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Summary

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural
products that contain antibiotics and a variety of other bioactive compounds. The existing methods for
discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to
discovering specific classes of RiPPs from small datasets, and they fail to handle unknown post-translational
modifications. We present MetaMiner, a software tool for addressing these challenges that is compatible with
large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global
Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and
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metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial
communities including human microbiome, lichen microbiome, and micro-organisms isolated from the
International Space Station.

Keywords
Ribosomally synthesized and post-translationally modified peptides, computational mass spectrometry,
metagenomics, natural products discovery, microbial metabolites

Introduction

Natural products are back at the center of attention as pharmaceutical leads, as exemplified by the
recent discoveries of bioactive natural product drugs (Fischbach and Walsh, 2009; Harvey et al., 2015; Li and
Vederas, 2009; Ling et al., 2015). Recent advances in metagenomics are transforming the field of natural
product discovery by enabling the recovery of microbial genomes directly from the environmental samples.
This has revolutionized our understanding about the microbial composition of various communities and their
biosynthetic gene clusters. Biosynthetic gene cluster are sets of genes that synthesize microbial small
molecules from simple building blocks. The metagenomes of microbial communities contain thousands of
biosynthetic gene clusters with unknown small molecule products, making them an untapped resource for the
future antimicrobial drug discovery (Charlop-Powers et al., 2016; Donia et al., 2014; Hadjithomas et al.,
2015).

The biosynthetic gene clusters of natural products in microbial genomes can be identified by sequence
similarity searches (Li et al., 2009). Moreover, in the case of peptide natural products (PNPs), it is possible to
predict the corresponding putative structures based on the genes present in their biosynthetic gene clusters
(Oman and van der Donk, 2010; Stachelhaus et al., 1999). However, the structure of PNPs usually differs
from these predictions due to post-translational modifications applied by the enzymes in the biosynthetic gene
cluster. For example, in the case of polytheonamides, the PNP has 49 residues, with 21 post-translational
modifications, making it nearly impossible to predict the PNP structure solely based on the genomic data.
Therefore, in addition to genome mining, metabolomics methods including mass spectrometry and nuclear
magnetic resonance are routinely used for determining the structure of the molecular product of biosynthetic
gene cluster (Doroghazi et al., 2014; Medema et al., 2014; Mohimani et al., 2014a; Mohimani et al., 2014b).

The recent launch of the Global Natural Products Social (GNPS) molecular networking infrastructure
(Wang et al., 2016) brought together over a thousand laboratories worldwide that have already generated an
unprecedented amount of tandem mass spectra of natural products. Computational mass spectrometry methods
have revealed thousands of known small molecules and their unknown variants in various microbiome
datasets from the GNPS molecular networking (Gurevich et al., 2018; Mohimani et al., 2017; Mohimani et
al., 2018). However, the majority of the spectra in these datasets remains unannotated, which is often referred
as the ‘dark matter of metabolomics’. A portion of these spectra represent unknown small molecule products
of biosynthetic gene clusters encoded in the microbial genomes, and computational algorithms are needed for
illuminating this dark matter (Donia and Fischbach, 2015; Medema and Fischbach, 2015; Mohimani and
Pevzner, 2016; Vaniya and Fiehn, 2015; Walsh, 2015).

This paper focuses on the integration of computational mass spectrometry and genome mining for
discovering unknown Ribosomally synthesized and Post-translationally modified Peptides (RiPPs). RiPPs are
a rapidly expanding group of natural products with applications in pharmaceutical and food industries
(Arnison et al., 2013). RiPPs are produced through the Post Ribosomal Peptide Synthesis (PRPS) pathway
(Arnison et al., 2013). Initially, RiPPs are synthesized as precursor peptides encoded by RiPP structural genes.
The RiPP structural genes are often short, making their annotations difficult (Mohimani et al., 2014a). The
precursor peptide consists of a prefix leader peptide appended to a suffix core peptide. The leader peptide is
important for the recognition by the RiPP post-translational modification enzymes and for exporting the RiPP
out of the cell. The core peptide is post-translationally modified by the RiPP biosynthetic machinery,
proteolytically cleaved from the leader peptide to yield the mature RiPP, and exported out of the cell by
transporters. The precursor peptide and the enzymes responsible for its post-translational modifications
(PTMs), proteolytic cleavage, and transportation are usually located within a contiguous biosynthetic gene
cluster of the RiPP. The length of a microbial RiPP-encoding biosynthetic gene cluster typically varies from
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1,000 to 40,000 bp (average length 10,000 bp). Since RiPP-encoding biosynthetic gene clusters are much
longer than the current length of short reads generated by next generation sequencing, DNA assembly is a
critical part of any RiPP discovery approach based on short reads.

