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Abstract

Understanding the spatiotemporal dynamics of fish species is a central concern

in fish ecology and crucial for guiding management and conservation efforts.

We constructed a joint species distribution model (JSDM) to simultaneously

estimate the spatiotemporal distributions and densities for 21 reef fish species

in the southeastern United States (SEUS). The model separately estimates

encounter probability and positive density, and accounts for unobserved

spatial and spatiotemporal variation using latent factors, where the correla-

tions among species are induced. We applied the model to video data collected

from a large-scale, fishery independent survey. A clustering method was

applied to the results of the JSDM to group species based on spatial and spatio-

temporal synchrony in encounter probability and positive density. We found

strong spatial associations among most of the reef fish species. However,

species did exhibit differences in occupied habitat that varied with latitude

and/or depth. Within their area of occupied habitat, almost all the species

share similar spatial pattern of average density. However, for some species,

annual distributions were less correlated with their expected average distribu-

tions perhaps due to differing responses to underlying spatiotemporal drivers.

Some species show significant declines in abundance, for example, black sea

bass, red porgy, and blueline tilefish, while a small number of species showed

evidence of shifts in distribution, for example, black sea bass. The findings

suggest that spatiotemporal management strategies may be of limited utility for

reducing bycatch in these highly mixed reef fisheries due to high spatial correla-

tions in occupied habitat and spatial patterns in density. Species-specific

responses to environmental change may also influence the spatiotemporal struc-

ture of reef assemblages. This work suggests management attention is needed

for some of the lesser known species as they are showing declining trends in

abundance.
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INTRODUCTION

Understanding the spatiotemporal dynamics of fish spe-
cies is a central concern in fish ecology and crucial for
guiding management and conservation efforts. Species
distribution models (SDMs) have been widely used to
map spatial distribution of a given species as a function
of biotic and abiotic variables (Elith & Leathwick, 2009).
However, single-species SDMs are limited because they
lack any consideration of biotic interactions which are
known to influence spatial distributions (Kissling et al., 2012;
Pichler & Hartig, 2021) and do not leverage information
across species that co-occur in the same general habitat.
Stacking maps from independent, single-species SDMs can
be used to provide insights on community-level patterns and
processes. However, this approach can be problematic, and a
better approach to estimating the combined responses of
multiple species is to model their distributions jointly (Clark
et al., 2014). Recently, joint species distribution models
(JSDMs) have been developed as a novel analytical
framework to simultaneously model the spatial dis-
tributions of multiple species while also incorpora-
ting associations among species (Pollock et al., 2014;
Thorson et al., 2015, 2017; Tikhonov et al., 2017;
Warton et al., 2015).

Although an ecosystem-based approach to fisheries
has been widely recognized and proposed as a more effec-
tive and holistic approach for managing marine fisheries,
single-species frameworks remain common in fisheries
around the world (Craig & Link, 2023; Karp et al., 2023;
Skern-Mauritzen et al., 2016). Ignoring species interac-
tions can affect the ecological, biological and economic
performance of a fishery management system in a com-
plex manner (Kaplan et al., 2021; Mackinson et al., 2018;
Townsend et al., 2019; Trijoulet et al., 2020). One of the
most common and difficult issues facing single-species
fisheries management is bycatch, which can contribute to
the overfishing of nontarget species, as well as threaten
protected and endangered species (Bellido et al., 2011;
Pons et al., 2022). Managing bycatch is a particular
challenge in mixed-stock fisheries, which are the domi-
nant type of fishery worldwide (Calderwood et al., 2021;
Cosgrove et al., 2019; Dolder et al., 2018). The mixed
nature of most fisheries typically leads to high discard
and mortality rates of multiple nontarget species, especially
in regions where many species occupy similar habitats. The
snapper-grouper fishery in the southeastern United States
(SEUS) is an example of such a mixed-stock fisheries.

There are 55 species currently managed under the
South Atlantic Fishery Management Council’s Snapper-
Grouper Fishery Management Plan. These species generally
occupy naturally occurring, hard-bottom reefs on the
Southeast U.S. continental shelf and upper slope (Bacheler &

Smart, 2016; Parker et al., 1983). Reef-associated fishes
(e.g., snappers, groupers, porgies, grunts, and tilefishes) in
the SEUS provide substantial economic and social benefits
to coastal communities through commercial and recreational
fishing and tourism; hence, their sustainable management is
of critical importance. However, despite several management
efforts enacted over past decades, the abundance of many
important reef fish species has declined (Bacheler &
Smart, 2016), with some of these stocks currently in an
overfished condition and most of them with unknown
status (Table 1).

