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ABSTRACT: Operational forecast models are necessary for the prediction of weather events in real time. Verification of
these models must be performed to assess model skills and areas in need of improvement, particularly with different types
of weather events that may occur. Despite the devastating impacts that can be caused by tropical cyclones (TCs) that un-
dergo extratropical transition (ET) and become post-tropical cyclones (PTCs), these storms have not been extensively
studied in the context of short-term weather prediction. This study completes the first analysis of the Global Forecast Sys-
tem (GFS) and a preoperational version of the newly operational Hurricane Analysis and Forecast System (HAFS) models
in forecasting the occurrence of ET and the rainfall associated with ET storms in the North Atlantic basin. GFS’s skill ex-
ceeds that of HAFS in forecasting the occurrence of ET, but HAFS tends to have lower track and rain-rate errors in the
fully tropical phase of ET storms’ life cycles. Both models simulate rain rates that are often too high near the storm center
and fail to capture the larger area of moderate rain rates that greatly contributes to total rainfall accumulation. The discrep-
ancies in rain rates between the models and Integrated Multi-satellitE Retrievals for GPM (IMERG) could be attributed
to the models’ tendency to keep storms too intense and too compact with an overly strong warm core, even throughout the
ET process.
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1. Introduction

The prediction of tropical cyclones (TCs) is vital to protect-
ing lives and property in areas affected by these storms. TC
hazards include powerful winds, heavy rainfall, and storm
surge that can lead to both coastal and inland flooding. To
produce more accurate forecasts and effectively communicate
risks to the general public, many broadcast meteorologists
and emergency managers rely on National Weather Service
products and numerical weather prediction models (Morss
et al. 2022). These model forecasts guide decision-making and
the response to the rapidly evolving conditions in their respec-
tive regions (Morss et al. 2022). As TCs move into the midlati-
tudes, some storms undergo an extratropical transition (ET)
into post-tropical cyclones (PTCs) and lose their tropical char-
acteristics (i.e., warm core and symmetric nature; Hart 2003).
Throughout the ET process, the wind field and precipitation
associated with the TC undergo dramatic shifts and expansion
(Jones et al. 2003) as the TC interacts with midlatitude fea-
tures. This phenomenon is fairly common, with nearly 50% of
all North Atlantic (NATL) hurricanes undergoing at least
one ET during their life cycles (Hart and Evans 2001;
Zarzycki et al. 2017; Bieli et al. 2019). Furthermore, ET com-
plicates the forecasting process due to scale interactions

(Keller et al. 2011; Leonardo and Colle 2017; Balaguru et al.
2020) and precipitation shifts (Jones et al. 2003; Evans et al.
2017), especially if ET occurs during or close to landfall. An
example of this situation is Hurricane Sandy (2012), which
was responsible for 72 direct fatalities and $50 billion in damage
in the Northeast and mid-Atlantic regions (Blake et al. 2013).

Many operational forecast models are used to forecast TCs
and their impacts. Global operational models such as the Na-
tional Oceanic and Atmospheric Administration’s (NOAA)
Global Forecast System (GFS) are used by forecasters to aid
in the prediction of TC- and PTC-related events (Morss et al.
2022). Global models tend to have coarse resolution com-
pared to regional models, which can limit their ability to fore-
cast the smaller-scale processes that drive phenomena like
TCs. Regional hurricane models excel in the prediction of
storm track, intensity, and precipitation while storms are in
their fully tropical phase (Dong et al. 2020; Hazelton et al.
2021; Ko et al. 2020; Alaka et al. 2022). These models have
shown continued improvement in track and intensity forecasts
in the last 20 years (Gopalakrishnan et al. 2021). Since 2007,
the Hurricane Forecast Improvement Project (HFIP) has
been devoted to improving regional hurricane models to re-
duce track and intensity errors as well as to improve the capa-
bility of predicting rapid intensification events (Gall et al.
2013). Over the course of the project, regional hurricane mod-
els have been developed, implemented operationally, and im-
proved in their forecasts of track and intensity by as much as
20% at all lead times in the last decade (Gopalakrishnan et al.
2021).

Since 2019, NOAA has been developing and testing the
Hurricane Analysis and Forecast System (HAFS) regional
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model as a next-generation replacement for the current oper-
ational regional hurricane models}the Hurricane Weather
Research and Forecasting Model (HWRF) and the Hurri-
canes in a Multiscale Ocean-coupled Nonhydrostatic model
(HMON) (Gopalakrishnan et al. 2021). HAFS not only shares
the same finite-volume cubed-sphere (FV3) dynamical core as
the most recent GFS (versions 15 and 16) but also includes
smaller moving nests centered on active storms to simulate
hurricanes at higher resolution than their surroundings (Alaka
et al. 2022). Extensive development over the last several years
resulted in the model undergoing real-time testing during the
2021 and 2022 hurricane seasons (Hazelton et al. 2022). In the
2019 season, HAFS had slightly less skillful intensity fore-
casts compared to HWRF and HMON at early forecast
hours, falling farther behind by day 5 (Dong et al. 2020). In
the near-real-time 2020 model runs, HAFS outperformed sev-
eral other operational regional and global models until day 5,
at which point the GFS forecasts had the lowest track errors
(Hazelton et al. 2022).

Development of the model continued, leading to the cur-
rent version of HAFS}which became operational in the 2023
hurricane season}improving track and intensity errors by as
much as 10% over HWRF for NATL TCs (Gall et al. 2013;
Mehra and Zhang 2023). Though these studies examined the
performance of regional hurricane models like HAFS in the
forecasting of fully tropical systems, no previous work details
the performance of these types of models during and after the
ET process. The spatial constraints of these limited domain
regional models could increase the challenges of forecasting
ET due to the inability to simulate upstream midlatitude fea-
tures (Gall et al. 2013), allowing some global models to out-
perform the regional models at long lead times (Hazelton
et al. 2021).