Genome mining refers to the interpretation of a natural product biosynthetic gene cluster to infer
information about the natural product itself. The discoveries of coelichelin in Streptomyces coelicolor (Challis
and Ravel, 2000; Lautru et al., 2005) and orfamide in Pseudomonas fluorescens Pf-5 (Gross et al., 2007;
Paulsen et al., 2005) were the first examples of genome mining that were followed by discoveries of various
bioactive RiPPs in microbial samples. Donia et al. discovered lactocillin, a thiopeptide antibiotic from the
human vaginal isolates that showed activity against vaginal pathogens (Donia et al., 2014). Zhao et al.
discovered eight novel lanthipeptides with antibiotic activity from a ruminant bacterium (Zhao and van der
Donk, 2016). Freeman et al. and Wilson et al. used metagenome mining of a sponge to assign a biosynthetic
gene cluster to the known RiPP polytheonamide, with post-translational modifications distributed across 49
residues (Freeman et al., 2012; Wilson et al., 2014). Thus, large-scale metagenomics projects, such as Earth
Microbiome Project (Gilbert et al., 2014; Thompson et al., 2017), American Gut Project (McDonald et al.,
2018), and Human Microbiome Project (Human Microbiome Project, 2012a, b; Lloyd-Price et al., 2017), have
the potential to contribute to RiPP discovery, provided that improved bioinformatics tools for the enhanced
identification of novel RiPPs are available. However, discovery of lactocillin and other recently identified
RiPPs were not achieved by an automated process, but rather used time-consuming manual analysis that
required the isolation of microbes, and the purification of microbial metabolites. Our goal is to discover the
RiPPs directly from the mass spectrometry and metagenomics information using a fully automated approach.

While recent analysis of thousands of bacterial and fungal genomes has already resulted in the
discovery of many putative biosynthetic gene clusters, including 20,000 RiPP-encoding biosynthetic gene
clusters in the Integrated Microbial Genome Atlas of biosynthetic Gene Clusters (IMG-ABC), connecting
these biosynthetic gene clusters to their metabolites has not kept pace with the speed of microbial genome
sequencing (Hadjithomas et al., 2015). Currently, only 35 out of these roughly 20,000 RiPP-encoding
biosynthetic gene clusters in IMG-ABC have been experimentally connected to their RiPPs (Hadjithomas et
al., 2015; Medema et al., 2015). Linking RiPP-encoding biosynthetic gene clusters to unknown RiPPs requires
the development of computational tools.

Kersten et al. introduced the peptidogenomics approach to RiPP discovery, which refers to finding
sequential amino acid tags from the tandem mass spectra (peptidomics) and mining them in the assembled
DNA reads obtained from the same sample (Kersten et al., 2011). Mohimani et al. introduced RiPPquest, the
first automated approach to RiPP discovery by combining mass spectrometry and genome mining (Mohimani
et al., 2014a). This tool is based on Peptide-Spectrum Matches, which are generated by aligning predicted
spectra of putative RiPPs annotated by genome mining. If a peptide-spectrum match between a candidate
RiPP predicted from the assembled genome and a spectrum is statistically significant, then RiPPquest reports
it as a putative annotation of the spectrum. RiPPquest resulted in the identification of the lanthipeptide
‘informatipeptin’, the first natural product discovered in a fully automatic fashion by a computer. However,
RiPPquest has a number of limitations: (a) it is limited to lanthipeptides which constitutes only one of 19
classes of RiPPs (Arnison et al., 2013), (b) it is designed for small genomes and small spectral datasets, making
it rather slow in the case of large metagenomic datasets and the entire GNPS infrastructure, (c) it does not
report the statistical significance of the identified RiPPs, a key requirement for any high-throughput peptide
identification tool, and (d) it is limited to searches for a predefined set of post-translational modification
(PTMs) and does not enable blind searches for unknown PTMs. Since RiPPquest, other tools have been
developed that combine genomics with mass spectrometry based discovery (Medema et al., 2014; Skinnider
et al., 2015). However, these tools are limited to the analysis of a single or few spectra from isolated genomes
and cannot scale to search billions of spectra from GNPS against metagenomics datasets.

This paper describes MetaMiner, a tool that enables searching mass spectrometry databases against
metagenomics short reads sequenced from microbiome samples for rapid discovery of RiPPs. Application
of MetaMiner to mass spectrometry and metagenomics data from the human microbiome resulted in the
identification of known and unknown peptides from the human microbiota, including autoinducer peptide
(AIP), Mec-PSM, delta-toxin, and their unknown variants.



Results

Brief description of MetaMiner. MetaMiner pipeline (Figure 1) analyzes the paired genome/metagenome
assemblies and tandem mass spectra from isolated microbes or bacterial/fungal communities. Starting from
the genome assemblies, MetaMiner (a) identifies putative biosynthetic gene clusters and the corresponding
precursor peptides, (b) constructs target and decoy putative RiPP structure databases (c) matches tandem mass
spectra against the constructed RiPP structure databases using Dereplicator, and (d) enlarges the set of
described RiPPs via spectral networking (Bandeira et al., 2007; Watrous et al., 2012).

Advances of MetaMiner. In step (a), MetaMiner searches for diverse classes of RiPPs, including
lanthipeptides, lassopeptides, linear azole containing peptides (LAPSs), linaridins, glycocins, cyanobactins,
phenol-soluble modulins, AIP, and proteusins (versus only lanthipeptides by RiPPquest). Moreover,
MetaMiner supports searching for user-defined classes of RiPPs. In step (b)-(c), MetaMiner implement an
approach to estimate false discovery rate through target decoy analysis by searching mass spectra against
decoy RiPP structures generated by random shuffling. In step (c), MetaMiner uses an efficient algorithm for
searching sparse vectors corresponding to mass spectra and RiPP structures, increasing the speed by two
orders of magnitude compared to RiPPquest, thus enabling searches of the entire GNPS databases against
metagenomes. Unusual modifications are handled through blind post-translational modification searching. In
addition, in contrast to RiPPquest (which was designed for analyzing low-resolution spectra), MetaMiner
enables searching high-resolution mass spectra, and allows user-adjustable precursor and product ion
thresholds.

