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ABSTRACT: Previous work found that cold pools in ordinary convection are more sensitive to the microphysics scheme
when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysi-
cal uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold
pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL.
Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs,
though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along
parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is
partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of
negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of
environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the
strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This
narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior
and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.

SIGNIFICANCE STATEMENT: Thunderstorms typically produce “pools” of cold air beneath them owing in part to
the evaporation of rain and melting of ice produced by the storm. Past work has found that in computer simulations of
thunderstorms, the cold pools that form beneath thunderstorms are sensitive to how rain and ice are modeled in the
simulation. In this study, we show that in the strongest thunderstorms that are capable of producing tornadoes, this sen-
sitivity is reduced when the humidity in the lowest few kilometers above the surface is increased. Exploring why the
sensitivity is reduced when the humidity increases provides a deeper understanding of the relationship between humid-
ity and cold pool strength, which is important for severe storm forecasting.
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1. Introduction

Cloud microphysics, which are processes that involve indi-
vidual hydrometeors, play an important role in the physics of
supercell thunderstorms. Microphysical processes directly
impact storm thermodynamics through the enthalpies associ-
ated with the phase changes of water, and this modification of
the thermodynamics affects storm dynamics. In addition to
influencing the thermodynamics and dynamics of a storm, mi-
crophysical processes also play an important role in many of
the hazards associated with supercells, such as tornadoes (e.g.,
Snook and Xue 2008; Dawson et al. 2016), hail, and lightning.

Microphysical processes must be parameterized in numeri-
cal simulations of supercells because the grid spacings of these
simulations (tens of meters up to a few kilometers, e.g., Orf
et al. 2017; Dowell et al. 2022) prevent both microphysical
processes and other atmospheric processes that influence

clouds (e.g., turbulence) from being fully resolved (Morrison
et al. 2020). Many different microphysics schemes (i.e., a
collection of parameterizations for various microphysical
processes) exist, and each handles various processes and
hydrometeor properties differently (e.g., Morrison et al.
2009; Mansell et al. 2010; Morrison and Milbrandt 2015).
Some of these decisions about how to configure a micro-
physics scheme arise from trade-offs between computational
efficiency and physical realism. For example, bulk-type micro-
physics schemes tend to be more realistic when more mo-
ments of the particle size distribution (PSD) are predicted
(Dawson et al. 2010), but predicting more moments comes
with more computational overhead. Other scheme configura-
tion decisions arise from having to parameterize processes
that are not easily parameterized or understood, such as rain-
drop breakup (Milbrandt and Yau 2005; Morrison et al. 2012;
Saleeby et al. 2022). Unfortunately, several studies have dem-
onstrated that supercell simulations are sensitive to how a
microphysics scheme is configured (e.g., Johnson et al. 1993;
Gilmore et al. 2004b; van den Heever and Cotton 2004; Snook
and Xue 2008; Dawson et al. 2010; Morrison and Milbrandt
2011; Van Weverberg 2013; Freeman et al. 2019; Kacan and
Lebo 2019; Mansell et al. 2020; Milbrandt et al. 2021), and it is
not clear which of these configurations is the most “correct.”
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This uncertainty in microphysics schemes results in forecast
uncertainty for supercells and their associated hazards.

The inspiration behind this study is not to document addi-
tional sensitivities of supercell simulations to the microphysics
scheme. Instead, our goal is to identify environments where
supercells are less sensitive to microphysical processes, which
indicates increased predictability. Prior work has demon-
strated that the sensitivity of convective storms to the micro-
physics changes with the environmental wind shear (Gilmore
et al. 2004a,b; Morrison et al. 2012), precipitable water (Cohen
and McCaul 2006), convective available potential energy
(CAPE; Van Weverberg 2013; Morrison et al. 2015), and lifting
condensation level (LCL; Murdzek et al. 2022, hereinafter
M22). The present study examines whether the sensitivity of
simulated supercell cold pools to the microphysics changes with
the environmental LCL. This is an extension of M22, who
found that the sensitivity of cold pools in ordinary convection
to the microphysics increases with higher LCLs. The physical
reasoning was that higher LCLs are associated with a drier
planetary boundary layer (PBL), which results in more rain
evaporation compared to low-LCL environments. This greater
evaporation potential exaggerated the microphysical uncer-
tainty, resulting in a greater sensitivity to the microphysics.
This study will examine whether this same reasoning can be
applied to supercells.

As with M22, the focus here is on cold pools. The reason
for this is twofold. First, cold pools are directly linked to the
microphysics through the enthalpies associated with the phase
changes of water (James and Markowski 2010; Mallinson and
Lasher-Trapp 2019), which makes cold pool strength a conve-
nient diagnostic to measure the sensitivity of supercells to the
microphysics. Second, cold pools play a vital role in tornado-
genesis, with the probability of tornadogenesis generally de-
creasing as the cold pool becomes more negatively buoyant,
which impedes the stretching of near-surface, circulation-rich
air to tornado strength (e.g., Markowski et al. 2002; Shabbott
and Markowski 2006; Grzych et al. 2007; Markowski and
Richardson 2014). It is possible that supercells that are less
sensitive to the microphysics are also less volatile when it
comes to tornado production (e.g., Coffer et al. 2017). If this
is true, then environments where supercells are less sensitive
to the microphysics may be tornado forecasts of opportunity.

In addition to extending M22 to supercells, we also seek to
better understand the connection between the LCL and cold
pool strength. Observations have shown that cold pool
strength tends to increase with larger inflow surface dewpoint
depressions (Markowski et al. 2002; Shabbott and Markowski
2006; McDonald and Weiss 2021), which are associated with
higher LCLs. This relationship between cold pool strength
and LCL has also been shown in several modeling studies,
with the explanation that higher LCLs are associated with
more rain evaporational cooling (McCaul and Cohen 2002;
Markowski et al. 2003; Brown and Nowotarski 2019; M22).
Generally, the amount of rain evaporation in a given volume
of air depends on two factors: the environmental humidity of
that volume (the “environmental control” on evaporation)
and the characteristics of the rain PSDs (the “microphysical
control” on evaporation). The LCL is related to both of these

factors. In regard to the environmental control, higher LCLs
are generally associated with lower relative humidity, which,
all else being equal, increases rain evaporation. This is the
physical argument that is typically used to help explain why
high-LCL environments are less favorable for tornadogenesis:
higher LCLs result in more evaporational cooling, which con-
tributes to cold pools with excessive negative buoyancy that
impedes vertical vorticity stretching (e.g., Markowski et al.
2003). In regard to the microphysical control, the LCL can im-
pact upstream microphysical processes which, in turn, influ-
ence the rain PSD. For example, a lower LCL might result in
a deeper warm-cloud depth,1 which would allow for more
warm-rain processes to occur. This would then influence the
downstream rain PSDs and, therefore, rain evaporation. In
M22, storms in low-LCL environments produced slightly
more rain evaporation when only accounting for the micro-
physical control, though this trend was overwhelmed by the
environmental control, which favored more evaporation in
high-LCL environments. In Lerach and Cotton (2012), pre-
cipitation rates decreased}resulting in weaker cold pools}
with higher LCLs, which is an example of the microphysical
control exceeding the environmental control. Thus, a higher
LCL does not always guarantee a colder cold pool.

