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A B S T R A C T   

It is the exceptionally rare case one can directly and with little uncertainty measure fish absolute abundance 
through many stock generations in all areas of a stock’s range. Instead, we often seek “gold standard” stock 
assessments—models that use catch, abundance indices and biological compositions to produce precise and 
unbiased indicators of stock status for management use. Unfortunately, data and resource limitations affect our 
ability to collect all the desired information and apply methods with low uncertainty in the results. To confront 
this challenge of poorly informative data and low resource situations, a host of analytical approaches have been 
developed to engage the power of fisheries science to inform management decisions despite limitations. These 
methods are numerous and often challenging to understand and navigate, despite being simplified (though not 
simple) approaches. It is important to understand where these methods come from, how they can be used, and 
how to evaluate them. Often they are presented as alchemically providing golden outputs despite heavy as-
sumptions and impure inputs. Here I aim to provide both scientific context of and guidance in organizing and 
applying so-called data and resource limited stock assessments. I offer a list of best practices by presenting 
fundamental principles of modelling and highlighting leading edge tools for organizing and conducting analyses 
under a variety of constraining conditions, offering a conceptualization of stock assessment expressing the 
interconnectedness of each method and how those can be largely unified under a common modeling framework. 
The concept of a stock assessment continuum is described, along with discrete examples in the form of a decision 
tree outlining the major modelling groups for a large variety of data availability scenarios. The basic approach to 
applied fisheries science and management is presented as interpreting uncertain model outputs (i.e, indicators) 
using reference points that can then be linked to management decisions via control rules that should express risk 
tolerance to meeting management objectives in light of uncertain outcomes. The role of simulation testing of 
management procedures is highlighted in order to evaluate robustness to uncertainty. While more and better 
data should be a focus of any management system, there is no excuse to wait for golden outputs. We have the 
tools and theory ready to help direct management of data and resource limited stocks now.   

1. Introduction 

The ability to assess the status of a fish population (i.e., a fish stock) is 
foundational to a science-based fisheries management process (Carvalho 
et al., 2021a) and one of the three pillars of a harvest strategy (the others 
being data collection and management measures; Dowling et al., 2015a; 
Dowling et al., 2023; Fig. 1A). The application of well-articulated har-
vest strategies connected to management objectives through control 
rules have been shown to improve fisheries management across a 
wide-range of fishery types as part of adaptable feedback systems 
(Fig. 1A; Dowling et al., 2016; Dowling et al., 2023; Melnychuk et al., 

2021). Assessment methods figure so prominently because they hold the 
potential to use the available data (pillar 1) and produce meaningful 
indicators of stock status (pillar 2) that inform management measures 
and subsequent implementation benchmarks (pillar 3). 

This desirable framework has several points of potential instability as 
weakness in any of these pillars can destabilize the entire management 
loop (Fig. 1B). One of the most common scenarios is the lack of data and 
resources that exert limitations on what analyses can be done to provide 
estimates of stock status. The term “data-limited” or “data-poor” stock 
assessment is widely used and relatable, though exceptionally broad in 
its definition and application (Chrysafi and Kaparinen, 2016; Cope et al., 
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2023). More accurately, we should speaking directly about the infor-
mation content in data (i.e., its quality to contain a signal) rather than 
just the amount collected, as large amounts of data may contain no 
useable signal. But more pointedly, it has led to the common tact of 
either avoiding science-based management “until there is enough data” 
or attempting vast and rapid applications of “simple” approaches (e.g., 
model-free empirical methods, simplified model-based methods) to 
expedite the assessment of stocks without consideration of the specific 
fishery interaction (i.e., selectivity) and or key biological details of each 
stock. Additionally, simple measures may have been established and 
applied at some point, but then never revisited or revised because they 
provide the minimum requirement to meet policy mandates, yet have 
become critically outdated or unnecessarily static. 

The “gold standard” for stock assessments has long been associated 
with multiple data sources integrated into a statistical model (e.g., sta-
tistical catch-at-age or length models) that combines a variety of data 
types (e.g., catches, indices of abundance, biological compositions) to 
produce one population signal, with the moniker “data-moderate” or 
even “data-limited” often reserved for production models, which is still a 
relatively data-intensive approach (Hilborn and Walters, 2013). In 
recognition of the global need for available methods under a variety of 
data constraints and resource scenarios (Cope et al., 2023), there has 
been an acceleration in development of “data-limited” methods over the 
past 15 years, tilting the balance to the side of doing something rather 
than nothing. 

The search to provide “gold standard” outputs and advice from data- 
limited methods is akin to alchemy— the practice of using impure base 
metals and, through a process of refinement and purification, turning 

them into more desirable gold. Unfortunately, the application of data- 
limited methods can also claim the alchemical promise of providing 
unbiased and/or precise (e.g., “golden”) measures of key stock assess-
ment outputs such as catch limits or relative stock status with very poor 
(i.e., highly impure) or limited information. Simulation testing of the 
methods seem to initially back up such claims, but inevitably reveal 
performance deterioration upon further scrutiny (Chong et al., 2020; 
Free et al., 2020; Ovando et al., 2022; Pons et al., 2020). 

The reality is we face enormous challenges managing natural marine 
resources under significant data and resource constraints that are un-
likely to disappear, and yet there are options and tools to support 
science-based fisheries management under these conditions. We can do 
something better than nothing– we just need to understand how best to 
determine and apply those solutions. Here I offer best practice guidance 
on how to most appropriately apply a suite of stock assessment tools 
despite data and resource limitations (Table 1). These best practices are 
rooted in principles of life history theory, modeling protocols, uncer-
tainty characterization, and risk analysis. While not a promise of pure 
gold, we can still produce practicable, valuable outputs to drive science- 
based decision-making. 

2. Identifying good practices for stock assessments in data and 
resource limited (DRL) situations 

2.1. Understanding modeling fundamental principles and context 

We begin these best practices of alchemical modeling by outlining 
fundamental modeling principles that provide essential context for un-
derstanding analytical methods and outputs. The word “model” here-
after is used for any method used to produce metrics for interpretation to 
support fisheries management, not just those that use data and have a 
formal quantitative structure. The following principles are key to the 
critical eye needed to evaluate the application of any stock assessment 
approach, and are particularly handy when confronted with the many 
flavors of DRL methods. 

2.1.1. Models are abstractions of reality 
Let us start with the noted aphorism by G.E.P. Box that “all models 

are wrong, but some are useful”. This aphorism is an amalgamation of 
several publications, the first being Box (1976) where he elevates the 
scientific method as a refiners tool for wrong models. The concept is that 
models are, by necessity and definition, simplifications of complex 
systems. This, he argues, supports the ideas of parsimony (i.e., do not 
overcomplicate your models) and “worrying selectively” (i.e., identi-
fying the “importantly wrong” aspects of any model). He distilled these 
ideas into another succinct statement: “Remember that all models are 
wrong; the practical question is how wrong do they have to be to not be 
useful.” (Box and Draper, 1987). Here he elevates the use of models 
upon the back of the scientific method (i.e., hypothesis testing), and 
emphasizes the need for additional experimentation and feedback 
analysis. In order to experiment, the user must have in mind objectives 
to optimize, which naturally leads to performance measures to indicate 
how well those objectives are being met. We will return to these con-
cepts when we discuss sensitivity analysis (Section 2.2.5) and simulation 
testing (Section 2.2.7) as further good practices. The key concept to 
recognize is that analysis of stock condition and health should be treated 
as a science (i.e., fisheries science) and that management objectives 
should be articulated and understood at the very beginning of the stock 
assessment process. This leads into the next critical principle of model 
building and hypothesis testing: the tug of war between data and as-
sumptions (Fig. 2). 

2.1.2. Model building is a trade-off between data and assumptions 
“Model specification” describes how a model is put together: which 

parameters and functional forms are used to simplify complex processes 
into abstract models (i.e., a population sub-model). Data can then be 
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Fig. 1. A) The closed loop management system with clear objectives, adaptive 
feedback and fully realized components. Data collection, data analysis and 
stock assessment, and management measures collectively make up the harvest 
strategy. The stock assessment, management measures and control rules 
combine to form the management procedure. Management objectives define the 
targets of the harvest strategy and response components. B) The broken loop 
management system highlighting areas where and reasons why the system can 
break down. 
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added to estimate those parameter values (i.e., an observation sub- 
model), and statistical frameworks can be applied to determine how well 
the data are incorporated into the model specification (i.e., statistical 
sub-models). Most of our “gold standard” stock assessments are inte-
grated analyses (Fournier and Archibald, 1982; Maunder and Punt, 
2013) that attempt to use flexible and complex model specification to 
balance the signals of multiple data types into a cohesive picture of some 
metric of the stock (e.g., the stock size or status). When we are blessed 
with extensive data sets, we are able to let the data dictate parameter 
values and model results and use model diagnostics to evaluate model fit 
to data (Maunder and Punt, 2013; Carvalho et al., 2021a). Doing this 
over time leads to formulating prior belief on the parameters based on 
old data or knowledge that are updated with new data (Punt and Hil-
born, 1997). When there is less informative or even no data, we cannot 
estimate parameters, and instead need to pre-specify (i.e., “fix”) 
parameter values based on other sources (see Section 2.2.1 for more 
information). This sets up the tug of war between data and assumptions 
(Fig. 2). In general, the weaker (i.e, poorer information content) the 
data, the stronger the assumptions need to be and vice versa. Assump-
tions thus need to be understood and tracked when using models as 
abstractions of reality. This becomes an especially good practice for DRL 
approaches that often rely more heavily on strong assumptions. The base 

assumptions of the DRL approach being used are largely defined by the 
initial specification. Model specification then becomes an important 
area of exploration, forming additional hypotheses to consider. 

Table 1 
Good practices when conducting DRL stock assessments. The term “stock assessment” is used broadly to refer to any analysis that provides an indicator used to interpret 
population status and/or define a management metric.   

