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Summary 
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important class of natural 

products that contain antibiotics and a variety of other bioactive compounds. The existing methods for 

discovery of RiPPs by combining genome mining and computational mass spectrometry are limited to 

discovering specific classes of RiPPs from small datasets, and they fail to handle unknown post-translational 

modifications. We present MetaMiner, a software tool for addressing these challenges that is compatible with 

large-scale screening platforms for natural product discovery. After searching millions of spectra in the Global 

Natural Products Social (GNPS) molecular networking infrastructure against just eight genomic and 
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metagenomic datasets, MetaMiner discovered 31 known and seven unknown RiPPs from diverse microbial 

communities including human microbiome, lichen microbiome, and micro-organisms isolated from the 

International Space Station. 
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Ribosomally synthesized and post-translationally modified peptides, computational mass spectrometry, 
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Introduction 
Natural products are back at the center of attention as pharmaceutical leads, as exemplified by the 

recent discoveries of bioactive natural product drugs (Fischbach and Walsh, 2009; Harvey et al., 2015; Li and 

Vederas, 2009; Ling et al., 2015). Recent advances in metagenomics are transforming the field of natural 

product discovery by enabling the recovery of microbial genomes directly from the environmental samples. 

This has revolutionized our understanding about the microbial composition of various communities and their 

biosynthetic gene clusters. Biosynthetic gene cluster are sets of genes that synthesize microbial small 

molecules from simple building blocks. The metagenomes of microbial communities contain thousands of 

biosynthetic gene clusters with unknown small molecule products, making them an untapped resource for the 

future antimicrobial drug discovery (Charlop-Powers et al., 2016; Donia et al., 2014; Hadjithomas et al., 

2015). 

The biosynthetic gene clusters of natural products in microbial genomes can be identified by sequence 

similarity searches (Li et al., 2009). Moreover, in the case of peptide natural products (PNPs), it is possible to 

predict the corresponding putative structures based on the genes present in their biosynthetic gene clusters 

(Oman and van der Donk, 2010; Stachelhaus et al., 1999). However, the structure of PNPs usually differs 

from these predictions due to post-translational modifications applied by the enzymes in the biosynthetic gene 

cluster. For example, in the case of polytheonamides, the PNP has 49 residues, with 21 post-translational 

modifications, making it nearly impossible to predict the PNP structure solely based on the genomic data. 

Therefore, in addition to genome mining, metabolomics methods including mass spectrometry and nuclear 

magnetic resonance are routinely used for determining the structure of the molecular product of biosynthetic 

gene cluster (Doroghazi et al., 2014; Medema et al., 2014; Mohimani et al., 2014a; Mohimani et al., 2014b). 

The recent launch of the Global Natural Products Social (GNPS) molecular networking infrastructure 

(Wang et al., 2016) brought together over a thousand laboratories worldwide that have already generated an 

unprecedented amount of tandem mass spectra of natural products. Computational mass spectrometry methods 

have revealed thousands of known small molecules and their unknown variants in various microbiome 

datasets from the GNPS molecular networking (Gurevich et al., 2018; Mohimani et al., 2017; Mohimani et 

al., 2018). However, the majority of the spectra in these datasets remains unannotated, which is often referred 

as the ‘dark matter of metabolomics’. A portion of these spectra represent unknown small molecule products 

of biosynthetic gene clusters encoded in the microbial genomes, and computational algorithms are needed for 

illuminating this dark matter (Donia and Fischbach, 2015; Medema and Fischbach, 2015; Mohimani and 

Pevzner, 2016; Vaniya and Fiehn, 2015; Walsh, 2015). 

This paper focuses on the integration of computational mass spectrometry and genome mining for 

discovering unknown Ribosomally synthesized and Post-translationally modified Peptides (RiPPs). RiPPs are 

a rapidly expanding group of natural products with applications in pharmaceutical and food industries 

(Arnison et al., 2013). RiPPs are produced through the Post Ribosomal Peptide Synthesis (PRPS) pathway 

(Arnison et al., 2013). Initially, RiPPs are synthesized as precursor peptides encoded by RiPP structural genes. 

The RiPP structural genes are often short, making their annotations difficult (Mohimani et al., 2014a). The 

precursor peptide consists of a prefix leader peptide appended to a suffix core peptide. The leader peptide is 

important for the recognition by the RiPP post-translational modification enzymes and for exporting the RiPP 

out of the cell. The core peptide is post-translationally modified by the RiPP biosynthetic machinery, 

proteolytically cleaved from the leader peptide to yield the mature RiPP, and exported out of the cell by 

transporters. The precursor peptide and the enzymes responsible for its post-translational modifications 

(PTMs), proteolytic cleavage, and transportation are usually located within a contiguous biosynthetic gene 

cluster of the RiPP. The length of a microbial RiPP-encoding biosynthetic gene cluster typically varies from 
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1,000 to 40,000 bp (average length 10,000 bp). Since RiPP-encoding biosynthetic gene clusters are much 

longer than the current length of short reads generated by next generation sequencing, DNA assembly is a 

critical part of any RiPP discovery approach based on short reads. 