There are several challenges in managing mixed-stock
reef fish fisheries in the SEUS. First, many species of reef
fish require hard substrates and have other similar habitat
preferences, and it is common to catch and potentially
discard one species, perhaps due to single-species regula-
tions or fisher preferences, while targeting another species
(Shertzer et al., 2024). Post-release mortality of discarded
fish can be high due to such factors as barotrauma,
hook-inflicted injury, and depredation (Runde et al., 2019).
This unintended fishing mortality can impede the rebuild-
ing of overfished stocks and lead to overexploitation of
vulnerable species. Further, because discarding is often not
directly monitored and not easily observed, the magnitude
of discard mortality is difficult to quantify, leading to uncer-
tainty in stock assessment models used to inform manage-
ment. For example, red snapper (Lutjanus campechanus),
which are highly valued by recreational and commercial
fishers in the SEUS, have been overexploited and depleted
for the past few decades and are currently under a rebuild-
ing plan. Although the stock has shown progress toward
rebuilding, the most recent assessment (SEDAR, 2021) indi-
cated that the stock is not yet rebuilt and is experiencing
overfishing, almost entirely as a result of recreational dis-
cards (SEDAR, 2021; Shertzer et al., 2024). Unless fishers
can avoid catching overfished and vulnerable species, or
discard mortality can be substantially reduced, the rebuild-
ing of overfished stocks and the sustainability of reef fish
communities in general will continue to be impaired. This
is particularly likely given the high recreational fishing
effort in the SEUS and continued improvements in fishing
technology (Craig et al., 2021). Second, the status of many
reef fish species remains unknown (Table 1).
Approximately 75% of the 55 species that comprise the
snapper-grouper complex have not been subject to a formal
stock assessment (Wade et al., 2023), in part, due to a lack
of data necessary for their assessment. The life-history
characteristics of many of these species (e.g., late-maturing,
slow-growing, and protogynous) make them particularly
vulnerable to overexploitation. Developing indices of abun-
dance and spatial distribution for these unassessed species is
an important step for their assessment and management.
Also, many of these species are relatively rare and have
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sparse observational data (e.g., yellowmouth grouper and
rock hind), therefore estimating their fine-scale spatial
distributions is challenging using single-species SDMs.
Third, bottom temperatures in the South Atlantic have
increased in recent years accompanied by other oceano-
graphic changes (Craig et al., 2021). It is not yet clear
how these reef fishes are responding to these environ-
mental changes, but shifts in spatial distribution are a
likely response. Shifting spatial distributions have a num-
ber of management consequences, particularly when they
occur across management jurisdictional boundaries, such
as mismatches between quota allocations and regional
abundance, that can limit the performance of fishery
management systems (Baudron et al., 2020). Therefore,
assessing distribution shifts and delineating stock bound-
aries are crucial for the effective assessment and manage-
ment of mobile fish stocks.

JSDMs are a novel and effective ecological tool for
modeling species co-occurrence and are becoming
increasingly prevalent in fisheries (Dolder et al., 2018;
Stock et al., 2020). JSDMs estimate spatial distributions of
multiple species simultaneously as well as the correlations

among species and also allow for the incorporation of
explanatory covariates. However, a number of challenges
still remain in their applications. For example, the model
dimensionality and complexity scales quadratically with
the number of species, which can lead to convergence
issues and difficulty in interpreting model output. Further,
patterns in the spatiotemporal distribution of fish commu-
nities are likely shaped by numerous abiotic and biotic
processes that operate simultaneously and with interacting
effects, making them difficult to measure and include in
the model. Recent developments in latent variable models
make simultaneous estimation for multiple species more
feasible (Warton et al., 2015). Latent factors represent
unmeasured variables (missing predictors) that capture
the main axes of covariation across species and provide
a flexible way to model via spatial and spatiotemporal
covariance structures (Dolder et al., 2018). The number
of factors can be significantly smaller than the number
of species, hence reducing the dimensionality of the
model. The use of spatial latent factors was recently
introduced in the context of fish community dynamics
by Thorson et al. (2016).

TAB L E 1 List of reef fish species included in the multispecies vector auto-regressive spatiotemporal model (VAST), including the total

number of encounters (i.e., number of individuals recorded in videos, 2011–2021) for all years combined and stock status for each species,

which were determined from their last stock assessment.

Common name Scientific name Overfishing? Overfished? Encounters

Gray triggerfish Balistes capriscus Yes No 72,494

Blueline tilefish Caulolatilus microps No No 717

Black sea bass Centropristis striata Yes Yes 54,772

Graysby Cephalopholis cruentata Unknown Unknown 6575

Rock hind Epinephelus adscensionis Unknown Unknown 1935

Goliath grouper Epinephelus itajara No Unknown 548

Red grouper Epinephelus morio Yes Yes 1682

Snowy grouper Epinephelus niveatus Yes Yes 608

White grunt Haemulon plumierii Unknown Unknown 62,048

Hogfish Lachnolaimus maximus Yes Yes 2776

Mutton snapper Lutjanus analis No No 1708

Red snapper Lutjanus campechanus Yes Yes 130,035

Gray snapper Lutjanus griseus Unknown Unknown 17,825

Sand tilefish Malacanthus plumieri Unknown Unknown 4913

Yellowmouth grouper Mycteroperca interstitialis Unknown Unknown 412

Gag Mycteroperca microlepis Yes Yes 8661

Scamp Mycteroperca phenax No Unknown 19,776

Yellowtail snapper Ocyurus chrysurus No No 369

Red porgy Pagrus pagrus No Yes 146,799

Vermilion snapper Rhomboplites aurorubens No No 665,160

Greater amberjack Seriola dumerili No No 14,124
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The goal of this research is to quantify the spatiotem-
poral dynamics of reef fish species in the SEUS using
new application of spatial dynamic factor analysis as a
JSDM that allows for the simultaneous estimation of
spatiotemporal densities for multiple species. The model
accounts for unobserved spatial and spatiotemporal vari-
ation using latent factors, where the correlations among
species are estimated. We apply the model to estimate the
distributions of 21 reef fish species as well as the correla-
tions among species. We then apply a clustering method
to group species based on spatial and spatiotemporal syn-
chrony in encounter probability and positive density. The
correlation and cluster analyses indicate the degree to
which reef fish species can be separated into distinct
assemblages and, hence, whether spatial targeting to
harvest more selectively and reduce bycatch is practical.
We also develop indices of relative abundance for each
species based on the estimated spatiotemporal densities.
Incorporating the spatiotemporal correlations among
species into the JSDM allows for estimation of abun-
dance trends for infrequently encountered species
(i.e., density of one species is informative about the density
of correlated species). Finally, we compute the center of
gravity (COG) for each species as an indicator of potential
shifts in spatial distributions over time. We interpret these
results in terms of their implications for multiple man-
agement challenges facing the snapper-grouper fishery
in SEUS.

