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ABSTRACT: A new 20-yr wave reforecast was generated based on the NOAA Global Ensemble Forecast System,
version 12 (GEFSv12). It was produced using the same wave model setup as the NCEP’s operational GEFSv12 wave com-
ponent, which employs the numerical wave model WAVEWATCH III and utilizes three grids with spatial resolutions of
0.2° and 0.25°. The reforecast comprises five members with 1 cycle per day and a forecast range of 16 days. Once a week, it
expands to 35 days and 11 members. This paper describes the development of the wave ensemble reforecast, focusing pri-
marily on validation against buoys and altimeters. The statistical analyses demonstrated very good performance in the
short range for significant wave height, with correlation coefficients of 0.95-0.96 on day 1 and between 0.86 and 0.88 within
week 1, along with bias close to zero. After day 10, correlation coefficients fall below 0.70. We found that the degradation
of predictability and the increase in scatter errors predominantly occur in the forecast lead time between days 4 and 10, in
terms of the ensemble mean and individual members, including the control. For week 2 and beyond, a probabilistic spatio-
temporal analysis of the ensemble space provides useful forecast guidance. Our results provide a framework for expanding
the usefulness of wave ensemble data in operational forecasting applications.
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1. Introduction

Ensemble forecasts of winds and waves offer important ad-
vantages over deterministic forecasts, playing a pivotal role
in safeguarding lives at sea and supporting maritime opera-
tions. Some applications that benefit from accurate forecasts
include ship routing, towing and maintenance work on oil
rigs, construction of underwater pipelines (Saetra and Bidlot
2004), and offshore renewable energy. An ensemble forecast
involves generating multiple independent model integrations
concurrently, adding perturbations to either initial conditions,
model parameters, or forcing fields. Kalnay (2003) described
two primary advantages of ensemble forecasts. First, the averag-
ing of ensemble members tends to smooth out uncertain com-
ponents, which leads to better skill than a single deterministic
forecast. Second, the spread of the ensemble members provides
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information on the forecast uncertainty. Both are crucial
elements in operational forecasting.

The superior performance of ensemble forecasts over de-
terministic forecasts is quantitatively demonstrated in numer-
ous studies dedicated to surface wind and wave prediction.
Janssen et al. (2002) and Saetra and Bidlot (2004) highlighted
the advantages of employing the ECMWEF ensemble predic-
tion system (EPS) for waves and marine surface wind fore-
casting, relying on buoy and altimeter data. Using the NOAA
Global Wave Ensemble System (GWES), Alves et al. (2013,
2015) and Campos et al. (2018, 2020a) investigated the global
improvements achieved by the arithmetic ensemble mean
(EnsMean) compared to the control member. It was observed
that scatter errors, typically at 5 m s™! for strong winds (U10)
at midlatitudes, decreased to 3 m s~ ! for the ensemble mean—
directly contributing to the forecast skill of significant wave
height (Hs). Likewise, Roh et al. (2021) reported improve-
ments of approximately 18% in the root-mean-square error of
Hs for extreme wave conditions with a 3-day lead time com-
pared to that of the deterministic model.

Further global and local studies examining the advantages
of ensemble wave forecasts are found in Farina (2002), Chang
et al. (2017), Zieger et al. (2018), Bell and Kirtman (2019),
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and Valiente et al. (2023). The importance and quality of en-
semble wave forecast products during tropical cyclone condi-
tions have been discussed by Tolman et al. (2005), Xu et al.
(2007), Sampson et al. (2011), Lazarus et al. (2013a,b),
Pan et al. (2016), Zieger et al. (2018), Roh et al. (2021), and
Abdolali et al. (2020, 2021). Regional and coastal ensemble
wave forecasts were addressed in Pallares et al. (2015),
Pezzutto et al. (2016), and Behrens (2015), focusing on aspects
such as spatial resolution and computational cost. Finally, re-
garding practical applications, Luo et al. (2023) demonstrated
that ship routing and speed optimization based on ensemble
wave forecasts hold greater potential than that based on de-
terministic forecasts, leading to reduced ship fuel consump-
tion and greenhouse gas emissions—further emphasizing the
expected significance of ensemble systems in the future.

Despite the aforementioned benefits associated with wave
ensemble forecast products, biases persist within ensemble
systems, as reported by Bunney and Saulter (2015). This is a
well-known limitation that requires postprocessing bias cor-
rection algorithms (e.g., Cui et al. 2012; Zieger et al. 2018;
Campos et al. 2020b). The development of such corrections
relies on extensive datasets of forecasts and observations.
Additionally, for ensemble forecasts to be useful, rigorous
verification against observations spanning multiple years
globally is essential. To address these requirements and
others, we have produced a 20-yr global wave ensemble re-
forecast based on the NOAA Global Ensemble Forecast Sys-
tem, validated against buoys and altimeters. By “reforecast,”
we refer to running the forecast model and configuration
used operationally, with minor differences, applied retro-
spectively to past conditions, initiating from the year 2000.
Our goal is to evaluate and discuss the wave ensemble fore-
cast performance globally, ranging from calm to extreme
conditions, while considering the variation in forecast lead
times and spread. A companion paper is in production with
further statistical analyses to provide additional validation of
the probabilistic wave forecast.

In section 2, we describe the NOAA Global Ensemble
Forecast System, version 12 (GEFSv12). Section 3 delineates
the methodology and explains how the reforecast has been
produced, while section 4 focuses on the validation against
observations. The last section, section 5, contains the final dis-
cussion. Information about data access and public repositories
is given at the end. We expect that this information, in con-
junction with the methodology and results outlined here, will
allow readers to have complete access to our publicly avail-
able work and data, thereby contributing to the promotion of
open science on a global scale.

2. The NOAA wave ensemble forecast

The evolution of the National Centers for Environmental
Prediction (NCEP/NOAA) ensemble forecast over the past
three decades is detailed in Zhou et al. (2022), Alves et al.
(2013), and Alves et al. (2024). Campos et al. (2018, 2020a)
analyzed 2 years of operational archives of the NCEP Global
Wave Ensemble System, discussing the performance in deep
waters. The most recent version of the NCEP/NOAA
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GEFSv12 was launched in September 2020, and it has under-
gone substantial changes, as described in Zhou et al. (2022),
Hamill et al. (2022), and Alves et al. (2024).

The ensemble forecast operates four times daily, with cycles
at 0000, 0600, 1200, and 1800 UTC, providing forecast guid-
ance to the U.S. National Weather Service. The horizontal
resolution is approximately 25 km, and the forecast range is
35 days (16 for ocean waves). The ensemble generates 31
members per forecast cycle (30 perturbed members plus the
control member, all with the same resolution). The wave com-
ponent is based on a recent version of WAVEWATCH 111
(WW3DG 2019). It employs the input and dissipation source
term ST4 (Ardhuin et al. 2010), nonlinear interactions
discrete interaction approximation (DIA) (Hasselmann and
Hasselmann 1985), third-order propagation scheme (UQ)
with garden sprinkler effect (GSE) alleviation (PR3), and
simple ice blocking (ICO; Tolman 2003). The WAVEWATCH
III source terms’ parameters were optimized utilizing the Cylc
workflow engine (Cyclops v1.0; Gorman and Oliver 2018), in
conjunction with a large set of observations.