It is clear that the LCL influences rain evaporation, but
how much of this cooling from evaporation contributes to
near-surface cold pool strength? Mallinson and Lasher-Trapp
(2019) showed that graupel sublimation was the dominant fac-
tor contributing to cooling within downdrafts, but rain evapo-
ration was better correlated with near-surface cold pool
strength. Graupel sublimation tends to occur at higher alti-
tudes than rain evaporation, which suggests that microphysi-
cal cooling aloft may have a reduced impact on near-surface
cold pool strength compared to cooling at lower altitudes.
Analogously, evaporational cooling that occurs near cloud
base may have a reduced impact on cold pool strength com-
pared to evaporational cooling that occurs at lower levels.
Thus, more rain evaporation might not always result in a
stronger near-surface cold pool, which adds a layer of com-
plexity to the explanation that high-LCL storms produce
stronger cold pools owing to more rain evaporation. This sug-
gests that we need a deeper understanding of the processes
that influence cold pool development in supercells and how
the relative strength of these processes changes with LCL.

Based on the preceding discussion, our research questions
are as follows:

1) What are the primary drivers of supercell cold pool strength?
2) How does the magnitude of these drivers change as the

LCL varies?
3) Does the sensitivity of supercell cold pools to the micro-

physics increase as the LCL increases? Is the physical rea-
soning similar to M22?

After detailing the methods in the next section, we will perform
several Eulerian analyses. Owing to several shortcomings of the
Eulerian analyses, a Lagrangian analysis will then be performed

1 Distance between cloud base and the freezing level.
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to better answer our research questions. The results are summa-
rized in the final section.

2. Methods

Following the approach of M22, perturbed-microphysics
ensembles with varying LCLs are created to capture how the
sensitivity to the microphysics varies with the LCL. A total of
four ensembles with LCLs between 500 and 2000 m are ana-
lyzed, with each ensemble consisting of 13 members that each
use a different configuration of the predicted particle properties
(P3; Morrison and Milbrandt 2015; Milbrandt and Morrison
2016) microphysics scheme (Fig. 1). Within this framework, the
ensemble spread is used as a proxy for the sensitivity to the
microphysics. Comparing the ensemble spread between ensem-
bles indicates how the sensitivity to the microphysics changes
with the LCL. Each ensemble member is a Cloud Model 1,
release 20.1 (CM1; Bryan and Fritsch 2002; Bryan 2021), simu-
lation, with the model configuration listed in Table 1.

Each ensemble member is initialized using a horizontally homo-
geneous base state. All simulations use the same base-state
wind profile, which consists of a shear vector that undergoes a
quarter turn between 0 and 2 km AGL and unidirectional,
westerly shear between 2 and 6 km AGL (Fig. 2). This wind
profile is favorable for supercells (Table 2), but only margin-
ally favorable for tornadoes, with a 0–500-m storm-relative
helicity of only 77.9 m2 s22 (cf. Fig. 2 from Coffer et al. 2019).
Each ensemble uses a different base-state thermodynamic
profile with a different LCL while holding the level of free
convection (LFC) and pseudoadiabatic CAPE approximately
constant (Table 3). These base states are constructed using
the methodology of McCaul and Cohen (2002), which results
in three layers: 1) the PBL, which consists of a well-mixed
layer beneath a nearly moist-adiabatic layer, 2) the free tropo-
sphere, which follows the prescribed buoyancy profile of
McCaul and Weisman (2001), and 3) an isothermal strato-
sphere. The parameters used to create the thermodynamic
profiles and various sounding metrics are listed in Table 3.
The resulting thermodynamic base states (Fig. 2) are very

similar to those used in Murdzek et al. (2021) and M22, except
that the static stability is increased in the lower troposphere
to prevent Kelvin–Helmholtz instability, which could result in
excessive mixing and cause the environment experienced by
the storm to differ from the prescribed environment.

Each simulation uses a moving domain in order to keep the
supercell near the origin of the grid. All members within a
given ensemble use the same domain motion, which is the aver-
age storm motion of the control member. The average storm
motion for each control member is determined by tracking the
midlevel mesocyclone of the dominant right-moving supercell
using an objective mesocyclone detection algorithm. This algo-
rithm defines the mesocyclone center as the 2–5-km updraft
helicity (UH)-weighted centroid of the largest, continuous area
with UH . 50 m2 s22, which is similar to the approach used in
Peters et al. (2019). The midlevel mesocyclone location is con-
strained in time such that the location must be within 3 km of
the mesocyclone location determined 30 s earlier.

LCL = 500 m

LCL = 1500 m

LCL = 2000 m

LCL = 1000 m

Control

Db = 100 μm
αi = 0.5
μr = 0

Db = 100 μm
αi = 1.5
μr = 0

Db = 100 μm
αi= 0.5
μr = 6

Db = 100 μm
αi = 1.5
μr = 6

Db = 280 μm
αi = 0.5
μr = 0

Db = 280 μm
αi = 1.5
μr = 0

Db = 280 μm
αi = 0.5
μr = 6

Db = 280 μm
αi = 1.5
μr = 6

Db = 500 μm
αi = 0.5
μr = 0

Db = 500 μm
αi = 1.5
μr = 0

Db = 500 μm
αi = 0.5
μr = 6

Db = 500 μm
αi = 1.5
μr = 6

Four Ensembles Thirteen Members Per Ensemble

FIG. 1. Schematic detailing the various simulations. The green boxes on the left indicate the
different ensembles, while the blue boxes on the right indicate the members within a sample en-
semble. The raindrop breakup threshold Db, ice fall speed multiplier ai, and rain PSD shape
parameter mr for each ensemble member are listed in the blue boxes on the right.

TABLE 1. CM1 configuration.

Parameter Value

Domain size 120 km 3 120 km 3 18 km
Horizontal grid spacing 200 m
Vertical grid spacing 50 m below 2.5 km

500 m above 13.5 km
Integration length 2 h
Initial large time step 2.0 s
Adaptive time step? Yes
Lateral boundary conditions Open-radiative
Top and bottom

boundary conditions
Free slip

Initiation method Updraft nudging with
wmax 5 10 m s21

Microphysics Predicted particle properties
Radiation None
Surface fluxes None
Coriolis acceleration None
3D output frequency 300 s
Stats output frequency 30 s
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The midlevel mesocyclone location is also used to deter-
mine cold pool strength. Our focus is on the near-surface cold
pool, so we define the cold pool as the area at the lowest
model level (LML; 25 m AGL) with a perturbation potential
temperature u′ , 21 K. To eliminate cold pools from spuri-
ous convection that might be occurring elsewhere in the do-
main, the cold pool is restricted to be within 30 km of the
midlevel mesocyclone. Cold pool strength is then defined as
the sum of all buoyancy B values within the cold pool and is

denoted SBsfc,CP. Other measures of cold pool strength (e.g.,
minimum u′, average u′ in the cold pool, and sum of all B val-
ues within the cold pool up to a height of 2 km AGL) and
other distances from the midlevel mesocyclone (4 and 10 km)
were also tested, and using these other metrics does not
change the qualitative results presented here (Fig. 4.9 from
Murdzek 2022).