1. Define your constraints in terms of data and resources. The details matter (Cope et al., 2023)!  
2. Define management objectives and have them pre-agreed upon; note trade-offs (Dowling et al., 2023)  
3. Understand inputs and assumptions to find the right-fit model(s) (Dowling et al., 2023). Beware of rapid and broad application of the same assessment method.  
4. Understand and track all assumptions and use those to build multiple model specifications (hypotheses;Box and Draper, 1987;Chamberlin, 1965)  
5. Characterizing uncertainty (Francis and Shotton, 1997) is paramount and should be in terms of bias (among model/hypothesis) and imprecision (within model)  

a. Data representativeness must be considered as it can be a major source of bias (Cope et al., 2023)  
b. Spend time understanding and tracking uncertainty in life history values being used  
c. Always know the assumed or estimated selectivity being used and ensure it makes sense before moving ahead (Cope and Punt, 2009; Sampson, 2014)  
d. Use Monte Carlo, likelihood or Bayesian methods to estimate within model uncertainty (Fournier and Archibald, 1982; Punt and Hilborn, 1997; Methot and Wetzel, 2013)  
e. Use sensitivity analysis and likelihood profiling to characterize among model uncertainty (Tagliarolo et al., 2021; Pantazi et al., 2020)  
f. Building ensemble models (i.e., combining common outputs among models) can be a complex process, but worth consideration when attempting to incorporate multiple model 

results (Jardim et al., 2021; Stewart and Hicks, 2018; Stewart and Martell, 2015)  
g. Bookending the variances across sensitivity runs is another option for estimating broad uncertainty with limited model applications  

6. Stock assessments can be interpreted in three dimensions: Scale, Status, and Productivity.  
a. Can be used to determine what assessment method will yield what indicators and reference points  
b. Can be used to explain why results change over different modeling scenarios or previous assessments (Cope and Gertseva, 2020)  

7. There are eight major assessment method groupings that can be broken into two indicator (i.e., model output) types: Status-only and Scale-based:  
a Risk assessments are best used to group priorities for assessment and management and target data collection (Patrick et al., 2009; Zhou et al., 2019)  
b Index-only (see Harford et al., 2021 for good practices). An “index” is any metric of management interest. This usually refers to a direct observations (e.g., effort) or 

analytically-derived metric (e.g., catch-per-unit-effort, species composition) that bypasses a formal population model (i.e., model-free empirical methods).  
c Length/age-based (Froese et al., 2018; Hordyk et al., 2015, 2016): often an entry point method; use compositional data over summarized statistics if possible; make sure to 

evaluate fit to the data and understand selectivity.  
d Mulitple indicators: A combination, whether sequential or simultaneous, of the indicators in (b) and (c). See Harford et al., 2022 for good practices in developing multiple 

indicators.  
e Catch estimators (Cope, 2013; Dick and MacCall, 2011; Froese et al., 2012; Ovando et al., 2022): use only to explore sustainable catch levels, not for stock status (which is an 

input). Beware the sensitivity to the assumption of stock status and productivity (Wetzel and Punt, 2011).  
f-h Integrated models: A combination of catch plus any indices of abundance or biological compositions (e.g., catch + length; production models). These can demonstrate a 

continuum of data availability and quality (e.g., catch and 1 year of length vs catch and all years having length and age compositions), and thus contain varying degrees of 
model output uncertainty.  

8. Stock assessments methods can be viewed as being on a continuum (Cope, 2013;Methot and Wetzel, 2013;Rudd et al., 2021); building familiarity with a complex modeling 
framework and using it to do a range of methods, from simple and building toward complex, may be a good investment when resources are limited. It can also avoid the need to 
learn different frameworks once more or different data types are collected, but may need ongoing support to understand how to grow into complex modelling with more data.  
a. Use nested methods (based on different data applications) when building up to a “gold standard” assessment for better understanding (Rudd et al., 2021)  

9. Use decision support tools to help identify and understand the assumptions of the most appropriate assessment method(s) for the specific situation (Dowling et al., 2016, 2023)  
10. Link assessments to management procedures (a control rule based on the model indicator relative to the reference point) that operationalize assessment results.  

a. Control rules should allow for the expression of risk tolerance (Privitera-Johnson and Punt, 2020)  
b. Management objectives and control rules need to be pre-agreed upon (Dowling et al., 2023)  

11. Simulation testing is a powerful tool to test assessment methods and management procedures (Punt et al., 2016)  
a. There is no one assessment approach or management procedure that works in all cases; testing is needed in each situation (Dowling et al., 2019).  
b. Performance metrics should be specified to express all management objectives (Punt et al., 2016)  
c. Management procedure evaluations (MPEs) take high analytical capacity to administer and interpret, so may be limited in accessibility (Carruthers et al., 2023)  
d. Reducing the data of “gold standard” models can also be used to test assessment methods and management procedures and should be considered complementary to simulation 

testing approaches (Cope et al., 2015; Rudd et al., 2021)  
12. Capacity building is needed to meet stock assessment needs (Dowling et al., 2019;Dowling et al., 2023):  

a. Avoid the "fly in, fly out" engagements– it does not build capacity, only dependence  
b. Need to maintain relationships outside of trainings workshops  
c. Building a network of practitioners that can support each other is the ultimate goal  

DATA ASSUMPTIONSvs.

“Gold standard” stock assessments

“Alchemical” DRL methods

Fig. 2. The tug of war between data and assumptions. A model has to rely less 
on pre-specified parameters and strict model specification (i.e, stronger as-
sumptions) when there is more informative data (i.e., more model realism vs 
more model abstraction). Less informative data leads to stronger assumptions 
and more alternative model specifications (i.e., hypotheses), and thus greater 
need to explore sensitivity of models to assumptions (i.e., characterizing 
uncertainty). 
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2.1.3. Each model is a testable hypothesis 
It is good practice to view each of these modeling specifications– 

alternative choices of parameter estimation and assessment type– as 
different hypotheses for consideration and testing (Millar et al., 2015). 
These specifications are testable experimental treatments, and help 
confront the issues of parsimony, identifying the importantly wrong 
aspects of a model, and model usefulness highlighted by Box. It also will 
help us avoid “falling in love” with a model (Box, 1976) or “avoid[ing] 
parental affection for a favorite” model (Chamberlin, 1965), insisting 
there is gold where there is none. Understanding the assumptions and 
simplifications that make each model an abstraction of reality supports 
defining and testing multiple hypotheses, and leads to the next essential 
concept for good practices in any stock assessment: quantifying 
uncertainty. 

2.1.4. Uncertainty must be characterized 
The concept of uncertainty can be considered in several ways. Firstly, 

uncertainty acknowledges that some things are unknown. Secondly, 
those unknowns can cause a situation to be unpredictable. Lastly, un-
predictable scenarios can lead to a heightened risk of bad outcomes. 
Francis and Shotton (1997) outlined four common sources of modelling 
uncertainty relevant to the data vs assumptions trade-off: a) “Observa-
tion (or measurement) uncertainty” describes uncertainty coming from 
the nature of the data and its collection; b) “process uncertainty” is 
natural process variability (e.g., recruitment variability or variance of 
size at age); c) “model uncertainty” is our previously identified model 
specification uncertainty (e.g., model abstraction); and d) “estimation 
uncertainty” is the previously noted uncertainty in parameter and sub-
sequent model output values (Thorson et al., 2023). This can either be 
pre-specifying a parameter at a wrong value or poorly estimating its 
value. These sources of uncertainty collectively make up the total model 
uncertainty that can be expressed in two major ways: 1) bias, or a sys-
temic misrepresentation of a true value (Magnusson and Hilborn, 2007; 
Yin and Sampson, 2004) and 2) imprecision, or how close repeated 
measures of a value are to each other (Yin and Sampson, 2004). Variance 
is one common expression of imprecision, while a central tendency 
value (e.g., mean or median) different from the true value would indi-
cate bias. While we may be able to calculate imprecision, we usually do 
not know the true values (if we did, we would not need a model), thus 
the level of bias will need exploration and extra consideration. 

Improved data collection can reduce measurement errors (i.e., data 
impurities) and improve our understanding of structural uncertainty of 
modeled natural processes and parameter estimation. But even under 
conditions of strong data collection, natural variability that may change 
over time is still present, thus uncertainty remains a modelling issue. 
With special consideration to data-limited situations, both measurement 
error and natural sources of uncertainty will largely be present, under-
scoring the essential practice of characterizing uncertainty (i.e., recog-
nizing the impurities) however and wherever it may present itself (e.g., 
any place an assumption is made). 

It is strongly recommended that as models are specified and pa-
rameters values identified, the analyst documents every place where 
uncertainty may occur (whether these prove important to model results 
(Box’s “worrying selectivity”) is explored in sensitivity analyses (see 
Section 2.2.5)). Each of these will then help structure how the overall 
uncertainty will be quantified. Consider this challenge— the job of the 
stock assessor is not to provide point estimates of desired stock metrics, 
but rather to characterize the uncertainty (e.g., the variance or proba-
bility statement) of desired stock metrics (see Section 2.2.6 to see what 
fisheries managers should do with that uncertainty). This is particularly 
important when data and model structural limitations increase the 
reliance on assumptions over data. Identifying sources and quantifying 
uncertainty allows decision makers the most complete view of stock 
understanding from which risk tolerance (i.e., for fisheries management, 
how willing are you to be wrong and not meet management objectives? 
What are the consequences of being wrong?) can be applied to 

management decisions. Section 2.2.5 offers specific good practices on 
how to identify and quantify uncertainty and evaluate robustness to 
uncertain model inputs. Next we consider the necessary qualities of 
useful data that goes beyond just quantity. 

2.1.5. Data representativeness must be considered 
Data, or lack thereof, largely drives what analyses can be done and 

the ultimate form of the stock assessment. Above we note measurement 
error as a key source of uncertainty. While this can simply be due to 
sample size issues (leading to imprecision), a more insidious factor, data 
representativeness, is an essential consideration to evaluate the infor-
mation content of data (Cope et al., 2023). “Representative data” means 
data that match the level and characteristics at which the stock is being 
considered. If data are not representative of the unit stock of interest, 
then major biases can be introduced. 