The wave model operates across three distinct grids: the
Southern Ocean (1/3°), Arctic Ocean (1/3°), and global core
(1/4°). Alves et al. (2024) describe the integrated one-way
coupling scheme, where the model obtains wind forcing
from the atmospheric component every 1 h. The wave fore-
cast outputs on a final single grid (0.25° X 0.25°). The spec-
tral resolution of the wave model consists of 33 frequencies
with wave periods ranging from 1.35 to 28.57 s and 36 wave
directions. Unlike the 35-day atmospheric forecast range,
the operational wave forecast system is limited to 16 days.
Details of the optimization approach and values of opti-
mized source-term parameters, resolution, and configuration
of WAVEWATCH III utilized in GEFSv12 are available in
Alves et al. (2024).

A reforecast product, as described in the next section,
mimics the forecast system used operationally, with minor
modifications (usually a smaller number of ensemble mem-
bers) to reduce computational cost. The main difference
between a reforecast and a reanalysis is that the reforecast
preserves the forecast lead time and consecutive cycle runs.
It holds two time dimensions: cycle time and forecast time,
operating as a forecast simulation retrospectively. In con-
trast, a reanalysis holds only one time dimension, allowing
data to be assimilated throughout the entire simulation.
Therefore, analyzing the evolution of forecast error with
lead time, which is important in operational forecasting, is
only possible with reforecast data and not with reanalysis
data.

3. Numerical simulations and reforecast features

Hamill et al. (2022) produced a 20-yr reanalysis dataset, not
including the wave component, which served as the initial
conditions to produce the GEFSv12 atmospheric reforecast.
Hamill et al. (2022) explain that the reanalysis assimilates
most of the observations used in the operational data assimi-
lation system for initializing global predictions. This dataset
spans from 2000 to 2019 and employs the same numerical
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FIG. 1. Rank histograms for the initial experiment, from 24 Aug to 18 Oct 2016, of the GEFSv12 wave reforecast. The plots were gener-
ated using WAVEWATCH I1I point outputs worldwide, using the 24-h lead time of the preceding cycle. The rank histograms were calcu-
lated for different time leads: (a) the analysis, (b) 7-day forecast, and (c) 15-day forecast.

model and configuration as the operational atmospheric com-
ponent. The primary difference from the operational system
lies in the number of ensemble members and cycles per day.
The ensemble reforecast comprises five members with 1 cycle
per day, providing a forecast range of 16 days. Once a week
(on Wednesdays), it extends to 35 days with 11 members. A
recent validation conducted by Hamill et al. (2022) indicates
that the quality of the GEFSv12 reanalysis is generally supe-
rior to that of NOAA'’s previous generation Climate Forecast
System Reanalysis (CFSR; Saha et al. 2010).

In this paper, we describe the development of the wave re-
forecast forced by GEFSv12 atmospheric reforecast initialized
by the reanalysis by Hamill et al. (2022). The wave model,
source terms, parameters, grids, and resolution selected for
the reforecast are the same as the operational GEFSv12 wave
component described in Alves et al. (2024), as summarized in
the previous section. The wave reforecast characteristics,
in terms of ensemble size and forecast range, follow the atmo-
spheric reforecast—expanding the wave forecast range to
35 days, which is not found in the operational implementation
(restricted to 16 days). The wave model was run for the period
from 1 January 2000 to 31 December 2019, keeping the three
grids and output fields with a spatial resolution of 0.25° X
0.25° while adopting 3-h resolution for the grid outputs and
1-h resolution for the point outputs.

Initial simulations and tests were conducted for the period
from 24 August to 18 October 2016, covering several meteo-
rological systems from calm to extreme events, including
Hurricane Matthew (category 5) and Hurricane Nicole
(category 4). The validation was then expanded to cover the
20-yr period, presented in the next section. During these ini-
tial simulations, an important question emerged concerning
the initial conditions (ICs) for WAVEWATCH III. Typically,
the IC for each member in the wave ensemble uses a short-
range forecast from a previous run of the same member in
order to retain spread in initial conditions (Bunney and
Saulter 2015). However, on Wednesdays, when the refore-
cast expands from 5 to 11 members, these additional six
members do not have corresponding forecasts from the pre-
vious run to obtain an IC. Moreover, the initial simulations
of the five members, using ICs generated from the previous
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cycle +24 h, showed a small spread in the short-term fore-
casts (Fig. 1).

The rank histograms of Fig. 1 show a small bias and indi-
cate overconfidence of the wave ensemble in the first-day
forecast lead time—suggested by the U-shape format of the
plot. Hamill (2001) provided detailed information on the in-
terpretation of rank histograms for verifying ensemble fore-
casts. Moving to the 7- and 15-day forecast (Figs. 1b,c), there
is a noticeable increase in spread, appearing more suitable
with flatter histograms. Consequently, selecting more ad-
vanced lead times for the IC might enhance the spread in
short-term forecasts. On the other hand, this could also intro-
duce larger scatter errors impacting the forecast quality and
potentially deteriorating the initial conditions. Therefore, it is
crucial at this stage to analyze the spread’s evolution as a
function of the forecast lead time as well as the influence of
the wind input on the wave ensemble.

To investigate the spread in IC and identify the optimal ap-
proach for generating ICs for the reforecast, eight experi-
ments were conducted. The initial five tests obtain ICs from
forecasts from previous consecutive cycles, resulting in initial
conditions with 1-, 2-, 3-, 5-, and 7-day lead times, progres-
sively increasing the spread in the IC. Subsequently, test 6
was run by starting the model from rest, evaluating the propa-
gation of the initial error throughout the forecast range.
Test 7 applied the same IC (control member) for all the fore-
cast members, starting with no spread and allowing the atmo-
spheric spread to propagate to the wave field. Finally, test 8,
but applied the same wind forcing (control member) for all
the members. This test starts with a small spread that is pro-
gressively decreased to zero due to the lack of spread from
the wind forcing.

The experiments were validated against NOAA/National
Data Buoy Center (NDBC) and Copernicus buoys (Fig. 2),
depicting the spread, the root-mean-square error (RMSE) of
the ensemble mean, and the continuous ranked probability
score (CRPS). Figure 2a shows the increase of the ensemble
spread by using longer forecast lead times to generate the ICs
(time lagging). However, this inflated spread diminishes rap-
idly within the first day, and by the third forecast day, the ex-
periments converge (Fig. 2a). This suggests that the ensemble
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FIG. 2. Results of the IC experiments for the period from 24 Aug to 18 Oct 2016, validated against NDBC and
Copernicus buoys in deep waters. Eight IC tests were analyzed to decide the best strategy to generate the
WAVEWATCH III restart files for the GEFSv12 wave reforecast. The results are presented in terms of (a) spread,

(b) CRPS, and (c) RMSE.

spread induced by the wind input plays a much more impor-
tant role in the midrange and long range than the ICs in the
wave model. More importantly, Figs. 2b and 2c reveal that ar-
tificially boosting the spread through time lag leads to higher
RMSE and CRPS, compromising the ensemble’s performance
in the short range.