Genome mining refers to the interpretation of a natural product biosynthetic gene cluster to infer 

information about the natural product itself. The discoveries of coelichelin in Streptomyces coelicolor (Challis 

and Ravel, 2000; Lautru et al., 2005) and orfamide in Pseudomonas fluorescens Pf-5 (Gross et al., 2007; 

Paulsen et al., 2005) were the first examples of genome mining that were followed by discoveries of various 

bioactive RiPPs in microbial samples. Donia et al. discovered lactocillin, a thiopeptide antibiotic from the 

human vaginal isolates that showed activity against vaginal pathogens (Donia et al., 2014). Zhao et al. 

discovered eight novel lanthipeptides with antibiotic activity from a ruminant bacterium (Zhao and van der 

Donk, 2016). Freeman et al. and Wilson et al. used metagenome mining of a sponge to assign a biosynthetic 

gene cluster to the known RiPP polytheonamide, with post-translational modifications distributed across 49 

residues (Freeman et al., 2012; Wilson et al., 2014). Thus, large-scale metagenomics projects, such as Earth 

Microbiome Project (Gilbert et al., 2014; Thompson et al., 2017), American Gut Project (McDonald et al., 

2018), and Human Microbiome Project (Human Microbiome Project, 2012a, b; Lloyd-Price et al., 2017), have 

the potential to contribute to RiPP discovery, provided that improved bioinformatics tools for the enhanced 

identification of novel RiPPs are available. However, discovery of lactocillin and other recently identified 

RiPPs were not achieved by an automated process, but rather used time-consuming manual analysis that 

required the isolation of microbes, and the purification of microbial metabolites. Our goal is to discover the 

RiPPs directly from the mass spectrometry and metagenomics information using a fully automated approach. 

While recent analysis of thousands of bacterial and fungal genomes has already resulted in the 

discovery of many putative biosynthetic gene clusters, including 20,000 RiPP-encoding biosynthetic gene 

clusters in the Integrated Microbial Genome Atlas of biosynthetic Gene Clusters (IMG-ABC), connecting 

these biosynthetic gene clusters to their metabolites has not kept pace with the speed of microbial genome 

sequencing (Hadjithomas et al., 2015). Currently, only 35 out of these roughly 20,000 RiPP-encoding 

biosynthetic gene clusters in IMG-ABC have been experimentally connected to their RiPPs (Hadjithomas et 

al., 2015; Medema et al., 2015). Linking RiPP-encoding biosynthetic gene clusters to unknown RiPPs requires 

the development of computational tools. 

Kersten et al. introduced the peptidogenomics approach to RiPP discovery, which refers to finding 

sequential amino acid tags from the tandem mass spectra (peptidomics) and mining them in the assembled 

DNA reads obtained from the same sample (Kersten et al., 2011). Mohimani et al. introduced RiPPquest, the 

first automated approach to RiPP discovery by combining mass spectrometry and genome mining (Mohimani 

et al., 2014a). This tool is based on Peptide-Spectrum Matches, which are generated by aligning predicted 

spectra of putative RiPPs annotated by genome mining. If a peptide-spectrum match between a candidate 

RiPP predicted from the assembled genome and a spectrum is statistically significant, then RiPPquest reports 

it as a putative annotation of the spectrum. RiPPquest resulted in the identification of the lanthipeptide 

‘informatipeptin’, the first natural product discovered in a fully automatic fashion by a computer. However, 

RiPPquest has a number of limitations: (a) it is limited to lanthipeptides which constitutes only one of 19 

classes of RiPPs (Arnison et al., 2013), (b) it is designed for small genomes and small spectral datasets, making 

it rather slow in the case of large metagenomic datasets and the entire GNPS infrastructure, (c) it does not 

report the statistical significance of the identified RiPPs, a key requirement for any high-throughput peptide 

identification tool, and (d) it is limited to searches for a predefined set of post-translational modification 

(PTMs) and does not enable blind searches for unknown PTMs. Since RiPPquest, other tools have been 

developed that combine genomics with mass spectrometry based discovery (Medema et al., 2014; Skinnider 

et al., 2015). However, these tools are limited to the analysis of a single or few spectra from isolated genomes 

and cannot scale to search billions of spectra from GNPS against metagenomics datasets. 

This paper describes MetaMiner, a tool that enables searching mass spectrometry databases against 

metagenomics short reads sequenced from microbiome samples for rapid discovery of RiPPs. Application 

of MetaMiner to mass spectrometry and metagenomics data from the human microbiome resulted in the 

identification of known and unknown peptides from the human microbiota, including autoinducer peptide 

(AIP), Mec-PSM, delta-toxin, and their unknown variants. 
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Results 

Brief description of MetaMiner. MetaMiner pipeline (Figure 1) analyzes the paired genome/metagenome 

assemblies and tandem mass spectra from isolated microbes or bacterial/fungal communities. Starting from 

the genome assemblies, MetaMiner (a) identifies putative biosynthetic gene clusters and the corresponding 

precursor peptides, (b) constructs target and decoy putative RiPP structure databases (c) matches tandem mass 

spectra against the constructed RiPP structure databases using Dereplicator, and (d) enlarges the set of 

described RiPPs via spectral networking (Bandeira et al., 2007; Watrous et al., 2012). 

Advances of MetaMiner. In step (a), MetaMiner searches for diverse classes of RiPPs, including 

lanthipeptides, lassopeptides, linear azole containing peptides (LAPs), linaridins, glycocins, cyanobactins, 

phenol-soluble modulins, AIP, and proteusins (versus only lanthipeptides by RiPPquest). Moreover, 

MetaMiner supports searching for user-defined classes of RiPPs. In step (b)-(c), MetaMiner implement an 

approach to estimate false discovery rate through target decoy analysis by searching mass spectra against 

decoy RiPP structures generated by random shuffling. In step (c), MetaMiner uses an efficient algorithm for 

searching sparse vectors corresponding to mass spectra and RiPP structures, increasing the speed by two 

orders of magnitude compared to RiPPquest, thus enabling searches of the entire GNPS databases against 

metagenomes. Unusual modifications are handled through blind post-translational modification searching. In 

addition, in contrast to RiPPquest (which was designed for analyzing low-resolution spectra), MetaMiner 

enables searching high-resolution mass spectra, and allows user-adjustable precursor and product ion 

thresholds. 