Some of the most common deficiencies causing unrepresentative 
data are:  

a. Short time series. A restricted data time series may have limited 
contrast or a hard to interpret and possibly shifting baseline from 
which to determine stock status (Alexander et al., 2011; Ommer and 
Perry, 2022; Pauly, 1995; Simard et al., 2021).  

b. Limited area coverage. It is dubious and potentially a source of major 
bias to assessment output to apply DRL methods to a larger stock area 
with data collected from a restricted range of a stock’s distribution 
(Goethel et al., 2023; Cope and Punt, 2011; Field et al., 2006). Data 
should match the scale of the population in question. 

c. Fleet or métier representation. Having a complete (or mostly com-
plete) recording of removal (i.e., landings plus dead discards) sources 
is critical to estimate total fishing mortality, and knowing total 
mortality is often a key metric of stock status. If removal sources are 
missing or not being monitored, results of assessments could be 
biased or misleading. 

d. Species identification. If species differ in life history or other signif-
icant ways, data should be resolved enough to identify species. If not, 
data of mixed life histories may not represent any given species or 
species complex and introduce biases.  

e. Sex-specific information. Similar to species identification, if there are 
notable sex-specific differences in life history, data should be recor-
ded by sex. If not, biases may be introduced when interpreting/ 
applying the data.  

f. Stock identification. Similar to species identification, there may be 
important intraspecific differences among populations within a 
species. Such considerations as genetic differentiation, life history 
differences (see more below), exploitation histories, habitat avail-
ability, and environmental conditions can all drive localized dy-
namics. Overlooking this finer resolution of population dynamics 
may miss localized stock depletion and lead to bias in the under-
standing of stock status (Cope and Punt, 2009, 2011).  

g. Management changes. Changes in management could require 
changes in sampling for proper monitoring or alternative treatment 
of the data (e.g., selectivity changes). Ignoring these changes can bias 
model specification and derived outputs. 

A good practice is to consider these and any other sources of un-
representativeness when evaluating the data. Any areas where repre-
sentativeness is a concern should be noted and considered a source of 
uncertainty for further exploration (see Section 2.2.5). It may ultimately 
be determined that the lack representativeness is so great the data are 
not currently useful (i.e, too impure with no amount of purification 
sufficient to fix it), and uncertainty exploration is not sufficient to deal 
with data deficiencies. No one should feel forced to use highly impure 
data. In these circumstances, best practices are to re-evaluate stock 
assessment options removing those highly impure data types, but also 
triggering data collection systems that can confront the deficiencies in 
current data streams (Cope et al., 2023; see Section 2.2.4.5 and the use 
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of decision support tools to select stock assessment options suitable for 
viable data streams and identify data collection methods to improve 
data representativeness) to support and grow future stock assessment 
opportunities. 

2.2. DRL modeling options and practices 

Once (circa early 1900s) it was generally accepted that fish stocks 
were indeed both variable and exhaustible (Sims and Southward, 2006), 
the attempt to measure population condition and ongoing stock status 
took on a diversity of evolving forms. Collecting lengths proved some of 
the earliest and easiest direct measures of populations, revealing 
meaningful population structure (Schwach, 2014). Data on individual 
lengths and even ages led to both characterizing population life history 
(mortality, growth, reproduction) and estimation of abundance through 
tagging and population surveys. Once data and patterns started to 
emerge, models to describe both life history and population dynamic 
processes were developed. Foremost in these were life tables, growth 
curves, catch equations to separate mortality due to fishing from natural 
causes, and biomass dynamics models (Kingsland, 1995). Ricker (1940, 
1944) and Beverton and Holt (1957) synthesized much of this knowl-
edge and developed age and size structured population models that 
included dynamic processes such as recruitment. While the various 
biomass and biologically structured models continued to develop, the 
next great advance introduced the ability to integrate multiple data 
types using a statistical framework of likelihood components (Fournier 
and Archibald, 1982; Methot and Wetzel, 2013). With advances in 
computing, the accessibility of Bayesian approaches (Punt and Hilborn, 
1997; Magnusson et al., 2013) and more complex modeling specifica-
tions emerged, particularly incorporating spatio-temporal dynamics and 
multi-species and ecosystem considerations (Cadrin et al., 2023; Fulton, 
2010; Fulton et al., 2011; Goethel et al., 2023; Hollowed et al., 2011; 
Pauly et al., 2000; Plagányi et al., 2014; Spence et al., 2021). 

Despite these major advances, most stocks affected by fishing do not 
have the data or resources to meet the requirements of advanced 
methods. Additionally, most data collection systems are fighting en-
tropy, and must continue to collect information or suffer from lapsed 
time series and degraded stock status signals. This can occur due to base 
funding, changes in funding prioritization (Freire et al., 2021), or 
management measures that reduce chances to collect data (Wetzel et al., 
2018), among other things. Additionally, there may be an abundance of 
data, but the lack of adequately trained analysts and/or the time needed 
to conduct complex or “gold standard” stock assessments for each stock 
may constrain model complexity (Cope et al., 2023). There are a 
multitude of reasons why any particular fishery may be DRL or enter a 
state of DRL. The ongoing need for options when data and resources are 
limited is therefore unlikely to go away. The following good practices 
highlight how to think about the interrelatedness of DRL stock assess-
ment options as a system of models, to understand and interpret them, 
and to link them to control rules and test their effectiveness to meet 
management objectives. Let the alchemy begin! 

2.2.1. Life history underpins the interpretation of all models 
Life history refers to the population expression of how individuals 

grow, reproduce and die (Ebert, 1999; Roff, 2001; Stearns, 1992). It 
describes the essence of the stock and contextualizes its ability to 
withstand fishing (i.e., its vulnerability to being overfished). In popu-
lation models, these are expressed in the age-structured concepts of in-
dividual growth (e.g., von Bertalanffy growth functions), length-weight 
relationships, size and/or age at maturity, fecundity at size and/or age, 
longevity, and mortality (both natural and fishing). In production 
models, they are captured in the synthetic term r, or intrinsic population 
growth (or expressed as λ, the finite rate of increase, in matrix models; 
Caswell, 2006), that combines growth, mortality and reproduction into 
one inclusive parameter describing population increase. 

Life history is present in every approach used to analyze stock status 

(if it is not, then the model is too abstract!). A basic understanding of life 
history parameters is therefore essential to any stock assessment. Life 
history also collectively defines the productivity of the stock and, in 
conjunction with fishery selectivity, subsequent biological reference 
points (i.e., sustainable fishing rates or biomass that supports sustain-
able catch levels; Clark, 2002; Cordue, 2012; Mace, 1994; Williams and 
Shertzer, 2003; Zhou et al., 2012). Uncertainty in life history parameters 
often greatly influences stock assessment results (Hordyk et al., 2019; 
Punt et al., 2021). You cannot apply the data and interpret a stock 
assessment without establishing the life history. A good practice for 
every stock assessment is to have a strong understanding of either the 
life history parameters of the stock or the assumptions and uncertainty 
in those parameters. DRL assessments often rely heavily on assumed life 
history parameters, so this is typically a major source of uncertainty. 

Life history theory reveals patterns in life history parameters across 
species, and can be a guide to defining or estimating life history values 
when direct measures are unavailable. Beverton and Holt (1959) 
prominently presented these then emerging life history relationships in 
three instructive ways. The first described life’s “endpoints” (L∞/Tmax), 
and compared the maximum age Tmax (e.g., average longevity in the 
population) to the average maximum size (L∞ in the von Bertalanffy 
growth function), finding that within taxa, stocks that grew to larger 
sizes tended to also live longer. The next pattern described the “course of 
events” (M/k), wherein the individual growth (as measured by k in the 
von Bertalanffy growth function) was related to natural mortality (M). 
This relationship described the overall pace of life, with individuals in 
general growing slower also living longer. Thirdly, they described 
“reproductive drain” ((Lmat/L∞)/Tmax), or the timing of reproduction to 
life’s endpoints. Generally within taxa, it was found that individuals 
who mature later also grow slower, reach larger sizes and live to older 
ages, and this logically results in lower population natural mortality. 

These relationships have been developed more formally throughout 
the years, and have taken on descriptors such as “r-K selection” (Adams, 
1980) to more detailed “life history assemblage rules” (Beverton, 1992; 
Charnov et al., 2013; Charnov and Berrigan, 1991), and have been used 
to develop general management frameworks (King and McFarlane, 
2003). They have also resulted in what were once considered “invariant” 
relationships (Charnov and Berrigan, 1990), but more appropriately 
deemed “dimensionless” ratios (Mangel, 2005; Nee et al., 2005). Some 
of the relationships have specifically allowed the development of more 
data-restricted stock assessment approaches (Dick and MacCall, 2011; 
Froese et al., 2018; Prince et al., 2015). 

These relationships also provide means to estimate some harder to 
measure life history parameters from those parameters that are easier to 
measure (Binohlan and Froese, 2009; Dureuil and Froese, 2021; Froese, 
2000; Froese and Binohlan, 2000). Natural mortality is one of the most 
influential life history parameters in any stock assessment model, yet 
one of the hardest to directly measure (Lee et al., 2011; Maunder et al., 
2023). Leveraging life history patterns to estimate natural mortality 
from other life history parameters is common practice, and tools are 
accessible to get these and other life history values when none are 
directly available (Cope and Hamel, 2022; Hamel and Cope, 2022; 
Thorson, 2020; Thorson et al., 2017; Thorson et al., 2023). Further best 
practices on the treatment of natural mortality in stock assessments are 
found in Maunder et al., 2023. 

It is therefore good practice to understand these general life history 
patterns, as they will become important building blocks for any assess-
ment method used. Time should be invested in understanding the basic 
life history values (natural mortality, growth and reproduction) and how 
they relate. Getting specific life history values may be difficult in data- 
limited situations, or values may be from very old sources. Pulling pa-
rameters from databases or using life history relationships may be 
considerations, but caution should always be applied (Patrick et al., 
2014; Thorson et al., 2013). One should apply reality checks that may 
rely on expert opinion or common sense to any life history values ob-
tained. For instance, any L∞ value that is greater than the observed 
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maximum size should immediately be flagged as suspicious. If L∞ is 
wrong, k will also be wrong, and any subsequent analyses using those 
values will suffer. Likewise, natural mortality values should be checked 
against reasonable longevity (i.e., maximum age) estimates if at all 
possible (Dureuil and Froese, 2021; though an already exploited stock 
may not have older individuals from which to obtain a reasonable es-
timate of longevity (Cope and Hamel, 2022)). And much more important 
than point estimates, one should apply the good practice of character-
izing uncertainty to define distributions or bounds of uncertainty for 
each life history parameter. Uncertainty exploration in life history 
values should be a regular feature of any stock assessment, and even 
more so for those methods that assume pre-specified values rather than 
estimating them from data. 