The results from the IC experiments collectively suggest
that the impact of the initial condition in the wave ensemble
forecast beyond 1 week is minimal, while the skill and spread
of the atmospheric ensemble (wind inputs) are the most im-
portant features, as highlighted in Campos et al. (2023). Based
on these conclusions, we decided to retain the shortest
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forecast from the previous run (+24 h) to produce the ICs
for consecutive days. When the ensemble expands from 5 to
11 members, once a week, the five initial conditions from the
preceding day are selected and randomized to force the addi-
tional six members.

The simulations were run on the Orion supercomputer
equipped with multiple CPUs (2.4 GHz Intel Xeon Gold 6148
Skylake), each of those containing 20 cores, for a total of
40 cores per node, alongside 192 GB of memory (128 GB allo-
cated for WAVEWATCH III simulations). Each job submis-
sion used 10 nodes (400 cores), processing seven consecutive
cycles within an 8-h time frame. This configuration of nodes,
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FIG. 3. Scalability test of WAVEWATCH 111 simulations of GEFSv12 reforecast using a different number of nodes,
from 2 to 25, each one containing 40 cores.

cores, and reforecast cycles per job was achieved after con-
ducting various tests, illustrated in the scalability plot of
Fig. 3. The parallel computing was handled by the primary
WAVEWATCH III executable ww3_multi, while pre- and
postprocessing tasks were executed separately in a serial fash-
ion. The 20 years of reforecast were split into four streams of
5 years, processed concurrently. The first month of the refore-
cast, January 2000, was used to spin up the model and is ex-
cluded from validations.

The wave variables in the field outputs were specifically
chosen to maximize the wave information and usability while
minimizing storage requirements, as outlined in Table 1. The
field outputs were saved in grib2 (NCEP WMO 2023) format
(gefs.wave.YYYYMMDD.EM.global.0p25.grib2), containing
all the variables in the same file. A total of 658 point outputs
have been selected, aligning with exact locations where obser-
vations are available (Fig. 4), and merged with the existing
Global Forecast System (GFS) and GEFS point outputs used
operationally. This blend actually led to 761 points, from
which 658 correspond to wet/valid points on the GEFSv12
wave grid. Two formats of point outputs have been generated:
a simple table containing the main wave parameters and the
complete 2D wave spectrum, both saved in netCDF format
(gefs.wave.YYYYMMDD.EM.tab.nc and gefs.wave.YYYY
MMDD.EM.spec.nc).

TABLE 1. Wave variables of field outputs generated for the
20-yr GEFSv12 wave reforecast. The partitioned variables are
composed of one wind-sea partition and three swell partitions.

WND

10-m wind speed

HS Significant wave height

FP Peak frequency

TO1 Mean wave period (TmO, 1)
T02 Mean wave period (Tm0, 2)
DIR Mean wave direction

DP Peak wave direction

SPR Mean directional spread
PHS Partitioned wave heights
PTP Partitioned peak period
PDIR Partitioned mean direction

The GEFSv12 wave reforecast occupies a total disk space
of 100T and is stored in the automatic weather station (AWS)
cloud service, accessible publicly with web links provided at
the end of this paper. The three output file formats, associated
with global field outputs, point output (table), and point out-
put (spectrum), accompanied by their respective sizes for one
single forecast cycle are as follows:

e gefswave.YYYYMMDD.ENSM.global 0p25.grib2: 1.6G (16 days)/
34G (35 days).

e gefs.wave.YYYYMMDD.ENSM.tab.nc: 8.3M (16 days)/
19M (35 days).

o gefs.wave.YYYYMMDD.ENSM.spec.nc: 493M (16 days)/
1.1G (35 days).

An automatic quality check was built and applied during
the reforecast production, detecting issues throughout the
simulations. Moreover, a visualization and validation tool,
WW3-tools (Campos et al. 2022a), was developed in Python
to facilitate the postprocessing of WAVEWATCH III data
as well as altimeter and buoy data. Examples can be seen in
Figs. 5 and 6. The automatic quality check flagged 35 cycles/
members with problems, prompting their removal and subse-
quent rerun. Alongside the automated verification, a visual
assessment of the results was conducted using a combination
of plots in a panel format (Fig. 6) designed for detecting
inconsistencies. Despite the time-consuming nature of the
visual inspection, it successfully identified 8 cycles per mem-
ber with unrealistic results, illustrated in Fig. 6, which were
then deleted and rerun to build the final 20-yr reforecast
dataset.

The initial assessments and quality checks of GEFSv12
wave reforecast files allowed for the identification of several
interesting characteristics in the ensemble forecast. One ex-
ample is illustrated in Fig. 7, showing an extreme event asso-
ciated with an extratropical low and large wind fetch that
resulted in waves up to 9 m of significant wave height (Hs).
In the short range, within the first 5 days, Fig. 7b showcases
a good agreement between forecast and observations for
this event. However, the same event for a forecast lead time
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FIG. 4. Position of the point outputs of the GEFSv12 wave reforecast.

of 9 days, ie., moving backward in the forecast cycles
(Fig. 7a), reveals both the control member and the ensemble
mean failed to accurately represent the peak of the storm—
exemplifying a typical loss of predictability over time. De-
spite the poor performance of the ensemble mean and the
control member nearly 10 days in advance of the event, the
ensemble members between days 7 and 14 (week 2 forecast
window) indicated a highly active period, which can be ana-
lyzed probabilistically to provide valuable forecast informa-
tion in the long range. The scatterplots in Fig. 8 also
illustrate the increased scatter error and loss of predictabil-
ity in time. These aspects will be quantitatively analyzed in
the following section, covering a 20-yr period.

4. Reforecast validation against satellite and buoy data

Validation of the GEFSv12 wave ensemble reforecast was
performed against buoy and altimeter data, independently.