Genome mining. MetaMiner uses antiSMASH, and BOA for the identification of RiPP-encoding biosynthetic
gene clusters and has two genome mining modes for selecting Open Reading Frames (ORFs), a slow all-ORF
mode introduced in RiPPquest (Mohimani et al., 2014a), and a fast motif-ORF mode. The all-ORF approach
analyzes all short ORFs within a biosynthetic gene cluster, while the motif-ORF approach relies on RiPP
motif finding (Blin et al., 2014) to narrow the set of putative RiPP-encoding ORFs.

We illustrate positive and negative features of these approaches through genome mining of the
Streptomyces roseosporous NRRL 11379 genome obtained from the ACTI dataset (see STAR methods for
details of all the datasets). AntiSMASH found 30 biosynthetic gene clusters in this genome, including six
RiPP-encoding biosynthetic gene clusters. Within these six biosynthetic gene clusters, the motif-ORF
approach identified only two short ORFs matching core RiPP motifs, while the all-ORF approach identified
14,694 short ORFs.

When analyzing all the 36 strains from the ACTI strains, antiSMASH discovered 1,140 biosynthetic
gene clusters, including 168 RiPP-encoding biosynthetic gene clusters. MetaMiner in the motif-ORF and all-
ORF modes identified 67 and 565,138 short ORFs, respectively. This example illustrates that the motif-ORF
mode may result in a four order of magnitude reduction in the number of ORF candidates as compared to the
all-ORF mode. However, antiSMASH predictions are based on searching for a set of known motifs, therefore
the motif-ORF mode misses some ORFs with novel RiPP motifs. BOA is based on identifying known
proximal genes (“‘context genes”) that reside next to a RiPP, rather than by the RiPP sequence itself. Therefore,
BOA has a capability to identify non-orthologous RiPP replacements if those RiPPs maintain homologous
context genes. However, if the RiPPs do not have context genes, BOA may not detect those RiPPs. Also, since
BOA is trained on bacteriocin context genes only, it is most suited for that type of RiPPs.

Although the all-ORF mode searches a larger set of ORFs than the motif-ORF mode, it does not
necessarily result in an increased number of identified RiPPs after matching ORFs against the spectral dataset.
Indeed, the peptide-spectrum matches that are statistically significant in the motif-ORF mode may become
statistically insignificant in the all-ORF mode because the search space in the all-ORF mode is orders of
magnitude larger than in the motif-ORF mode, resulting in an increased false discovery rate (FDR). Because
MetaMiner only reports statistically significant peptide-spectrum matches, the all-ORF mode may miss some
peptides identified in the motif-ORF mode. Conversely, because MetaMiner searches more ORFs in the all-
ORF mode than in the motif-ORF mode, the motif-ORF mode may miss some peptides identified in the all-
ORF mode.



Figure S1 shows a comparison of the performance of MetaMiner with all-ORF and motif-ORF
genome mining approaches on the ACTI dataset. At the extremely conservative 0% FDR, MetaMiner in the
motif-ORF mode identified three unknown RiPPs and five known RiPPs. MetaMiner in the all-ORF mode
identified only two known RiPPs at 0% FDR. Note that while the all-ORF mode improves on the motif-ORF
mode for the STANDARD dataset, the motif-ORF mode improves on the all-ORF mode for the ACTI dataset.

RiPP Discovery. MetaMiner identified 31 known RiPPs and discovered seven unknown RiPPs in various
datasets, including Actinomyces strains, Bacillus strains, Cyanobacteria strains, sponge microbiome,
microbial isolates from the International Space Station, and human microbiome (see STAR methods for
details). Table S1 provides information about all the RiPPs identified at 1% FDR by MetaMiner. Among the
31 known RiPPs, 23 were identified in the strains identical to the previous reports, three were identified in
strains with 99% or higher 16S rRNA similarity, two were identified in the same species, one was identified
in the same genus, and two were identified in the same samples (Table S2, Figures S7-S11, S13). The seven
unknown RiPPs belong to various classes, including lanthipeptides, lassopeptides, cynobactins, and phenol-
soluble modulins classes (Figure 2). Their putative biosynthetic gene clusters contain all the essential genes
responsible for the modifications (Figures 2, S2-S6, S12, and S14).