Regional and global operational forecasts of PTC-related
precipitation have not been extensively studied, yet impacts
on the United States alone from PTC precipitation can be
devastating. In recent years, Hurricanes Irene (2011), Sandy
(2012), and Ida (2021) have caused a combined $140 billion in
damage in their PTC phases alone (Avila and Cangialosi
2013; Blake et al. 2013; Beven et al. 2022). While not all tran-
sitioning storms produce this level of devastation, 1–2 of these
events occur each year on average along the East Coast of the
United States (Bower et al. 2022). Despite these widespread
flooding impacts, the majority of relevant prior work focused
on the track errors that emerge during ET. Kehoe et al.
(2007) examined west North Pacific ET events, discovering
that most of the large track errors at 96 and 120 h were due to
the direct interaction between an extratropical cyclone and a
TC. Evans et al. (2006) similarly discovered that cluster fore-
cast success significantly decreased after a TC began the ET
process. Leonardo and Colle (2020) also found that along-
track errors in ensemble forecasts were greater in ET cases
than in non-ET cases at similar latitudes. Translational speed
errors tend to worsen as well when ET occurs or is possible
(Leonardo and Colle 2020). This could partly be due to timing
errors in forecasting ET, which Bieli et al. (2020) note is an is-
sue with their statistical and operational models for forecast-
ing the ET process.

The combination of track and translational speed errors
creates a challenging situation for extreme precipitation and
flash flood forecasting, yet the effects of these model biases
on precipitation forecasts have not been widely studied. Aside
from Leonardo and Colle (2020), who assessed the standard-
ized differences among models’ representation of precipita-
tion in cases where cross-track errors were excessive, most
prior work on precipitation verification has focused instead
on the tropical phase of the storms’ life cycles. TC-related
precipitation forecasts have been verified extensively, particu-
larly the predictions from regional hurricane models such as
HWRF (Ko et al. 2020; Bachmann and Torn 2021; Wang and
Pu 2021); however, most of these analyses end when a storm
begins to lose its tropical characteristics or only study landfal-
ling storms (Ko et al. 2020; Bachmann and Torn 2021; Wang
and Pu 2021; Stackhouse et al. 2023).

The present study focuses on GFS and HAFS forecasts of
the precipitation resulting from transitioning TCs at all phases
of the storm life cycle. Both of these operational forecast
models have shown some skill in forecasting TC tracks, and
GFS has demonstrated the ability to forecast ET events
(Manikin et al. 2019; Liu et al. 2020, 2021). This study also
aims to quantify the skill of GFS and HAFS in forecasting the
occurrence and timing of ET. By combining the analysis of
biases in both track and translational speed with an assess-
ment of biases in rainfall rate forecasts, causes for specific pre-
cipitation forecast errors become evident. The remainder of
the paper is structured as follows: section 2 describes the data
and methods used in this study. The results concerning ET oc-
currence and track forecasts are presented in section 3. Rain-
fall errors are discussed in section 4. Section 5 details the
large-scale environments surrounding the storms, and a discus-
sion of the results and conclusions are included in section 6.

2. Data and methods

a. Datasets

1) GFS

The global operational model examined in this study is the
GFS. Data are obtained from the University Corporation for
Atmospheric Research (UCAR) Research Data Archive
GFS Global Forecast Grid Historical Archive, which contains
the deterministic forecast fields on a 0.258 horizontal resolu-
tion grid (NCEP 2007). The first 168 h (7 days) of each GFS
forecast, available in 3-hourly temporal resolution, are evalu-
ated to limit the impact of model error growth. All four daily
model runs are utilized in the analysis, initialized at 0000,
0600, 1200, and 1800 UTC daily for the selected days in the
2019–21 seasons.

In June 2019, GFSv15 was implemented using an FV3 dy-
namical core (Harris et al. 2021) as developed by the Geo-
physical Fluid Dynamics Laboratory (GFDL) (Manikin et al.
2019, 2020). This update intended to address specific issues
with the prior operational version of the GFS, including TC
track forecasts at longer lead times, false alarms for TC gene-
sis, and other issues not related to TC activity, such as improv-
ing the representation of the diurnal cycle of warm season
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precipitation in the United States (Manikin et al. 2019). When
specifically looking at TC simulation, the NOAA Environ-
mental Modeling Center (EMC) Model Evaluation Group
(MEG) reports a low bias in precipitation for certain extreme
NATL TC cases (e.g., Hurricane Florence, 2018), a reduction
in false alarms for TC genesis, and improvements in the short-
and medium-range track errors for TCs (Manikin et al. 2019,
2020). Intensity forecasts were improved at all lead times in
this version of the GFS, but the long-range track errors for
days 6 and 7 remained problematic. The MEG notes that
GFSv15 has a tendency to simulate TCs that have a greater
vertical extent than the observed TCs, making them more sus-
ceptible to steering by the upper-level winds (Dawson et al.
2018).

An additional update to the GFS was implemented in
March 2021, making GFSv16 operational for the 2021 hurri-
cane season. GFSv16 increased the number of vertical levels
from 64 to 127 while maintaining the same horizontal resolu-
tion and continuing to use the FV3 core. Some parameteriza-
tions were updated in this version but should have minimal
impacts on the precipitation forecasts, including radiative flux
calculations, the planetary boundary layer scheme, and gravity
wave parameterizations. Most importantly, GFSv16 is one-way
coupled to theWAVEWATCH-III wave model (Manikin et al.
2021). The update to v16 had some impact on TC forecasting
as assessed by the MEG (Manikin et al. 2021); for example, po-
tential TC precursors were identified at longer lead times at
the expense of a higher false alarm rate for TC genesis. NATL
TC track forecasts were improved particularly in the medium
range, and the weak bias in intensity was mitigated as well.
Finally, MEG noted a strong right-of-track bias at longer lead
times in NATL TCs, which is especially of interest to this study
of ET cases.

While it is not specifically designed to simulate hurricanes,
GFS has many strengths, such as the ability to simulate over a
week into the future and capture the atmospheric state of the
entire globe. GFS can be skillful in situations with large-scale
dynamical forcing due to its global domain and dynamical
core. This may prove advantageous in simulating interactions
between TCs and the midlatitude flow. However, other opera-
tional forecast models are specifically designed to simulate
hurricanes.