NDBC Spectrum 41049, 2021/01/05 11Z
0°

0.020

0.016

0.012

0.008

0.004

Wave Direction: Coming from

The analyzed variables include wind speed at a 10-m height
(U10), significant wave height (Hs), and mean wave period
(Tm, from the buoy data only), with a primary focus on Hs.
The spatial resolution and model optimization of GEFSv12
were not designed for coastal waters, potentially compromis-
ing forecast accuracy, as discussed by Chang et al. (2017) and
Valiente et al. (2023). Similarly, altimeter data also exhibit
limited accuracy in shallow waters near the coastline. To ad-
dress these limitations, a grid mask was constructed to exclude
coastal areas based on two criteria: water depth and proximity
to the coast—following the validation methodology of Ribal
and Young (2019) and Campos et al. (2020a, 2020c). There-
fore, for the reforecast validation against both altimeters and
buoy data, a minimum water depth of 80 m and a distance
of 50 km to the nearest coast were imposed. These criteria
were applied using NGDC/NOAA 1-min gridded elevations/
bathymetry for the world (ETOPO1; Amante and Eakins 2009)

NDBC Power Spectrum 41049 2021/01/05 11Z
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FIG. 5. Example of WW3-tools visualization. The plots show a wave spectrum measured on 5 Jan 2021 from NDBC
buoy 41 049. The same visualization can be applied to WAVEWATCH III spectra.
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FIG. 6. Quality check panel utilized to inspect GEFSv12 wave reforecast files, analyzing one forecast cycle per figure. The panel plots
(top) the first time step, (middle) the last forecast lead time, and (bottom) a time series for a predefined point (NDBC point 41001 in this
case). The two directional spectra refer to this point. At the bottom right, basic statistics are calculated for the entire globe and cycle, also
showing the number of steps available. This figure is an example of an error in the reforecast that could be captured by the visual inspec-
tion that was not detected in the automatic quality check.

and the information of distance to the coast from GSFC/NASA
(0.04°), respectively.

One of our primary objectives is to assess the wave fore-
cast’s performance as a function of the forecast lead time, par-
ticularly advancing into longer forecast ranges. To expand the
analysis on the lead time, we excluded the reforecast cycles
limited to 16 days, focusing on forecast ranges covering
35 days containing 11 ensemble members. The validation sta-
tistics were inspired by the studies of Zhu and Toth (2008) and
Willmott et al. (1985), and the error metrics were selected -
based on Mentaschi et al. (2013), who discuss the advantages 2y, =)~ - D
of interpreting the systematic and scatter components (SCs) of SCrmse = =1 = VRMSE? — Biasz,
the error separately. Furthermore, Mentaschi et al. (2013) rec-
ommend computing an additional metric (HH; Hanna and ®)
Heinold 1985) to address issues stemming from low values of n
RMSE and scatter index (SI), which can affect the statistics. z [y, =3 — (x, — D)

A total of eight metrics [Egs. (1)—(8)] were computed for the s1 =" 7 ) (6)
validation, where x is the observation (altimeter or buoy data) > x?

and y is the reforecast. The overbar in the following equations '
represents the arithmetic mean:

@)

4)

La HH = %)
Bias = — Z(y,- - x,), ®
ni=1
2 >0, - P, %)
Z(yi - x,‘) i=1 ! !
NBias ==L | 2) cC (®)
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FIG. 7. Example of the GEFSv12 wave ensemble reforecast in
the Pacific Ocean, for a position at 40.764°N, 137.377°W, compared
with NDBC buoy measurements. The plots show a time series of
significant wave height (Hs; m) of two forecast cycles where the
date (month day) is presented in the bottom x axis and the forecast
lead time (days) is presented in the top x axis. In the left-hand part
of the graphics, it is expected better accuracy, whereas the right-
hand portion of the plot shows larger scatter errors associated with
more advanced lead time. The observations are shown in red, the
control member is shown in solid black, the arithmetic EnsMean of
the 11 members is shown in solid blue, and the individual members
are shown in gray.

Those metrics as well as the following validation plots pre-
sented have been produced using WW3-tools.

a. Validation against buoy data

The validation was performed using NDBC and Copernicus
datasets, paired with WAVEWATCH III point outputs, cre-
ating data arrays with hourly resolution. After excluding
coastal waters, the remaining data were quality controlled
(NDBC 2015), and the buoys with longer and more consis-
tently high-quality data, covering at least 1 year, were chosen
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for validation. This dataset comprises a total of 98 buoys in
deep waters (Fig. 9b) which, over the 20-yr period, resulted in
5044272 observation-model matchups selected for statistical
analyses.

The initial comparisons between reforecast and buoy data
are outlined in Tables 2 and 3. They demonstrate very similar
mean values of Hs between GEFSv12 and the observations,
indicating an overall good calibration of the model. However,
the ensemble mean, particularly for week 2 and beyond, pre-
sents a slight overestimation of Hs that will be further investi-
gated. The variance, on the other hand, displays larger
differences, with the buoy data showing higher variance than
the reforecast for Hs. The differences become more notable
for the ensemble mean from week 2 onward, where the refor-
ecast severely underestimates the expected variance (Table 2)
of the buoy data. This suggests that the underdispersed signal
of Hs from GEFSv12 overestimates small waves and underes-
timates larger seas. The lower values of GEFSv12 95th and
99th percentiles align with this initial hypothesis.

Unlike Hs, the wave period, Tm, presented in Table 3,
shows a large overestimation by the wave model, which also
extends to the upper percentiles. The variance of Tm is con-
sistently higher than the observations, impacting the ensemble
mean of Tm for weeks 2-5. Tables 2 and 3 clearly highlight
the forecast limitations beyond 7 days, showing a critical un-
derestimation effect in the higher percentiles by the ensemble
mean, smoothing out the severe events. The underestima-
tion’s magnitude for Hs reaches 25%-40% for the 99th and
99.9th percentiles, respectively.

The wave model’s ability to represent observations, from
calm to severe conditions, can be visualized using quantile—
quantile plots (QQ plots). The initial plots in Fig. 10 demon-
strate the great performance of GEFSv12 within the first 24-h
forecast lead time regarding Hs, confirming the successful
wave model’s optimization. Both the control member and en-
semble mean closely align with the main diagonal. The high
quality of reforecast data and operational forecast archives is
also discussed in Breivik et al. (2013) and Meucci et al. (2018).
They argue that these sources offer better alternatives to
traditional reanalysis, particularly for extreme value analysis
(EVA) applications—an essential requirement within the

10

Model
Model

Model

10

Observations

Observations

Observations

FI1G. 8. Scatterplots of significant wave height (Hs; m) comparing the GEFSv12 wave reforecast (control member) point outputs with
NDBC observation from 24 Aug to 18 Oct 2016. The plots display different lead time intervals: (a) day 1, (b) week 1, and (c) week 2.
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FIG. 9. Information on buoy data used for the reforecast validation. (a) Number of buoys available for each year,
from 2000 to 2020. (b) Deep water buoys selected for validation.

marine industry. Nevertheless, while the quality of Hs re-
mains, Tm shows an increasing overestimation, indicating the
need for further analysis of the entire wave spectrum.

The decline in predictability over time is demonstrated
through the progression shown in the QQ plots and scatter-
plots of Fig. 11. Initially, within the first week, the forecast
agrees very well with observations (Fig. 11a) although some
scattering is noticeable (Fig. 11e). However, as we move to
week 2 and beyond, the ensemble mean starts to overestimate
smaller waves while underestimating higher percentiles. For
week 3 onward, only a few reforecast values of Hs exceed 6 m
in the scatterplots (Figs. 11g,h), with most data falling below
5 m. In summary, while the scatter points of the control member
appear symmetrically distributed around the main diagonal, the
scatter points of the ensemble mean become increasingly clus-
tered toward lower values of Hs on the y axis (reforecast). This
feature is critical for operational applications and constrains the
usefulness of the ensemble mean beyond week 2.