MATERIALS AND METHODS

Study area and data sources

We used video data from a large-scale, fishery-independent
survey, that is, the Southeast Reef Fish Survey (SERFS),
from 2011 to 2021. Sampling was conducted in a similar
manner each year except for 2020 when no survey
was conducted due to the COVID-19 pandemic (Link
et al., 2021). The SERFS survey samples the primary
habitat of reef fish (i.e., hard-bottom substrate) on the
continental shelf and upper slope of the U.S. South
Atlantic between Cape Hatteras, North Carolina, and
St. Lucie Inlet, Florida (Figure 1). The sampling universe
consists of approximately 4300 stations on known
hard-bottom reef habitat, from which about 1500 were
selected to be sampled each year since 2011 following a
simple random sampling design. The spatial extent of the
survey has been relatively stable over time (Appendix S1:
Figure S1). Sampled stations were always separated by
at least 200 m in a given year to provide independence
between samples. Sampling occurred during daylight
hours between April and October. A high-definition

video camera was attached to a baited Chevron trap
deployed at each station. The trap and attached camera
were allowed to soak for 90 min. Videos were read in
the lab following standard protocols beginning 10 min
after the trap landed on the bottom and commencing for
20 min. A total of 41 frames (every 30 s) were read for
107 key species using the approach described in
Schobernd et al. (2013). Additional details regarding
the survey design and sampling methodology can
be found in Bacheler and Shertzer (2020). We calcu-
lated the annual percentage frequency of occurrence
(i.e., the percentage of stations in which the species
was observed on video) for each species from 2011 to
2021. Species with an annual percentage occurrence
≥1% for any of the 10 years were included in the ana-
lyses. This filtering resulted in 21 species for analysis
(Table 1).

Spatial dynamic factor analysis

We implemented the spatial dynamic factor analysis
framework described by Thorson et al. (2015) to model the
spatiotemporal dynamics of the SEUS reef fish community
and to estimate species co-occurrence and the strength of
associations among species in space and time. The model
is simultaneously fit to data for multiple species by model-
ing response variables, that is, presence/absence and catch
rate (number of individuals observed per frame), as a
multivariate process using latent factors. A latent factor
is a variable that cannot be directly observed, but whose
effect can be detected and summarized through other
variables (Latimer et al., 2009). The model includes two
types of latent factors representing spatial and spatio-
temporal variation, respectively. The spatial distribution
of individual species over time is described by a set of
common latent trends (between 1 and the total number
of species) through a factor analysis decomposition. The
common latent trends consist of spatial factors representing
unobserved time-invariant effects and spatiotemporal
factors representing unobserved time-variant effects.
The value of each factor (referred to as a factor coefficient)
varies spatially and is estimated as a distance-based
Gaussian random field, where the random effects
describing the spatial patterning are assumed to be
drawn from a multivariate normal distribution. The
factor coefficients are common to all species but load-
ings for each factor, which represent the association of
species with each factor, vary across species.

More specifically, the density of each species at a
given location is estimated using two separate linear
predictors, p1 and p2, which are transformed to predict
encounter probability (r1) and positive catch rates (r2).
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This “Poisson-link” delta model ensures that
both predictors have an additive effect on log-density,
log r1 × r2ð Þ (Thorson, 2019) and uses a complementary

log–log link to transform p1 to encounter probability r1.
The linear predictors at the location s for species k and
time t are modeled as

F I GURE 1 Map of study region depicting southeastern United States Atlantic Ocean. The red dots are the sampling locations from

2011 to 2021. Blue isobaths appear at 20, 45, and 200 m.
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p� si, ti,kið Þ¼ β� kið Þ+
Xnf
f¼1

Lω� ki, fð Þω� si, fð Þ

+
Xnf
f¼1

Lε� ki, fð Þε� si, ti, fð Þ, ð1Þ

where subscript * indicates a particular predictor (first or
second). β� kið Þ is the intercept for species k. We specified
the intercept to be constant over time so that all changes
over time are attributed to spatiotemporal variation.
ω� si, fð Þ is the coefficient of spatial factor f at location s,
representing predicted spatial variation occurring at the
location s of sample i for factor f. L� ki, fð Þ is the loading
matrix that generates spatial and spatiotemporal covaria-
tion among species (i.e., loadings matrix multiplied by its
transpose is equal to the covariance among species
resulting from the factor), representing association of
species k with factor f. ε� si, ti, fð Þ is the coefficient of spa-
tiotemporal factor f of sample i at location s and time t.
Both ω� �, fð Þ and ε� �, t, fð Þ were assumed to follow a mul-
tivariate normal distribution, MVN 0,Rð Þ. R is the spatial
correlation matrix computed based on a Matérn function
(Thorson, 2019). The stochastic partial differential equa-
tion (SPDE) approximation to Gaussian random field
was used to improve computational efficiency (Lindgren
et al., 2011). The solution to a specific SPDE is a
Gaussian random field with a Matérn function
(Lindgren et al., 2011). A first-order autocorrelation was
specified for ε� �, t, fð Þ among years:

ε� �, t, fð Þ¼ MVN 0,Rð Þ if t¼ 1

MVN ρε� �, t− 1, fð Þ,Rð Þ if t>1
,

�
ð2Þ

where ρ was fixed at 1 and estimated for ε1 �, t, fð Þ and
ε2 �, t, fð Þ, respectively.

We started by specifying three latent trends, that is,
nf ¼ 3, with 600 knots (ns ¼ 600) to approximate the dis-
tribution of the 21 species. A vector auto-regressive spa-
tiotemporal (VAST) model creates a mesh of discrete
locations (i.e., knots) to approximate the sampling area,
and the knots are determined by a k-mean cluster algo-
rithm to reflect the sampling intensity. Estimated spatial
and spatiotemporal factors and loading matrices were
rotated using principal components analysis (PCA) rota-
tion to summarize and visualize community-level covari-
ations. This PCA rotation was used to identify a factor
that explained the maximum proportion of covariation
among encounter probability and catch rates of the
21 species.