Confirmation of wewakazole identification. MetaMiner identified wewakazole in a polar fraction from the
extract of the strain PNG26APR06-4, a marine cyanobacterium collected at Kape Point, Papua New Guinea.
Wewakazole was first reported by the co-authors of this paper (W.H.G.) from another Papua New Guinea
collection of Lyngbya majuscula (revised to Moorea producens) obtained from Wewak Bay (Nogle et al.,
2003). Subsequently a related compound, wewakazole B was isolated from a Red Sea collection of this
cyanobacterium (Lopez et al., 2016). To validate the MetaMiner’s identification of wewakazole from strain
PNG26APRO6-4, reverse phase Cis column chromatography and preparative HPLC separations were
successful in the isolation of 31.2 pig of this compound. The compound possessed the same molecular formula
as wewakazole, CsoH72N 1,015, based on the molecular ion sodium adduct [M+Na]* in the HR-ESI-MS (m/z
1163.5282, Figure S15). Its chemical identity was further confirmed utilizing 'H, HSQC and HMBC NMR
data, which allowed for direct comparison with data previously reported for wewakazole (Supplementary
Figure S16-S18) (Nogle et al., 2003). Moreover, the tandem mass spectrum and retention time of the isolated
compound matched the data previously reported for wewakazole (Figures S19 and S20) (Nogle et al., 2003).
Furthermore, the ECCD spectrum resembled that of wewakazole B (Lopez et al., 2016), and the specific
rotation showed the same sign as previously reported for wewakazole (Nogle et al., 2003), excluding the
possibility of an enantiomeric relationship of this isolate to that of wewakazole (Figure S21). Thus, the
compound identified by MetaMiner was isolated and its identity was confirmed as wewakazole.

Discussion

While recent genome mining efforts have revealed over 20,000 hypothetical RiPP-encoding
biosynthetic gene clusters (Hadjithomas et al., 2015), only 35 RiPPs matching these biosynthetic gene clusters
have been identified so far. To keep pace with the speed of microbial genome sequencing, high-throughput
methods for structure elucidation of RiPPs are needed that combine metagenomics, genome mining, and
peptidomics. MetaMiner extends our previous RiPPquest tool (limited to lanthipeptides) to lassopeptides,
LAPs, linaridins, glycocins, cyanobactins, and proteusins, and enables the blind search for RiPPs with unusual
modifications.

Studies describing RiPPs are usually limited to the analysis of a single peptide or a few related
peptides. The first application of MetaMiner revealed many known RiPPs, as well as their unknown analogs,
and seven novel RiPPs (three lanthipeptide, one lassopeptide, two peptide-spectrum matches and one cyclic
cyanobactin) along with their numerous analogs, from only eight spectral datasets. MetaMiner identifications
were validated by the isolation of the RiPP metabolite wewakezole and confirmation of its structure by
orthogonal approaches, confirming that the MetaMiner prediction was correct. In contrast to the existing
genome mining approaches that rely on known biosynthetic gene cluster motifs (Weber et al., 2015),
MetaMiner in the all-ORF mode has the ability to discover unknown biosynthetic gene clusters (with
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previously unknown motifs) that encode novel RiPPs (e.g. Compound Bac-ISS-2196 and cyanobactin X) that
are very different from all the currently known RiPPs and thus are not captured by the existing genome mining
tools. MetaMiner can potentially make RiPP identification as robust as peptide identification in the traditional
proteomics.

We further evaluated the performance of MetaMiner on eight paired mass spectral and
genomics/metagenomics datasets. In a positive control dataset collected on various isolated RiPPs, MetaMiner
correctly identified all the 18 known RiPPs. In a dataset collected on various Actinomyces strains, MetaMiner
identified eight RiPPs, among which five have been previously reported in similar strains. In a dataset
collected on sponge microbiome, MetaMiner successfully discovered a known compound polytheonamide
previously reported in the same sample. In a dataset of Bacillus strains, a known RiPP lichenicidin is
discovered in an unknown producer. In a dataset collected on strains from the human microbiome, MetaMiner
discovered an interesting known quorum sensing autoinducer peptide from a Staphylococcus strain. Moreover,
MetaMiner identified multiple phenol-soluble modulins, a class of secreted staphylococcal peptides that have
the ability to lyse human neutrophils, the main cellular defense line against Staphylococcus aureus infection.
The production of AIP and phenol-soluble modulins have been previously reported in related Staphylococcus
strains, but this is the first time these molecules are identified in the human microbiome. MetaMiner also
identified a known RiPP, wewakezole, in a cyanobacterial strain, which was confirmed by subsequent
isolation and identification by nuclear magnetic resonance.

In this paper we used a target-decoy strategy to control the false discovery rate of MetaMiner. For
each dataset, we reported all the RiPPs identified at 1% FDR threshold. This resulted in the identification of
38 RiPPs after analyzing 10 million spectra. While the discovery of only 38 RiPPs might look pessimistic at
first glance, our spectral networking analysis shows that these 10 million spectra cluster into only 8071
families. Moreover, searching these families against known chemical structures using Dereplicator+ shows
that many of these families belong to non-ribosomal peptides, polyketides, terpenes and other classes of
natural products. While the discovery of 38 RiPPs by searching 10 million spectra provides a proof of concept
for the MetaMiner method, the presented method is applicable to any mass spectral / genomics / metagenomics
data collected on the isolated microbes/microbial communities.

Currently, only 1% of the spectra from GNPS dataset has been searched against the
genomic/metagenomic references using MetaMiner. The other 99% of the spectra in GNPS are not
accompanied with the genomics/metagenomics data, making it impossible to search them. Recent
genome/metagenome mining studies have revealed hundreds of thousands of biosynthetic gene clusters with
uncharacterized small molecules from the publicly available genomic / metagenomic data in the National
Center for Biotechnology Information (NCBI) and the Joint Genome Institute (JGI) repositories. A portion of
the unannotated spectra in GNPS datasets are likely formed by the small molecule products of biosynthetic
gene clusters from these publicly available genomes/metagenomes.