It is important to note that unlike scatterplots that directly
display the matchups, QQ plots operate in the probabilistic
domain, as the quantile function is the inverse of the cumula-
tive distribution function. This aspect of QQ plots disregards
differences in phase between observation and model signals,
which are expected to diverge as forecast leads extend. In line
with findings from Breivik et al. (2013), the validation results
indicate that as the forecast lead time extends, the QQ plot of

the control member continues to follow the main diagonal,
whereas its scatter error rapidly increases. This leads to a de-
terioration of the ensemble mean, resulting in a curved and
sloped QQ plot.

The assessment results using the error metrics from Egs. (1)
to (8) are presented in Tables 4 and 5. The results for day 1,
considering forecast slices from 0 to 24 h, confirm the out-
standing performance of GEFSv12 concerning Hs. The bias
ranges from —1 to 3 cm only, accompanied by very high corre-
lation coefficients (CCs) of 0.95. While there is room for im-
provement in the SI at 15%, the RMSE is reasonably low at
0.37. Moving from day 1 to week 1, the bias remains close to
zero. As expected, there is a decrease in the correlation coeffi-
cient and an increase in scatter errors, yet the performance re-
mains well preserved, with a CC of 0.86-0.88. Indeed, from
week 1 onward, the benefits of the ensemble mean compared
to the control member become evident, showing higher CC
and reduced scatter errors. This reaffirms the advantage of en-
semble forecasts over deterministic forecasts, as explained by
Kalnay (2003) and echoed in previous NOAA wave ensemble
validations (Alves et al. 2013; Campos et al. 2018, 2020a).

The most substantial degradation in wave forecasts, signifi-
cantly impacting error metrics, occurs when transitioning
from week 1 to week 2. The control member is the most af-
fected, with CC dropping to 0.57 and scatter errors rising to
45%. Although the ensemble mean maintains better CC and

TABLE 2. Comparison between buoy observations and wave reforecast data for significant wave height (Hs; m), illustrating the control
member and arithmetic EnsMean. The first three probabilistic moments are presented, followed by the 95th, 99th, and 99.9th percentiles. The
results are categorized in forecast lead intervals, ranging from weeks 1 to 5 and covering a 35-day forecast range. The observations are in bold.

Mean Variance Skewness pctl9s pctl99 pctl99.9
Hs Obs 2.11 1.43 1.64 4.43 6.25 8.80
Week 1 Control 211 1.32 1.81 4.34 6.19 8.92
EnsMean 2.16 1.24 1.63 4.36 6.01 8.37
Week 2 Control 2.13 1.35 1.78 441 6.27 8.85
EnsMean 2.20 0.89 1.17 4.07 5.18 6.48
Week 3 Control 2.12 1.34 1.80 4.40 6.24 8.84
EnsMean 2.19 0.73 0.94 3.89 4.70 5.55
Week 4 Control 211 1.35 1.83 441 6.27 8.82
EnsMean 2.18 0.71 0.92 3.87 4.62 5.35
Week 5 Control 2.12 1.37 1.82 441 6.32 8.96
EnsMean 2.18 0.72 0.92 3.89 4.61 5.38
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TABLE 3. Comparison between buoy observations and wave reforecast data for mean wave period (Tmy; s), illustrating the control member
and arithmetic EnsMean. The first three probabilistic moments are presented, followed by the 95th, 99th, and 99.9th percentiles. The results
are categorized in forecast lead intervals, ranging from weeks 1 to 5 and covering a 35-day forecast range. The observations are in bold.

Mean Variance Skewness pctl9s pctl99 pctl99.9
Tm Obs 6.21 2.06 1.01 8.85 10.59 13.00
Week 1 Control 7.77 432 0.54 11.52 13.47 15.64
EnsMean 7.86 4.12 0.51 11.50 13.39 15.50
Week 2 Control 7.85 4.48 0.52 11.69 13.62 15.65
EnsMean 7.96 3.49 0.27 11.19 12.65 14.23
Week 3 Control 7.89 4.57 0.48 11.72 13.62 15.66
EnsMean 7.99 3.09 —0.02 10.83 11.84 12.86
Week 4 Control 7.88 4.57 0.48 11.71 13.59 15.67
EnsMean 7.99 3.01 -0.10 10.72 11.62 12.52
Week 5 Control 7.89 4.66 0.47 11.77 13.60 15.60
EnsMean 7.99 3.08 -0.10 10.75 11.62 12.42

lower scatter errors, it comes at the expense of increased posi-
tive bias. Breivik et al. (2013) also investigated ensemble fore-
casts at extended lead times, reporting significant errors
beyond 10 days with low CC of Hs (0.33) and large SI (0.68).
The decline in predictability persists into week 3, revealing
very large systematic and scatter errors. The validation results
for weeks 4 and 5 are very similar to those for week 3, indicat-
ing a progressive increase in forecast errors stabilizing at
week 3, with a pronounced lack of skill thereafter. Campos
et al. (2024) describe a spatiotemporal methodology for gen-
erating probability maps that are more suitable for extended
forecast ranges.

The error metrics for Tm, outlined in Table 5, indicate a
weaker performance compared to Hs. The CC starts for day 1
with 0.77 and a scatter index above 20%. The large positive
bias observed in Tm, presented in the previous plots, is
confirmed by Table 5, which increases even more with the
forecast lead time. Although the ensemble mean offers advan-
tages over the control member, the model’s reduced skill for
Tm from the short-term range onward renders this advantage
somewhat negligible when considering the overall larger
erTors.

Apart from bias, the results from Tables 2 to 5 quantita-
tively demonstrate the superior performance of the ensemble
mean in comparison to the control member, which is more
evident for week 2 onward. Nevertheless, the QQ plots in
Fig. 11 highlight the problems of the ensemble mean in longer
forecast ranges. Hence, we recommend utilizing the ensemble
mean preferably within week 1 and possibly week 2 (exclud-
ing extreme events). This will become even more evident in
the next section through the spatial validation using altimeter
data. A more effective approach to visualize this effect is by
combining various statistics into a single diagram. The Taylor
diagrams (Taylor 2001) shown in Fig. 12 illustrate this inter-
esting evolution of the ensemble mean compared to the con-
trol member as the forecast lead time progresses. While the
ensemble mean exhibits better correlation coefficients, it con-
sistently displays much lower standard deviations than the ob-
servations in longer forecast ranges. This trend is also evident
in the time series of Fig. 7a for horizons extending beyond
10 days.

To better investigate the growth curves of the forecast error
as a function of the forecast lead time, the statistical metrics
were recalculated using 24-h segments from day 1 to day 35
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F1G. 10. QQ plots of (left) Hs and (right) Tm comparing the GEFSv12 wave reforecast with buoy observations.
The plots were generated using time steps within day 1. The control member is depicted in blue, while the arithmetic

EnsMean is shown in red.
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F1G. 11. Evolution of (top) QQ plots and (bottom) scatterplots of significant wave height (Hs; m) over forecast time, spanning from
weeks 1 to 5. The results illustrate the comparison between the GEFSv12 wave reforecast and buoy data. The control member is shown in

blue, while the arithmetic EnsMean is shown in red.