In summary, the density of each species is descri-
bed by the product of the two linear predictors
(i.e., encounter probability and positive catch rate), each

consisting of three latent trends. Each latent trend
includes two components, that is, spatial and spatiotem-
poral variation. Following Thorson (2019), we interpret
the spatial component as a species’ fundamental niche
(expected spatial density on average) and the spatio-
temporal component as a species’ biological and envi-
ronmental responses (e.g., aggregate environmental
impacts and life-history responses influencing density).
We interpret the first linear predictor (i.e., encounter
probability) as a species’ distribution (i.e., occupied
habitat) and the second linear predictor as the spatial
pattern of a species’ density (e.g., hotspots within their
distribution).

Parameter estimation

Parameters were estimated using the publicly available
R package VAST for VAST models (Thorson, 2019).
The VAST model assimilates presence/absence and count
data to estimate population density over space and time
for multiple species simultaneously (Thorson, 2019).
Models can be specified with different levels of complex-
ity. We treated the following effects as fixed within the
model: intercept parameters for each species (β1 and β2),
spatial decorrelation and the shape of geometric anisot-
ropy of the Matérn function, the loading matrices (L1 and
L2), temporal correlation for the coefficient of spatiotem-
poral factor, and the magnitude of residual variation in
positive catch rates for each species. The coefficient of
the spatial and spatiotemporal factors (ω� and ε�) for the
number of “knots” were treated as random effects to
account for unmeasured variables that cause observations
to be correlated in space or in space and time. The
Laplace approximation was used to approximate the mar-
ginal likelihood of fixed effects while integrating the joint
likelihood with respect to random effects using Template
Model Builder. The value of the random effects was
predicted by maximizing the joint likelihood, which is
defined as the product of the probability of the random
effects (given fixed effects) and the probability of the data.
We checked the gradient of the marginal log-likelihood
for model convergence (i.e., <0.0001). Further details
regarding VAST can be found in Thorson (2019).

Derived quantities

After all parameters were estimated, quantities of particu-
lar interest were derived, including the total abundance
for each species in each year [I k, tð Þ], the centroid of the
distribution for each species in each year [X k, tð Þ], and
the covariance among species [V]:
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I k, tð Þ¼
Xns
s¼1

a sð Þ× p1 s, t,kð Þ× p2 s, t,kð Þ, ð3Þ

where a sð Þ is the area associated with knot s and the
other terms are as defined earlier.

X k, tð Þ¼
Xns
s¼1

x east,northð Þ× a sð Þ× p1 s, t,kð Þ× p2 s, t,kð Þ
I k, tð Þ ,

ð4Þ

where x east,northð Þ represents the easting and northing
(in kilometers) for location s.

V ¼LLT , ð5Þ

where L is Lω1, Lω2, Lε1, or Lε2 as defined above
(Equations 1 and 2).

The estimates of total abundance [I k, tð Þ] can only be
directly interpreted when sampling effort is measured
in units of area, for example, a bottom trawl with a
known area swept. In this study, we assumed the area
of attraction of the traps was constant across space
and time so that the resulting absolute abundance esti-
mates will be proportional to the underlying total abun-
dance with an unknown constant coefficient. This
assumption does not affect the interpretation of spatial
and temporal patterns in relative abundance or other
derived quantities (e.g., COGs), which is our primary
interest.

Cluster analyses

We applied Ward’s hierarchical clustering (Ward, 1963)
to group species based on the covariance matrix among
species, V, where the distance d k1,k2ð Þ between each pair
of species, k1 and k2, is computed as

d k1,k2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V k1,k1ð Þ+V k2,k2ð Þ− 2V k1,k2ð Þ

p
, ð6Þ

where V k1,k1ð Þ and V k2,k2ð Þ are the variance of the spa-
tial or spatiotemporal component for species k1 and k2,
respectively, and V k1,k2ð Þ is the covariance between the
two species (Omori & Thorson, 2022). We computed the
average silhouette width to determine the optimal num-
ber of clusters using the R package “factoextra.” The sil-
houette width measures the quality of a clustering, that
is, how similar an object is to its own cluster (cohesion)
compared with other clusters (separation). The average
silhouette width was computed for different numbers of

clusters, and the optimal number was chosen as the one
that maximized the average silhouette width.

RESULTS

The model with three factors successfully converged
(i.e., gradients for all the model parameters were less
than 0.0001 and the Hessian matrix was positive defi-
nite), with the first two factors explaining the majority of
the spatial (>96%) or spatiotemporal (>74%) variation.

Spatial variation and correlation

The average (2011–2021) density estimates indicate that
some species (e.g., black sea bass, vermilion snapper, and
red porgy) have higher density than others (e.g., goliath
grouper, snowy grouper, and yellowmouth grouper;
Figure 2). Species also show different spatial patterns,
with some found mostly in deep waters on the Southeast
U.S. continental shelf and upper slope (e.g., blueline
tilefish, snowy grouper, red porgy), while others are
common across the entire shelf (e.g., gray triggerfish
and vermilion snapper; Figure 2). Latitudinal gradients
were also evident for some species. For example, black
sea bass tend to have higher density in the inshore and
southern waters, while white grunt are more concen-
trated in the inshore northern waters (Figure 2).

Nearly all (i.e., >95%) of the spatial variation in
encounter probability is explained by the first two latent
factors (Figure 3A). The first two rotated factors (of the
three considered) accounted for 84.9% and 13% of the
total spatial variation, respectively. Factor 1 shows low
encounter probabilities in inshore waters, particularly in
the south and the north of the study region, and higher
encounter probabilities in mid-shelf waters in the central
region of the study area (Figure 4). All the species have
positive associations with Factor 1 (i.e., positive loadings;
Figure 3A), suggesting their distributions share a varying
degree of similarity with the spatial pattern of Factor 1,
depending on the loadings. For example, species with
high Factor 1 scores tended to have stronger latitudinal
gradients in encounter rate with high probability of pres-
ence in the northern and central areas (e.g., yellowtail
snapper and yellowmouth grouper), while species with
low Factor 1 scores tended to be broadly distributed
throughout the survey area (e.g., gray triggerfish and gag)
sometimes with higher occurrence in the southern areas
(e.g., black sea bass).