MetaMiner enables rapid search of billions of mass spectra from GNPS infrastructure against the
metagenomics/reference genome datasets collected on the microbial communities. MetaMiner is capable of
searching large metagenomics and mass spectral datasets in order to construct catalogues of unknown
antimicrobial molecules that can be used as drug leads in high-throughput screening efforts.
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Figure 1. MetaMiner pipeline analyzes the paired genome/metagenome assemblies and tandem mass spectra
from isolated microbes or bacterial/fungal communities. Starting from the genome assemblies, MetaMiner (a)
identifies putative Biosynthetic gene cluster and the corresponding precursor peptides, (b) constructs target
and decoy putative RiPP structure databases (c) matches tandem mass spectra against the constructed post-
translationally modified RiPP structures database using Dereplicator, and (d) enlarges the set of described
RiPPs via spectral networking (Bandeira et al., 2007; Watrous et al., 2012). In addition to DNA assemblies,
MetaMiner software can also accept various types of input data, including shotgun reads data, antiSMASH
output and BOA output.

Figure 2. Chemotypes and putative gene clusters of seven unknown RiPPs discovered by MetaMiner as well
as wewakazole. In the column chemotype, post-translationally modified amino acids are shown in bold red.
In the precursor column, the green part will be cut and modified, to produce the chemotype. In gene cluster,
different colors indicate different types of proteins annotated by DFAST (Tanizawa et al., 2018) and HMMER
(Eddy, 2011).

STAR Methods

KEY RESOURCES TABLE
REAGENT or RESOURCE \ SOURCE \ IDENTIFIER
Deposited Data
Standard dataset (STANDARD) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV000079506;
ftp://massive.ucsd.e
du/MSV000079622




Actinomycetes dataset (ACTI) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV000078839;
ftp://massive.ucsd.e
du/MSV000078604

Bacillus dataset (BACIL) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV000078552

Space station dataset (SPACE) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV000080102

Sponge dataset (SPONGE) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV0000786706

Cyanobacteria dataset (CYANQO) tandem mass spectra GNPS ftp://massive.ucsd.e
du/MSV000078568

Reference Human Microbiome isolates (HUMAN-iso) GNPS ftp://massive.ucsd.e

tandem mass spectra du/MSV000078556

Human Microbiome isolates from Cystic Fibrosis GNPS ftp://massive.ucsd.e

patients (HUMAN-CF) tandem mass spectra du/MSV000080251

Software and Algorithms

MetaMiner This paper https://github.com/m
ohimanilab/MetaMin
er

antiSMASH (Medema et al., 2011; | https://antismash.se

Weber et al., 2015) condarymetabolites.
org/#!/download

BOA (Morton et al., 2015) https://github.com/id
oerg/BOA

SPAdes (Bankevich et al., https://github.com/ab

2012) lab/spades
metaSPAdes (Nurk et al., 2017) https://github.com/ab
lab/spades

HMMER (Eddy, 2011) http://hmmer.org/

DFAST (Tanizawa et al., https://dfast.nig.ac.jp

Watrous et al., 2012)

2018) /
Dereplicator (Mohimani et al., https://github.com/ab
2017) lab/npdtools
GNPS (Wang et al., 2016) https://gnps.ucsd.ed
u/ProteoSAFe/static/
gnps-splash.jsp
Spectral network (Bandeira et al., 2007; | https://ccms-

ucsd.github.io/GNPS
Documentation/netw
orking/

LEAD CONTACT AND MATERIALS AVAILABILITY
Further information and requests for resources should be directed to and will be fulfilled by the Lead
Contact, Hosein Mohimani (hoseinm@andrew.cmu.edu). This study did not generate new unique reagents.

METHOD DETAILS

Datasets.

We analyzed the following paired datasets of spectra and genome/metagenome data

(all datasets, with the exception of the BACIL dataset, contain high-resolution spectra):

e Standard dataset (STANDARD). This small dataset consists of 18 spectra of known RiPPs that were used
for benchmarking MetaMiner (GNPS datasets MSV000079506 and MSV000079622). Spectra were collected
from purified RiPPs from Prochlorococcus marinus MIT 9313 (four analogs of prochlorosins), Geobacillus
thermodenitrificans NG80 (geobacillin), Bacillus subtilis NCIB 3610 (sublancin), Bacillus halodurans C-125
(haloduracin), Lactococcus lactis (lacticin), Bacillus cereus SJ1 (two analogs of bicereusins) and
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Ruminococcus flavefaciens FD-1 (eight analogs of flavecins). For these strains, we used genome sequence
information available from the NCBI RefSeq database. AntiSMASH identified 70 biosynthetic gene clusters
in these genomes, including 29 RiPP-encoding clusters. Since the genome sequence of the lacticin producer
is not available, we searched its spectrum against its described biosynthetic gene clusters (Rince et al., 1997).