Genome mining. MetaMiner uses antiSMASH, and BOA for the identification of RiPP-encoding biosynthetic 

gene clusters and has two genome mining modes for selecting Open Reading Frames (ORFs), a slow all-ORF 

mode introduced in RiPPquest (Mohimani et al., 2014a), and a fast motif-ORF mode. The all-ORF approach 

analyzes all short ORFs within a biosynthetic gene cluster, while the motif-ORF approach relies on RiPP 

motif finding (Blin et al., 2014) to narrow the set of putative RiPP-encoding ORFs. 

We illustrate positive and negative features of these approaches through genome mining of the 

Streptomyces roseosporous NRRL 11379 genome obtained from the ACTI dataset (see STAR methods for 

details of all the datasets). AntiSMASH found 30 biosynthetic gene clusters in this genome, including six 

RiPP-encoding biosynthetic gene clusters. Within these six biosynthetic gene clusters, the motif-ORF 

approach identified only two short ORFs matching core RiPP motifs, while the all-ORF approach identified 

14,694 short ORFs. 

When analyzing all the 36 strains from the ACTI strains, antiSMASH discovered 1,140 biosynthetic 

gene clusters, including 168 RiPP-encoding biosynthetic gene clusters. MetaMiner in the motif-ORF and all-

ORF modes identified 67 and 565,138 short ORFs, respectively. This example illustrates that the motif-ORF 

mode may result in a four order of magnitude reduction in the number of ORF candidates as compared to the 

all-ORF mode. However, antiSMASH predictions are based on searching for a set of known motifs, therefore 

the motif-ORF mode misses some ORFs with novel RiPP motifs. BOA is based on identifying known 

proximal genes (“context genes”) that reside next to a RiPP, rather than by the RiPP sequence itself. Therefore, 

BOA has a capability to identify non-orthologous RiPP replacements if those RiPPs maintain homologous 

context genes. However, if the RiPPs do not have context genes, BOA may not detect those RiPPs. Also, since 

BOA is trained on bacteriocin context genes only, it is most suited for that type of RiPPs. 

Although the all-ORF mode searches a larger set of ORFs than the motif-ORF mode, it does not 

necessarily result in an increased number of identified RiPPs after matching ORFs against the spectral dataset. 

Indeed, the peptide-spectrum matches that are statistically significant in the motif-ORF mode may become 

statistically insignificant in the all-ORF mode because the search space in the all-ORF mode is orders of 

magnitude larger than in the motif-ORF mode, resulting in an increased false discovery rate (FDR). Because 

MetaMiner only reports statistically significant peptide-spectrum matches, the all-ORF mode may miss some 

peptides identified in the motif-ORF mode. Conversely, because MetaMiner searches more ORFs in the all-

ORF mode than in the motif-ORF mode, the motif-ORF mode may miss some peptides identified in the all-

ORF mode. 
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Figure S1 shows a comparison of the performance of MetaMiner with all-ORF and motif-ORF 

genome mining approaches on the ACTI dataset. At the extremely conservative 0% FDR, MetaMiner in the 

motif-ORF mode identified three unknown RiPPs and five known RiPPs. MetaMiner in the all-ORF mode 

identified only two known RiPPs at 0% FDR. Note that while the all-ORF mode improves on the motif-ORF 

mode for the STANDARD dataset, the motif-ORF mode improves on the all-ORF mode for the ACTI dataset. 

RiPP Discovery. MetaMiner identified 31 known RiPPs and discovered seven unknown RiPPs in various 

datasets, including Actinomyces strains, Bacillus strains, Cyanobacteria strains, sponge microbiome, 

microbial isolates from the International Space Station, and human microbiome (see STAR methods for 

details). Table S1 provides information about all the RiPPs identified at 1% FDR by MetaMiner. Among the 

31 known RiPPs, 23 were identified in the strains identical to the previous reports, three were identified in 

strains with 99% or higher 16S rRNA similarity, two were identified in the same species, one was identified 

in the same genus, and two were identified in the same samples (Table S2, Figures S7-S11, S13). The seven 

unknown RiPPs belong to various classes, including lanthipeptides, lassopeptides, cynobactins, and phenol-

soluble modulins classes (Figure 2). Their putative biosynthetic gene clusters contain all the essential genes 

responsible for the modifications (Figures 2, S2-S6, S12, and S14). 

Confirmation of wewakazole identification. MetaMiner identified wewakazole in a polar fraction from the 

extract of the strain PNG26APR06-4, a marine cyanobacterium collected at Kape Point, Papua New Guinea. 

Wewakazole was first reported by the co-authors of this paper (W.H.G.) from another Papua New Guinea 

collection of Lyngbya majuscula (revised to Moorea producens) obtained from Wewak Bay (Nogle et al., 

2003). Subsequently a related compound, wewakazole B was isolated from a Red Sea collection of this 

cyanobacterium (Lopez et al., 2016). To validate the MetaMiner’s identification of wewakazole from strain 

PNG26APR06-4, reverse phase C18 column chromatography and preparative HPLC separations were 

successful in the isolation of 31.2 µg of this compound. The compound possessed the same molecular formula 

as wewakazole, C59H72N12O12, based on the molecular ion sodium adduct [M+Na]+ in the HR-ESI-MS (m/z 

1163.5282, Figure S15). Its chemical identity was further confirmed utilizing 1H, HSQC and HMBC NMR 

data, which allowed for direct comparison with data previously reported for wewakazole (Supplementary 

Figure S16-S18) (Nogle et al., 2003). Moreover, the tandem mass spectrum and retention time of the isolated 

compound matched the data previously reported for wewakazole (Figures S19 and S20) (Nogle et al., 2003). 