Factor 2 appears to be associated primarily with
differences between inshore and offshore waters, with
high encounter probability inshore and low encounter
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probability offshore (Figure 4). Most species showed posi-
tive associations with Factor 2 and these were primarily
inshore and mid-shelf species (e.g., white grunt and black
sea bass). Only red porgy, scamp, blueline tilefish, and
snowy grouper, which have higher encounter probability
in deeper, offshore waters, had negative associations with
Factor 2 (Figure 2). In fact, blueline tilefish and snowy
grouper, two species restricted to deep offshore waters
along the shelf-slope break, had the most extreme factor
scores on both Factor 1 and Factor 2. Therefore,
Factor 2 appears to separate shallow to mid-shelf spe-
cies from those that occur mostly in deeper shelf and
shelf-break waters.

For positive density within the occupied area, the first
two rotated factors explained 84.3% and 12.3% of the total
spatial variation in positive density, respectively (Figure 5A).
Factor 1 did not show clear spatial patterns. Factor
2 appeared to be associated with latitudinal variations
with generally high values in the north and low values
in the south (Figure 6). All the species are positively
associated with Factor 1, except for vermilion snapper
(Figure 5A). Factor 2 shows hot spots of high density in
northern, mid-shelf waters and low-density patches in
southern inshore waters and in the extreme north of the

study region (Figure 6). Species are separated into two
groups with positive and negative Factor 2 loadings,
respectively (Figure 5). Species with a positive association
with Factor 2 tend to have a hot spot in the northern shelf
and/or a low-density area in the southern inshore waters
(e.g., goliath grouper and white grunt) though this pattern
was not always evident across all species (Figure 2).

Almost all reef fish demonstrated some degree of
positive correlation with one another, with correlations
ranging from −0.16 to 1 (median correlation = 0.89) for
encounter probability (Figure 7A) and −0.89 to 1 (median
correlation = 0.91) for density (Figure 7B). For encounter
probability, the exceptions were a weak negative correla-
tion between the encounter probability of black sea bass
and that of red porgy and snowy grouper (Figure 7A).
Black sea bass are more often found inshore, while red
porgy and snowy grouper mainly occur further offshore
(Figure 2). Further the density pattern of vermilion
snapper was negatively correlated with that of 19 of the
20 other species (goliath grouper was the exception),
with negative correlations ranging from −0.23 to −0.89
(median = −0.57).

Based on the Ward’s hierarchical clustering analysis,
the reef fish separate into three groups in terms of

Sand tilefish Scamp Snowy grouper Vermilion snapper White grunt Yellowmouth grouper Yellowtail snapper

Greater Amberjack Hogfish Mutton snapper Red grouper Red porgy Red snapper Rock hind

Black sea bass Blueline tilefish Gag Goliath grouper Gray snapper Gray triggerfish Graysby
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occupied habitat (Figure 3B). These three groups are
characterized by species that (1) mainly occupy deep off-
shore waters (snowy grouper and blueline tilefish);
(2) have broad latitudinal and depth distributions across
the entire shelf (e.g., gag, gray triggerfish, greater amberjack,
and vermillion snapper); and (3) show high latitudinal
heterogeneity in distribution (e.g., yellowmouth grouper,
yellowtail snapper, rock hind, hogfish, sand tilefish, and
goliath grouper). Ward’s hierarchical clustering analysis
based on density suggests two groups: (1) vermillion
snapper and goliath grouper and (2) the remaining
21 species (Figure 5B), indicating that within the species’
occupied habitats, nearly all of the species share similarity
in average spatial patterns of density (e.g., hotspots), with
the exception of vermillion snapper and to some extent
goliath grouper (Figure 7B).

Spatiotemporal variation and correlation

Maps of the spatiotemporal factors are different than those
for the spatial factors, suggesting that different drivers affect
the average spatial distribution of species (i.e., occupied
habitat and density pattern) and the interannual differences
in distribution. Spatiotemporal factors for encounter

probability showed a similar spatial pattern driving spe-
cies distribution from year to year (Figure 8). However,
factors for positive density did not show the same spatial
pattern driving species’ hot spots over time (Figure 9).

The first two rotated factors of the three considered
explained 65.7% and 17.8% of the total spatiotemporal
variation in encounter probability, respectively. Factor
1 shows hotspots in the north (e.g., off central North
Carolina) and in the south (e.g., offshore waters of
Florida and Georgia), particularly in mid-shelf and deep
waters (Figure 8). All the species are positively associated
with Factor 1 (Figure 10A), suggesting that the underly-
ing drivers represented by Factor 1 influence the annual
changes in distribution of these species in a similar way.
Factor 2 appears to be the mirror image of Factor 1, with
the highest values in the middle of the study region
(e.g., southern North Carolina to South Carolina), partic-
ular in mid-shelf and shallow depths, and low values
elsewhere (Figure 8). Black sea bass, red porgy, and ver-
milion snapper, and white grunt have large positive
loadings for Factor 2 while mutton snapper, goliath
grouper, yellowmouth grouper, and sand tilefish have
large negative loadings (Figure 10A).

The first two rotated factors accounted for 59.9% and
22.3% of the total spatiotemporal variation in density,

F I GURE 3 (A) Loadings of the first two factors after a principal components analysis rotation from the spatial component for the

spatial encounter probability and (B) dendrogram based on Ward’s hierarchical clustering analysis. Colored text in the dendrogram

represents identified clusters.
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respectively (Figure 11A). Factor 1 appears to be asso-
ciated with differences between the northern region
(low values) and the southern regions of the study area

(high values, Figure 9). All the species except sand tilefish
have a positive Factor 1 loading, suggesting that the under-
lying drivers represented by Factor 1 influence their
interannual pattern in a similar way. The spatiotempo-
ral patterns in Factor 2 are less consistent over time
(Figure 9), suggesting the effects of drivers represented
by Factor 2 on species density vary over time and space.
Some species show a positive association (e.g., greater
amberjack, vermilion snapper, and sand tilefish) with
Factor 2 while others show a negative association
(snowy grouper, goliath grouper, white grunt, and
yellowmouth grouper).