The last piece of the ensemble setup is the perturbations
applied to the P3 microphysics scheme. The P3 scheme used

FIG. 2. Base-state environments for the LCL5 (a) 500, (b) 1000, (c) 1500, and (d) 2000 m ensembles. The solid red,
blue, orange, and black lines on the skew T–logp diagram represent the environmental temperature, environmental
dewpoint, environmental virtual temperature, and virtual temperature profile for a surface-based parcel, respectively.
The shaded red area is proportional to the CAPE. The hodograph is storm relative with the origin as the approximate
storm motion. Each dashed ring is 5 m s21, and the black, gold, and green lines denote the storm-relative winds be-
tween 0–1, 1–3, and 3–6 km AGL, respectively.

TABLE 2. Base-state bulk wind differences (BWD) and storm-relative helicities (SRHs) computed over various depths.

0–6-km BWD (m s21) 0–1-km BWD (m s21) 0–0.5-km SRH (m2 s22) 0–1-km SRH (m2 s22) 0–3-km SRH (m2 s22)

30.5 9.2 77.9 146.1 282.4

MONTHLY WEATHER REV I EW VOLUME 1521182

Brought to you by NOAA Library | Unauthenticated | Downloaded 01/10/25 02:55 PM UTC



herein for the control member of each ensemble is identical to
the CM1r20.1 configuration with three exceptions: 1) shedding
of raindrops from ice collecting rain at temperatures above
273.15 K is turned on, 2) wet growth is moved up within the P3
code, so wet growth can be used to alter the ice–ice collection ef-
ficiency, and 3) the maximum allowed mean raindrop size Dm,r

is increased from 0.8 to 4 mm following the recommendations of
Johnson et al. (2019). After applying these changes, a series of
tests are performed to determine the sensitivity of supercell cold
pools to various parameters within P3. Out of the 12 parameters
screened (see the appendix), cold pools are found to be most
sensitive to the raindrop breakup thresholdDb, the ice fall speed
multiplier ai,

2 and the rain PSD shape parameter mr. A total of
three Db values, two ai values, and two mr values are selected,
resulting in 12 different P3 realizations. Adding the control simu-
lation (Db 5 280 mm, ai 5 1, and mr 5 0) results in 13 total
members for each ensemble (Fig. 1).

Trajectories and buoyancy budgets

Past studies (e.g., Klemp et al. 1981; Dawson et al. 2016;
Torri and Kuang 2016; Betten et al. 2017) have found great
utility in using parcel trajectories to better understand the
nature of intrastorm airflows. We follow a similar approach
here by using buoyancy budgets along parcel trajectories to
probe the origins of supercell cold pools. To perform the
parcel analysis, all members from the LCL 5 500 m and
LCL 5 2000 m ensembles as well as the control members of
the LCL 5 1000 m and LCL 5 1500 m ensembles are re-
started at 5400 s, with 1 141 560 parcels seeded within a box
with the dimensions x 2 [215, 15] km, y 2 [210, 15] km, and
z 2 [0.1, 6] km. These parcels have an initial spacing of 0.2,
0.2, and 0.1 km in the x, y, and z directions, respectively,
and are integrated forward in time using the model time
step for 1800 s with trajectory output being saved every 15 s.
Cold pool parcels are then identified at analysis times that
start at 5400 s and continue for 1800 s with a 30-s cadence.
The criteria for cold pool parcels are as follows:

1) Parcel B at 5400 s is .20.01 m s22.
2) Parcel u′ at the analysis time is ,21 K.
3) Parcel is within 30 km of the midlevel mesocyclone at the

analysis time.

4) Parcel height at the analysis time is between 25 and 50 m
AGL.

5) Parcel never dipped below the LML between 5400 s and
the analysis time.

6) Parcel has not already been selected as a cold pool parcel.

Criteria 2–4 ensure that the parcel terminates within the
cold pool, while criterion 6 prevents double-counting and
criterion 5 eliminates parcels that might have errors in the
trajectory calculation owing to extrapolation. Criterion 1 is
included because we are interested in the development of
large, negative B along parcel trajectories and parcels that
already have large negative B at the initial time preclude
such an investigation.

We are ultimately interested in learning how these parcels
became negatively buoyant. To do this, we derive a B budget
equation, which starts with theB equation in CM1 (Bryan 2021):

B 5 g
u′

u0
1

1
e
2 1

( )
(qy 2 qy0) 2 qtot

[ ]
, (1)

where g is the gravitational acceleration, e is the ratio of the
dry-air and water-vapor gas constants, qy is the water-vapor
mass mixing ratio, qtot is the hydrometeor mass mixing ratio,
and variables with the subscript 0 denote the base-state val-
ues, which are functions of z. The total derivative of Eq. (1) is
taken with respect to time, which results in

dB
dt

5 g
1
u20

u0
du
dt

2 u
du0
dt

( )
1

1
e
2 1

( )
dqy
dt

2
dqy0
dt

( )
2

dqtot
dt

[ ]
:

(2)

From here, Eq. (2) is integrated over a parcel trajectory to
compute the final B at time tf, B(tf), assuming an initial B of
B(ti) at time ti. The final result is

B(tf ) 5 B(ti) 1 g
� tf

ti

1
u0

du
dt

dt︸����︷︷����︸
u term

2 g
� tf

ti

u

u2
0

du0
dt

dt︸�����︷︷�����︸
u0 term

1 g
1
e
2 1

( )
Dqy︸�����︷︷�����︸

qy term

2 g
1
e
2 1

( )
Dqy0︸�����︷︷�����︸

qy 0 term

2 gDqtot︸�︷︷�︸
qtot term

, (3)

where D denotes the difference between the final and initial
values along a parcel trajectory. In Eq. (3), the five terms on

TABLE 3. Thermodynamic base-state parameters and parameters used to create the base-state thermodynamic profiles. LCL, LFC,
equilibrium level (EL), CAPE, and CIN are computed for a surface-based parcel following pseudoadiabatic ascent (computations
include the virtual temperature correction). Other parameters include the surface pressure psfc, surface temperature Tsfc, absolute
supersaturation at the LML (s0 5 qy 2 qsl, where qy is the water vapor mass mixing ratio and qsl is the equilibrium water vapor mass
mixing ratio), and the PBL lapse rate (PBL LR).