Furthermore, the ECCD spectrum resembled that of wewakazole B (Lopez et al., 2016), and the specific 

rotation showed the same sign as previously reported for wewakazole (Nogle et al., 2003), excluding the 

possibility of an enantiomeric relationship of this isolate to that of wewakazole (Figure S21). Thus, the 

compound identified by MetaMiner was isolated and its identity was confirmed as wewakazole. 

Discussion 

While recent genome mining efforts have revealed over 20,000 hypothetical RiPP-encoding 

biosynthetic gene clusters (Hadjithomas et al., 2015), only 35 RiPPs matching these biosynthetic gene clusters 

have been identified so far. To keep pace with the speed of microbial genome sequencing, high-throughput 

methods for structure elucidation of RiPPs are needed that combine metagenomics, genome mining, and 

peptidomics. MetaMiner extends our previous RiPPquest tool (limited to lanthipeptides) to lassopeptides, 

LAPs, linaridins, glycocins, cyanobactins, and proteusins, and enables the blind search for RiPPs with unusual 

modifications. 

Studies describing RiPPs are usually limited to the analysis of a single peptide or a few related 

peptides. The first application of MetaMiner revealed many known RiPPs, as well as their unknown analogs, 

and seven novel RiPPs (three lanthipeptide, one lassopeptide, two peptide-spectrum matches and one cyclic 

cyanobactin) along with their numerous analogs, from only eight spectral datasets. MetaMiner identifications 

were validated by the isolation of the RiPP metabolite wewakezole and confirmation of its structure by 

orthogonal approaches, confirming that the MetaMiner prediction was correct. In contrast to the existing 

genome mining approaches that rely on known biosynthetic gene cluster motifs (Weber et al., 2015), 

MetaMiner in the all-ORF mode has the ability to discover unknown biosynthetic gene clusters (with 
5 



  

               
                    

                
  
              

              
                 
                 
            

                  
                 
              
              

                
               

                  
               

        
                  

                   
                   

                 
             

                
                   

                  
         

               
               

             
              

               
                

                 
         

               
             

               
               

  

  

                  
                 
                

               
                

              
              

                
                

                   
               

previously unknown motifs) that encode novel RiPPs (e.g. Compound Bac-ISS-2196 and cyanobactin X) that 

are very different from all the currently known RiPPs and thus are not captured by the existing genome mining 

tools. MetaMiner can potentially make RiPP identification as robust as peptide identification in the traditional 

proteomics. 

We further evaluated the performance of MetaMiner on eight paired mass spectral and 

genomics/metagenomics datasets. In a positive control dataset collected on various isolated RiPPs, MetaMiner 

correctly identified all the 18 known RiPPs. In a dataset collected on various Actinomyces strains, MetaMiner 

identified eight RiPPs, among which five have been previously reported in similar strains. In a dataset 

collected on sponge microbiome, MetaMiner successfully discovered a known compound polytheonamide 

previously reported in the same sample. In a dataset of Bacillus strains, a known RiPP lichenicidin is 

discovered in an unknown producer. In a dataset collected on strains from the human microbiome, MetaMiner 

discovered an interesting known quorum sensing autoinducer peptide from a Staphylococcus strain. Moreover, 

MetaMiner identified multiple phenol-soluble modulins, a class of secreted staphylococcal peptides that have 

the ability to lyse human neutrophils, the main cellular defense line against Staphylococcus aureus infection. 

The production of AIP and phenol-soluble modulins have been previously reported in related Staphylococcus 

strains, but this is the first time these molecules are identified in the human microbiome. MetaMiner also 

identified a known RiPP, wewakezole, in a cyanobacterial strain, which was confirmed by subsequent 

isolation and identification by nuclear magnetic resonance. 

In this paper we used a target-decoy strategy to control the false discovery rate of MetaMiner. For 

each dataset, we reported all the RiPPs identified at 1% FDR threshold. This resulted in the identification of 

38 RiPPs after analyzing 10 million spectra. While the discovery of only 38 RiPPs might look pessimistic at 

first glance, our spectral networking analysis shows that these 10 million spectra cluster into only 8071 

families. Moreover, searching these families against known chemical structures using Dereplicator+ shows 

that many of these families belong to non-ribosomal peptides, polyketides, terpenes and other classes of 

natural products. While the discovery of 38 RiPPs by searching 10 million spectra provides a proof of concept 

for the MetaMiner method, the presented method is applicable to any mass spectral / genomics / metagenomics 

data collected on the isolated microbes/microbial communities. 

Currently, only 1% of the spectra from GNPS dataset has been searched against the 

genomic/metagenomic references using MetaMiner. The other 99% of the spectra in GNPS are not 

accompanied with the genomics/metagenomics data, making it impossible to search them. Recent 

genome/metagenome mining studies have revealed hundreds of thousands of biosynthetic gene clusters with 

uncharacterized small molecules from the publicly available genomic / metagenomic data in the National 

Center for Biotechnology Information (NCBI) and the Joint Genome Institute (JGI) repositories. A portion of 

the unannotated spectra in GNPS datasets are likely formed by the small molecule products of biosynthetic 

gene clusters from these publicly available genomes/metagenomes. 