Most of the species showed strong, mostly positive corre-
lations in spatiotemporal encounter probability (Figure 12A),
with correlation coefficients ranging from −0.33 to 0.99
(median correlation = 0.67). The exceptions were blueline
tilefish, snowy grouper, black sea bass, gag, red porgy,
white grunt, and vermilion snapper, which showed nega-
tive correlations with one to four other species.
Correlations for spatiotemporal positive density were
mostly positive as well (Figure 12B). In general, the
spatiotemporal correlations (median correlation = 0.56)
show fewer high positive values compared to the spatial
correlations (Figure 7). This suggests that though species
may have high overlap in their occupied habitat and simi-
lar average spatial patterns in density, they may respond
to spatiotemporal drivers in different ways so that their
annual distributions may be less correlated. For example,
red snapper has high positive correlations with black sea
bass, greater amberjack, and hogfish for average positive
density (Figure 7B); however, their spatiotemporal correla-
tions are low (Figure 12B), suggesting these high
correlations are not stable over time.

Ward’s hierarchical clustering analysis separates the
species into two clusters (Figure 10B) in terms of spatio-
temporal variability in occupied habitat, and the separa-
tion is driven more by Factor 2 (Figure 10A), which
reflects the contrast between the south and north. Species
separate into three groups in terms of spatiotemporal
variability in density (Figure 11B), and the separation is
also driven more by Factor 2 (Figure 11A), which does
not show clear spatial pattern over time.

Derived quantities

The 21 species showed highly variable patterns in abun-
dance from 2011 to 2022 (Figure 13). The most abundant
species in the survey are vermilion snapper, red porgy,
red snapper, black sea bass, and gray triggerfish (Table 1,
Figure 13). The least common species are yellowmouth
grouper, yellowtail snapper, snowy grouper, goliath grou-
per, and blueline tilefish. The species show different
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temporal patterns, with some species showing positive
trends throughout the modeled years (e.g., goliath grou-
per, graysby, mutton snapper, gray snapper, and vermil-
ion snapper), while some species show decreasing trends
either throughout all the modeled years (e.g., black sea
bass) or over the most recent (since 2017–2021) years
(e.g., blueline tilefish, gray triggerfish, hogfish, rock hind,
scamp, and white grunt).

Among the 21 species, there are nine species that
showed significant trends in their COG, that is, either
northing/easting or both (Figure 14). Black sea bass and
sand tilefish show significant positive trends in their easting
and northing, suggesting that their distribution shifted
northward and to deeper waters from 2011 to 2021
(Figure 14). Gag, hogfish, and red porgy show the opposite
pattern, with significant negative trends in easting and
northing, suggesting their distributions shifted southward
and to shallower water over the same time period
(Figure 14). However, the uncertainty associated with their
COGs is high. The COG of mutton snapper and red grouper
also show negative trends, but driven primarily by a more
northward and offshore distribution in the early years
(2011–2013) compared with the later years (2014–2021).
Goliath grouper and snowy grouper showed slight shifts
inshore and offshore, respectively, but the pattern was weak.

DISCUSSION

We simultaneously modeled 21 reef fish species in the
SEUS Atlantic Ocean using a JSDM to quantify trends in
their occurrence, abundance, and spatial distribution, as
well as the correlations among species. We found that
species can be separated into a few assemblages that
share similar associations with the common spatial
or spatiotemporal factors estimated from the model.
However, the composition of the species assemblages
varied across the four grouping variables, encounter
probability (occupied habitat), positive density (hotspots),
spatial variation (fundamental niche), and spatiotempo-
ral variation (environmental responses), suggesting that a
complex set of potentially interacting factors underlies
patterns in spatial distribution. The high spatial correla-
tions in encounter probability among the majority of
the species indicates their occupied habitats exhibit a
high degree of spatial overlap. The main difference in
occupied habitat was between species with a widespread
distribution throughout the study area versus those with
a more limited distribution to inshore, offshore, or more
northern waters. The similar spatial patterns in average
density among most species indicates that regions of the
shelf supporting high densities of one species likely also

F I GURE 5 (A) Loadings of the first two factors after a principal components analysis rotation from the spatial component for the

spatial positive density and (B) dendrogram based on Ward’s hierarchical clustering analysis. Colored text in the dendrogram represents

identified clusters.
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support high densities of other species. For example, mul-
tiple species had their highest average densities in the
northern and central regions of the SEUS off of southern

North Carolina and South Carolina, suggesting these
regions may be particularly important to the productivity
of this reef fish complex.

While the spatial correlations in occupied habitat and
average density were high among the 21 reef fish species,
the spatiotemporal correlations were generally weaker,
indicating that the annual distributions of individual
species were less correlated compared with their expec-
ted average distributions over the study time period
(2011–2021). Some species with large positive correla-
tions in average spatial distribution even show negative
spatiotemporal correlations (e.g., sand tilefish and white
grunt), suggesting the spatial associations among some
species are not stable over time. This could occur due
to annual differences in spatial patterns of recruitment,
movement, and mortality. Several reef fishes have shown
declining recruitment over the study period while a few
have shown increases (Wade et al., 2023). The SERFS
survey samples young (e.g., age-1) age classes of several
species and sampling occurs over a protracted period
(May–September). Therefore, interannual and seasonal
variability in recruitment and mortality processes
(including fishing mortality) may lead to annual varia-
tion in spatial distributions. Also, recent studies suggest
some species (i.e., red snapper and scamp) receive annu-
ally varying numbers of recruits from the Gulf of Mexico
into the South Atlantic through the Florida Straits
(Brothers et al., 2023; Karnauskas et al., 2022), and this
may be another source of variation influencing spatial
distributions in the South Atlantic. Even so, most of the
spatiotemporal correlations in our study were positive,
suggesting many species may respond in a similar man-
ner to spatiotemporal drivers and, as a result, may be
consistently found in higher densities in the same loca-
tions from year to year.