» Actinomycetes dataset (ACTI). This dataset consists of 473,135 spectra from bacterial extracts of 36
Actinomycetales strains with sequenced genomes (Duncan et al., 2015; Mohimani et al., 2014b) (GNPS
datasets MSV000078839 and MSV000078604). We downloaded sequence information for these 36 genomes
from the NCBI RefSeq database. AntiSMASH identified 1,140 biosynthetic gene clusters in these genomes,
including 168 RiPP-encoding clusters. Furthermore, we downloaded and mixed the short reads from 21 out
of 36 strains that were available from the NCBI Short Reads Archive (read length 150 bp, insert sizes varying
between 200 bp to 300 bp). We randomly down-sampled each dataset to 10 million reads (resulting in an
approximate 300-fold coverage), and mixed all the reads to simulate a metagenomic dataset for this sample.
Running MetaMiner on the separate genomes from this dataset resulted in the same set of identified RiPPs as
obtained from the simulated metagenome.

* Bacillus dataset (BACIL). This dataset consists of 40,051 low-resolution spectra from bacterial extracts of
two Bacillus strains with known genomes (Nguyen et al., 2013) (MSV000078552). We downloaded genome
sequence information for these isolates from the NCBI RefSeq dataset. AntiSMASH identified 12 biosynthetic
gene clusters (one RiPP-encoding cluster) in B. amyloliquefaciens FZB42 and 11 biosynthetic gene clusters
(four RiPP-encoding clusters) in B. licheniformis ES-221.

* Space station dataset (SPACE). This dataset consists of 58,422 spectra from bacterial extracts of 21 isolated
strains collected at the International Space Station (MSV000080102). Among these strains, twelve are
Staphylococcus, six Bacillus, four Enterobacteria and one Acinetobacter strain. The complete genomes are
available for all of these strains (Singh et al., 2016; Venkateswaran et al., 2017). AntiSMASH identified 119
biosynthetic gene clusters, including 27 RiPP-encoding clusters.

» Sponge dataset (SPONGE). This dataset contains 223,135 spectra from bacterial extracts of Theonella
swinhoei (GNPS dataset MSV000078670). Wilson et al. (Wilson et al., 2014) used the SPONGE dataset to
analyze the RiPP polytheonamide. We searched spectra from the SPONGE dataset against the genome of
Theonella swinhoei symbiont Candidatus Entotheonella sp. TSY 1. In this dataset, AntiSMASH identified 27
biosynthetic gene clusters, including four RiPP-encoding clusters.

* Cyanobacteria dataset (CYANO). This dataset consists of 11,921,457 spectra from the extracts of 317
cyanobacterial samples (Luzzatto-Knaan et al., 2017) (GNPS dataset MSV000078568). Each sample
represents a mini-metagenome (Nurk et al., 2013; Nurk et al., 2017) with one or a few highly abundant strains.
The metagenomic reads were collected from 195 of these samples. AntiSMASH identified 2,898 biosynthetic
gene clusters in the 195 cyanobacterial metagenomes, including 491 RiPP-encoding clusters.

* Reference Human Microbiome isolates (HUMAN-iso). This dataset contains 137,556 spectra from 17 human
microbiome isolates (GNPS dataset MSV000078556). AntiSMASH identified 55 biosynthetic gene clusters
in the 17 human microbiome isolate references, including 12 RiPP-encoding clusters.

* Human Microbiome isolates from Cystic Fibrosis patients. (HUMAN-CF). This dataset contains 7,554,646
spectra from 276 microbial isolates from the sputum culture of cystic fibrosis patients, (GNPS dataset
MSV000080251). The short reads were collected on these 276 samples, and each sample contains a mixture
of few (from one to eleven) bacteria. AntiSMASH identified 1,111 biosynthetic gene clusters, including 171
RiPP-encoding clusters.

MetaMiner pipeline.

MetaMiner works with paired genomic/metagenomic and tandem mass spectral data collected on isolated
microbes or bacterial/fungal communities. The genomic input to MetaMiner could be short-read data, genome
assemblies or extracted biosynthetic gene clusters, in fastq or fasta format. The mass spectral input to
MetaMiner is in MGF or mzXML format. If the input is short read data, MetaMiner first assembles the reads
into contigs. The pipeline for MetaMiner is described below:

(a) Constructing the database of putative RiPP precursor peptides. MetaMiner uses two strategies to search
for precursor peptides, motif-ORF and all-ORF strategy. The motif-ORF strategy is based on the annotations
9



from antiSMASH (Medema et al., 2011; Weber et al., 2015), and BOA (Morton et al., 2015). In this mode,
MetaMiner first extracts genes related to secondary metabolites and their neighboring fragments from
antiSMASH and BOA annotations. Then, putative peptides are constructed based on the ORFs within these
clusters that are sequentially similar to known RiPPs. This strategy usually identifies a small number of
putative precursor peptides per biosynthetic gene cluster, resulting in a fast and specific peptidogenomics
approach. This strategy is not sensitive, as the peptides that do not have sequence similarity to the known
RiPPs are missed.

In all-ORF mode, MetaMiner (i) translates DNA sequence into protein sequence using 6-frame
translation, (ii) runs HMMer (Eddy, 2011) on the resulting sequences to detect all the modification enzymes,
(iii) constructs a 10kbp window centered at each modification enzyme (this window is called the putative
biosynthetic gene cluster), (iv) identifies all the ORFs shorter than a pre-defined threshold (default is 200
amino acids) in each putative biosynthetic gene cluster. This approach is capable of discovering RiPPs that
do not have any sequence similarity to the known RiPPs.