MetaMiner enables rapid search of billions of mass spectra from GNPS infrastructure against the 

metagenomics/reference genome datasets collected on the microbial communities. MetaMiner is capable of 

searching large metagenomics and mass spectral datasets in order to construct catalogues of unknown 

antimicrobial molecules that can be used as drug leads in high-throughput screening efforts. 
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Figure 1. MetaMiner pipeline analyzes the paired genome/metagenome assemblies and tandem mass spectra 

from isolated microbes or bacterial/fungal communities. Starting from the genome assemblies, MetaMiner (a) 

identifies putative Biosynthetic gene cluster and the corresponding precursor peptides, (b) constructs target 

and decoy putative RiPP structure databases (c) matches tandem mass spectra against the constructed post-

translationally modified RiPP structures database using Dereplicator, and (d) enlarges the set of described 

RiPPs via spectral networking (Bandeira et al., 2007; Watrous et al., 2012). In addition to DNA assemblies, 

MetaMiner software can also accept various types of input data, including shotgun reads data, antiSMASH 

output and BOA output. 

Figure 2. Chemotypes and putative gene clusters of seven unknown RiPPs discovered by MetaMiner as well 

as wewakazole. In the column chemotype, post-translationally modified amino acids are shown in bold red. 

In the precursor column, the green part will be cut and modified, to produce the chemotype. In gene cluster, 

different colors indicate different types of proteins annotated by DFAST (Tanizawa et al., 2018) and HMMER 

(Eddy, 2011). 

STAR Methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Standard dataset (STANDARD) tandem mass spectra GNPS ftp://massive.ucsd.e 
du/MSV000079506; 
ftp://massive.ucsd.e 
du/MSV000079622 
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Actinomycetes dataset (ACTI) tandem mass spectra GNPS ftp://massive.ucsd.e 
du/MSV000078839; 
ftp://massive.ucsd.e 
du/MSV000078604 

Bacillus dataset (BACIL) tandem mass spectra GNPS ftp://massive.ucsd.e 
du/MSV000078552 

Space station dataset (SPACE) tandem mass spectra GNPS ftp://massive.ucsd.e 
du/MSV000080102 

Sponge dataset (SPONGE) tandem mass spectra GNPS ftp://massive.ucsd.e 

du/MSV000078 70 

Cyanobacteria dataset (CYANO) tandem mass spectra GNPS ftp://massive.ucsd.e 
du/MSV000078568 

Reference Human Microbiome isolates (HUMAN-iso) 
tandem mass spectra 

GNPS ftp://massive.ucsd.e 
du/MSV000078556 

Human Microbiome isolates from Cystic Fibrosis 
patients (HUMAN-CF) tandem mass spectra 

GNPS ftp://massive.ucsd.e 
du/MSV000080251 

Software and Algorithms 

MetaMiner This paper https://github.com/m 
ohimanilab/MetaMin 
er 

antiSMASH (Medema et al., 2011; 
Weber et al., 2015) 

https://antismash.se 
condarymetabolites. 
org/#!/download 

BOA (Morton et al., 2015) https://github.com/id 
oerg/BOA 

SPAdes (Bankevich et al., 
2012) 

https://github.com/ab 
lab/spades 

metaSPAdes (Nurk et al., 2017) https://github.com/ab 
lab/spades 

HMMER (Eddy, 2011) http://hmmer.org/ 

DFAST (Tanizawa et al., 
2018) 

https://dfast.nig.ac.jp 
/ 

Dereplicator (Mohimani et al., 
2017) 

https://github.com/ab 
lab/npdtools 

GNPS (Wang et al., 2016) https://gnps.ucsd.ed 
u/ProteoSAFe/static/ 
gnps-splash.jsp 

Spectral network (Bandeira et al., 2007; 
Watrous et al., 2012) 

https://ccms-
ucsd.github.io/GNPS 
Documentation/netw 
orking/ 

LEAD CONTACT AND MATERIALS AVAILABILITY 
Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Hosein Mohimani (hoseinm@andrew.cmu.edu). This study did not generate new unique reagents. 

METHOD DETAILS 

Datasets. 

We analyzed the following paired datasets of spectra and genome/metagenome data 
(all datasets, with the exception of the BACIL dataset, contain high-resolution spectra): 

• Standard dataset (STANDARD). This small dataset consists of 18 spectra of known RiPPs that were used 
for benchmarking MetaMiner (GNPS datasets MSV000079506 and MSV000079622). Spectra were collected 
from purified RiPPs from Prochlorococcus marinus MIT 9313 (four analogs of prochlorosins), Geobacillus 
thermodenitrificans NG80 (geobacillin), Bacillus subtilis NCIB 3610 (sublancin), Bacillus halodurans C-125 
(haloduracin), Lactococcus lactis (lacticin), Bacillus cereus SJ1 (two analogs of bicereusins) and 
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Ruminococcus flavefaciens FD-1 (eight analogs of flavecins). For these strains, we used genome sequence 
information available from the NCBI RefSeq database. AntiSMASH identified 70 biosynthetic gene clusters 
in these genomes, including 29 RiPP-encoding clusters. Since the genome sequence of the lacticin producer 
is not available, we searched its spectrum against its described biosynthetic gene clusters (Rince et al., 1997). 