(Figs. 13 and 14). The correlation coefficient and HH high-
light the point where the ensemble mean and control member
begin to diverge progressively. In the initial 3 days, both ex-
hibit quite similar results (refer to Fig. 7 for a practical exam-
ple), but after day 3, the ensemble mean notably outperforms
the control. Specifically, the GEFSv12 reforecast’s ensemble
mean maintains a CC above 0.9 for the first 4 days and above
0.8 for the initial 7 days for Hs, confirming the good quality of
GEFSv12 in week 1. The RMSE below 0.6 within the first
5 days reinforces this conclusion.

The CRPS is a reliable tool that considers the entire ensem-
ble forecast distribution, taking into account all members
rather than relying solely on a single estimate (control) or the
arithmetic mean (EM). The CRPS calculated for Hs is pre-
sented in Fig. 13c. By considering CC, HH, and CRPS alto-
gether, it becomes evident that the loss of predictability

predominantly happens between days 4 and 10. Beyond the
15-day mark, the error metrics exhibit relative stability, af-
firming the findings observed in Tables 4 and 5.

The bias plots (Figs. 14a,c) for both Hs and Tm show a ten-
dency of gradual increase within the initial 10 days, especially
the ensemble mean, presenting a positive bias (model overes-
timation) after day 7, being especially higher for weeks 2-5.
These results align with Zhu et al. (2018), who evaluated the
atmospheric forecast from GEFSv11, focusing on weeks 3
and 4. They reported a systematic bias while emphasizing the
need for further calibration and bias correction when advanc-
ing to the subseasonal time scale. The magnitude of bias in
Fig. 14 is relatively small for Hs but notably higher for Tm,
reaching almost 2 s beyond the 10-day forecast period. Such a
high positive bias of Tm directly affects the RMSE, as indi-
cated in Fig. 14c.

TABLE 4. Results of the GEFSv12 wave reforecast validation against wave buoys, for significant wave height (Hs; m). The table
shows eight error metrics calculated using Egs. (1)—(8). The statistics are divided into forecast lead intervals, including day 1 and

weeks 1-5.
Hs Bias RMSE Nbias NRMSE SCrmse SI HH CcC
Day 1 Control -0.01 0.37 -0.01 0.15 0.37 0.15 0.15 0.95
EnsMean 0.03 0.37 0.01 0.15 0.37 0.15 0.15 0.95
Week 1 Control 0.00 0.62 0.00 0.26 0.62 0.26 0.26 0.86
EnsMean 0.05 0.57 0.03 0.23 0.57 0.23 0.24 0.88
Week 2 Control 0.03 1.09 0.01 0.45 1.09 0.45 0.48 0.57
EnsMean 0.10 0.87 0.05 0.36 0.86 0.36 0.37 0.70
Week 3 Control 0.02 1.23 0.01 0.51 1.23 0.51 0.55 0.45
EnsMean 0.10 0.94 0.05 0.39 0.94 0.39 0.41 0.62
Week 4 Control 0.02 1.25 0.01 0.52 1.25 0.52 0.56 0.44
EnsMean 0.10 0.95 0.05 0.40 0.95 0.40 0.42 0.61
Week 5 Control 0.04 1.26 0.02 0.53 1.26 0.53 0.57 0.42
EnsMean 0.11 0.96 0.05 0.40 0.95 0.40 0.42 0.60
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TABLE 5. Results of the GEFSv12 wave reforecast validation against wave buoys, for mean wave period (Tm; s). The table shows
eight error metrics calculated using Egs. (1)—(8). The statistics are divided into forecast lead intervals, including day 1 and weeks 1-5.

Tm Bias RMSE Nbias NRMSE SCrmse SI HH CC

Day 1 Control 1.56 2.05 0.25 0.32 1.34 0.21 0.29 0.77
EnsMean 1.62 2.10 0.26 0.33 1.34 0.21 0.29 0.77

Week 1 Control 1.56 211 0.25 0.33 1.42 0.22 0.30 0.73
EnsMean 1.65 2.14 0.27 0.34 1.37 0.21 0.30 0.74

Week 2 Control 1.65 2.41 0.27 0.38 1.76 0.28 0.34 0.57
EnsMean 1.76 2.30 0.28 0.36 1.48 0.23 0.32 0.63

Week 3 Control 1.70 2.57 0.27 0.41 1.93 0.30 0.36 0.47
EnsMean 1.80 2.35 0.29 0.37 1.51 0.24 0.33 0.57

Week 4 Control 1.70 2.59 0.27 0.41 1.96 0.31 0.37 0.45
EnsMean 1.81 2.36 0.29 0.37 1.53 0.24 0.33 0.55

Week 5 Control 1.72 2.63 0.28 0.42 1.99 0.31 0.37 0.44
EnsMean 1.82 2.39 0.30 0.38 1.55 0.24 0.34 0.54

An ensemble forecast validation must be accompanied by
the analysis of its spread, calculating the dispersion among
the 11 GEFSv12 ensemble members across different forecast
lead times. The importance of correct spread in a wave en-
semble is discussed by Saetra and Bidlot (2004). They de-
scribe how the ensemble spread measures the uncertainties
in the predictions, being useful for determining the reliability
of ensemble forecasts and for diagnosing errors. Mori and

0 01 g5 Ctrl
=y . EM

Standard Deviation
Standard Deviation

Hirakuchi (2004) demonstrated that the spread of ensemble
members tends to monotonically increase with the forecast
length, which is an important pattern that gives reliability to
forecasts. The rank histogram serves as a suitable method
for evaluating spread in terms of dispersion while also being
sensitive to the bias of individual members. A full explana-
tion of how to interpret rank histograms is found in Hamill
(2001).
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FIG. 12. Taylor diagrams showing the performance of GEFSv12 wave reforecast validated against buoy data, comparing the control
member (blue) with the EnsMean (red). In each plot, the gray circular lines represent the RMSE. The model validation was conducted us-
ing buoy observations. Results are divided into forecast lead intervals, including day 1 and weeks 1-5. The solid centered line shows the
standard deviation of the observations. Points on the left have lower standard deviations than the observations, usually overestimating
small values and underestimating the top percentiles.
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FIG. 13. (a),(b) Evolution of GEFSv12 wave reforecast error as a function of the forecast lead
time for significant wave height (Hs). The model validation was conducted using buoy observa-
tions. The control member is plotted in blue, while the EnsMean is in red. (c) The CRPS, which
measures the area between the cumulative distribution function of the ensemble forecast (using

all members) and the observations.