A specific good practice should be highlighted here for the input M/k 
that features in some methods (Froese et al., 2018; Hordyk et al., 2015, 
2016; Prince et al., 2015; see Section 2.2.4). It has often been assumed 
this ratio has a value of 1.5, but it instead ranges widely, commonly 
between 0.5 and 2.5 (Beverton, 1992; Prince et al., 2015; Prince et al., 
2023). This variability can cause great sensitivity to model results. Only 
use M/k = 1.5 as a point estimate or even median value with careful 
consideration, which presumes you do have some knowledge of what 
the M/k value should be. Otherwise, it is good practice to spend time 
building the M/k relationship from each individual parameter and 
exploring uncertainty (both bias and imprecision) in it. 

Process variability is linked directly to life history parameters and 
productivity, often formulated as a stock-recruit relationship. There are 
many forms of a stock-recruit relationship, with the Beverton-Holt very 
commonly encountered or presumed across many fish stocks (Punt and 
Cope, 2019). One can also assume no relationship between stock and 
recruitment, thus a small stock may still be able to produce a large 
recruitment. Having a firm understanding of what is being assumed 
regarding the reproductive compensatory capacity of a stock will dictate 
its productivity and any subsequent reference points. The Beverton-Holt 
steepness parameter is a prominent measure of stock productivity, yet 
like natural mortality, difficult to directly measure and a source of major 
uncertainty in stock assessments (Mangel et al., 2013; Miller and Brooks, 
2021; Thorson et al., 2019). A good practice regarding process vari-
ability is understanding the assumptions of the applied relationship and 
prioritizing exploration of its uncertainty. 

Stressing the importance of obtaining life history values should 

include a focus on conducting and/or maintaining future basic biolog-
ical research. If these life history values are being derived or borrowed 
from other sources, it is good practice to prioritize future resources to-
ward collecting data to support estimation of these parameters. Age and 
growth and maturity studies are cost-effective ways to build a strong 
foundation for any future stock assessment. 

2.2.2. A generalized concept of stock assessment 
In the most generalized form of a stock assessment, data and life 

history parameters combine to go into an analysis (i.e., “stock assess-
ment”) to produce an indicator (i.e., an output of choice; Fig. 3) that 
provides a population metric used to interpret population status and/or 
define a management metric. The indicator can then combine with a 
reference point and control rule to dictate management measures that 
influence either input or output controls on the fishery(ies) (see Section 
2.2.6). This general system includes the “gold standard” stock assess-
ment when all data types are included, as well as the DRL approaches 
that depend on the combination of available data and parameters. Using 
this generalized approach highlights how interconnected stock assess-
ment types are, and that they form more of a continuum of model ab-
stractions rather than discrete approaches (Cope et al., 2023). Notice 
each of the arrows in the flowing diagram have a haze of uncertainty 
around them to underscore the good practice of identifying uncertainty 
at every level and connection of the diagram. This means all sources of 
uncertainty should be accumulated along the way. 

Consider first the data inputs. The main data types in most single 
species stock assessments are removal histories, indices of abundance, 
and biological compositions, mainly length and/or age compositions. A 
variety of other data types can also be considered (e.g., weights, tagging 
data, environmental indices), but most common are the three types 
stated above. The data can also, and ideally, inform life history pa-
rameters (whether estimated external or internal to the model). As we 
remove data types, we will reveal different analytical methods to use 
instead of the “gold standard” stock assessment– these will make up the 
multitude of alchemical (i.e. assumption-laden) DRL approaches for 
consideration under different data scenarios. 

The forms, sources and values of common model parameters also 
dictate what can be done, and Section 2.2.1 offers insights into good 
practices to obtain, interpret and characterize the uncertainty in life 
history parameters. An additional key functional form added here is the 

Fig. 3. The generalized form of a stock assessment model. It features data inputs and parameters that combine to work in a stock assessment model. The model 
produces an indicator (i.e., model output) that can be interpreted in one or all of the following ways: Stock scale, relative stock status, and/or stock productivity. 
These features can also describe the expectation of any DRL method applied, and thus the nature of the resultant indicator. For management purposes, an indicator 
can then be compared to a reference point and combined into a control rule, then translated through management measures to determine input or output man-
agement controls. 
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technical interaction of the stock with the fishery. This is most 
commonly referred to as population selectivity and is an expression of 
how the fishery removes individuals permanently from the population 
(Sampson, 2014). It is usually expressed as the vulnerability of fish to 
capture (e.g., What proportion of sizes can be caught by the gear?; 
Vasilakopoulos et al., 2020; Sampson, 2014). Just as stock assessments 
are ultimately uninterpretable without life history parameters, removal 
histories and/or fishing mortality are uninterpretable without under-
standing selectivity. A key good practice in regard to selectivity is to 
always recognize how it is being included in any method applied and the 
assumed functional form. It is very common to assume knife-edged 
asymptotic (S-shaped) selectivity, but this may be an important 
simplification that could bias stock assessment results. It is also impor-
tant to distinguish retention (i.e., all individuals kept) from selectivity (i. 
e., all individuals caught). If only landed individuals are considered 
when defining selectivity, and the proportion of released individuals is 
significant and leads to high death rates, true total selectivity is hidden, 
and the subsequent interpretation of selectivity (impure from the 
assumption of total selectivity) is unrepresentative and will lead to bias. 
Therefore, it is best practice to define selectivity as the form applied to 
the proportion of the population that leads to individual death. 

2.2.3. Interpreting stock assessment models: scale, status and productivity 
Alchemists recognized the importance of three key elements (Tria 

Prima, or three primes) to their work: salt, sulfur, and mercury (Nich-
olson, 1808). These three elements represented the major dimensions of 
matter (body, mind and spirit, respectively) from which one could un-
derstand all other elements and materials. For our stock assessment 
purposes, an additional preparatory step before addressing analytical 
options is to understand three key dimensions of model output that 
allow for the interpretation of any stock assessment, as well as under-
standing what DRL methods will provide. These key three dimensions 
(the stock assessment Tria Prima) are 1) stock scale (i.e., the absolute 
abundance of a stock), 2) the relative stock status (e.g., the abundance 
relative to a reference value, such as unfished or target size), and 3) 
productivity, or the rate of new numbers or biomass into the population 
(Fig. 4; Cope and Gertseva, 2020). Understanding the scale of the stock 
allows for the specification of abundance-based management measures 
such as catch limits. Understanding the relative stock abundance helps 
determine stock status relative to management objectives. Finally, pro-
ductivity (i.e., a reflection of life history) sets the ability for a population 
to recover from being reduced in size by fishing and other mortality 
events. 

For a better understanding of these concepts, consider two stocks 
under the same fishing selectivity. When the relative stock status and 
productivity are held constant, more yield can be realized from the stock 
with a higher scale (Fig. 4a). For two stocks with the same productivity 
and start at the same scale, more yield is possible from the stock with a 
higher relative stock status given more individuals are available 
(Fig. 4b). And for two stocks with the same scale and same stock status, 
the one with more productivity will allow for higher yield because it 

produces more recruits to the population (Fig. 4c). Note that the 
maximum theoretical yield for the more productive stocks happens at 
lower relative stock sizes. This will be the basis from which reference 
points based on maximizing sustainable yield are devised (see Section 
2.2.6). 

The concepts of scale, status, and productivity can also be linked 
back to the data and parameters– the inputs into stock assessments 
(Fig. 3). The main data types that inform scale are removal histories and 
absolute indices of abundance. The main data types that inform status 
are relative indices of abundance and biological compositions. Produc-
tivity has already been shown to derive from life history parameters. 
Thus, one can already reverse engineer what indicators will be expected 
from what stock assessment methods given what inputs are used (see 
more in Section 2.2.4). In addition, we can anticipate that changes in 
any life history parameter while keeping other inputs constant can lead 
to changes in any of the dimensions of scale, status and productivity (see 
Section 2.2.5). These simple concepts of scale, status and productivity 
are collectively an exegesis of stock assessment, allowing one to both 
interpret changes in stock assessment results (either from model speci-
fication changes or from year to year applications) and anticipate what a 
DRL method can and cannot offer (given the available data) as an 
indicator. 

2.2.4. DRL options 
Stock assessments are conceptually a continuum of methods (Fig. 5). 

They comprise a set of data and parameters combined into a model that 
produce an indicator (i.e., output). As such, all of the above good 
practices are just as relevant to the “gold standard” stock assessments as 
it is to their more alchemical DRL relatives. The main difference comes 
back to the trade-off between data and assumptions (Fig. 2), with DRL 
approaches taking on stronger assumptions than assessments driven by 

Fig. 4. Illustration of the concepts of scale, status and productivity used to interpret stock assessment output and DRL assessment options. In figures (a) and (b), 
productivity is held constant. In (c), the equilibrium curves show higher catch at higher productivity. 
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manage fishing rates, while scale-based methods can be used to set catch limits. 
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more comprehensive data. The DRL approaches thus necessitate inten-
sive focus on uncertainty characterization (Section 2.2.5). There are also 
differences in the data used and the type of indicators produced by each 
method. Fig. 5 presents a single-species stock assessment decision tree 
rooted on data availability that outlines the eight main stock assessment 
categories. These cover qualitative to semi-quantitative measures (risk 
analysis) and model-free (index-based) approaches all the way up to 
fully integrated “gold standard” stock assessment models (here noted as 
integrated catch-at-age models or ICA). This section outlines the traits of 
these broad groups rather than listing the numerous ways in which they 
can be and have been conducted (e.g., all the variations on the theme of 
length-based models). Notably, these methods largely recapitulate the 
development of analytical assessment methods as outlined in Section 2.2 
(as DRL approaches were the first to be developed and applied), but now 
take new forms based on a history of fisheries science theory, creativity 
and advanced computing (the alchemist’s furnace of fisheries science;  
Fig. 6). 

2.2.4.1. Status indicators. The first step in the decision tree is to deter-
mine whether catch or absolute abundance indices are available (Fig. 5). 
If not (a common condition; Blasco et al., 2020), what remains are 
methods that will provide a measure of status (i.e., relative stock size, 
fishing rate, or general stock health), but not scale (i.e., absolute stock 
size or absolute catch). Each of these methods require expressions of 
productivity via life history parameters and some understanding of 
selectivity. 