• Actinomycetes dataset (ACTI). This dataset consists of 473,135 spectra from bacterial extracts of 36 
Actinomycetales strains with sequenced genomes (Duncan et al., 2015; Mohimani et al., 2014b) (GNPS 
datasets MSV000078839 and MSV000078604). We downloaded sequence information for these 36 genomes 
from the NCBI RefSeq database. AntiSMASH identified 1,140 biosynthetic gene clusters in these genomes, 
including 168 RiPP-encoding clusters. Furthermore, we downloaded and mixed the short reads from 21 out 
of 36 strains that were available from the NCBI Short Reads Archive (read length 150 bp, insert sizes varying 
between 200 bp to 300 bp). We randomly down-sampled each dataset to 10 million reads (resulting in an 
approximate 300-fold coverage), and mixed all the reads to simulate a metagenomic dataset for this sample. 
Running MetaMiner on the separate genomes from this dataset resulted in the same set of identified RiPPs as 
obtained from the simulated metagenome. 

• Bacillus dataset (BACIL). This dataset consists of 40,051 low-resolution spectra from bacterial extracts of 
two Bacillus strains with known genomes (Nguyen et al., 2013) (MSV000078552). We downloaded genome 
sequence information for these isolates from the NCBI RefSeq dataset. AntiSMASH identified 12 biosynthetic 
gene clusters (one RiPP-encoding cluster) in B. amyloliquefaciens FZB42 and 11 biosynthetic gene clusters 
(four RiPP-encoding clusters) in B. licheniformis ES-221. 

• Space station dataset (SPACE). This dataset consists of 58,422 spectra from bacterial extracts of 21 isolated 
strains collected at the International Space Station (MSV000080102). Among these strains, twelve are 
Staphylococcus, six Bacillus, four Enterobacteria and one Acinetobacter strain. The complete genomes are 
available for all of these strains (Singh et al., 2016; Venkateswaran et al., 2017). AntiSMASH identified 119 
biosynthetic gene clusters, including 27 RiPP-encoding clusters. 

• Sponge dataset (SPONGE). This dataset contains 223,135 spectra from bacterial extracts of Theonella 
swinhoei (GNPS dataset MSV000078670). Wilson et al. (Wilson et al., 2014) used the SPONGE dataset to 
analyze the RiPP polytheonamide. We searched spectra from the SPONGE dataset against the genome of 
Theonella swinhoei symbiont Candidatus Entotheonella sp. TSY1. In this dataset, AntiSMASH identified 27 
biosynthetic gene clusters, including four RiPP-encoding clusters. 

• Cyanobacteria dataset (CYANO). This dataset consists of 11,921,457 spectra from the extracts of 317 
cyanobacterial samples (Luzzatto-Knaan et al., 2017) (GNPS dataset MSV000078568). Each sample 
represents a mini-metagenome (Nurk et al., 2013; Nurk et al., 2017) with one or a few highly abundant strains. 
The metagenomic reads were collected from 195 of these samples. AntiSMASH identified 2,898 biosynthetic 
gene clusters in the 195 cyanobacterial metagenomes, including 491 RiPP-encoding clusters. 

• Reference Human Microbiome isolates (HUMAN-iso). This dataset contains 137,556 spectra from 17 human 
microbiome isolates (GNPS dataset MSV000078556). AntiSMASH identified 55 biosynthetic gene clusters 
in the 17 human microbiome isolate references, including 12 RiPP-encoding clusters. 

• Human Microbiome isolates from Cystic Fibrosis patients. (HUMAN-CF). This dataset contains 7,554,646 
spectra from 276 microbial isolates from the sputum culture of cystic fibrosis patients, (GNPS dataset 
MSV000080251). The short reads were collected on these 276 samples, and each sample contains a mixture 
of few (from one to eleven) bacteria. AntiSMASH identified 1,111 biosynthetic gene clusters, including 171 
RiPP-encoding clusters. 

MetaMiner pipeline. 

MetaMiner works with paired genomic/metagenomic and tandem mass spectral data collected on isolated 

microbes or bacterial/fungal communities. The genomic input to MetaMiner could be short-read data, genome 

assemblies or extracted biosynthetic gene clusters, in fastq or fasta format. The mass spectral input to 

MetaMiner is in MGF or mzXML format. If the input is short read data, MetaMiner first assembles the reads 

into contigs. The pipeline for MetaMiner is described below: 

(a) Constructing the database of putative RiPP precursor peptides. MetaMiner uses two strategies to search 

for precursor peptides, motif-ORF and all-ORF strategy. The motif-ORF strategy is based on the annotations 
9 



  

                    
              
                

                 
               

                   
    

              
                 

                 
                 

                 
            

  
               

               
                 

                
              

          
                 

                  
               

  
                 

                 
               

               
                  

         
                

                 
                 
                   

                
         

              
                 

                   
                 

                 
    

  
                  
            

  
     

  
             

                 

      
  

      

from antiSMASH (Medema et al., 2011; Weber et al., 2015), and BOA (Morton et al., 2015). In this mode, 

MetaMiner first extracts genes related to secondary metabolites and their neighboring fragments from 

antiSMASH and BOA annotations. Then, putative peptides are constructed based on the ORFs within these 

clusters that are sequentially similar to known RiPPs. This strategy usually identifies a small number of 

putative precursor peptides per biosynthetic gene cluster, resulting in a fast and specific peptidogenomics 

approach. This strategy is not sensitive, as the peptides that do not have sequence similarity to the known 

RiPPs are missed. 