The rank histograms computed for the GEFSv12 wave re-
forecast are presented in Fig. 15. Ideally, they should display
a flat shape with bars containing similar probabilities or
occurrences. A U shape indicates the ensemble is under-
spread, while an inverted bowl shape suggests the ensemble
is overspread. Higher bar values on the left-hand side of the
graphic may indicate positive bias, whereas the opposite
may suggest negative bias. The results in Fig. 15 show that
the ensemble is overconfident within the first week, espe-
cially in the short-range and day 1, suggesting underdisper-
sion. The spread gradually increases across the forecast
range, becoming more appropriate in weeks 2-5. Despite its
small magnitude, the persistent positive bias impacts the
rank histograms, evident in the asymmetry observed in the
plots from Fig. 15. These findings align with the discussion
in section 3 and corroborate with the results from Figs. 1
and 2.
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b. Spatial validation using altimeter data

Altimeter data offer several advantages over buoy data
when it comes to model validation. This section explores two
of them: (i) global spatial coverage and (ii) the provision of
wind speed and significant wave height together. For the vali-
dation of the GEFSv12 wave reforecast, the quality-controlled
and calibrated altimeter database from the Australian Ocean
Data Network (AODN) was chosen. The reforecast period
from 2000 to 2020 includes 11 satellite missions: TOPEX,
ERS-2, GFO, Jason-1, Envisat, Jason-2, CryoSat-2, HY-2A,
SARAL, Jason-3, and Sentinel-3A. Ribal and Young (2019) of-
fer a complete description of the AODN dataset, providing
details about each altimeter mission, uncertainties, estimated
errors, and the calibration process. The altimeter calibration
process is also discussed in Young et al. (2017).

The two wind and wave variables provided in the altimeter
database, and therefore selected for validation, are significant
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FIG. 14. Evolution of GEFSv12 wave reforecast error as a function of the forecast lead time for significant wave
height (Hs) in the top plots and mean wave period (Tm) in the bottom plots. The model validation was conducted us-
ing buoy observations. The control member is represented in blue, while the EnsMean is plotted in red. The left side

shows the bias, and the right side displays the RMSE.

wave height (Hs; m) and wind speed at 10-m height (U10; m s~ ).
Data from the Ku band and Ka band (SARAL) were utilized, ex-
cluding the C-band data. The altimeter records were collocated
into the 0.25° X 0.25° GEFSv12 wave grid using the methodology
combined with spatial and temporal criteria suggested by Campos
(2023). An inverse distance weighting using a linear function
was applied to along-track altimeter records to produce the
matchups of satellite/model data on the regular grid. Coastal
water points were excluded, as previously reported, leading to
a total of 34646126 matchups in deep waters. Figure 16 offers
a global view of this dataset.

The same statistical analysis applied in the last section, in-
cluding tables and plots, was applied to the validation against
altimeter data. Additionally, to leverage the global data’s in-
herent characteristics, the statistics have been recomputed for
each grid point based on the methodology proposed by
Campos et al. (2020a), which is based on Young and Holland
(1996) and Sepulveda et al. (2015). This involved iteratively
processing latitude and longitude grid points, pooling data
within a 2° X 2° bin centered at each point. This approach
yields global maps that are highly valuable for examining the
regional distribution of forecast errors.
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FIG. 16. Total count of AODN altimeter data distributed in space, on the GEFSv12 wave grid
with a spatial resolution of 0.25° X 0.25°.

Before starting the reforecast assessment, a simple view of
the collocated and binned altimeter data is presented in
Fig. 17 in terms of arithmetic mean and 99th percentile of Hs
and U10. The figure highlights regions with magnified inten-
sity, illustrating where the escalation in severity in the 99th
percentile mostly occurs. Latitudes north of 40°N and the en-
tire Southern Ocean present the most extreme conditions. As
expected, a direct correspondence is observed between the
most active regions in U10 and Hs, confirming the strong rela-
tionship between surface winds and wave energy.

The initial results of RMSE considering the first 24 h of
forecast are presented in Fig. 18. The global map of U10 illus-
trates the impact of the general atmospheric circulation,
showing larger errors over the intertropical convergence zone
(ITCZ), the western portion of semipermanent anticyclones,
and cyclogenetic areas. Consistent with Campos et al
(2022b), the 10-m wind errors in Fig. 18 exhibit greater magni-
tudes in locations with warm currents. The RMSE pattern of
Hs closely mirrors that of U10, especially in extratropical

0° 60°E 120°E 180°

120°wW 60°W

latitudes where the transfer of momentum from surface winds
to ocean waves is more pronounced. However, unlike U10,
equatorial locations at the ITCZ do not demonstrate signifi-
cantly amplified RMSE for Hs, potentially due to the lower
intensity of those winds and the influence of distant swells.
Campos et al. (2020b) provided a global map illustrating the
correlation coefficient between U10 and Hs, pointing to high
correlations in the extratropics and lower correlations near
the equator. The distribution of RMSE in Fig. 18 responds to
this regional effect.

The RMSE has been decomposed into systematic and scat-
ter errors, presented in Fig. 19. It shows the bias of U10 is pos-
itive (model overestimation) in equatorial regions and
western portions of the Pacific and Indian Oceans. In contrast,
the bias of U10 is negative (model underestimation) across
great parts of the domain, especially in the Southern Ocean,
where the altimeter winds are more intense than the
GEFSv12 reforecast. The bias of Hs partially follows this spa-
tial distribution but exhibits some differences. Although the
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FIG. 18. Spatial validation of GEFSv12 wave reforecast using al-
timeter data. The global error maps display RMSE calculated using
the first 24 h of forecast, for U10 (m s ') and Hs (m).

wave model is forced by wind speed that presents a reasonably
homogeneous negative bias in the extratropics, the bias of Hs
is mostly positive in the eastern portions of the Pacific Ocean
and negative in the western portions. Similarly, the Atlantic
Ocean has a more pronounced negative bias in the western
longitudes. This pattern is more evident in the Pacific Ocean,
associated with the largest basin and the longest swells.

It is known that the wave generation process requires per-
sistent winds and large fetches, which are frequently present
in the midlatitude meteorological flow from the west.
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Consequently, the results in Fig. 19 suggest that young waves
tend to display a negative bias, while the mature swells, which
accumulate uncertainties from wind and wave modeling, tend
to exhibit a positive bias, on average. This effect occurs within
a bias range that is generally very low, as indicated by the
color bar scale in the plot. Storm-referenced assessments, fol-
lowing the meteorological systems in the Pacific Ocean, could
further explore and validate this theory.

The scatter index in Fig. 19 highlights larger errors of U10
over warm ocean waters, directly affecting the waves and in-
creasing the scatter errors of Hs. Across most regions glob-
ally, the scatter index of Hs ranges from 8% to 12%, while
over relatively warm waters, it extends from 13% to 17%.
This issue underscores the necessity for fully coupled systems,
as evident from the influence of sea surface temperature on
wave forecast performance. In conclusion, by examining both
scatter index and bias concurrently, the eastern parts of the
Pacific and Atlantic Oceans exhibit positive bias and low scat-
ter errors, while the central-western regions display negative
bias and higher scatter errors. These characteristics are crucial
for consideration in future forecast system developments and
postprocessing bias-correction algorithms.