Risk assessment: Some of the simplest methods are risk assessments 
(Fletcher, 2015), and they require none of the big three data types 
(Fig. 5). That does not mean they require or contain no information. 
Inputs can simply be expert opinion used to make judgment on stock 
health to semi-quantitative methods that incorporate measures of stock 
productivity (i.e., life history) and susceptibility (i.e., interactions with 
fisheries) into indicators of overfishing (Beauchard et al., 2021; Hobday 
et al., 2011; Patrick et al., 2009; Stobutzki et al., 2001; Zhou et al., 2019, 
2016; Zhou and Griffiths, 2008). As an example, the 
Productivity-Susceptibility Analysis (Cope et al., 2011; Patrick et al., 
2010) uses a binned-scoring method to produce a value of stock pro-
ductivity (based on life history parameters) and susceptibility (based on 
gear selectivity and current management actions) to interpret stock 
vulnerability to overfishing. Under certain assumptions it can also be 

used to indicate stock status (Cope et al., 2015). Scoring bins can also be 
modified to create more resolution in the scoring of vulnerability (Field 
et al. 2010), but it is recommended to also do the standard version for 
comparison across studies. Uncertainty should still be considered and 
explored in the attribute scoring or data quality of the attributes (Patrick 
et al., 2010). If data on gear efficiency is available (a more 
data-informed risk assessment), rough estimates of fishing mortality can 
be compared to a reference point to measure overfishing (Zhou et al., 
2019). 

These approaches are most useful when applied across many species 
to help prioritize where focused management attention, data collection, 
and analytical resources may be best allocated. Good practices for these 
methods are to use them as a strategic planning tool to highlight the 
most vulnerable species of a group, trigger management attention for 
them, then move toward data collection for more data-driven methods. 

Index-based methods: : Index-based (or indicator) methods use an 
index or measure of something, not including a removal times series or 
biological data that are considered in other methods (Fig. 5). The term 
“index” can be broadly applied to mean any metric that indicates stock 
status. This usually refers to a direct observation or analytically-derived 
metric that bypasses a formal model (model-free empirical methods; 
Dowling et al., 2015a). The most data-rich version of this would be a 
complete census of the stock (in which case you do not need a model 
estimate of the biomass), but the DRL examples emphasized here are 
instead relative signals of abundance or fishing intensity such as 
catch-per-unit effort, species composition, changes in fishing effort or a 
variety of other direct measures that reflect a quantity of interest. Har-
ford et al. (2022) review good practices for using indicator approaches, 
which includes choosing an interpretable indicator, defining the refer-
ence point that helps interpret the indicator, and quantifying its asso-
ciated uncertainty. Indices require multiple years of sampling in order to 
conduct trend-based analyses (Legault et al., 2022), and short time series 
and/or potential shifting baselines make establishing a reference level 
for the indicator (e.g., a target level you want to achieve, minimum 
value you do not want to go below or maximum value you do not want to 
exceed) critical. But if an interpretable indicator and reference level can 
be devised, it may provide a way to bypass formal modeling (i.e., skip 
the “stock assessment model” box in Fig. 3 and go straight from data to 
the indicator) and focus more attention on indicator measurement and 
interpretation. 

One model-based index-only approach is AMSY (Froese et al., 2020), 
which uses a Schaefer surplus-production model and its associated as-
sumptions with life history included in the form of r and stock status in 
some year as inputs (we will see the use of what is typically model output 
(e.g., stock status) as method input again in the catch estimator ap-
proaches, Section 2.2.4.2). The approach has several filters used to reject 
certain model results and retain others. Ultimately it is doing what other 
index methods are doing– interpreting stock status based on the pro-
vided index– but with more structural assumptions based on a specific 
model type (i.e., the Schaefer model), and using stock status in some 
year as a way to establish a reference level. To emphasize again, good 
practices for index-based methods are to identify an interpretable index 
with a reference level, while noting all assumptions that will drive un-
certainty analysis. 

Length/age-based methods: While biological data can be included in 
the index-based approach above, they also present a special group of 
methods that have been given significant attention and development 
over time, and so are presented as a separate group here. “Length-based” 
or “length-only” methods generally require a sample of lengths from a 
fished population and life history information (Fig. 5), as lengths are 
often easier to obtain than ages in resource limited situations. The 
lengths can be summarized into a metric (e.g., mean length, length at 
optimal yield, mean length of largest 5%; Ault et al., 2008, 2019; Froese, 
2004; Gedamke and Hoenig, 2006; Kell et al., 2022; Miethe et al., 2019) 
or used as frequencies by length bin (i.e., compositions). The length 
compositions can then be evaluated by individual time step (Froese 

Fig. 6. Alchemist with furnace. Fresco, Padua c. 1380. Looks strikingly similar 
to a latter-day fisheries scientist at their computer. 
Source: https://www.alchemywebsite.com/painting_laboratory_fresco.html. 

J.M. Cope                                                                                                                                                                                                                                         



Fisheries Research 270 (2024) 106859

9

et al., 2018; Hordyk et al., 2016; O’Farrell and Botsford, 2005) or as a 
time series in a population dynamic models (Rudd and Thorson, 2017; 
Thorson and Cope, 2015). Along with life history parameters (and 
especially asymptotic length), selectivity is key to interpreting any 
length-based metric (Cope and Punt, 2009). The resultant metric is some 
measure of relative stock status (e.g., relative fishing intensity, spawning 
potential or abundance), then interpreted using a reference level (e.g., 
SPR40%, FMSY). Length-based approaches are attractive DRL methods 
because lengths are often one of the easiest data to collect when there is 
no current data available, and even one year can be used to estimate 
stock status under strong assumptions. 

Admittedly, lengths are used in these situations as proxies for ages 
that are less easy to obtain, but ages could also be used to interpret stock 
status as outlined above (e.g., per-recruit reference points (Chen, 1997); 
catch curve analyses (Nelson, 2019; Smith et al., 2012) or age-only stock 
status calculations (Thorson and Cope, 2015)), and are typically 
preferred over lengths, as they offer more resolution in estimating key 
life history parameters (e.g., natural mortality and growth) and 
recruitment. 

Because of the nature of age and length relationships, lengths lose 
fidelity to age as they approach L∞. Thus length-based methods are 
highly sensitive to the life history parameter being used (in particular, to 
L∞) and bin sizes of the composition, so careful exploration of those 
sources of uncertainty is an essential good practice (Hordyk et al., 2016; 
Huynh et al., 2018). Recall that the life history parameters not only 
affect the model being used, but also define the reference levels to 
interpret the length-based indicator. A good practice to explore uncer-
tainty in life history parameters is to use resampling to capture vari-
ability in life history values and quantify the uncertainty in stock status 
coming from lengths or ages. Length/age-based approaches are also 
subject to major assumptions about selectivity and recruitment that 
need serious consideration (Hommik et al., 2020; Hordyk et al., 2015, 
2016; Rudd and Thorson, 2017). One important trait of 
length/age-based approaches using biological composition data is that 
data are fit, thus an essential practice is to evaluate the fit to the data (e. 
g., residual patterns, likelihood values). 

Multi-indicator approaches: At this point, we have established the 
use of different types of individual indicators, with a special emphasis on 
either index-based or length/age-based indicators. The multi-indicator 
approach (Fig. 5) allows for the combining of any indicators into a hi-
erarchical or sequential system of interpreting each indicator. The same 
good principles for devising individual indicators remain, along with the 
added need to consider how to assemble them (see Harford et al., 2021). 
“Traffic lights” (Caddy, 2004, 2002), sequential trigger systems (Dow-
ling et al., 2008), or hierarchical decision trees (Dowling et al., 2015b; 
Harford et al., 2019; Prince et al., 2011; Wilson et al., 2010) are the most 
common approaches, and differ in the interpretation approach (e.g., 
course interpretations (“red”, ”yellow”, or “green”) vs more formalized 
and resolved decision rules) and structure (simultaneous vs. hierarchical 
consideration of indicators). This is a way to use multiple data types to 
make a synthetic decision on stock status, yet does not apply formal 
statistical integration of the data types. An important consideration of 
the multiple indicator approach is how one takes different output met-
rics of status (e.g., relative stock size vs relative fishing intensity) and 
assembles them. Good principles favor the most informative indicators 
higher up in an hierarchical approach, using indicators that give com-
mon metrics of status, careful selection of reference points for each in-
dicator, and the incorporation of uncertainty into any decision rules 
(Harford et al., 2021). Another good practice is to allow this to be an 
interactive, adaptive process (Fig. 1), updatable as one learns more 
about the information content of each indicator (Harford et al., 2016). 

2.2.4.2. Scale indicators. The previous section covered approaches that 
included two (i.e., indices of abundance and biological composition) of 
the big three data types used in stock assessments, and that resulted only 

in indicators of relative stock status. The inclusion of removal data or 
absolute abundance estimates now offers the opportunity to estimate 
scale (i.e., absolute abundance), as long as both life history values and 
estimates of status are available to scale the absolute biomass to the 
reported removals (Fig. 5). It is commonly observed that uncertainty in 
estimating scale in a “gold standard” stock assessment exceeds the un-
certainty estimating stock status (Yin and Sampson, 2004). This is due to 
the fact that uncertainty in scale is determined not just by the sources of 
direct scale measurement (e.g, uncertainty in removal history and the 
selectivity applied in each fisheries; absolute abundance indices vari-
ance), but also from the uncertainty in stock productivity (i.e., the life 
history parameters that dictates relative fishing intensity status) and the 
relative stock size. Thus, scale-based indicators include all of the un-
certainty sources inherent in stock status and productivity as well as the 
measure of scale. It therefore becomes crucial in scale-based indicators 
for the analyst to understand where the information on productivity and 
stock status is being produced— in addition to removal histories and/or 
absolute abundance measures— as they comprise major sources of un-
certainty in interpreting scale (Magnusson and Hilborn, 2007). 