LCL (m) LFC (m) EL (m) CAPE (J kg21) CIN (J kg21) psfc (hPa) Tsfc (K) PBL LR (K km21) s0 (g kg21)

500 2491 12 402 1971 37.8 1000 295.66 8.9 23.63
1000 2568 12 405 1971 54.3 1000 298.3 8.9 27.78
1500 2642 12 408 1971 66.6 1000 300.92 8.9 212.36
2000 2707 12 411 1971 74.0 1000 303.49 8.9 217.38

2 The ice fall speed multiplier was added to P3 to account for ice
fall speed uncertainty. The values tested were 0.5, 1, and 1.5, which
is within the range used by Stanford et al. (2019).
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the right-hand side after B(ti) will be referred to as the u term,
u0 term, qy term, qy0 term, and qtot term, respectively.

The B budgets are computed offline using the 15-s parcel
output. Time derivatives are computed using second-order fi-
nite differences while the time integrals are computed using a
trapezoidal method. As shown in section 4, the residuals of
these budgets are two orders of magnitude less than the final
B values, which gives us confidence in the budgets. In addition
to B budgets, the u and qy budget terms, which are already
computed within CM1, are also interpolated to the parcel tra-
jectories and integrated in time using a trapezoidal method to
obtain u and qy budgets.

3. Eulerian analysis

Each simulation produces convection resembling a super-
cell that lasts for at least 2 h. Horizontal cross sections of the
control members from each ensemble show features typical of
supercells, including a rear-flank gust front [near (25, 25) in
each of the panels in Fig. 3] and a “hook” echo (immediately

west of the maroon dots in Fig. 3). Furthermore, the objective
midlevel mesocyclone detection algorithm produces realistic
mesocyclone locations (maroon dots in Fig. 3), which gives us
confidence that the algorithm is performing properly. For all
simulations, a midlevel mesocyclone is detected soon after
model initialization and lasts until the end of the 2-h integra-
tion window.

Time series of ensemble medians and standard deviations
of cold pool strength are used to assess how the LCL impacts
cold pool strength and sensitivity to the microphysics scheme.
As documented in the previous literature (e.g., McCaul and
Cohen 2002; Brown and Nowotarski 2019), cold pool strength
tends to increase as the LCL increases (Fig. 4a), though this
trend is somewhat muddied by the LCL 5 2000 m ensemble,
which has a weaker median cold pool strength than the
LCL 5 1500 m ensemble. As was found in the ordinary con-
vection simulations of M22, the ensemble spread of cold pool
strength also tends to increase as the LCL increases (Fig. 4b).
In fact, the ratio of the LCL 5 2000 m standard deviation to
the LCL 5 500 m standard deviation is greater than one and

FIG. 3. Horizontal cross sections from the control member of each ensemble at 5400 s. Color shading represents
LML buoyancy, vectors represent LML horizontal winds, the gray contour represents the 25-dBZ reflectivity contour
at 1 km AGL, and the maroon dot indicates the objectively analyzed mesocyclone center. Axis labels are in
kilometers.
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statistically significant at the 95% confidence level using a
bootstrap resampling test (Wilks 2011, chapter 5.3.5) for the
majority of the time after cold pool onset. Altogether, these
results suggest that the sensitivity of supercell simulations to
the microphysics increases with higher LCLs, which agrees
with M22.

Vertical profiles of microphysical processes

We now turn to why cold pool strength and sensitivity of
the cold pool to the microphysics increase with higher LCLs.
The first tool that will be used is vertical profiles of micro-
physical processes. Vertical profiles of ensemble-median cooling
from cloud evaporation Qevac, rain evaporation Qevar, melting
Qmelt, and sublimation Qsubl show that Qevar is the dominant
cooling mechanism beneath cloud base (Figs. 5a,c,e,g). This sug-
gests that Qevar might be the main process driving cold pool
strength, but we cannot be certain because parcels contributing
to the cold pool might have experienced considerable cooling
aloft from melting and sublimation before sinking to the surface,
which is not captured in this Eulerian analysis. The Lagrangian
analyses provided later in section 4 will address this shortcoming.
When comparing across the four ensembles, Qevar tends to in-
crease slightly as the LCL increases from 500 to 1500 m, which
agrees with the hypothesis that high-LCL storms tend to pro-
duce stronger cold pools owing to more evaporational cooling
(McCaul and Cohen 2002; M22), though this trend is less pro-
nounced compared to M22. This trend is also upended by the
LCL 5 2000 m ensemble, which features a median Qevar that is
similar to the LCL5 500 m ensemble, at least below 1 km AGL
(Fig. 5c). This is a bit surprising given that the LCL5 2000 m en-
semble tends to have a stronger cold pool than the LCL5 500 m

ensemble (Fig. 4a). These observations suggest that Qevar is not
the only factor contributing to cold pool strength.

Shifting the focus to the increase in the ensemble spread of
cold pool strength with higher LCLs, we find that the ensemble
standard deviation of rain evaporation does not clearly increase
with LCL (Fig. 5d). This deviates from M22, in which the en-
semble spread of rain evaporation increases with LCL (see their
Fig. 14d). M22 argued that higher LCLs result in a greater evap-
oration potential owing to the drier conditions in the PBL, which
exaggerate any microphysical differences within an ensemble,
resulting in a larger spread of rain evaporation rates. Based on
Fig. 5d, this mechanism does not appear to be occurring here.

To help explain why ensemble medians and standard devi-
ations of Qevar in our simulations do not increase strongly
with LCL, we explore the different factors in the rain evapo-
ration equation. The equation for rain evaporation in P3
when T . 273.15 K is [see Eqs. (C6) and (C4) in Morrison
and Milbrandt (2015)]:

­qr
­t

5 Ac

t

trGl

1 (d0 2 Act)
t

DttrGl

(1 2 e2Dt/t), (4)

where qr is the rain mass mixing ratio.

Ac 5
­qy
­t

1
dqsl
dT

dT
dt

: (5)

t is the multiphase supersaturation relaxation time, tr is the
phase relaxation time for rain, Gl is the psychrometric correc-
tion, d0 is the supersaturation passed to the microphysics
scheme by CM1, Dt is the model time step, and qsl is the
equilibrium water vapor mass mixing ratio with respect to

FIG. 4. Time series of ensemble cold pool statistics. (a) Ensemble medians and (b) ensemble standard deviations
of SBsfc,CP. The brown line along the x axis in (b) denotes times when the ratio of the standard deviation of the LCL5 2000 m
ensemble to the LCL 5 500 m ensemble is greater than one and statistically significant at the 95% confidence level. The
cold pool is defined as all grid points at the LMLwithin 30 km of the midlevel mesocyclone with u′ , 21 K.
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liquid water. Similar to M22, we seek to isolate the microphys-
ical and environmental controls on evaporation. The micro-
physical control is related to the shapes of the hydrometeor
PSDs and is tied to t and tr. The environmental control, on
the other hand, is related to the humidity and is tied to d0. For

completeness, we will also examine the impact of Ac on evap-
oration. Rain evaporation is computed offline for each simula-
tion while holding either t and tr constant, Ac constant, or d0
constant. The resulting profiles of Qevar are shown in Fig. 6,
along with vertical profiles of Qevar when no factors are held