(b) Constructing target and decoy databases of post-translantionally modified RiPPs. To construct the target
RiPP structure database, MetaMiner first searches the biosynthetic gene clusters for all the modification
enzymes previously reported in RiPPs (Arnison et al., 2013) using HMMer. If a specific modification enzyme
is found in a biosynthetic gene cluster, MetaMiner considers the corresponding modification for the identified
precursor peptide/peptides. Table S3 lists the modifications currently considered by MetaMiner, along with
the corresponding amino acid residues and mass shifts.

To construct the database of decoy RiPPs, MetaMiner (i) creates a decoy database of RiPP precursor
peptides by randomly shuffling each peptide in the target precursor database (Elias and Gygi, 2007), and (ii)
creates decoy RiPPs from decoy precursors in the same way as the target RiPPs.

(c) Matching spectra against the target and decoy RiPPs. MetaMiner uses a modified version of Dereplicator
(Mohimani et al., 2017) for searching spectra against the database of putative target/decoy RiPPs as follows
(i) theoretical spectra for all the target/decoy RiPPs are constructed, (ii) peptide-spectrum matches are
generated and scored, (iii) p-values of the peptide-spectrum matches are computed using MS-DPR (Mohimani
et al., 2013), (iv) false discovery rates are computed using the decoy database, and (v) statistically significant
peptide-spectrum matches are output as putative RiPP identifications.

While exhaustive generation of the candidate RiPPs and scoring by Dereplicator is feasible when a
small number of modifications are considered, the running time rapidly increases with the increase in the
number of modifications. We use the spectral alignment technique to efficiently find modifications of the core
peptide that best matches the spectrum (Mohimani et al., 2014a; Pevzner et al., 2000; Pevzner et al., 2001;
Tsur et al., 2005). This dynamic programming approach restricts the number of modifications and penalizes
high score matches with more than one modification.

While the dynamic programming approach from RiPPquest (Mohimani et al., 2014a) can handle
modifications in linear peptides, it is not applicable to cyclic peptides. MetaMiner uses a brute-force approach
to search all the RiPP modifications of each candidate cyclic peptide against all the spectra. To make this
possible, MetaMiner uses a faster scoring strategy that utilized the sparsity of mass spectra and theoretical
spectra. We do not currently perform blind modification searches for cyclic peptides due to the inherent
computational complexity.

(d) Enlarging the set of identified RiPPs via spectral networking. The set of RiPP identifications is enlarged
via spectral networks (Bandeira et al., 2007; Watrous et al., 2012).

Post-translational modifications of RiPPs.

While constructing target and decoy databases of post-translationally modified RiPPs (Figure 1b),
MetaMiner considers various types of modifications based on the class of the RiPPs. Table S3 lists
the modifications considered by MetaMiner.

Extraction and tandem mass spectrometry.
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Below we describe the process of growth (for isolated samples), extraction, and analysis of each dataset by
mass spectrometry.

ACTI dataset. A total of 39 strains of Streptomyces were grown on A1, MS and RS agar, extracted sequentially
with ethyl acetate, butanol and methanol, and analyzed on Agilent 6530 Accurate-Mass Q-TOF spectrometer
coupled to an Agilent 1260 LC system.

BACIL dataset. Bacillus strains were grown on ISP2 agar, extracted with a solvent mixture of 65:35
acetonitrile:water with 0.05% formic acid, and analyzed on a NanoDESI LTQ-FT (Thermo Electron) mass
spectrometer.

SPACE dataset. Samples from International Space Station were extracted using 50% MeOH and analyzed on
a maXis Impact mass spectrometer coupled to C18 RP-UHPLC.

CYANO dataset. A total of 317 cyanobacterial collections were extracted repetitively with CH2Cl.:MeOH 2:1,
dried in vacuo, and fractionated into nine fractions (A-I) by silica gel vacuum liquid chromatography (VLC)
using a stepwise gradient of hexanes/EtOAc and EtOAc/MeOH, and analyzed on a Maxis Impact mass
spectrometer coupled to C18 RP-UHPLC.

HUMAN-iso dataset. Cultures of reference human microbiome isolates were extracted using 50% EtOH and
analyzed on a maXis Impact mass spectrometer (Bruker Daltonics) coupled to a UltiMate 3000 UPLC system
(Thermo Scientific) as described here (Bouslimani et al. 2015).

HUMAN-CF dataset. Microbial isolates from the sputum culture of cystic fibrosis patients were extracted
using 50% MeOH and analyzed on a maXis qTof mass spectrometer coupled to UltiMate 3000 Dionex UPLC
system.

Confirmation of wewakazole structure.