2) HAFS

The regional model assessed in this study is the HAFS
(Liu et al. 2020, 2021). HAFS was run in real time during the
2019–22 hurricane seasons leading up to its operational imple-
mentation in 2023. The model offers high spatial and tempo-
ral resolution, with 3-km horizontal grid spacing and 91
vertical levels up to a 10-hPa model top every 3 h until fore-
cast hour 120. The model is two-way coupled to the Hybrid
Coordinate Ocean Model (HYCOM; see HYCOM Docu-
mentation, https://www.hycom.org/hycom/documentation).
The ocean model receives 10-m wind, 2-m wind and humid-
ity, air–sea momentum flux, shortwave and longwave radiative
fluxes, and precipitation data from the atmosphere model,
while the atmosphere model ingests sea surface temperature

(SST) data from the ocean model. Note that for the 2021 sea-
son, the orographic gravity wave drag (GWD) parameteriza-
tion was turned on, while it had been turned off for the 2020
season. Both seasons have the convective GWD parameteriza-
tion turned off (Liu et al. 2020, 2021).

HAFS 0.1A (2020 version) performed similarly to the
HWRF regional hurricane forecast model in the 2020 season
for North Atlantic hurricanes’ track errors but improved on
eastern North Pacific hurricane tracks. Some experiments us-
ing other versions of HAFS for the 2020 season showed that
the inclusion of a scale-aware convection scheme further im-
proved track errors over HAFS 0.1A. Furthermore, the con-
vection scheme enabled HAFS to simulate stronger and
deeper vortices than the HAFS 0.1A model used in this study
(Liu et al. 2020). The scale-aware convection scheme was in-
cluded in the 2021 season’s HAFS 0.2A experiments, which
played a role in the improvements over track forecasts from
HAFS 0.1A. The HAFS 0.2A experiment track errors were
nearly identical to the operational GFS in 2021, but HAFS in-
tensity errors consistently outperformed those of GFS. Fi-
nally, comparing HAFS 0.2A to the operational HWRF in
2021 showed that HAFS 0.2A improved central pressure fore-
casts at all lead times as well as intensity errors beyond 48 h
into the forecast (Liu et al. 2021). These two experimental
runs of HAFS became the building blocks for the moving-
nest precursor (HAFS 0.3) to the 2023 fully operational ver-
sion of HAFS (Mehra and Zhang 2023; Hazelton et al. 2023).

3) IMERG

The Integrated Multi-satellitE Retrievals for GPM (IMERG)
Final Run v06 product offers 0.18 spatial resolution and 30-min
temporal resolution precipitation data (Huffman et al. 2019,
2020). Because of its high resolution, IMERG has been used
in recent years for the analysis of TCs (Rios Gaona et al.
2018; Bower et al. 2022; Stansfield and Reed 2023). This data-
set is constructed from several satellites’ passive microwave
radiometer precipitation estimates, which are then postpro-
cessed for quality control and bias correction. Calibration is
initially completed using the GPM dual-frequency precipita-
tion radar, followed by intercalibration with the Combined
Radar–Radiometer Algorithm (CORRA) product. Additional
calibration to monthly Global Precipitation Climatology Pro-
ject (GPCP) satellite-gauge estimates is done as well, followed
by processing through two morphing algorithms to produce
the high spatial and temporal resolution final product (Huffman
et al. 2019, 2020). The IMERG product is downsampled to
6-hourly accumulation estimates to match the temporal res-
olution of the observed trajectories for this study. The spa-
tial resolution is also downsampled to match that of ERA5
(see below) for collocation of TCs and PTCs with their asso-
ciated precipitation.

4) IBTRACS

Observational TC data are obtained from the International
Best Track Archive for Climate Stewardship (IBTrACS; Knapp
et al. 2018). This study uses IBTrACS to record storm position,
central pressure, and maximum sustained winds for NATL TCs
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from 2019 through 2021. North Atlantic data are annually up-
dated from the Atlantic Hurricane Database (HURDAT2) cre-
ated by the National Hurricane Center (Landsea and Franklin
2013).

5) ERA5

IBTrACS TC trajectories include some but not all PTC tra-
jectory points, depending on how the storm was classified and
how long it was tracked after completing ET. For this reason,
we also employ the use of the Extratropical Transition Tracker
(ExTraTrack; Zarzycki et al. 2017) to standardize and objec-
tively identify the ET process and all points afterward until the
storm dissipates according to several mathematical criteria de-
scribed in section 2b(2). This program requires geopotential
height data for the full vertical column, low-level winds, and
sea level pressure fields. To enable objective ET tracking, we
match up IBTrACS trajectories with these fields in the ERA5
reanalysis dataset (Hersbach et al. 2020). This approach fol-
lows that of Bower et al. (2022). ERA5 offers global high-
resolution data at roughly 31-km spatial and hourly temporal
resolution at 37 vertical levels. This is then downsampled to a
6-hourly temporal resolution to match IBTrACS trajectory
points.

Despite its strengths, ERA5 has some limitations as well.
Bell et al. (2021) note that IBTrACS data are not assimilated
into ERA5 for the period from 1979 to the present day. This
contributes to TC intensities (using central pressure) being
underestimated in many cases (Bell et al. 2021). However,
Dulac et al. (2024) find that the errors in the central pressure
of TCs in ERA5 are much lower than those in the low-level
wind speeds. This point is further reinforced by Bourdin
et al. (2022). In this paper, the wind–pressure relationship in
IBTrACS was compared to that in ERA5, showing that at
the same central pressures, the wind speeds recorded in
ERA5 are lower than those in IBTrACS. Therefore, we use
central pressure as a measure of intensity for the remainder
of this analysis. However, it is worth noting that ERA5 central
pressures tend to be slightly higher than those of IBTrACS
(Bourdin et al. 2022).

b. Analysis tools

1) TEMPESTEXTREMES

TempestExtremes is utilized throughout the analysis meth-
ods for various tracking functions, similar to Bower et al.
(2022). The specific commands and settings used for the pre-
sent analysis can be found in the online supplemental material.