FIG. 5. Vertical profiles of total cooling from various microphysical processes. (a),(c),(e),(g) Ensemble medians and
(b),(d),(f),(h) ensemble standard deviations. Microphysical processes include (a),(b) cloud evaporation, (c),(d) rain
evaporation, (e),(f) melting, and (g),(h) sublimation. Profiles are computed during the entire 2-h integration period
for all grid points within 30 km of the midlevel mesocyclone.
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constant, which are included to show the accuracy of these
offline computations (cf. Figs. 5c,d). When the microphysical
control is held constant, both the ensemble median and stan-
dard deviation increase with higher LCLs, likely owing to the
drier conditions in the high-LCL simulations (Figs. 6a,b).
When the environmental control is held constant, the opposite

is true (Figs. 6e,f), which suggests that the rain PSDs are
more favorable for evaporation in the low-LCL simulations.
Holding Ac constant has little impact on the rain evapora-
tion trends (Figs. 6c,d). These results agree with M22, who
found that the environmental control favors greater evapora-
tion in high-LCL simulations and the microphysical control

FIG. 6. As in Fig. 5, but with rain evaporation computed while holding (a),(b) t and tr constant, (c),(d) Ac constant,
and (e),(f) d0 constant and (g),(h) without holding any of the factors constant.
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favors greater evaporation in low-LCL simulations. Unlike
M22, however, the environmental control does not dominate
the microphysical control, which helps explain why the ensem-
ble median and standard deviation of Qevar do not clearly in-
crease with higher LCLs. Put another way, in the supercell
simulations, the additional evaporation expected from increas-
ing the LCL owing to a decrease in relative humidity is bal-
anced by rain PSD characteristics that become increasingly
less favorable for evaporation as the LCL is raised.

To understand why the microphysical control varies more
with LCL in these supercell simulations compared to the ordi-
nary convection simulations of M22, we will examine bulk
rain PSD characteristics from each of the ensembles. As the
LCL decreases, two aspects of the rain PSDs favor more rain
evaporational cooling. The first is an increase in the average
qr as the LCL decreases (Fig. 7a), which results in more rain
mass that can be evaporated. The second is a decrease in the
average number-weighted mean raindrop diameterDn,r as the
LCL decreases (Fig. 7b). This decrease in Dn,r coupled with
the increase in qr with lower LCLs is indicative of more nu-
merous and smaller drops with a larger surface area-to-volume
ratio, which favors more evaporation (e.g., van den Heever
and Cotton 2004; Snook and Xue 2008). This decrease in how
favorable the rain PSDs are for rain evaporation with higher
LCLs is likely also the reason why the LCL 5 2000 m ensemble
did not have the strongest cold pool out of the four ensembles.
In the ordinary convection simulations, on the other hand, total
rainfall and Dn,r do not vary much with LCL (e.g., Fig. 18 from
M22), which results in less variability in the microphysical control
in those simulations.

A number of factors are likely contributing to the differ-
ences in rain characteristics between the different ensembles.
One factor is that precipitable water tends to decrease with
higher LCLs in our base-state environments (not shown),
which would contribute to a decrease in rain as the LCL in-
creases. Additional factors can be gleaned from rain mass
budgets from each of the control simulations (Fig. 8). One of
the most striking differences between the simulations is that
as the LCL increases, the percentage of rain mass lost to
freezing increases while the percentage of rain gained from
melting stays relatively constant (Figs. 8c,f). The larger per-
centages of rain mass lost to freezing in the high-LCL simula-
tions are possibly tied to the shallower warm-cloud depth,3

which might prevent liquid drops from growing large enough
to fall out before being advected above the freezing level. The
reason behind the lack of a compensating increase in rain
gained from melting with higher LCLs is not clear from these
budgets and is beyond the scope of the current study, though
it is possible that the newly nucleated ice particles in the
high-LCL simulations are smaller than those in the low-LCL
simulations owing to the shallower warm-cloud depths in the
high-LCL simulations. These smaller ice particles could then
be lofted higher in the supercell where they are more likely
to be advected horizontally and sublimate rather than falling
back down to the melting layer. The impact of freezing and

FIG. 7. Ensemble medians of various rain PSD characteristics. (a) Horizontally and temporally averaged rainwater
mass mixing ratios qr and (b) horizontally and temporally averaged number-weighted mean raindrop diameters Dn,r .
Averages are performed during the second hour of the simulations using only those grid points with qr . 0.01 g kg21.

3 Warm-cloud depth decreases as the LCL increases in our base
states because the freezing level is approximately the same in all
the base states.
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melting on these rain budgets highlights the indirect impact
that ice microphysics can have on cold pool strength by
heavily influencing the amount of rain available for evapora-
tion. In summary, it appears that an increase in environmental

precipitable water and a decrease in the fraction of rain mass
lost to freezing with lower LCLs are at least two reasons why
low-LCL simulations tend to produce more rainfall than their
high-LCL counterparts.

FIG. 8. Time series of rain budget terms for the control member of each ensemble. Budget terms are plotted as a percentage of the sum of
all rain source terms, with source terms having positive percentages and sink terms having negative percentages.
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Although these Eulerian analyses are illuminating, we still
cannot say why cold pool strength and sensitivity to the micro-
physics increase with higher LCLs. This is partially related to
shortcomings of the Eulerian perspective, which make it difficult
to determine how much processes occurring aloft contribute to
the near-surface cold pool. For example, does cooling frommelt-
ing at 3 km AGL directly contribute to near-surface cold pool
strength? Or is it completely offset by compressional warming,
as suggested by Mallinson and Lasher-Trapp (2019)? To answer
such a question, information about the airflow within a supercell
is required, which makes parcel trajectories a logical tool. An-
other shortcoming of the analyses presented in this section is
that the role of other terms in the B equation, such as hydrome-
teor loading, is not considered. Buoyancy is the relevant mea-
sure to examine when determining cold pool strength, and
microphysical cooling is just one process that contributes to neg-
ative B. Thus, we will use B budgets along parcel trajectories in
an attempt to definitively answer our research questions.

4. Lagrangian analysis

Our Lagrangian analysis will start with the control mem-
bers in order to examine some general characteristics of the

B budgets. We will then examine aggregate statistics from all
LCL 5 500 m and LCL 5 2000 m ensemble members to ex-
plain why the sensitivity of the cold pools to the microphysics
increases with higher LCLs.

a. Control simulations

Parcel endpoints for the control simulations are shown in
Fig. 9. The parcels generally terminate along the eastern edge
of the cold pool within the rear flank of the storm, which is the
portion of the cold pool that is most relevant for tornadogene-
sis and low-level updraft maintenance. The number of parcels
identified ranges from 975 to 5280 and generally increases as
cold pool strength increases (cf. Fig. 4a). The number of parcels,
along with the endpoints of these parcels, gives us confidence
that we are robustly capturing processes contributing to cold
pool strength at the leading edge of the rear-flank cold pool.

Cold pool parcel B budgets for these control simulations
can be used to determine the drivers of cold pool strength.
Histograms of B budget terms indicate that changes in u along
parcel trajectories are the dominant contributor to final parcel
B, with changes in u0 and qtot playing a secondary role and
changes in qy and qy0 being almost negligible (Fig. 10).