The JSDM applied here is a purely latent model
(i.e., no covariates), and two latent factors, a spatial factor
representing the average spatial distribution and a spatio-
temporal factor representing annual variation in spatial
distribution, explained most (i.e., ~80% to 90%) of the
variation in spatial patterns in the survey data. While our
approach is correlational in nature, the latent factors
represent the integrated effects of biotic and abiotic
processes that influence species’ spatial dynamics and are
key elements that link individual species. The two latent
factors often showed spatial patterns that appeared to
vary in relation to depth and latitude. For example, the
spatial component for encounter probability appears to
be associated with the difference between inshore and
offshore waters (Factor 2, Figure 4), while that for
average density appears to vary more latitudinally.
Therefore, potential environmental drivers affecting
species’ spatial distributions likely reflect some aspect of
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F I GURE 7 Interspecies correlations for (A) spatial encounter probability and (B) positive density.
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F I GURE 8 Maps of the first two factors after a principal components analysis rotation from the spatiotemporal component for the

spatial encounter probability.
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F I GURE 9 Maps of the first two factors after a principal components analysis rotation from the spatiotemporal component for the

spatial positive density.
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the environment that vary with depth, latitude, distance
to shore, or their interactions. Depth has previously been
shown to be a major driver structuring reef fish assem-
blages in the SEUS (Bacheler et al., 2016; Sedberry & Van
Dolah, 1984) as has distance to the Gulf Stream (Glasgow
et al., 2021), which varies latitudinally given the geogra-
phy of the continental shelf (i.e., narrow in the most
northern and southern latitudes and wider in the middle
latitudes). Other potential environmental covariates
represented by the latent factors may be substrate and
bottom temperature. The SERFS survey samples known
hard-bottom habitats, and the high correlations of most
species with the first spatial and spatiotemporal factors
may represent the general distribution of hard-bottom
habitat on the shelf, which are a requirement for most of
these species. Although hard-bottom habitats (e.g., rock/
coral rubble) support some of the highest levels of biodi-
versity in the SEUS, species may have different specific
habitat preferences with respect to the type of hard
bottom (Bacheler & Smart, 2016; Glasgow et al., 2021).
For example, snowy grouper and blueline tilefish are
typically associated with high-relief hard bottom, while
other species appear to be habitat generalists that occur on
multiple types of structured habitats (e.g., black sea bass).

It is not surprising that the maps of the spatiotemporal
factors for encounter probability and positive density
were different from those for the spatial factors, because
drivers that affect species’ fundamental niche are likely
to be different than those that determine interannual vari-
ability in occupied habitat and spatial patterns in density
(e.g., recruitment).

Indices of abundance were developed for all 21 of the
modeled species from the JSDM. JSDMs that incorporate
species associations can have better predictive perfor-
mance compared with single-species models (Stock
et al., 2020). Incorporating species associations can be
particularly helpful for developing abundance indices for
data-limited species with sparse observation data. Our
results are consistent with prior studies indicating that
reef fish abundance in the SEUS has declined over the
last 25–30 years (Bacheler & Smart, 2016) and suggest
that some species have continued to decline since their
last stock assessment (e.g., black sea bass, blueline tilefish,
and red porgy; Figure 13). Updating the JSDM periodically
with new survey data is an efficient means of providing
abundance information for unassessed species and for the
intervening years between stock assessments for assessed
species, which can often span 5–7 years.

F I GURE 1 0 (A) Loadings of the first two factors after a principal components analysis rotation from the spatiotemporal component for

the spatial encounter probability and (B) dendrogram based on Ward’s hierarchical clustering analysis. Colored text in the dendrogram

represents identified clusters.
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Information on shifting species’ spatial distributions
is becoming increasingly important as climate-induced
distribution shifts have been documented (Baudron
et al., 2020; Gervais et al., 2021; Hastings et al., 2020) and
are projected to increase in the future (Pinsky
et al., 2013). We developed estimates of COG from the
JSDM, which can be used to identify distribution shifts
(Thorson & Barnett, 2017). Most modeled species did not
show strong evidence of significant changes in COG over
the 11-year period investigated here. Based on linear
trend analysis, very few species had significant trends in
“northing” and “easting,” and there were more negative
than positive slopes for both, which is the opposite
expected under temperature-induced shifts in distribu-
tion to the north or to deeper waters. Black sea bass is
one exception where there has been a significant shift to
both more northerly and to deeper waters within the
South Atlantic region since 2011. Similar shifts in distri-
bution have also been documented for black sea bass
stocks and other stocks in the mid-Atlantic and New
England shelf (Lucey & Nye, 2010; Nye et al., 2009).
Whether these changes in black sea bass distribution are
due to movement of propagules or adults, or due to spa-
tial changes in productivity, is unknown. Some studies
have reported that substrate-associated species may not

shift spatial distributions in response to changing temper-
ature and other hydrographic conditions compared with
more pelagic species (Roberts et al., 2020). Even so, a num-
ber of oceanographic changes have been documented in
the U.S. South Atlantic that may alter the spatial dynamics
of the SEUS reef fish complex (Craig et al., 2021). For
example, the spatial distributions of several marine species
assemblages in the SEUS have shown responses to recent
increases in ocean temperatures after a long historical
period of stable temperatures in the region (Morley
et al., 2017), suggesting future temperature variability
will affect many of the species investigated here.