2) EXTRATRACK

ExTraTrack supplements the tracking capabilities of Tempest-
Extremes, using a cyclone phase space (CPS) as in Hart (2003)
to objectively identify the occurrence of ET in model and reanal-
ysis datasets. ExTraTrack also extends the pre-existing TC
trajectories to include post-ET points in the life cycle that are
not included in the original IBTrACS archive. A storm is
considered to have dissipated when the storm’s central pres-
sure rises above 1020 hPa or when 14 days have passed since

ET occurred. Additionally, ExTraTrack imposes directional
change limitations on the storm based on its translational speed,
with larger changes being allowed when storms are slow mov-
ing. Finally, some postprocessing is included in this software
package to construct climatologies of the ET events, types of
ET, and other calculations. Additional details are provided in
Zarzycki et al. (2017) and Bower et al. (2022).

3) MET

The Model Evaluation Tools (MET; Jensen et al. 2020) is a
software package developed by the Developmental Testbed
Center (DTC) that enables the verification of forecasts using
various methods, including point-based, object-based, or grid-
based approaches. Different functions can be configured to
the user’s needs, making the program highly versatile. In this
study, the TC-Pairs function is used for verification of the
forecast TC and PTC trajectories. The function compares TC
locations and intensities point by point, quantifying forecast
errors throughout the storm life cycle. Object-based precipita-
tion tracking is completed in TempestExtremes rather than
MET in order to implement the Z500 mask extraction method.

c. Methods

Storms to be considered in the analysis of the GFS model
are those in the 2019–21 North Atlantic hurricane seasons
that completed at least one ET during the storms’ lifetimes.
Due to data availability, only the 2020–21 North Atlantic hur-
ricane seasons are considered for the analysis of the HAFS
model. Tropical transitions are excluded due to the various
pathways of transition that could be taken (Davis and Bosart
2004), as well as the lack of consistency in proximity to the
dominant midlatitude flow. Storms that are never fully tropi-
cal (e.g., subtropical storms as recorded in IBTrACS) and
those that only retain tropical storm characteristics for less
than 24 h prior to ET as determined by ExTraTrack (short-
lived, sometimes hybrid storms) are also excluded. Hurricane
Sam was excluded due to the lack of data availability for
IMERG v06, which was no longer produced after 30 September
2021 (Huffman et al. 2020). A detailed list of the storms used in
this analysis is included in Table 1. GFS model runs are selected
to include 5 days prior to and 2 days after the storm’s observed
ET onset as determined by ExTraTrack, with four model
runs from each day, totaling 29 model runs per storm. The
same time frame is selected for the HAFS model, but only the
0000 and 1200 UTC runs are available for analysis for some of
these selected days. The number of HAFS simulations studied
for each storm is in parentheses in Table 1, as the number
varies by storm. The inclusion of 5 days prior to ET allows for
the examination of the ability of GFS to forecast ET at longer
lead times along with any track errors at the medium range
lead times. The inclusion of 2 days after the observed ET onset
retains model runs initialized while the storm may still begin
with tropical characteristics and allows for the assessment of
ETs with long durations.

First, the IBTrACS trajectories for the storms of interest
are obtained (see Fig. 1 left) based on the criteria listed
above. These trajectories are then extended to include all
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points during and after ET has occurred using ExTraTrack
[section 2b(2)]. ExTraTrack also uses the IBTrACS locations
of storms and calculates the CPS parameters from ERA5 vari-
ables at each IBTrACS point. GFS and HAFS data are then
obtained for each of the storms listed in Table 1, and all ac-
tive TCs within each model run are tracked using Tempest-
Extremes. These TC trajectories are then extended using
ExTraTrack, with the same criteria in place as for the exten-
sion of the observed trajectories. The GFS (HAFS) trajecto-
ries for simulations that successfully predicted ET occurrence
within 24 h of the observed ET onset are shown in Fig. 1 in the
center (right) in gray with the corresponding observed trajec-
tories shown in blue.

Next, all precipitation objects are tracked in both the
IMERG dataset and each model run. Sensitivity analysis was
conducted using thresholds of 0.5, 1, and 5 mm h21 rain rates
(see Figs. S1 and S2). Previous studies have used various
thresholds for extracting specific types of precipitation; for
example, 5 mm h21 can be used to study deep convection
(Zawislak 2020), or 2.33 mm h21 (Skok et al. 2009) can be
used to study generic tropical convection. Wu et al. (2015)
and Lonfat et al. (2004) determined that the mean rain rate in
the outer portions of TCs is 1 mm h21. Therefore, the 1 mm h21

rain rate threshold was selected based on the ability of this met-
ric to capture the lighter extratropical precipitation during the
PTC phase while not capturing extraneous precipitation on the
outer edges of the TC or PTC.

The storm track of interest is then isolated by comparing
TC tracks from the model run to the observational trajectory
of the storm. Then, a mask for the determination of TC- or
PTC-related precipitation is created using the 500-hPa geopo-
tential height (Z500 mask) as in Bower et al. (2022). The
Z500 mask shape can be irregular, taking on the shape of the
500-hPa geopotential height field where the value increases
by 10 m from the value at the storm center. If this value oc-
curs outside of the 58 great circle distance (GCD) search ra-
dius, then the mask defaults to the search radius size. A 18
GCD minimum mask is also imposed to ensure that intense

TCs are included in the analysis even when the 10-m geopo-
tential height change occurs at distances smaller than the grid
resolution of the dataset. This Z500 mask is overlaid with the
tracked precipitation objects, and all objects that overlap the
Z500 mask at any point are included in the analysis. This
method uses the storm center as a starting point and then
searches for precipitation objects that overlap with the area
defined by the geopotential height field. This accommodates
for slight differences in the IBTrACS and ERA5 storm loca-
tions as well as the effects of shear and interaction with the
midlatitude flow.