FIG. 9. Cold pool forward parcel trajectory endpoints for each control simulation. Parcel endpoints are binned into
2 3 2 km2 bins, and the total number of parcels is listed in the subplot titles. The gray shading and blue contours de-
pict reflectivity at 1.025 km AGL and the 21-K u′ contour at the LML, respectively, at 6300 s. Axis labels are in
kilometers.
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Residuals for the B budgets are two orders of magnitude less
than the final B values, indicating that our budgets are very
accurate. Turning to microphysical processes that negatively
impact u, we find that rain evaporation is the dominant con-
tributor (Fig. 11). This is unsurprising given that most of the
parcels originate below 1000 m AGL (Fig. 10g), which is well
below the maximum in melting and sublimation (Figs. 5e,g).
Thus, even though melting and sublimation may cause cooling
aloft and contribute to downdrafts, as shown by Mallinson

and Lasher-Trapp (2019), these microphysical processes do
not appear to directly contribute to the near-surface cold
pool. Instead, rain evaporation appears to be the dominant
driver of cold pool strength in supercells.

b. LCL 5 500 m and LCL 5 2000 m ensembles

Examining the mean contributions from each term in
the B budget for all the parcels in the LCL 5 500 m
and LCL 5 2000 m ensembles provides insight into two

FIG. 10. Histograms of time-integrated buoyancy budget terms for parcels in the control simulations. Plotted quantities include (a) buoyancy
interpolated to the final parcel location, (b)–(f) time-integrated buoyancy budget terms, valid at the final parcel location, (g) initial parcel height,
and (h) the residual between the sum of all the time-integrated buoyancy budget terms and the interpolated buoyancy. The number of parcels
in each simulation is given in the legend. Bin counts are divided by the total number of parcels for easier comparison.
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observations made in section 3: 1) the sensitivity to the micro-
physics increases with higher LCLs and 2) the LCL 5 2000 m
ensemble has a stronger median cold pool strength compared
to the LCL 5 500 m ensemble despite both having similar
low-level Qevar profiles (Fig. 5c). Plots of the mean final B
for all parcels in each simulation show a larger spread in the
LCL 5 2000 m ensemble compared to the LCL 5 500 m
ensemble (Fig. 12a), which agrees with the increase in ensem-
ble spread of cold pool strength with higher LCLs shown in
Fig. 4b. Examining the B budget terms shows that the spread
in the means from each simulation is actually larger for the
LCL 5 500 m ensemble compared to the LCL 5 2000 m en-
semble (Figs. 12b–f). So how is it that the final B values have a
larger spread in the LCL 5 2000 m ensemble? The answer lies
in the combination of the B budget terms, particularly the u

and u0 terms. When considering the sum of the u and u0 terms,

the spread is smaller in the LCL 5 500 m ensemble (Fig. 12g),
which agrees with the plot of the final B values in Fig. 12a.
Thus, for these supercell simulations, both the u and u0 terms
must be considered in order to explain why the ensemble
spread (and, therefore, the sensitivity to the microphysics) in-
creases with higher LCLs.

This result that the sum of the u and u0 terms need to be
considered together to explain the increase in sensitivity to
the microphysics with higher LCLs begs a closer examination
of the behavior of these two terms. We will start with the
u0 term. By assuming that u ’ u0, we can rewrite the u0 term
in a simplified form:

2g
� tf

ti

u

u20

du0
dt

dt ’2g
� t0

ti

1
u0

du0 5 g ln
u0,i
u0,f

, (6)

FIG. 11. As in Fig. 10, but for the microphysical cooling terms in the potential temperature budget.
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where u0,i and u0,f are u0 at the initial and final parcel posi-
tions, respectively. Our u0 profiles feature a nearly constant u0
profile below the LCL with a more pronounced increase in u0
with height above the LCL, which means that the LCL5 500 m
base state will have a more rapid increase in u0 with height be-
tween 500 and 2000 m AGL compared to the LCL 5 2000 m
base state. Thus, for any altitude above 500 m, u0,i will be larger
for a parcel from an LCL 5 500 m simulation compared to
an LCL 5 2000 m simulation, resulting in a larger u0 term
(Fig. 13a). Therefore, although the u0 term increases in magni-
tude for parcels that originate farther aloft, this increase is
more rapid for the low-LCL simulations.

This same idea can be conceptualized by moving a parcel
dry adiabatically from some height greater than 500 m down
to the surface. As shown in Fig. 14, a parcel that descends
from 1 km AGL will have a larger, positive Du at the surface
when using the LCL 5 500 m base state compared to the
LCL5 2000 m base state. This large, positive Du is the contri-
bution from the u0 term. This means that cold pool parcels in
the low-LCL environments will have a larger, positive contri-
bution from the u0 term. Thus, more microphysical cooling is

required for the parcels in the low-LCL simulations to have
similar negative u′ values in the cold pool as the parcels in the
high-LCL simulations. This explains how the LCL 5 2000 m
simulations can have stronger cold pools than the LCL5 500 m
simulations, despite both having similar low-levelQevar profiles.

We now turn to the u term. Figure 13b shows that the par-
cels with the most cooling originate from farther aloft. From
this observation, we can conclude that the simulations with
the largest, negative contributions from the u term likely have
more parcels contributing from farther aloft. Because these
parcels originate farther aloft, they will also have larger, posi-
tive contributions from the u0 term. This gives us all the pieces
we need to explain why high-LCL supercell simulations are
more sensitive to the microphysics: Low-LCL simulations
with large amounts of evaporational cooling contain more
parcels that originate from farther aloft, which also have a
large, positive contribution from the u0 term. Thus, these
large, negative contributions from the u term in the subset of
the low-LCL simulations with the most evaporational cooling
are countered by the large, positive contributions from the u0
term. This has a narrowing effect on the cold pool strength

FIG. 12. Parcel buoyancy budget means from each of the LCL 5 500 m and LCL 5 2000 m ensemble members. Each dot represents
the mean value from all parcels within that simulation. Plotted quantities include (a) buoyancy interpolated to the final parcel location,
(b)–(f) time-integrated buoyancy budget terms, valid at the final parcel location, (g) sum of the time-integrated u and u0 terms, valid at the
final parcel location, and (h) the initial parcel height.
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distribution. In the high-LCL ensemble, the countering ef-
fect of the u0 term is not as strong owing to the less rapid
increase in u0 with height. Thus, the u0 term acts as a coun-
terbalance to the large amounts of evaporational cooling in
the coldest LCL 5 500 m ensemble members, resulting in

reduced ensemble spread and, therefore, reduced sensitivity
to the microphysics.