Catch estimators: One of the most popular DRL method groups 
developed over the last few years are catch estimators (Fig. 5). Setting 
catches as a management metric is very prominent worldwide, yet takes 
high levels of information to do so properly (Macpherson et al., 2022). In 
order to meet catch setting mandates, a variety of catch estimators were 
devised (Berkson and Thorson, 2015). These methods use different types 
of analytical forms:  

• model-less catch scalar approach (Berkson et al., 2011; Free et al., 
2017),  

• catch ratios (Froese and Kesner-Reyes, 2002; Anderson et al. 2012),  
• simplified analytical equations (MacCall, 2009),  
• one lump production models (Martell and Froese, 2013; Froese et al., 

2023),  
• two lumps delay-difference models (Dick and MacCall, 2011),  
• many lumps age-structured models (Cope, 2013), 

All but the scalar approaches essentially do the same thing– use a 
resampling approach to draw a value for the initial scale of the stock, 
productivity of the stock, and an estimate of stock status, and apply then 
them to the given catch history, filtering out what are considered un-
reasonable results (e.g., populations that go extinct), in order to define 
sustainable catch limits. It is extremely important to recognize that the 
alchemical magic in these approaches is the use of what is typically an 
output of a “gold standard” stock assessment— relative stock abundance 
(i.e., stock status)— as an input. Putting what is essentially believed to 
be gold into the reaction unsurprisingly yields gold back. The calculation 
is now based on one degree of freedom– if you know both the produc-
tivity (and therefore the reference points) and status of the stock (and 
the relationship to the reference points) and have total removals, then 
you can solve for the stock size and the sustainable catch, no matter how 
simple or complex the underlying population dynamics model becomes. 
Expectedly, these methods are highly sensitive to productivity and stock 
status inputs (Carruthers et al., 2014), and it is a common criticism of 
these method to question how one would know the stock status in order 
to use it as an input. Good practices for catch estimators includes 
explicitly stating assumptions for all inputs, and uncertainty explora-
tions that do not just apply distributions to each parameter, but vary the 
central tendency of those inputs as well as exploring uncertainty in the 
removal time series. While using less informed priors (e.g., wide uniform 
priors) is one way to explore a broader range of possible input values, it 
typically only rules out one end of the distribution via filtering results. It 
is also a good practice to put efforts into historical catch reconstructions 
in order to explore uncertainty in the scale input (Blasco et al., 2020; 
Ralston et al., 2010). These reconstructions may be highly uncertain, but 
still offer a starting point for use in catch estimators and other models 
that use removal time series. The key is to include all sources of 
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removals, as not including sources or years of significant removals can 
bias results (See Section 2.1.5 on data representativeness). 

Subsequent use of the catch estimator models have often drifted 
away from the initial intent of providing estimates of sustainable 
catches, and instead are often applied to report relative stock abundance 
almost exclusively (Costello et al., 2012; Froese et al., 2017; Rosenberg, 
2014). There remains significant questions as to the quality and infor-
mation content of catch data alone to inform stock status (Anderson 
et al., 2012; Branch et al., 2011; Carruthers et al., 2012; Froese et al., 
2012) while also using stock status as an input to return stock status as 
an output, even if the prior distribution is considered broad (Bouch 
et al., 2020; Chrysafi and Cope, 2019; Cope, 2013; Dick and MacCall, 
2011; Free et al., 2020; Kell et al., 2022; Ovando et al., 2022; Cope et al., 
2015). While some methods have attempted to use patterns in catch and 
stock status from global stock assessment databases to better define 
priors on stock status for use in catch estimator approaches (Froese et al., 
2023; Kleisner et al. 2013; Zhou et al. 2017, 2018), the relationship 
remains unsurprisingly highly variable. While other methods have also 
attempted to provide additional means by which to develop informative 
stock status priors (Chrysafi et al. 2019; Chrysafi and Cope, 2019; Cope 
et al. 2015), the fact remains that most of the catch estimator methods 
ultimately rely on stock status as an input to define the stock status as an 
output, regardless as to how the prior is developed. A good practice is 
not to develop stock status priors quickly across many species (e.g., do 
not just accept default priors), but thoughtfully on a case-by-case basis 
(Froese et al., 2023). A better practice is to use catch estimators with 
their original intention of providing sustainable catch levels conditioned 
on stock status, not as estimators of stock status. Exceptions to this could 
be when stock status is specified in some past year (e.g., 20 years before 
the current year), and letting the remaining years of removals update 
current stock status from the specified year. But even under that 
example, it should be made clear that the resultant current stock status is 
still conditioned on an assumption of stock status, and thus not an in-
dependent measure of status. The circularity here is that it takes a stock 
assessment output (i.e., stock status) to get a stock assessment output (i. 
e., stock status). To quote Bernard of Trevisan, the Italian alchemist, on 
his deathbed, “To make gold, one must start with gold” (Jaffe, 1957). Let 
us not wait that long to recognize the best practice of being very careful 
with reporting stock status from catch estimator approaches. 

Integrated stock assessments: Given life history traits define pro-
ductivity, that relative stock status may be informed from indices of 
abundance and/or length composition data, and scale is derived from 
catches and selectivity, we can now begin to build on the combinations 
of the three main data types to produce more recognizable stock as-
sessments (Fig. 5, inclusive of depletion (Babcock et al., 2015) and 
production (Winker et al., 2018), length + catch (Rudd et al., 2021) and 
integrated catch-at-age (Methot and Wetzel, 2013) models) that inform 
scale, status, and productivity from data, what we generally call inte-
grative analysis using statistical frameworks. These types of data com-
binations and modeling good practices are covered in detail elsewhere 
(Dichmont et al., 2016; Hilborn and Walters, 2013; Quinn and Deriso, 
1999; Rudd et al., 2021), including good practices throughout this 
special volume of Fisheries Research. Like the catch estimator methods, 
integrated models can also have different population dynamic resolu-
tions, from the many forms of the 1-lump production models (Winker 
et al., 2018; Winker et al., 2020), to the two lump delay-difference 
models (Quinn and Deriso, 1999), less lumpier stage structured 
models (Caswell, 2006), to the many lumps of age or size-structured 
models (Punt, 2003; Methot and Wetzel, 2013; White et al., 2016). 
What carat gold they yield will depend on the ongoing impurities in the 
data and parameter inputs (Kell et al., 2021). 

Statistically fitting to different data types and combining them into a 
single signal (Punt, 2017; Thorson et al., 2023) is a problem akin to the 
multi-indicator approach resolving how to treat multiple indicators, 
though the diagnostics are more sophisticated in statistically-integrated 
models (Carvalho et al., 2021a, 2017). The integration of different data 

combinations and underlying population models will also offer different 
ways to characterize uncertainty. The general good practice is to track 
all assumptions being made for a given model (especially selectivity; 
Winker et al., 2020), understand the sources and uncertainties that 
inform scale, status (some integrated models still use stock status priors; 
Cope et al., 2015; Wetzel and Punt, 2011; Winker et al., 2018) and 
productivity, diagnose model fits, and spend time characterizing un-
certainty (Section 2.2.5). 

2.2.4.3. Using complex frameworks to do simpler methods. Fig. 5 outlines 
a network of interconnected stock assessment methods by data type. I 
have noted that stock assessment methods are part of a continuum that 
can be interpreted as a trade-off between data and assumptions (Section 
2.1.2). From that point one can conceive of a complex and flexible stock 
assessment framework that consists of all pre-specified parameters and 
no data. One can then start to introduce data of different types and 
quality while starting to better inform or even estimate parameters and 
provide a loosening of structural assumptions (e.g., estimating selec-
tivity or recruitment). This evolves towards a model (still an abstraction 
of reality to some degree) driven mostly by a long time series of repre-
sentative data with good sampling, contrast, and signal providing direct 
estimation of parameters and derived model outputs (i.e., indicators) 
and their uncertainty. On this continuum, we find most of the eight 
model groups in Fig. 5. 

While each one of the eight nodes has numerous methods associated 
with them, seven of the eight nodes are theoretically possible within the 
nested framework of integrated models. As an example, the surplus 
production modeling framework has been used for index-only (Froese 
et al., 2020), length-based (Froese et al., 2018), catch estimator (Froese 
et al., 2017), and surplus production approaches (Winker et al., 2018). 
The Stock Synthesis framework, a statistically-integrated catch-at-age 
model (Methot and Wetzel, 2013), produces, in addition to the fully 
integrated age-structured model, catch and length models (Rudd et al., 
2021), age-structured production models (Carvalho et al., 2017; 
Maunder and Piner, 2014; Minte-Vera et al., 2021), catch estimators 
(Cope, 2013; Punt and Cope, 2019), and length-only models (with the 
indicator and multi-indicator approach in development). This makes the 
inclusion of new data and data types convenient, and avoids the need to 
have to move to a new modeling platform once new data types are ob-
tained, thus reducing the need to learn different inputting formats and 
modeling operations, and instead focus on the modeling itself. Using a 
complex modeling structure such as an age-structured model is also 
beneficial in it forces the user to confront their assumptions rather than 
having them hidden or unappreciated in simpler modeling formulations. 
While entry into a more complex system may seem daunting, take more 
time to set up than other simpler modelling approaches, and need 
ongoing support as more data leads to more complex modelling, the 
investment and advantage of becoming familiar with an inclusive 
modelling framework provides a continuous system to work in future 
data sources; and the additional time it takes to set up a complex 
modelling framework illuminates the explicit interaction of parameters 
and uncertainties with more transparent assumptions. 

The Stock Assessment Continuum tool (formerly the SS-DL tool; 
https://github.com/shcaba/SS-DL-tool) is an application that allows 
available data to determine the proper configuration for Stock Synthesis 
into the most suitable model type. It then leverages the advanced di-
agnostics, visualization tools, and modeling techniques (e.g., likelihood 
profiling, retrospective analysis) in Stock Synthesis for model investi-
gation and interpretation (Carvalho et al., 2021b; Taylor et al., 2021), 
while also making a convenient way to move from simple to more 
complex models with the addition of more and different data. This 
approach is technically achievable in other age-structured modeling 
frameworks, and is a recommended feature in the development of future 
flexible modeling frameworks (Punt et al., 2020). A good practice would 
be to consider using a more complex framework that can be reduced to 
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match the available data (i.e., finding the right-sized model for the data), 
while checking those results against non-continuum methods (i.e., 
methods built specifically for one type of application) to gain further 
understanding of the assumptions and results. This avoids forcing data 
to conform to a specific model specification, and instead leverages the 
content of all available information. 

The ability to move back and forth between different data usages is 
convenient beyond just making more complex models. It also provides a 
way to diagnose more complex models for misspecification (Carvalho 
et al., 2017; Kell et al., 2021; Maunder and Piner, 2014). It is therefore a 
good practice to use DRL formulations to break down complex models in 
order to understand data influence and possible model misspecification. 