The timing and location of ET are determined by ExTra-
Track as an objective, standardized method of calculating
these metrics. The program, described in section 2b(2), uses
the CPS (Hart 2003) to track the ET process. The tropical
phase of the storm life cycle is defined as times at which the
storm has both a warm core nature and is thermally symmet-
ric (bottom-right quadrant of the CPS). ET begins when
one of those two criteria is no longer satisfied (top-right or
bottom-left quadrant of the CPS). Finally, ET is considered
complete (or the storm is classified as extratropical) when it is
thermally asymmetric and has a cold core (top-left quadrant
of the CPS). The analysis is broken down by storm phase: be-
fore ET onset (pre-ET), during the ET process (during-ET),
and after ET completion (post-ET), as defined using the CPS
quadrants (see Fig. 11 for an example). This breakdown ena-
bles a more targeted assessment of the model’s performance
in precipitation, track, translational speed, and timing errors
relative to the ET process. Composites of storm rainfall are
then created at 3-h intervals for GFS and HAFS and 6-h inter-
vals for IMERG and ERA5. Command settings are found in
the supplemental material. The compositing is based on the
average of a particular field on a storm-centered grid. The
HAFS fields are regridded to the ERA5 grid for verification
before composites are made. This method is used for analyz-
ing storm precipitation rate and accumulation errors along
the entire TC and PTC trajectory. Though the acronym “PTC”
in the operational community may sometimes refer to a

TABLE 1. Storms that completed at least one ET in the 2019–21 NATL hurricane seasons. Storms that were excluded either made
a tropical transition, remained subtropical throughout their entire life cycles, or only maintained tropical characteristics for less than
24 h before ET. Storms that were also included in the analysis of HAFS have the number of model runs in the HAFS analysis
included in parentheses.

2019 2020 2021

Included Excluded Included Excluded Included Excluded

Dorian Melissa Arthur Bertha Elsa (11) Bill
Erin Nestor Cristobal Edouard Ida (12) Claudette
Gabrielle Olga Isaias (12) Kyle Larry (15) Julian
Humberto Paulette (15) Odette
Lorenzo Sally (15) Sam
Sebastien Teddy (12)

Beta (9)
Delta (3)
Epsilon (15)
Zeta (11)
Eta (15)
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potential tropical cyclone, in this manuscript, it will be used
to signify post-tropical cyclones and refers to the during- and
post-ET phases combined. Throughout the results, the term
“lead time” will refer to the initialization time as the number
of days relative to the observed ET onset and will be repre-
sented by the symbol TL. The term “forecast hour” will refer
to the number of hours into a given simulation, represented
by the symbol TF.

3. ET occurrence and track errors

Before examining the rainfall predictions from GFS and
HAFS in ET scenarios, we assess the ability of each model to
predict ET occurrence. Figure 2 shows the percentage of the
model runs analyzed that successfully predicted ET as a func-
tion of initialization time, or TL. Each color line represents a
different level of accuracy in the representation of ET timing
in the model simulations. For example, 5 days before the ob-
served ET (far left of Fig. 2a; TL 5 25), 20% of the evaluated
GFS simulations were able to correctly forecast ET onset within
12 h of the observed ET onset (red line). The sample size for
each initialization time for GFS is 20 (one simulation for each
storm), but the sample size at each initialization time for HAFS
varies due to the availability of the simulations for each storm.

Only 35% of the GFS simulations initialized 5 days before
observed ET were able to correctly simulate ET for their re-
spective storms with the timing of ET being accurate to within
24 h of the observed ET (Fig. 2a). As TL decreases (initializ-
ing closer to the observed ET onset), the GFS simulations
tend to become more successful at not only predicting ET but
pinpointing the timing of the process as well (Fig. 2a). By
TL 5 21, 70% of the simulations were able to correctly fore-
cast ET with errors as low as 12 h. The HAFS simulations
were not as successful in predicting ET. At TL 5 25, only 8%
of the simulations studied were able to correctly forecast ET
occurrence (Fig. 2b), but those that did were accurate to
within 24 h of the observed ET onset. None of these simula-
tions were able to predict ET occurrence within 12 h of the
observed timing at long lead times. This percentage rises as
lead times shorten, reaching a maximum of 42% of simula-
tions correctly forecasting ET within 24 h of the observed ET
around TL 5 23 and 22. Similar to GFS (see Fig. 2a), there
is a sharp drop-off in this percentage around 12 h prior to ET
onset in observations. The deterioration in skill is likely due to
the development of hybrid characteristics in storms as the on-
set of ET approaches. In this case, the storm initialized in the
model never has fully tropical characteristics and therefore is
not identified as a candidate for ET in that specific model run.

FIG. 1. Trajectories of the storms assessed in this study for the (a),(b) 2019, (c)–(e) 2020, and (f)–(h) 2021 seasons. (left) Observational
trajectories. Black trajectories indicate storms that were excluded from the analysis. Trajectories that begin with stars belong to storms
that are included in both the GFS and HAFS analyses. (center) Observational trajectories are in blue along with the GFS trajectories
from simulations that correctly forecast ET within 24 h of the observed ET (gray). (right) As in the center panels, but for HAFS.
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In both models, most of the simulations with successful ET
predictions forecast its onset within 24 h of the observed ET
onset. For this reason, some of the following analyses include
only the model runs that correctly predict ET within 24 h of
the observed ET onset. This restriction retains a larger sample
while excluding the few model runs with high ET timing
errors (those greater than 24 h).

The errors in the simulated tracks of both models compared
to the IBTrACS observed trajectories (extended using ExTra-
Track) are shown in Fig. 3. In this figure, track errors from
the GFS (HAFS) runs that correctly simulated ET within 24 h
of the observed ET onset are included in the black (blue)
box-and-whisker diagrams, while the remaining GFS (HAFS)
runs’ track errors (poorly simulated ET timing as well as sim-
ulations that did not forecast ET at all) are included in the red
(green) boxes. Error values are shown as a function of fore-
cast hour (TF), grouping all data points from within each 24-h
forecast period of every simulation into a box-and-whisker
chart. For example, simulations initialized at 2120, 2114,
2108, and 2102 h are binned into the day 25 lead time
(TL 5 25) category, while forecast hours 0, 6, 12, and 18 are
binned into the first box-and-whisker chart at TF 5 24.