We made several simplifying assumptions that
deserve further investigation. First, we did not include
any catchability covariates in the model. Thus, catchability
was assumed to be constant over time and space and
across species. Bacheler and Shertzer (2020) suggested
that catchability of the video survey can be affected by
water current direction, water clarity, and temperature.
Interestingly, we found that the average density pattern
of vermilion snapper was negatively correlated with
almost all of the other species (Figure 7B). Vermilion
snapper typically occur higher in the water column, so
their catchability and survey catch rates may be more
variable compared with species more closely associated

F I GURE 1 1 (A) Loadings of the first two factors after a principal components analysis rotation from the spatiotemporal component for

the spatial positive density and (B) dendrogram based on Ward’s hierarchical clustering analysis. Colored text in the dendrogram represents

identified clusters.
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F I GURE 1 2 Interspecies correlations for (A) spatiotemporal encounter probability and (B) positive density.
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with bottom structure. Second, we did not account
for the possibility that species may show ontogenetic
changes in spatial distribution. Combining all age/size
classes may have contributed to some of the differences
in the correlations of the species with the spatial and
spatiotemporal latent factors, particularly if recruitment
to hard-bottom habitats or mortality (natural and
fishing) among age and size classes varies spatially over
the study region. Third, the JSDM estimates density

hotspots by sharing information among all the species,
which results in a shrinkage, whereby rare species
showing similar patterns in distribution and abundance
to more common species with which they are correlated.
We recommend future research grouping species a
priori based on traits. Finally, spatial aspects of the
SERFS video survey and potential effects on inferences
regarding species’ spatial dynamics warrant further con-
sideration. For example, the spatial coverage of the

F I GURE 1 4 Estimated easting and northing (black line and points) of the center of gravity with 95% CI (gray shading) for modeled

reef fish species. The blue dashed line is the regression line and the estimated equations are shown at the bottom-right corner of each panel

with significant relationships in red.
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video survey has varied slightly over time, with some
northern areas not sampled in the first year (i.e., 2011)
and some variation in sampling intensity with depth
occurred across some years (Appendix S1: Figure S1).
Further, the sampling universe of SERFS only includes
known hard-bottom habitat, and the amount of hard
bottom that exists in the SEUS is uncertain (Steward
et al., 2022). If the survey does not sample a significant
portion of hard-bottom habitat within the survey foot-
print or if species also occupy habitats other than hard
bottom, then inferences on species’ spatial distributions

may be biased. This could be particularly important for
detecting range shifts or expansions. Although the pre-
dictions for unsampled areas were based on the spatio-
temporal autocorrelation estimated within the model,
additional work is needed to determine how survey
design affects estimates of abundance and spatial
distribution.

Our study is motivated by the need to address bycatch
of overfished and vulnerable species in highly mixed reef
fisheries of the SEUS, potentially using spatiotemporal
fishery management strategies. Spatiotemporal modeling

F I GURE 1 4 (Continued)
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has been used to provide insights on the effectiveness
of spatial targeting in mixed stock fisheries (Dolder
et al., 2018). Although distinct species assemblages where
common spatial patterns emerge may be identified, spe-
cies within an assemblage show similar spatial patterns,
where potential for spatial targeting can be limited
(Dolder et al., 2018). Our results demonstrate that mixed
reef fish fisheries in SEUS showed strong associations
among most of the 21 species considered. Only a few
species assemblages were identified based on spatial
and spatiotemporal synchrony in encounter probability
and positive density, and species within an assemblage
were difficult to separate spatially. Additionally, the
species composition within an assemblage changed
depending upon the grouping variable. Therefore, for
most of the species considered, spatial targeting may not
be an effective management strategy to selectively target
a particular species. Correlations were generally stronger
based on occupied habitat and average density than based
on interannual variability, suggesting high correlation in
average density may not persist from one year to the next.

This suggests that dynamic spatial closures may be more
efficient than static spatial closures in minimizing discard
mortality within this reef fish complex. However, this
requires an understanding of the underlying mechanism
that drives the interannual variability in distribution
and some capacity to predict conditions for a given fishing
season. An important next step to better inform spatial
management (e.g., spatial closures of various sizes, loca-
tions, and durations) would be to develop an integrated
risk spatial surface map by combining predicted average
density map for each species weighted by individual
species risk (Hazen et al., 2018), perhaps determined
from the relative status (e.g., overfishing) of species or
based on management or stakeholder (e.g., fishers) con-
cerns. For example, overfished and vulnerable species
could be given higher weighting values. A simulation
study can be conducted to further quantify the extent to
which spatiotemporal management measures can reduce
bycatch of overfished and vulnerable species. Fleet dynam-
ics with and without constraints on spatiotemporal man-
agement measures can be simulated on the estimated reef

F I GURE 1 4 (Continued)
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fish community spatial structure. The performance of each
scenario can then be evaluated in terms of the total
amount of dead discards of overfished and vulnerable spe-
cies and landings of healthy species.

Besides spatial management strategies, the multispecies
model applied in this study can be used to develop and
evaluate multispecies management strategies. Historically,
regulations for the reef-associated fishes in the SEUS have
been established on a species-by-species basis, but fishing
effort applies to the complex given the high correlations
among species. Therefore, single-species output controls
can result in a substantial amount of dead discarded
bycatch which is a waste of natural resources (Shertzer
et al., 2024). The modeling approach developed in this
study can be paired with a fleet dynamic model to predict
realized catches for each species given targeting of particu-
lar species within the reef fish complex. This will allow
managers to examine the impacts of a single-species total
allowable catch on other species.

Understanding the spatiotemporal distribution of
fish species is a central focus of fisheries ecology, and
important for guiding management and conservation
efforts. This study provided a more holistic understand-
ing of how common reef species in the SEUS coexist
and covary in space and time and identified trends and
similarities in their abundance and distribution. The
findings suggest that spatiotemporal management strat-
egies to avoid harvest of particular species may not be
effective for reducing bycatch in these highly mixed reef
fisheries due to high spatial correlations in occupied
habitat and spatial pattern of density. Varying
responses to environmental changes may influence the
structure of emerging reef assemblages. Management
attention is needed for some of the species with
unknown status as they are showing a declining trend
in abundance.
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