In all-ORF mode, MetaMiner (i) translates DNA sequence into protein sequence using 6-frame 

translation, (ii) runs HMMer (Eddy, 2011) on the resulting sequences to detect all the modification enzymes, 

(iii) constructs a 10kbp window centered at each modification enzyme (this window is called the putative 

biosynthetic gene cluster), (iv) identifies all the ORFs shorter than a pre-defined threshold (default is 200 

amino acids) in each putative biosynthetic gene cluster. This approach is capable of discovering RiPPs that 

do not have any sequence similarity to the known RiPPs. 

(b) Constructing target and decoy databases of post-translantionally modified RiPPs. To construct the target 

RiPP structure database, MetaMiner first searches the biosynthetic gene clusters for all the modification 

enzymes previously reported in RiPPs (Arnison et al., 2013) using HMMer. If a specific modification enzyme 

is found in a biosynthetic gene cluster, MetaMiner considers the corresponding modification for the identified 

precursor peptide/peptides. Table S3 lists the modifications currently considered by MetaMiner, along with 

the corresponding amino acid residues and mass shifts. 

To construct the database of decoy RiPPs, MetaMiner (i) creates a decoy database of RiPP precursor 

peptides by randomly shuffling each peptide in the target precursor database (Elias and Gygi, 2007), and (ii) 

creates decoy RiPPs from decoy precursors in the same way as the target RiPPs. 

(c) Matching spectra against the target and decoy RiPPs. MetaMiner uses a modified version of Dereplicator 

(Mohimani et al., 2017) for searching spectra against the database of putative target/decoy RiPPs as follows 

(i) theoretical spectra for all the target/decoy RiPPs are constructed, (ii) peptide-spectrum matches are 

generated and scored, (iii) p-values of the peptide-spectrum matches are computed using MS-DPR (Mohimani 

et al., 2013), (iv) false discovery rates are computed using the decoy database, and (v) statistically significant 

peptide-spectrum matches are output as putative RiPP identifications. 

While exhaustive generation of the candidate RiPPs and scoring by Dereplicator is feasible when a 

small number of modifications are considered, the running time rapidly increases with the increase in the 

number of modifications. We use the spectral alignment technique to efficiently find modifications of the core 

peptide that best matches the spectrum (Mohimani et al., 2014a; Pevzner et al., 2000; Pevzner et al., 2001; 

Tsur et al., 2005). This dynamic programming approach restricts the number of modifications and penalizes 

high score matches with more than one modification. 

While the dynamic programming approach from RiPPquest (Mohimani et al., 2014a) can handle 

modifications in linear peptides, it is not applicable to cyclic peptides. MetaMiner uses a brute-force approach 

to search all the RiPP modifications of each candidate cyclic peptide against all the spectra. To make this 

possible, MetaMiner uses a faster scoring strategy that utilized the sparsity of mass spectra and theoretical 

spectra. We do not currently perform blind modification searches for cyclic peptides due to the inherent 

computational complexity. 

(d) Enlarging the set of identified RiPPs via spectral networking. The set of RiPP identifications is enlarged 

via spectral networks (Bandeira et al., 2007; Watrous et al., 2012). 

Post-translational modifications of RiPPs. 

While constructing target and decoy databases of post-translationally modified RiPPs (Figure 1b), 

MetaMiner considers various types of modifications based on the class of the RiPPs. Table S3 lists 

the modifications considered by MetaMiner. 

Extraction and tandem mass spectrometry. 
10 



  

   
                  

    
  

                    
               

        
  

                 

               
    

  
                

          
  

               
                 
                

      
  

               
                 
          

  
               

                  
  

  
     

   
                 

               
                   

                  
                    

                      
                    

                     
                  

   
               

                  
                    

                        
                           

                   
                 

                 
    

  
    

    

Below we describe the process of growth (for isolated samples), extraction, and analysis of each dataset by 

mass spectrometry. 

ACTI dataset. A total of 39 strains of Streptomyces were grown on A1, MS and R5 agar, extracted sequentially 

with ethyl acetate, butanol and methanol, and analyzed on Agilent 6530 Accurate-Mass Q-TOF spectrometer 

coupled to an Agilent 1260 LC system. 

BACIL dataset. Bacillus strains were grown on ISP2 agar, extracted with a solvent mixture of 65:35 

acetonitrile:water with 0.05% formic acid, and analyzed on a NanoDESI LTQ-FT (Thermo Electron) mass 

spectrometer. 

SPACE dataset. Samples from International Space Station were extracted using 50% MeOH and analyzed on 

a maXis Impact mass spectrometer coupled to C18 RP-UHPLC. 

CYANO dataset. A total of 317 cyanobacterial collections were extracted repetitively with CH2Cl2:MeOH 2:1, 

dried in vacuo, and fractionated into nine fractions (A-I) by silica gel vacuum liquid chromatography (VLC) 

using a stepwise gradient of hexanes/EtOAc and EtOAc/MeOH, and analyzed on a Maxis Impact mass 

spectrometer coupled to C18 RP-UHPLC. 

HUMAN-iso dataset. Cultures of reference human microbiome isolates were extracted using 50% EtOH and 

analyzed on a maXis Impact mass spectrometer (Bruker Daltonics) coupled to a UltiMate 3000 UPLC system 

(Thermo Scientific) as described here (Bouslimani et al. 2015). 

HUMAN-CF dataset. Microbial isolates from the sputum culture of cystic fibrosis patients were extracted 

using 50% MeOH and analyzed on a maXis qTof mass spectrometer coupled to UltiMate 3000 Dionex UPLC 

system. 

Confirmation of wewakazole structure. 