In general, track errors increase with increasing forecast
hours at all lead times (Fig. 3), as shown in previous work ex-
amining all forecast points between forecast hours 72 and 120
(Leonardo and Colle 2020). In addition to being a function of

forecast hour, ET timing plays a role in the magnitude of
track errors. It is possible both that the larger track errors
cause the ET timing errors due to different placement of the
TC, and thus different interactions with the midlatitude flow,
or vice versa, errors in ET timing lead to larger track errors
after the interaction occurs due to different translational
speeds of the observed and simulated TCs. Regardless of the
order of events, the median total track errors (TTEs; also
sometimes referred to as absolute track errors) for both
models’ simulations with poor ET timing forecasts or no ET
forecast to occur tend to be higher than the median TTEs
for simulations that forecast ET timing well. This difference
becomes more pronounced at the time that observed ET
occurs}for example, at TF 5 120 for TL 5 25 and so on. At
short lead times and long forecast hours (e.g., Fig. 3e), TTEs
cease to increase with increasing forecast hours as sample size
rapidly diminishes. It should also be noted that 69% of the
data points in the red (GFS) boxes come from simulations
that do not forecast ET at all, with the other 31% represent-
ing simulations that have ET timing forecast errors of greater
than 24 h. For all cases, both models tended to simulate ET
later than the observed (68% of GFS and 70% of HAFS sim-
ulations) and thus typically farther poleward (not shown).

To gain insight into the causes of these track errors, we also
break the TTEs down into their components: along- and
cross-track errors (ATEs and CTEs), shown in Fig. 4. The
tendency of “good timing” ET simulations to outperform the
“poor timing” simulations persists for the ATEs at all lead
times. CTEs lack a consistent and definitive pattern based on
the lead time, forecast hour, or ET timing forecast. ATEs
tend to be negative overall, indicating a slow bias in the storm
forward motion. CTEs from both models are centered, sug-
gesting that at most lead times and forecast hours, GFS and
HAFS are as likely to exhibit a right-of-track error as a left-
of-track error. HAFS does tend to have more positive CTEs
than GFS, with the largest differences at long forecast hours.
Similar to TTEs, the ATEs and CTEs at longer forecast days
in the shorter lead-time simulations tend to be noisy and lack
a consistent pattern, particularly for TL 5 22 (Fig. 4i) for the
CTEs and TL 5 21 (Fig. 4e) for the ATEs. Much larger
ATEs occur in simulations that poorly forecast ET compared
to the well-forecast ET simulations, especially at long lead
times. Translational speed errors are likely the primary driver
for the track errors that GFS and HAFS experience in these
cases, consistent with prior studies that find increased forecast
uncertainty tied to the changing forward speed of storms dur-
ing ET (Evans et al. 2017). The results for GFS and HAFS
are closely linked, partially because the initial and lateral
boundary conditions for HAFS are provided by the concur-
rent GFS simulation.

4. Rainfall forecast evaluation

Next, we investigate the skill of GFS and HAFS in simulat-
ing rainfall associated with TCs that undergo ET at all phases
of their life cycles. For reference, the total accumulated rain-
fall from the storms studied in the PTC (during and post ET)
phase of their life cycles from IMERG, GFS, and HAFS is

FIG. 2. Percentage of simulations at each lead time (TL) that
forecast ET. (top) For GFS ET cases in Table 1, the percentage of
simulations that correctly forecast ET occurrence for the correct
storm within various time frames of observed ET. (bottom) As in
the top panel, but for HAFS cases in Table 1. The sample size for
each lead time for GFS (top panel) is 20 simulations, and for
HAFS (bottom panel), the sample size varies for each lead time.
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shown in Figs. S3 and S4. The total rainfall accumulation as
predicted by both models is considerably lower than the
amounts recorded by IMERG due to the challenges in simu-
lating these storms. However, many factors contribute to dif-
ferences in the accumulated rainfall from each storm, such as
storm translational speed, rain rates at individual time steps,
and the distribution of rainfall around the storm center. To
learn more about the reasons for these patterns, we next turn
to the rain rates that are simulated by each model.

Examining composites of the rain rates at individual trajec-
tory points along the storms’ paths provides further insight
into the rainfall accumulation errors in the GFS and HAFS
simulations. Figures 5 and 6 show the composite rain rates for
storms in the pre-ET (left), during-ET (center), and post-ET
(right) phases for the IMERG values (top), GFS or HAFS
simulated storms (middle), and the statistically significant dif-
ferences between the model and IMERG average composite
rain rates (bottom). Statistical significance is determined using
a two-sample t test for the difference of means with a 95% sig-
nificance level, and only precipitating points (rain rates of at
least 1 mm h21) are included in the analysis.

In the pre-ET phase (left, Fig. 5), GFS-simulated rain rates
tend to be higher than IMERG in the inner core of the storm.
In the during-ET phase (center), this overestimation shifts to
the left side of the storm and becomes asymmetric. GFS tends
to forecast a more compact area with the highest rain rates
than IMERG shows during ET, with the IMERG dataset
spreading higher rain rates farther from the storm center.
Both GFS and IMERGmatch in their depiction of the shift of
precipitation to the north of the storm center during ET. Fi-
nally, once ET is complete, GFS predicts similar rain rates to
IMERG, with higher values not extending far enough away
from the storm center coupled with a more uniform area of
lower rain rates. Furthermore, GFS does not show the dry
southwest quadrant of the storm that is evident in IMERG.
Similar to GFS, HAFS (Fig. 6) overestimates the inner core
rain rates in the pre- and during-ET phases when compared
to IMERG. These overestimations are less severe than those
of GFS in the pre-ET phase, but both models share the ten-
dency to simulate rainfall that is too compact, symmetric, and
close to the storm center, especially in the during-ET phase.
The overestimation of rain rates near the center of storms in
the post-ET phase is more pronounced in the HAFS simula-
tions compared to GFS.