c. Comparison to M22

Given that the thermodynamic base states used in the cur-
rent study and M22 are nearly identical, an open question is
whether the physical mechanism described in the previous
subsection also applies to the ordinary convection simulations
of M22. To help answer this question, four ordinary convection
simulations are performed using the same CM1 configuration
outlined in section 2, except that the base-state environment
does not contain any vertical wind shear. These simulations use
the P3 configurations that produce the coldest (Db 5 100 mm,
ai 5 1.5, and mr 5 6) and warmest (Db 5 500 mm, ai 5 0.5, and
mr 5 0) cold pools with the LCL 5 500 and 2000 m base states.
Examining cold pool parcel B budgets for parcels released start-
ing at 1800 s into the simulations suggests that the physical
mechanism as to why the sensitivity of the cold pool to the mi-
crophysics increases with higher LCLs identified in the present
study also appears in the simulations of ordinary convection
(not shown). More specifically, parcels in the LCL5 500 m sim-
ulations tended to have larger, positive contributions from the
u0 term in the B budget, and this counterbalanced the strong
diabatic cooling in the LCL 5 500 m simulation with the stron-
gest cold pool, resulting in a smaller difference in cold pool
strengths between the two LCL 5 500 m simulations compared
to the two LCL 5 2000 m simulations. Thus, this mechanism
does not appear to be restricted to the supercellular convective
mode, at least when using the P3 scheme. We speculate that the
physical mechanism identified here related to the u0 term and

FIG. 13. Scatterplots of the time-integrated (a) u0 and (b) u terms in the buoyancy budget as a function of parcel ori-
gin height for all parcels in the LCL 5 500 m and LCL 5 2000 m ensembles. Red solid and dashed lines in (a) show
the approximation of the time-integrated u0 term from Eq. (6), while the red solid and dashed lines in (b) are least
squares linear regression lines.

Large Δ� Small Δ�

FIG. 14. Schematic illustrating how steeper potential temperature
profiles are associated with larger, positive near-surface potential
temperature perturbations Du when parcels descend dry adiabati-
cally. Potential temperature profiles come from the LCL 5 500 m
(blue) and LCL5 2000 m (red) base states.
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the mechanism identified in M22 (that a drier PBL results in a
greater evaporation potential that exaggerates microphysical un-
certainties) both play a role in explaining why the sensitivity of
cold pools to the microphysics increases with higher LCLs in the
simulations of M22.

5. Conclusions

Previous research by M22 showed that the sensitivity of
cold pools in ordinary convection to the microphysics scheme
increases with the LCL. The current study explored whether
those results were also applicable to supercells. While answer-
ing this question, we also explored the relation between the
LCL and cold pool strength. To do this, four ensembles, each
with a different LCL between 500 and 2000 m, were run using
CM1. Each of the 13 ensemble members used a different vari-
ation of the P3 microphysics scheme, which allowed us to use
ensemble spread as a proxy for the sensitivity to the micro-
physics. These P3 variations were guided by a sensitivity study
that demonstrated that the raindrop breakup threshold, rain
PSD shape parameter, and an ice fall speed multiplier were
the most sensitive parameters out of a list of 12 parameters. It
is recommended that future P3 development could focus on
these aspects of P3 given the large impact they can have on
cold pool strength.4 The ensembles were analyzed using an
Eulerian perspective, which relied on vertical profiles of mi-
crophysical processes, and a Lagrangian perspective, which
focused on computing buoyancy budgets along parcel trajec-
tories that terminated in the cold pool.

a. Key findings

Our analysis was guided by the three research questions
from section 1. We offer the following answers to those
questions:

1) Negative buoyancy in the cold pool was driven primarily
by rain evaporational cooling, with hydrometeor loading
and the u0 profile playing secondary roles. When u0 in-
creased rapidly with height, the negative buoyancy in par-
cels that descend from aloft is largely eroded (owing to
the colder near-surface u0 compared to u0 aloft, which de-
creases parcel |u′|), which reduces cold pool strength.

2) Cold pool strength generally increased with higher LCLs
owing to a slight increase in rain evaporational cooling
and a weaker increase in u0 with height. Rain evaporation
did not vary strongly between the four ensembles owing
to a decrease in rain mass and an increase in mean rain-
drop sizes with higher LCLs, which countered the ten-
dency for greater evaporation with higher LCLs owing to
lower humidities. The impact of the u0 profile on cold
pool strength is particularly pronounced when considering
the LCL 5 500 m and LCL 5 2000 m ensembles. Both

had similar rain evaporation amounts, but the LCL 5 500
m ensemble had a warmer cold pool owing to the steeper
u0 vertical profile associated with that base state.

3) Similar to M22, the sensitivity of cold pools to the micro-
physics increased with LCL, though the physical mecha-
nism differed from what was originally identified in M22.
The steeper u0 profiles in the low-LCL supercells largely
countered the large rain evaporational cooling in the cold-
est parcels that originated from aloft, reducing the cold
pool strength in the simulations with the most rain evapo-
rational cooling. This ultimately reduced the ensemble
spread of cold pool strengths compared to the high-LCL
ensembles, which did not experience as strong of a coun-
tering effect. This mechanism also appears to occur in or-
dinary convection, which suggests that the mechanism is
not unique to supercells and that a combination of the
mechanism identified here and the one identified in M22
can be responsible for the increase in cold pool sensitivity
to the microphysics with higher LCLs.

Based on these results, it is clear that the claim that higher
LCLs result in stronger cold pools owing to more rain evapo-
rational cooling is nuanced. The LCL is related to the humid-
ity in the PBL, which is one factor that controls evaporation
(the “environmental control”), but the characteristics of the
rain PSDs also matter (the “microphysical control”). When
the microphysical control does not vary much with LCL, rain
evaporation should increase with higher LCLs (e.g., M22).
However, when the microphysical control does vary consider-
ably with LCL, perhaps owing to more rainfall in low-LCL
storms, then rain evaporation may not change much with
LCL and may even decrease with higher LCLs (e.g., Lerach
and Cotton 2012). This suggests that other environmental pa-
rameters that are related to precipitation production, such as
precipitable water, may be useful in determining cold pool
strength. Furthermore, rain evaporational cooling is not the
only contributor to cold pool strength. In particular, the u0
vertical profile also plays a role. When u0 increases rapidly
with height, the negative buoyancy in parcels that experience
cooling farther aloft is largely eroded as the parcels descend.
If u0 generally increases more rapidly with height in low-LCL
environments, this could be another reason why low-LCL
storms tend to have weaker cold pools.

b. Limitations and future work

Several updates to the P3 scheme have been made that
were not available in CM1 when the simulations for this study
were performed, and these updates will likely have some
impact on our results. In particular, these updates include
triple-moment rain (Paukert et al. 2019), triple-moment
ice (Milbrandt et al. 2021; Cholette et al. 2023), and the option
to predict the liquid fraction on ice particles (Cholette et al.
2019, 2023). All of these changes can impact the cold pool.
Using triple-moment rain allows the shape parameter of the
rain PSD to vary, which influences rain evaporation (Freeman
et al. 2019) and, therefore, cold pool strength. Compared to a
scheme using double-moment rain with a shape parameter of
zero, using triple-moment rain would likely increase cold pool

4 Some recent P3 developments do address these issues, such as
the triple-moment rain parameterization (Paukert et al. 2019),
which allows mr to be predicted, and the triple-moment ice param-
eterization (Milbrandt et al. 2021), which improves the representa-
tion of ice fall speeds. See section 5b.
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strength (Dawson et al. 2010; Freeman et al. 2019). Using triple-
moment ice tends to increase the amount of ice at low levels
(Milbrandt et al. 2021; Cholette et al. 2023), which may in-
crease the importance of melting and sublimation on cold
pool strength. Using the predicted liquid fraction tends to in-
crease cold pool strength (Cholette et al. 2023), which may
further increase the importance of ice processes on cold pool
strength. Taken altogether, using a newer version of P3 with
these more physical updates may reduce the relative impact
of rain evaporation on cold pool strength, which was the
main focus of our study. How these updates to P3 impact our
results is left to future investigators.