2.2.4.4. Using decision support systems to select stock assessment options. 
DLR methods are numerous and the options in any given situation may 
be confusing, as one needs to follow the inputs needed, the resources 
available (Cope et al., 2023), and track the assumptions inherent in each 
method. While using a common modeling framework can reduce this 
complexity (see Section 2.2.4.4), there is room for guidance for most 
practitioners on what methods could be considered. A good practice is to 
use decision support tools to determine a method or methods appro-
priate for a given situation. This can help avoid using assessment 
methods not appropriate for the available data or using only what is 
familiar or convenient to the practitioner— as there are no generic so-
lutions to DRL stock assessment (or management; Dowling et al., 
2019)— and instead reveal options that may be better suited for specific 
situations. 

One example of a decision support tool that helps develop harvest 
strategies is FishPath (https://www.fishpath.org; Dowling et al., 2016; 
Dowling et al., 2023). In addition to data collection and management 
modules, FishPath contains a stock assessment module meant to match 
stock assessment options against prevailing conditions. The match-
making is done via a questionnaire that asks questions regarding life 
history, data availability and quality, operational characteristics of the 
fishery(ies), and governance. Matches are expressed based on data 
criteria of each method, the quality of the criteria matches, and the as-
sumptions for each assessment option based on inherent method struc-
ture (static caveats) and questionnaire answers (question-based 
caveats). This approach also highlights the important distinction be-
tween being technically able to do a method and deciding to do it when 
weighed against data quality, assumptions and resource constraints. The 
tool transparently lays out each option, and guides the user through the 
process of identifying a short list of what the user deems the most viable 
options. This process can also be undertaken with any number of 
stakeholders or rightsholders in order to raise transparency and 
encourage dialogue in the process. 

Given the complex nature of many DRL situations, it is good practice 
to use such decision support tools to justify and document the best way 
forward in order to find the right-fit model for the situation. These tools 
can also be used strategically to identify what is needed to improve data 
and advance analysis to more data-driven models (Cope et al., 2023; 
Dowling et al., 2023). 

2.2.5. Methods for quantifying uncertainty 
One recurring good practice across all stock assessment methods 

(regardless of data availability and content quality) is the character-
ization of uncertainty in the assessment indicator(s). There are several 
common ways this can be approached for DRL methods, but it is helpful 
to first understand that model uncertainty is composed of within and 
among model specifications. Within model specification uncertainty 
describes the resultant uncertainty from using specified functional forms 
with either pre-specified or estimated parameters, as well as the un-
certainty in the population signals from the data. Estimated parameters 
have pre-specified distributions that capture the prior belief in potential 
parameter values. In DRL methods that do not have or have limited data 

to estimate parameters, Monte Carlo resampling is commonly used to 
generate many draws of model parameter inputs and subsequent model 
results that are combined (e.g., taking the median across all model runs) 
in order to characterize uncertainty in indicators and/or management 
metrics (Cope, 2013). If models are fit to data to estimate parameters, 
maximum likelihood-based (MacCall, 2013; Methot and Wetzel, 2013) 
or Bayesian (Punt and Hilborn, 1997) methods can be used to estimate 
within model indicator uncertainty. These are estimates of indicator 
imprecision specific to the current model specification. 

Within model uncertainty does not include all sources of bias from a 
single model’s structural and parameter uncertainty. Given most DRL 
methods are heavily dependent on assumptions and uncertain param-
eter values, it is important to address bias by exploring changes in model 
specifications (i.e., alternative hypotheses). Sensitivity analysis is an 
approach for re-running models by changing any aspect of the model 
specification (e.g., different pre-specified values, input distributions, 
functional forms and/or data treatments) or model itself (e.g., using a 
different type of length-based model or underlying population dynamics 
formulation) and quantifying how much model indicators change (Cope 
and Gertseva, 2020). Sensitivity analysis can be a direct expression of 
setting up multiple model hypotheses (e.g., different life history as-
sumptions (Pantazi et al., 2020), exploring data representativeness) and 
is the most direct way to get at bias uncertainty, while also including the 
imprecision of each model specification explored. It can demonstrate 
model robustness to certain changes (i.e., alternative hypotheses do not 
result in significantly different model outputs) and indicate where the 
model is most sensitive to structural or input uncertainty. Sensitivity 
analysis is a good practice for any stock assessment, and should be a 
routine part of reporting model outcomes. 

For models that need to pre-specify some parameters, likelihood 
profiles (Tagliarolo et al., 2021) are another type of sensitivity analysis 
that looks across pre-specified values of one or more parameters to see 
how model fits (i.e., likelihood values) change. This highlights both the 
sensitivity of the model fit and indicator values to parameter changes. 
Likelihood profiling can therefore provide support for multiple re-
alizations of models that contain similar model support (i.e., statistically 
similar total likelihood values), but may result in different indicator 
values. 

If one is to move beyond the use of a single reference model with 
exploratory sensitivity modeling, ensemble modeling is one way to 
combine the outputs of multiple models (Jardim et al., 2021; Stewart 
and Hicks, 2018; Stewart and Martell, 2015). The combination of mul-
tiple model hypotheses (whether model specifications or across model 
types) into a composite model requires the assigning of weights to each 
hypothesis. While the use of model inference is common (Dormann 
et al., 2018; Millar et al., 2015), there is no single way to do this (Rudd 
et al., 2019), and DRL models often lack data to have informed model 
fits, or the change in data treatment renders different models incom-
parable. Expert opinion therefore becomes an important consideration 
on how to combine models (Millar et al., 2015). The idea of ensemble 
models is alluring, though the time and technical skill needed to cover 
the extent of model specification uncertainty is not trivial, as is the 
potential complication in communicating the results of multiple models. 
Jardim et al. (2021) give a useful overview of these and other aspects 
when considering how to make ensemble models practicable. 

When it comes to good practice for characterizing uncertainty in DRL 
models, it is essential to explore within model uncertainty estimation 
along with exploring multiple model specifications via sensitivity ana-
lyses. How to then use and communicate all of those results (e.g., 
bookended variances from alternative models around a reference model 
vs ensemble models) will require further consideration. Incorporating 
uncertainty into the reporting and interpretation of stock status to 
inform management decisions is the focus of the next section on control 
rules and risk tolerance. 
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2.2.6. Building control rules for model outputs to meet objectives 
To this point we have focused on obtaining an indicator of stock 

status from data and parameters using a “stock assessment” method 
(Fig. 3). Obtaining that indicator is a big step, but it is not the final one 
for fisheries management. One needs to now interpret the indicator and 
decide what to do with that interpretation. This is the realm of man-
agement objectives, reference points, control rules, and ultimately 
management measures (Fig. 1; Dowling et al., 2015b). 

The combination of an indicator compared to a reference point 
linked to a control rule is a management procedure (De Oliveira and 
Butterworth, 2004; Fischer et al., 2022; Geromont and Butterworth, 
2015; Punt and Donovan, 2007). The indicator is the product of the 
stock assessment method, the reference point is typically reflective of 
the life history and any other considerations (e.g., socio-economic, 
ecosystem-based) that reflect the management objectives of the fish-
ery, and the control rule operationalizes stock assessment outputs rela-
tive to the reference points, and reflects the intent to meet management 
objectives with respect to uncertainty and risk tolerance in the system 
(Fig. 3). These components combine to reflect a management action 
ultimately manifested through management measures (Fig. 3). 

A generic equation to operationalize indicators (Jardim et al., 2015) 
can be expressed as.  

MMy+x = MMy*Ω                                                                                 

where MM is a management metric (e.g., catch, effort, fishing in-
tensity, number of licenses, etc.), y is a given year, x is a number of time 
steps after the reference year (e.g., >1), and Ω is a modifier. The mod-
ifier is the control rule (CR), and is the action dependent on the indicator 
(I) relative to the reference point (RP). Thus the control rule is a function 
of the I-RP relationship: f(I,RP) = CR. These can be very simple (MMy+x 
= MMy*I/RP; Jardim et al., 2015) or more complex to include uncer-
tainty, different response surfaces or capture more features of the system 
that managers should consider (Geromont and Butterworth, 2015; A. R. 
Hordyk et al., 2015; Jardim et al., 2015). They can also be used with 
multiple indicators/reference points (Harford et al., 2021). Good prac-
tices for all practitioners doing any stock assessment method is to 1) 
identify your indicator(s), 2) understand management objects and 
identify your reference point(s), and 3) use control rules that include 
considerations of uncertainty (Dowling et al., 2015a). This can some-
times be tricky in DRL methods, but is essential to comprehend and 
explain how each component connects (or which are missing). 
Removing any of the components short circuits the interpretability and 
practicability of assessment outputs and is not good practice. 

Stock assessment analysts deliver the science to apply to control 
rules, and that science should be rooted strongly in determining un-
certainty (Section 2.1.4) to support managers in risk-based decision- 
making (Fischer et al., 2023; Privitera-Johnson and Punt, 2020). Risk 
tolerance is the expression of the willingness to meet or not meet 
management objectives, and in fisheries has generally weighted toward 
avoiding outcomes (risk aversion) that may lower population status 
below target levels (i.e., the precautionary approach; Caddy, 1999; 
Cadrin and Pastoors, 2008). Risk tolerance in control rules is often 
expressed via buffers on management metrics based on uncertainty in 
indicators that protect against violation of target and/or reference 
points (Privitera-Johnson and Punt, 2020; Ralston et al., 2011; Shertzer 
et al., 2008; Wetzel and Hamel, 2023). It is therefore expected that in-
dicators derived from DRL methods will have higher uncertainty than 
more data-informed applications, and thus have higher risk aversion and 
subsequent buffers away from target values (Privitera-Johnson and 
Punt, 2020). A good practice in developing risk tolerance in a control 
rule system is to ensure these rules are pre-agreed and understood by 
managers, stakeholders, and rightsholders (Dowling et al., 2008, 2016, 
2019, 2023; Miller et al., 2019; Smith, 1994). Without agreement on 
design and implementation, the system becomes unsteady, may change 
over time without heed to management objectives, and lose tractability 

to risk tolerance. 
One difficult attribute of many DRL situations is the stock may 

already be in a non-desirable condition given no prior assessment and 
low priority in data collection. Communicating bad news can be a 
common occurrence for DRL stock assessments, which can also create 
the perception that DRL methods are biased towards reporting low stock 
status. This is another reason why it is important to separate out ex-
pectations based on initial conditions (e.g., a long time series of fishing 
with no management attention) from the method output (indicator) 
from the reference point of the indicator from the control rule that in-
corporates the elevated risk of higher uncertainty with strong assump-
tions/lower data availability. It also emphasizes why it may be an 
expected practice to have higher risk aversion when DRL stock assess-
ments are applied for the first time. 