Across all phases of the storm life cycle, GFS and HAFS
tend to simulate higher rain rates than seen in IMERG but
over a smaller core area than covered by the maximum rain
rates shown in IMERG. This pattern is especially pronounced
once the ET process has begun. When examining the total
rainfall accumulation resulting from the observed and simu-
lated storms, the small area of high rain rates leads to a

FIG. 3. TTEs for the GFS and HAFS simulations used in this
study. Black boxes include track errors for all GFS simulations that
forecasted ET occurrence within 24 h of the observed ET time.
Blue boxes include the same for HAFS simulations. Red boxes in-
clude track errors from GFS simulations that had ET timing errors
of greater than 24 h or did not predict ET at all. Green boxes

$−
include the same quantity for the HAFS simulations. Each panel
includes simulations initialized at that lead time grouped into days.
For example, TL 5 25 includes simulations initialized at 2120,
2114,2108, and2102 h. Forecast time TF increases on the x axis.
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smaller total accumulation in the models than the larger area
of more moderate rain rates in IMERG. This underestimation
of the total accumulated rainfall by both models is exacer-
bated in the during- and post-ET phases, suggesting that the

structural evolution of the storm from being purely fueled by
warm core processes to being fueled by baroclinic forcing dif-
fers from the real-world evolution. This concept will be ex-
plored further in the following section.

FIG. 4. As in Fig. 3, but for (left) ATEs and (right) CTEs.
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FIG. 5. Rain rate composites from the storms included in Table 1. (left) Pre-ET phase. (center) During-ET phase. (right)
Post-ET phase. (top) Average IMERG 6-hourly rain rates across all storms. (middle) As in the top panels, but for GFS
simulations. (bottom) Statistically significant difference between the GFS simulation average and the IMERG average
rain rates at each phase of the TC life cycle. Statistical significance is determined using a two-sample t test for the differ-
ence of means.
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FIG. 6. Rain rate composites from the storms included in the HAFS analysis. As in Fig. 5, but for the HAFS simulations.
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FIG. 7. Composites of 500-hPa geopotential height (Z500; m) for (top) the ERA5 reanalysis, (middle) GFS model
runs, and (bottom) the difference between the original GFS and ERA5 average fields. ERA5 and GFS are shown as
anomalies from the average value of the 408 3 408 composite field for the (left) pre-ET, (center) during-ET, and (right)
post-ET phases.
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5. Mean state and storm structure/evolution

To shed light on the potential cause of the patterns in the
GFS and HAFS simulations of the storm rain field during and
after ET, we examine the environment surrounding the simu-
lated TC compared to the environment depicted in ERA5 rean-
alyses. To begin this investigation, we examine the geopotential
height at 500 hPa (Z500). Z500 encompasses both midlatitude
features, which are frequently identifiable at the midtropo-
spheric levels, as well as TCs, which have a warm core extend-
ing from the mid- to upper levels.

Figure 7 shows the anomaly of the Z500 average composite
from the average value of that field for ERA5 (top) and all
GFS simulations (middle) along with the difference between
the original GFS and ERA5 Z500 average composite fields in
the bottom row. The pre-ET phase is shown on the left, the
during-ET phase is shown in the center, and the post-ET is
shown on the right. The equator-to-pole gradient of Z500
anomalies and the actual Z500 values are stronger in GFS
simulations than in reanalysis in the pre- and during-ET
phases of the storms’ life cycles (Fig. 7). Once the ET process
is complete, GFS shows a more meridional orientation of the
midlatitude feature (Fig. 7f) as opposed to the more zonal pat-
tern on the poleward side of the ERA5 composite (Fig. 7c). This
indicates improper phasing of the TC and the upstream trough
in GFS simulations compared to ERA5 reanalysis. Addition-
ally, the Z500 anomaly within the storm has a higher magni-
tude in the GFS simulations as opposed to the ERA5
reanalysis. This could indicate a more intense storm or a more
resilient warm core, which may resist the deterioration of deep
convection and support the higher rain rates forecast by GFS,
as discussed in section 4. A case study of the differences in the
Z500 field between the models and the reanalysis is explored
in the supplemental material (see Fig. S5).

To further investigate, we next examine composites of
mean sea level pressure (SLP) for both the GFS simulations
and ERA5. Figure 8 is as in Fig. 7 except for SLP for ERA5,
GFS, and the difference between the two. SLP was chosen as
a measure of intensity for the observed storms due to ERA5’s
unreliability in representing accurate low-level winds, particu-
larly in TCs (Schenkel and Hart 2012; Stansfield et al. 2020;
Bourdin et al. 2022). GFS consistently shows more intense
storms than ERA5 with stronger gradients of SLP and higher
magnitude anomalies than in the reanalyses. This overestima-
tion of storm intensity could be contributing to the high rain
rates seen in GFS simulations, as previous literature has dem-
onstrated a link between TC intensity and rain rates (Jiang
and Zipser 2010; Alvey et al. 2015).

When completing the same analysis for the HAFS simula-
tions (Figs. 9 and 10), we find some marked similarities be-
tween the two models’ behaviors. Like GFS, HAFS tends to
simulate a sharper equator-to-pole gradient of Z500 than
does ERA5, especially in the pre-ET phase (Fig. 9d). The
storm center also has lower Z500 values in HAFS than in the
reanalysis. The main difference between the HAFS and GFS
Z500 fields is in the post-ET phase (Fig. 9f). While GFS simu-
lates a more meridional feature once ET is finished, HAFS
shows a zonal flow with lower amplitude than ERA5. When

examining SLP for the HAFS simulations, once again the
simulated storms have lower SLP anomalies than in ERA5
(Fig. 10), keeping the storms too intense especially before ET
begins.

The strong gradient of Z500 in both models’ simulations still
requires investigation into the strength of the simulated warm
cores of the storms of interest. A strong warm core would re-
main more resistant to the effects of the baroclinic environment
(i.e., the transition to a cold core). A CPS density chart is shown
in Fig. 11 to determine the strength of the warm core (as deter-
mined by the CPS values of 2VL

T , which represent the thermal
anomaly in the atmosphere) and the degree of asymmetry seen
in GFS and HAFS simulations compared to the ERA5 reanaly-
sis. The left panel shows the percentage of all points in the GFS
simulations used in this study within the CPS that occur in each
grid square. The middle shows the same for all ERA5 points,
and the right shows the same for all HAFS simulations. While
the storms in ERA5 tend to remain warm core and thermally
symmetric for longer, GFS storms can retain a very strong
warm core (higher2VL

T values) while simultaneously becoming
thermally asymmetric (developing fronts or remaining warm
core in the comparatively cold baroclinic zone, thus achieving
higher B values). The HAFS simulations also tend to simulate
very strong, symmetric warm cores (TCs; bottom-right quad-
rant) most often. While HAFS does simulate some instances of
asymmetric warm cores (top-right quadrant), only a small per-
centage of the storms achieve a cold core, regardless of thermal
symmetry. The retention of the strong warm core would sup-
port deep convection in the simulated storms at times when the
observed storm’s warm core is deteriorating and causing the de-
mise of deep convection at the storm center. These discrepan-
cies between the model simulations and ERA5 reanalyses as a
whole contribute to the rain rate errors seen in the simulations.