As alluded to above, perhaps the largest caveat in this study
is that only a single base microphysics scheme was used. The
fact that both this study and M22 found that the sensitivity of
cold pools to the microphysics increases with higher LCLs
while using different microphysics schemes gives us confi-
dence that this result is likely insensitive to the microphysics
scheme being used. However, it is possible that the physical
reasoning as to why the sensitivity increases with LCL might
differ with different microphysics schemes (as well as other
conditions, such as base-state environmental parameters other
than the LCL). As mentioned above, using a different base
microphysics scheme may result in ice processes having a
larger impact on cold pool strength, which may lead to yet an-
other physical avenue as to why sensitivity to the microphysics
increases with LCL (assuming that is still the case when this
hypothetical microphysics scheme is used). Thus, it is best
to frame this study as reporting yet another physical mecha-
nism as to why high-LCL storms are more sensitive to the
microphysics.

Future work can increase the robustness of these results by
repeating these experiments with a different base microphys-
ics scheme, using more realistic thermodynamic base states
and using backward instead of forward trajectories to get cov-
erage within other parts of the cold pool. Additionally, future
studies can examine whether supercell hazards, such as torna-
does, are also more predictable in low-LCL environments.
Preliminary research in this area suggests that tornadoes are
more predictable in our low-LCL environment and the com-
bination of a low LCL and a high LFC appears to impede
tornado production (chapter 4; Murdzek 2022), but it is un-
known exactly why this is the case. Finally, cold pool observa-
tions from field projects can be used to better understand
what environmental parameters, in addition to the LCL, play
a role in controlling cold pool strength. Such a study could
help forecasters better predict cold pool strength in real-time.
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APPENDIX

P3 Sensitivity Tests

The sensitivity of supercell cold pool strength to 12 different
parameters within P3 is examined, with the three most sensi-
tive parameters being used for the perturbed-microphysics en-
sembles in this study. All 12 of these parameters are listed in
Table A1, along with the default values used in the control
simulation and the test values. The functions f, g, h, and F
mentioned in Table A1 are as follows:

f (T, Fr) 5
0:1 3 feii, T , 253:15K

0:1 1 0:9
T 2 253:15

15

( )
3 feii, 253:15K # T , 268:15K

feii, T $ 268:15K

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A1)

where T is the temperature, Fr is the rime mass fraction,
and

feii 5

1, Fr , 0:6

1 2
Fr 2 0:6

0:3
, 0:6 # Fr , 0:9

0, Fr $ 0:9

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (A2)

(Milbrandt and Morrison 2016). The functions g(T) and
h(T, XWG) are the same as f(T, Fr), but with feii 5 1 every-
where in g and feii 5 0 everywhere in h unless wet growth
is occurring, in which case feii 5 1. Function F(li) is given
by Eq. (3) of Morrison and Milbrandt (2015). Interested
readers are referred to chapter 2.2.4 of Murdzek (2022) for
a detailed description of these parameters and a justifica-
tion for the test values.

All sensitivity tests are performed using the same CM1
setup and base-state wind profile as discussed in section 2.
The tests use the LCL 5 1000 m thermodynamic profile
without the nearly moist adiabatic layer above the LCL.
Sensitivity is measured using SBsfc,CP, with a maximum dis-
tance of either 30 or 4 km from the midlevel mesocyclone.

Mean differences in SBsfc,CP between pairs of simulations
are plotted in Fig. A1. To arrive at the three most sensitive
parameters, we selected the three that had the largest abso-
lute mean difference in SBsfc,CP using a maximum distance
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TABLE A1. Parameters used in the P3 sensitivity tests. See text for functions f, g, h, and F. CCN refers to cloud-condensation nuclei.

Parameter Symbol Default value Test value(s)

Ice–cloud collection efficiency eci 0.5 0.3, 1.0
Ice fall speed multiplier ai 1 0.5, 1.5
Ice–ice collection efficiency eii f(T, Fr) g(T), h(T, XWG)
Size of shed drops Dshd 1 mm 0.5, 3.0 mm
Number of ice categories Ncat 2 1
Number of CCN Nccn 3 3 108 kg21 1 3 108, 1.5 3 109 kg21

Evaporation coefficient gevp 1 0, 0.5
Ice PSD shape parameter mi F(li) 0, 6
Maximum allowed ice particle size Dm,i 2 mm 40 mm
Rain PSD shape parameter mr 0 3, 6
Maximum allowed raindrop size Dm,r 4 mm 0.8 mm
Raindrop breakup threshold Db 280 mm 100, 500 mm

FIG. A1. Cold pool sensitivity to P3 parameters. (a) Differences in the total cold-pool buoy-
ancy at the LML and within 30 km of the mesocyclone averaged over the second hour of the
simulations. (b) As in (a), but only using grid points within 4 km of the mesocyclone. Differences
come from the simulation with the highest value in Table A1 minus the simulation with the low-
est value. Thus, positive (negative) mean differences indicate that cold pool strength decreases
(increases) as that particular parameter increases. Definitions of the P3 parameters along the
x axis are given in Table A1. For mi, the mean difference is the mi 5 6 simulation minus the mi 5 0
simulation. For eii, the mean difference is the eii 5 g(T) simulation minus the eii 5 h(T, XWG)
simulation.
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of 30 km from the midlevel mesocyclone. As seen in Fig. A1a,
these parameters are Db, mr, and ai.

A brief discussion as to how changing Db, mr, and ai im-
pacts cold pool strength is provided here, with a more in-
depth discussion about these relationships, and how the
other P3 parameters impact cold pool strength, found in
chapter 2.2.4 of Murdzek (2022). Similar to Morrison and
Milbrandt (2011) and Morrison et al. (2012), less aggressive
raindrop breakup (i.e., larger Db) results in fewer, larger
raindrops that do not evaporate as readily as smaller rain-
drops. Less evaporation results in less cooling and a weaker
cold pool. Assuming the total rain mass and rain number are
constant, larger values of mr result in larger number-weighted
mean raindrop diameters, which increases rain evaporation
and, therefore, evaporational cooling (e.g., Freeman et al.
2019). Faster falling ice (i.e., larger ai) results in a larger flux
of ice into the melting layer, which contributes to more rain
mass. This greater rain mass results in more evaporational
cooling and colder cold pools (e.g., Morrison and Milbrandt
2011).
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