2.2.7. Simulation testing DRL methods via management procedures 
The theoretical framework for control rules was outlined in the 

previous section, but understanding how they perform relies on further 
exploration. One main attribute of a well-designed control rule is that it 
may rescue a highly uncertain (whether bias or imprecise) or assump-
tion laden DRL indicator (Fischer et al., 2021). In order to understand 
the performance of a control rule using a given indicator and reference 
point, simulation testing is commonly used (Peck, 2004; Winsberg, 
2008). Simulation testing is a way to experiment on complex systems by 
setting up an “operating model” (OM) or relatively complex represen-
tation of the system in order to test the performance of something on 
that system (Punt et al., 2016). In this case that something can be DRL 
methods or management procedures (Carruthers et al., 2016; Kell et al., 
2007). The experimenter can now control the specification of the 
operating model and challenge the DRL methods and management 
procedures under a variety of scenarios. It is akin to sensitivity analysis 
(Section 2.2.5) in changing OM specifications to create new scenarios, 
and both bias and imprecision can be explored (Punt, 2017). 

In order to understand control rule performance, performance met-
rics are chosen that reflect management objectives (e.g., fishing in-
tensity, relative stock size, or yield relative to reference points). The idea 
is that if one knows the real answer (from the OM) and applies a DRL 
method or management procedure, then compares the DRL outputs to 
the OM outputs for the identified performance metric, one can quantify 
performance. And if this is done many times using process variability 
and under different model specifications and even projected over a 
number of years, one can ultimately describe what conditions (if any) 
these management procedures hold up and meet management objectives 
despite the limitations of the data, inputs and method used. 

Simulation testing has become standard practice to demonstrate the 
utility of a DRL method (Anderson et al., 2017; Dick and MacCall, 2011; 
Free et al., 2020; Froese et al., 2017, 2018, Hordyk et al., 2015, 2016; 
Ovando et al., 2022; Rosenberg, 2014), and is generally considered a 
good practice tool. Management procedure (or strategy) evaluation 
(MPE or MSE) is becoming increasingly applied to explore how DRL 
methods interact with control rules as management procedures (Car-
ruthers et al., 2016, 2014; Punt et al., 2016 for general good practices on 
MSE). Accessibility to these advanced experimental methods has 
increased with tools such as the DLMtoolkit (Carruthers and Hordyk, 
2018), MERA (https://www.merafish.org/), and FLR (Kell et al., 2007) 
that allows any user open source access to this arena of research and 
apply it to their own specific situations. One may envision that instead of 
using an individual stock assessment method to get tactical advice, one 
instead can specify a suite of DRL management procedures (or have a 
readymade set of them) and via MPE see which meet management ob-
jectives the best (Anderson et al., 2017; DFO, 2021; Huynh et al., 2020; 
Carruthers et al., 2023). 

While the benefits of simulation testing are demonstrable, significant 
challenges remain in their everyday, tactical application. As there is no 
one DRL method or management procedure that fits all situations 
(Dowling et al., 2019), there remains the need to run simulations to test 
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candidate management procedures for any given situation. This takes 
high level technical capacity (which is part of the resource limitation 
issue in DRL). It is well known that performance of methods varies across 
life history types (Wetzel and Punt, 2015; Wiedenmann et al., 2013), so 
life history parameters, and the associated errors in their estimation, will 
continue to be an important consideration. This raises the issue of how 
best to specify operating models and the higher level model specification 
needed to explore a variety of OMs in addition to the bias and impre-
cision within any given OM specification. This is typically beyond the 
capacity and time constraints of even well-trained assessment analysts. 
Even assuming a high level of capacity to perform MPEs, presenting and 
digesting the voluminous results across many performance metrics and 
scenarios is a real challenge for those receiving results. It can be difficult 
to communicate results of a single-species stock assessment with mul-
tiple explorations of uncertainty; summarizing MPEs significantly in-
creases that challenge. 

A simpler, alternative way to look at DRL method and management 
procedure performance leverages the nested modeling framework, uses 
"gold standard" stock assessment output as the operating model "truth", 
then peels away layers of data to compare indicators and management 
metrics (Cope et al., 2015; Sagarese et al., 2015; Sagarese et al., 2019). 
This is the reverse tactic of building up to more complex models, and 
allows scenarios of data quality and model specification issues that may 
be hard to replicate in simulated data. It essentially asks the question 
“how wrong would we have been if we had not used or had all of the 
data?” and thus allows a reverse engineering of measuring DRL method 
and/or management procedure performance. Rudd et al. (2021) used 
both simulation testing and the data reduction approach to test a 
data-moderate catch and length method in Stock Synthesis. Both ap-
proaches contributed important and unique understanding of the DRL 
method being tested. It is good practice to consider using the data 
reduction approach when exploring the performance of DRL methods 
and management procedures, as well as using this method to build up to 
“gold standard” assessments to observe the influence of each data set 
and model assumption (Carvalho et al., 2021b; Maunder and Piner, 
2017; Minte-Vera et al., 2021). 

3. Conclusions and general recommendations 

3.1. Squaring the circle 

A longstanding challenge in the discipline of geometry has been to 
create a square the same area as a perfect circle using only a compass 
and straightedge. This challenge is called “squaring the circle”, and it 
was ultimately deemed an impossible task. It also became a key part of 
the symbol for alchemy (another impossible task), but also represents 
the ability to see in four directions at once (up, down, in and out) — 
vision complete and unrestrained (Fig. 7). 

The alchemical search for DRL methods that can reveal precise and 
unbiased stock status and other sustainability measures with little to no 
data has met a similar fate as squaring the circle. But in trying all of these 
different “compasses and straightedges”, we have learned many things 
and seen in many directions (Table 1). The capacity to apply abstrac-
tions usefully by identifying and respecting the amount of uncertainty 
inherent in the task is a major step forward toward providing science- 
based management decisions under a variety of constraints. Moving 
away from point estimation and into probabilistic space allows man-
agement objectives to be evaluated against risk tolerance. Recognizing 
that stronger assumptions and less data increases uncertainty helps 
frame our task ahead. We value representative data and should prioritize 
that quality. We understand that life history is a fundamental aspect of a 
stock that needs to be understood before we can assess the stock. This 
elemental truth argues for a renewed value placed on the funding and 
dissemination of basic biological studies, not just borrowing values 
(Patrick et al., 2014; Punt et al., 2011; Thorson et al., 2013). 

We can observe that assessing stock status can be placed within a 
generalized framework that allows for model building forward and 
backward, and that there is a lot to learn from doing both. We can also 
use three key concepts (scale, status and productivity) to help create and 
see the relatedness of DRL methods, and interpret stock assessments in 
general. Using these three concepts coupled with a continuum approach 
to understanding method connectivity often unearths assumptions and 
issues with the data and inputs that can be overlooked when going 
straight for the “gold standard” or stopping short and viewing any 
method as only a discrete entity. 

Rising computing power has opened up powerful tools to investigate 
the complex situations under which DRL methods are needed (Fig. 6). 
Simulation experimentation can reveal situations where certain 
methods may or may not perform well, discover management proced-
ures that can save poorly performing DRL methods or maximize the 
performance of good ones, and ways to explore and eventually combine 
multiple hypotheses into one composite model with more inclusive 
measures of bias and imprecision. It can also demonstrate the power of 
data collection while emphasizing that something can still be done 
under data and resource limitations. 

Despite the challenges of setting up and testing DRL management 
procedures stated above, it should not be overlooked that model free (i. 
e., indicator approaches) management procedures may still be the most 
cost effective and best performing (i.e., meets mangement objectives) 
option for a given situation. 

3.2. Simplified but not simple 

DRL methods may be simplified from the “gold standard” stock as-
sessments, but they are not necessarily simple. The details of each sit-
uation are critical to recognize and to develop case specific solutions. 
This takes time and attention. The prospect of doing rapid assessments of 
stock status (outside of risk assessment methods that are built for such a 
purpose) that do not take the time to consider major issues of informa-
tion content, data representativeness or bias, and imprecision in dubious 
model inputs are highly susceptible to poor behavior and questionable 
results (Kell et al., 2022). It is very common to refine an stock assessment 
by doing an initial run of an assessment, ponder over the results, 

Fig. 7. The alchemist symbol of squaring the circle, also known as the phi-
losophers’ stone. The philosophers’ stone was a sought after but never found 
substance that would turn base metals into gold. For stock assessment alchemy, 
it serves as a warning that DRL methods are full of assumptions, there is no one 
method right for all situations, and rapid application of stock assessments under 
information constraints may not lead to golden results. It is also a reminder that 
much has been learned about how to provide science-based guidance from the 
application of a variety of DRL analytical methods. 
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discover an issue with the inputs, revise the inputs, then come back and 
try the model again. This iterative application of stock assessment pu-
rification is commonplace across the continuum of model options and 
should be normalized. 

If stock management is the priority and there are many stocks to 
assess, it may be better to choose a stock as a representative of other 
stocks (possibly identified via a risk assessment) and take the care 
needed to evaluate data and parameter quality, as well as the right fit 
assessment method. This can also trigger data collection and adaptive 
management and outline the needs for evolving assessment capacity in 
order to meet the demands of the management objectives. 

3.3. Avoiding fool’s gold 

DRL methods are not gold, but they are elemental to fisheries man-
agement, and will be for the foreseeable future. Most stock assessments 
will never get to gold, but can still be used to support science-based 
fisheries management. The good practices shared throughout the 
paper (Table 1) are instructions for establishing context, outlining 
discerning principles, and offering practicable guidance for DRL method 
application and interpretation. While valuing and collecting data should 
remain a high priority, levaraging life history theory, applying technical 
and analytical advances, and coupling uncertainty characterization with 
risk tolerance have taken the place of excuses to “wait for all the data” 
before managing marine resources. 
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Ávila-da-Silva, A.O., Bentes, B., Carneiro, M.H., Chiquieri, J., Fernandes, C.A.F., 
Figueiredo, M.B., Hostim-Silva, M., Jimenez, É.A., Keunecke, K.A., Lopes, P.F.M., 
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