will help 

assess the frequency of flooding to better understand implications of sea level rise. 

4. Tidal datums and predictions 

NOAA CO-OPS produces tidal datums (e.g., MSL, mean higher-high water, tidal 

range) and tidal predictions only at water level stations in open water bodies. These are issued 

primarily for navigation and safety purposes but have also been used in many other 

applications, such as assessing changes in sea level and non-tidal residual over time or 

inundation depth/duration curves for coastal natural resource areas. CORA results would allow 
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for a better understanding of how various datum surfaces and the harmonic constituents that 

comprise tidal predictions can change spatially within estuaries, bays, or river systems.  

5. Impact on transportation networks 

Transportation networks are one of the primary infrastructure assets impacted by 

flooding, including coastal flooding caused by surge and high tides. State and county 

transportation and emergency management agencies pay close attention to the status of low-

lying roads and critical byways during storm events, however monitoring such a large area is 

extremely difficult and usually relies on placement of sensors in those locations. Many assets 

cannot be continuously monitored, and the impact of flooding on them is only found at a later 

time, if at all. CORA results will help agencies determine the frequency, severity, and duration 

that unmonitored roads have been likely impacted in the past, information which can be used 

to assess damages or extrapolating trends into the future for development planning and 

management purposes.  

6. Climate resilience planning 

Projections of temperature, precipitation, and sea level rise, and their associated 

impacts, are critical to climate resilience and mitigation planning across the country, from local 

community town plans to national-level initiatives. Risk and vulnerability assessments based 

on these projections help emergency managers, natural resource managers, and decision 

makers better prepare for changing environmental conditions. Output from CORA will help 

assess the larger spatial scale of coastal inundation threats to infrastructure, natural resources, 

public safety, and the economy, as well as the appropriate potential adaptation and mitigation 

responses.  
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APPENDIX 

Wave Model Results 

This section shows SWAN wave model comparisons for additional buoy observations 

for the year 2018. Each plot shows time series and scatter plots of significant wave height and 

peak wave period, as well as directional histograms for wave direction (counterclockwise and 

relative to true east). 

44097 - Block Island, RI (154) 

Figure 29. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 44097 (Block Island, RI (154), 49 m water depth). 
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44014 (LLNR 550, Virginia Beach) 

Figure 30. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 44014 (LLNR 550, Virginia Beach, VA, 49 m water depth). 

44056 (Duck FRF, NC) 

Figure 31. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 44056 (Duck FRF, NC, 17.8 m water depth). 
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41009 (LLNR 840, Cape Canaveral) 

Figure 32. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 41009 (LLNR 840, Cape Canaveral, FL, 42 m water depth). 

42040 (LLNR 245, Luke Offshore) 

Figure 33. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 42040 (LLNR 245, Luke Offshore Platform, AL, 192 m water depth). 
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42002 (LLNR 1470, TX) 

Figure 34. Comparison of buoy and Simulating WAves Nearshore (SWAN) model bulk wave parameters at 

National Data Buoy Center (NDBC) station 42002 (LLNR 1470, TX, 3088 m water depth). 
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