6. Discussion and conclusions

This study completed verification of GFS and HAFS in
their abilities to forecast ET occurrence and the rainfall asso-
ciated with storms that completed ET. While GFS is able to
correctly forecast ET occurrence within 24 h of the observed
ET 35% of the time at 5 days lead time, HAFS has almost no
skill in forecasting ET at medium-range lead times. At 1 day
prior to observed ET onset, the percentage of GFS simula-
tions correctly forecasting ET with accurate timing rises to
70%, but a maximum of only 42% of HAFS simulations cor-
rectly forecast ET 2 days before observed ET onset. Notewor-
thy is that both models’ ET timing, when forecast, is usually
accurate to within 24 h of the observed ET onset at any lead
time. ET occurrence and timing influence the track errors for
each model’s simulations as well. TTEs tend to be higher in
simulations that do not forecast ET for the storm of interest
or forecast ET with poor timing relative to the observed ET
onset. Track errors also rise with increasing forecast hour, as
model errors are amplified further into the simulation. TTEs
tend to be driven by ATEs, or forward speed biases, in both
models, which follow the same patterns as the TTEs. These
ATEs are driven by the model’s ability to predict ET (Fig. 4)
as well as by errors in the phasing between the TC and the
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FIG. 8. As in Fig. 7, but for mean SLP (hPa).
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FIG. 9. As in Fig. 7, but for HAFS simulations. Note that snapshots in which the storm center was located within 208 of the
domain edge were excluded.
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FIG. 10. As in Fig. 9, but for mean SLP (hPa).
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upstream midlatitude features (see Z500 field as shown in
Figs. 7 and 9). While the models do not share the same errors
in the Z500 field, they both produce errors that would alter
the overall steering flow, which again could impact either the
forecast occurrence of ET (or lack thereof) or phasing be-
tween the TC and surrounding features such as an upstream
trough. Some of the differences between the models could be
attributed to the different spatial resolutions, as grid spacing
affects the representation of convective processes and TC out-
flow and in turn the interaction between the TC and its envi-
ronment. While the poor HAFS ET forecasts indicate that
the high spatial resolution is not necessarily important for the
prediction of ET, with improved model physics, it may aid the
simulation of rain rates due to better representation of con-
vective processes.

Both GFS and HAFS underestimate the total accumulated
rainfall from the storms studied when examining individual
initialization lead times. Further investigation reveals that
both models tend to overestimate rain rates in the inner core
of the storms at individual time steps when compared to
IMERG, which can sometimes underestimate rain rates in the
inner cores of TCs as shown in Ko et al. (2020). The simulation
of high rain rates over a small area still yields less accumulated
rainfall than a larger area of more moderate rain rates, as seen
in IMERG. For both models, the highest magnitude errors in
rain rates occur in the during-ET phase, which appears to be at-
tributed to errors in the placement and shape of a rapidly evolv-
ing precipitation shield.

The overestimation of rain rates by GFS and HAFS, partic-
ularly in the pre-ET phase, can be partially attributed to the
overintensification of these storms by the model. Both the
Z500 and SLP fields simulated by both models show a stron-
ger storm in the simulations compared to the ERA5 reanaly-
sis. The high rain rates that remain close to the storm center
during and even after the ET process similarly can be partially

attributed to the higher intensity of simulated storms (Jiang
and Zipser 2010; Alvey et al. 2015). However, the tendency
of the models to maintain a strong warm core, even well into
the ET process, is likely causing the simulated storms to retain
deep convection and high rain rates near the TC’s inner core
at times when the observed storm’s rain rates are decreasing.
These common discrepancies in both models could be related
to the FV3 core model in general, as the dynamic core of
models has been shown to influence TC intensity (Reed and
Jablonowski 2011; Reed et al. 2015). Additionally, both GFS
and HAFS use the GFDL microphysics scheme and utilize a
scale-aware convection scheme. Further evaluation of the
cause of the retention of a strong warm core is needed to de-
termine any improvements that can be made to the opera-
tional models, whether involving the FV3 dynamical core or
the model physics.

This analysis of the abilities of GFS and HAFS to simulate
TCs that complete ET can be used for further model develop-
ment in the future. For HAFS, the size of the regional domain
is a primary concern; the outermost nest of the current opera-
tional HAFS could be expanded to include the entire globe.
We hypothesize that this could improve the detection of ET
potential at medium-range lead times. The high resolution of
the model must be maintained around the storm to preserve
model performance with storm intensity (as measured by
winds or central pressure) as well as its lower errors compared
to GFS in the pre-ET phase of the storm life cycle. This high
resolution also aids in the representation of the smaller-scale
processes that occur within a TC and can influence its interac-
tions with large-scale features, such as the representation of
deep convection and TC outflow (Alaka et al. 2022). In fact,
multistorm applications with multiple moving nests have
shown improvements to TC–environment interactions and,
consequently, TC intensity predictions; innovations like these
could be leveraged to study and improve ET forecasts as well.

FIG. 11. Diagram showing the distribution of samples across a CPS as a percentage. (left) GFS simulations used in this study. (center)
ERA5 values from the storms listed in Table 1. (right) HAFS simulations used in this study. The B values are sorted into bins of 10, while
2VL

T values are grouped into bins of 50.
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Despite the strengths and weaknesses of each model, addi-
tional updates to the model parameterizations are likely
needed to improve the representation of rain rates in both
models, particularly in the deep convective inner core of the
storm. The combined skills of both global and regional mod-
els would likely be ideal to simulate the proper trajectory, in-
tensity, and rainfall of a TC throughout its entire lifetime.
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