HESIRMS data was collected using an Agilent 6230 Accurate-Mass TOFMS in positive ion mode by the 

UCSD Chemistry and Biochemistry Mass Spectrometry Facility. UV-Vis data were recorded on a Beckman 

Coulter DU 800 spectrophotometer at room temperature in MeOH (λmax at 214 nm and 217 nm). The ECCD 

spectrum was measured in MeOH using an Aviv 215 CD spectrometer. Optical rotation was measured at 25 

°C using a JASCO P-2000 polarimeter ([α]25 -3.9 (c 0.022, MeOH) (lit. (Nogle et al., 2003), [α]21 
D -46.8 (c 

0.41, MeOH)). A Bruker AVANCE III 600 MHz NMR with a 1.7 mm dual tune TCI cryoprobe was used to 

record 1H, HMBC and HSQC NMR data at 298 oK with standard Bruker pulse sequences. A Varian Vx 500 

NMR with a cold probe and z-gradients was used to record 1H NMR data at 298 K with standard pulse 

sequences. NMR data were recorded in CDCl3 and calibrated using residual solvent peaks (δH 7.26 and δC 

77.16). 

For LC-MS analysis, a Thermo Finnigan Surveyor HPLC System was used with a Phenomenex 

Kinetex 5 μm C18 100 x 4.6 mm column coupled to a Thermo-Finnigan LCQ Advantage Max Mass 

Spectrometer. Samples were separated using a linear gradient with (A) H2O + 0.1% FA to (B) CH3CN + 0.1% 

FA at a flow rate of 0.6 mL/min. The gradient started with a 5 min isocratic step at 30% B followed by an 

increase to 99% B over 17 min, which was held at 99% B for 5 min and then moved to 30% B in 1 min, and 

then held for 4 min. Mass spectra were acquired with an ESI source ranging from m/z 200-1600. 

Preparative HPLC was done using a Kinetex 5 μm C18 150 x 10.0 mm semi-preparative column 

coupled to a Thermo Dionex Ultimate 3000 pump, RS autosampler, RS diode array detector, and automated 

fraction collector. 

Isolation of wewakazole. 
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The fraction in which MetaMiner identified wewakazole from sample PNG26APR06-4. This fraction (26.5 mg) 

was initially separated using a 500 mg/8mL Xpertek® C18 SPE cartridge with 100% CH3CN to yield 10.7 mg 

after concentration under vacuum. The compound was isolated from this eluent by semi-preparative HPLC 

using a linear gradient with (A) H2O + 0.1% FA to (B) CH3CN at a flow rate of 4 mL/min, and the 

chromatogram was monitored at 218 nm. The gradient started with a 5 min isocratic step at 40% B followed 

by an increase to 95% B in 25 min. Approximately 2.5 mg of the sample were injected per run to yield 31.2 

µg of wewakazole (tR=13.0 min). 

Practical guidelines for MetaMiner. 

MetaMiner takes paired genomic and metabolomics data as input. For genomic data, MetaMiner accepts raw 

nucleotide sequences (.fasta file), antiSMASH output (.final.gbk file) or BOA output (.fasta file). For users 

who have raw DNA short reads data (.fastq file), we provide a brief guidance about how to assemble the short 

read by SPAdes/metaSPAdes in the MetaMiner manual. For metabolomics data, MetaMiner accepts MGF or 

mzXML files. MetaMiner output is the report of the detected RiPPs in the plain text tab-separated files (.tsv). 

The spectral network step can be done either through the MetaMiner pipeline, or the GNPS infrastructure 

(https://ccms-ucsd.github.io/GNPSDocumentation/). For more details, please refer to the MetaMiner manual 

at https://github.com/mohimanilab/MetaMiner. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Estimating false discovery rate 

For each dataset, we use 1% false discovery rate (FDR) threshold for RiPP identification. The FDR is 
estimated with a target-decoy approach. For each target RiPP, we create a corresponding decoy RiPP by first 
randomly shuffling its precursor peptide sequence and then applying all the modifications of the target RiPP 
to the shuffled precursor peptide. Given a p-value threshold, denote the number of peptide-spectrum matches 
in the decoy database and target database as ������ and � � . The FDR can be estimated as follows: � 

������ 
= 

� � 

DATA AND CODE AVAILABILITY 
MetaMiner is available as a command line tool at https://github.com/mohimanilab/MetaMiner. 
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Figure 1. MetaMiner Pipeline Analyzes the Paired Genome or Metagenome Assemblies and 

Tandem Mass Spectra from Isolated Microbes or Bacterial or Fungal Communities Starting from 

the genome assemblies, MetaMiner (A) identifies putative biosynthetic gene cluster and the 

corresponding precursor peptides, (B) constructs target and decoy putative RiPP structure 

databases (C) matches tandem mass spectra against the constructed post-translationally modified 

RiPP structures database using Dereplicator, and (D) enlarges the set of described RiPPs via 

spectral networking (Bandeira et al., 2007, Watrous et al., 2012). In addition to DNA assemblies, 

MetaMiner software can also accept various types of input data, including shotgun reads data, 

antiSMASH output and BOA output. p values in (C) indicates the statistical significance of 

peptide-spectrum matches generated by Dereplicator. 

20 



 

 

      

  

    

  

 

Figure 2. Chemotypes and Putative Gene Clusters of Seven Unknown RiPPs Discovered by MetaMiner 

as well as Wewakazole. In the column chemotype, post-translationally modified amino acids are shown in 

bold red. In the precursor column, the green part will be cut and modified to produce the chemotype. In 

gene cluster, different colors indicate different types of proteins annotated by DFAST (Tanizawa et al., 

2018) and HMMER (Eddy, 2011). 
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