HESIRMS data was collected using an Agilent 6230 Accurate-Mass TOFMS in positive ion mode by the
UCSD Chemistry and Biochemistry Mass Spectrometry Facility. UV-Vis data were recorded on a Beckman
Coulter DU 800 spectrophotometer at room temperature in MeOH (Amax at 214 nm and 217 nm). The ECCD
spectrum was measured in MeOH using an Aviv 215 CD spectrometer. Optical rotation was measured at 25
°C using a JASCO P-2000 polarimeter ([a]* -3.9 (¢ 0.022, MeOH) (lit. (Nogle et al., 2003), [a]*'p -46.8 (¢
0.41, MeOH)). A Bruker AVANCE III 600 MHz NMR with a 1.7 mm dual tune TCI cryoprobe was used to
record '"H, HMBC and HSQC NMR data at 298 °K with standard Bruker pulse sequences. A Varian Vx 500
NMR with a cold probe and z-gradients was used to record '"H NMR data at 298 K with standard pulse
sequences. NMR data were recorded in CDCl; and calibrated using residual solvent peaks (dy 7.26 and oc
77.16).

For LC-MS analysis, a Thermo Finnigan Surveyor HPLC System was used with a Phenomenex
Kinetex 5 pum C18 100 x 4.6 mm column coupled to a Thermo-Finnigan LCQ Advantage Max Mass
Spectrometer. Samples were separated using a linear gradient with (A) H,O + 0.1% FA to (B) CH3CN + 0.1%
FA at a flow rate of 0.6 mL/min. The gradient started with a 5 min isocratic step at 30% B followed by an
increase to 99% B over 17 min, which was held at 99% B for 5 min and then moved to 30% B in 1 min, and
then held for 4 min. Mass spectra were acquired with an ESI source ranging from m/z 200-1600.

Preparative HPLC was done using a Kinetex 5 pm C18 150 x 10.0 mm semi-preparative column
coupled to a Thermo Dionex Ultimate 3000 pump, RS autosampler, RS diode array detector, and automated
fraction collector.

Isolation of wewakazole.
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The fraction in which MetaMiner identified wewakazole from sample PNG26APR06-4. This fraction (26.5 mg)
was initially separated using a 500 mg/8mL Xpertek[] Cis SPE cartridge with 100% CH;3CN to yield 10.7 mg
after concentration under vacuum. The compound was isolated from this eluent by semi-preparative HPLC
using a linear gradient with (A) H,O + 0.1% FA to (B) CH3CN at a flow rate of 4 mL/min, and the
chromatogram was monitored at 218 nm. The gradient started with a 5 min isocratic step at 40% B followed
by an increase to 95% B in 25 min. Approximately 2.5 mg of the sample were injected per run to yield 31.2
Ug of wewakazole (tr=13.0 min).

Practical guidelines for MetaMiner.

MetaMiner takes paired genomic and metabolomics data as input. For genomic data, MetaMiner accepts raw
nucleotide sequences (.fasta file), antiSMASH output (.final.gbk file) or BOA output (.fasta file). For users
who have raw DNA short reads data ( fastq file), we provide a brief guidance about how to assemble the short
read by SPAdes/metaSPAdes in the MetaMiner manual. For metabolomics data, MetaMiner accepts MGF or
mzXML files. MetaMiner output is the report of the detected RiPPs in the plain text tab-separated files (.tsv).
The spectral network step can be done either through the MetaMiner pipeline, or the GNPS infrastructure
(https://ccms-ucsd.github.io/GNPSDocumentation/). For more details, please refer to the MetaMiner manual
at https://github.com/mohimanilab/MetaMiner.

QUANTIFICATION AND STATISTICAL ANALYSIS
Estimating false discovery rate

For each dataset, we use 1% false discovery rate (FDR) threshold for RiPP identification. The FDR is
estimated with a target-decoy approach. For each target RiPP, we create a corresponding decoy RiPP by first
randomly shuffling its precursor peptide sequence and then applying all the modifications of the target RiPP
to the shuffled precursor peptide. Given a p-value threshold, denote the number of peptide-spectrum matches
in the decoy database and target database as Ngecoyrand N ¢ o¢- The FDR can be estimated as follows:

_tNdecoyt

Nt o

DATA AND CODE AVAILABILITY
MetaMiner is available as a command line tool at https://github.com/mohimanilab/MetaMiner.
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Figure 1. MetaMiner Pipeline Analyzes the Paired Genome or Metagenome Assemblies and
Tandem Mass Spectra from Isolated Microbes or Bacterial or Fungal Communities Starting from
the genome assemblies, MetaMiner (A) identifies putative biosynthetic gene cluster and the
corresponding precursor peptides, (B) constructs target and decoy putative RiPP structure
databases (C) matches tandem mass spectra against the constructed post-translationally modified
RIPP structures database using Dereplicator, and (D) enlarges the set of described RiPPs via
spectral networking (Bandeira et al., 2007, Watrous et al., 2012). In addition to DNA assemblies,
MetaMiner software can also accept various types of input data, including shotgun reads data,
antiSMASH output and BOA output. p values in (C) indicates the statistical significance of
peptide-spectrum matches generated by Dereplicator.
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Figure 2. Chemotypes and Putative Gene Clusters of Seven Unknown RiPPs Discovered by MetaMiner
as well as Wewakazole. In the column chemotype, post-translationally modified amino acids are shown in
bold red. In the precursor column, the green part will be cut and modified to produce the chemotype. In
gene cluster, different colors indicate different types of proteins annotated by DFAST (Tanizawa et al.,

2018) and HMMER (Eddy, 2011).
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