The global maps show elevated errors in both U10 and Hs
within polar regions near the Arctic and the Antarctic. This
might be associated with model limitations in the wind—wave—
ice interaction or associated with constraints in altimeter
measurements near ice-covered areas. At present, no defini-
tive conclusions can be drawn, emphasizing the need for dedi-
cated validation specific to these regions.

The dataset and validation were segmented based on fore-
cast lead time, from 1 to 35 days, employing the same method-
ology as the last section using buoy data. Figure 20 shows the
correlation coefficient and normalized RMSE, now utilizing
altimeter data with global coverage. The results closely resemble
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FIG. 19. Spatial validation of GEFSv12 wave reforecast using altimeter data. Global error maps showing (top) bias and (bottom) SI for
U10 (m s~ ') and Hs (m). The SI is a unitless metric and can be interpreted as a percentage scatter error when multiplied by 100.
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model validation was conducted using altimeter observations. The
control member is plotted in blue, while the EnsMean is plotted in
red.

those in Fig. 13, confirming the quantitative analysis and the
observed error growth curves—an additional validation in-
volving 34 million matchups from altimeters, which is a sub-
stantial increase from the 5 million matchups obtained from
buoys. Nonetheless, slight differences are found between
Figs. 20a and 13a concerning the CC values. In the reforecast
validation using buoy data (Fig. 13a and Table 4), the CC be-
gins at 0.95, declining to values below 0.9 by day 5. However,
the validation using altimeter data (Fig. 20a) shows better
performance, with CC starting at 0.96 and maintaining CC
above 0.9 on day 5. Moreover, the minimum CC drops to
0.6 in the validation using buoy data, while the validation us-
ing an altimeter shows a minimum CC of 0.65. Regarding the
increase in RMSE with forecast time, the results indicate
RMSE remains below 20% within the initial 5 forecast days, em-
phasizing once more the outstanding performance of GEFSv12
in the short term.

Expanding the analysis of errors over forecast time using
global maps allows us to identify areas where forecast deterio-
ration is most prevalent. The global RMSE maps of U10 in
Fig. 21 show a rapid increase in errors within the control
member at extratropical latitudes. The most significant errors,
above 4 m sfl, are observed in the North Atlantic, Southern
Ocean, and North Pacific. Meanwhile, the ensemble mean for
week 1 demonstrates superior performance with lower
RMSE, approximately 1 m s~! in tropical latitudes, and be-
tween 1.8 and 3.2 m s~ ! in the extratropics, above 35°N and
below 35°S. The ensemble mean consistently outperforms the
control member across all forecast ranges, albeit with smaller
differences noted in week 1. The most substantial discrepan-
cies emerge in week 2, where the control member shows con-
siderable deterioration, while the ensemble mean maintains a
lower RMSE. This illustrates the inadequacy of relying on
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deterministic forecasts for week 2 and beyond when ensemble
forecasts are available.

The correspondence of Hs with U10 is very high, as illus-
trated in Fig. 22, indicating that RMSE in areas with high
wind speeds significantly affects the quality of Hs. Given the
efficient propagation of ocean waves with minimal dissipation,
errors in Hs originating from U10 can propagate globally—
transporting local wind errors to further distances. Therefore,
unlike U10, localized errors in Hs may stem from forecast
issues in remote locations. This becomes more critical consid-
ering that input and dissipation source terms, such as WAVE-
WATCH 1II ST4 (Ardhuin et al. 2010), rely on local wave
spectra as input for their functions. For instance, if a swell is
inaccurately represented due to substantial errors in U10
where it originated as wind sea, it can compromise the wave
spectra across a vast area, consequently resulting in miscalcu-
lations in the local source terms—a cascade effect that ex-
pands the error.

It is interesting to note that there is not a substantial differ-
ence in RMSE between weeks 3, 4, and 5 for both U10 and
Hs. However, while U10 experiences a significant deteriora-
tion in RMSE in the extratropical regions from week 1 to
week 2, Hs appears to show a more gradual decrease in
RMSE across weeks 1, 2, and 3. This could be associated with
the prolonged propagation (or “memory”) of mature swells in
large basins such as the Southern Ocean and the Pacific
Ocean. Finally, Figs. 20b and 22 confirm that the GEFSv12
wave ensemble overperforms the control member on a global
scale, which is also discussed by Campos et al. (2020a) in their
evaluation of GEFSv11.

5. Final discussion

In this paper, we described the development and validation
of a new wave ensemble reforecast covering 20 years and ex-
tending to a 35-day forecast range. This represents a unique
publicly available global dataset expected to support future
research studies. The time frame of the GEFSv12 wave en-
semble reforecast, from 2000 to 2019, is ideal for statistical
analyses demanding large datasets, and it fortunately covers
two decades of available, high-density observations—shown
in Fig. 9a regarding the number of buoys and by Ribal and
Young (2019) and in Fig. 16 in terms of altimeter data. The
combination of a large reforecast dataset and extensive observa-
tions is essential for subsequent regional validations, model op-
timizations, the development of postprocessing bias-correction
algorithms, and other demands in the marine industry such as
extreme value analysis for design criteria. This paper provides
detailed information on the reforecast construction that is ex-
pected to support upcoming system versions in the future.

Our first analysis of the GEFSv12 wave reforecast, concern-
ing the ensemble spread and initial conditions, revealed that
the spread of the wave ensemble members is primarily driven
by the spread of the wind inputs, particularly noticeable be-
yond the initial 3-day forecast period. Similarly, the impact of
initial conditions (ICs) on the wave ensemble forecast is pre-
dominantly limited to the first 5 days. Notably, we observed
that the short-term wave forecasts of GEFSv12 were
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FIG. 22. Spatial validation of GEFSv12 wave reforecast using altimeter data. Global maps displaying RMSE for Hs (m) are presented
across forecast time, ranging from weeks 1 to 5. (left) The control member. (right) The EnsMean. Consistent color palettes and ranges are

maintained across all plots to allow direct comparison.

underspread within the first week, while for week 2 and be-
yond, the spread seems adequate. Interestingly, the assess-
ment of the ensemble spread combined with the statistical
validation suggests that the reduced scatter errors and higher
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correlation coefficients in the wave ensemble mean, compared to
the control member, stem greatly from the atmospheric ensemble
spread (wind inputs). Hence, the performance of the atmospheric
component in GEFSv12, reported by Hamill et al. (2022) and
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Zhou et al. (2022), has significantly contributed to the high-
quality outputs of the wave reforecast.

In summary, the exceptional performance of wind inputs, com-
bined with the successful optimization of WAVEWATCH III in
GEFSv12, led to highly accurate results of significant wave
height. It showed minimal bias close to zero, with a low RMSE
of around 15%, and a correlation coefficient between 0.95 and
0.96 for day 1. The QQ plots illustrate the reforecast’s high accu-
racy from low values to the upper percentiles (Figs. 10 and 11a).
Although our validation did not focus on the wave spectrum, we
observed that the performance of the wave period is significantly
poorer compared to Hs. Considering the importance of wave pe-
riod and directional spread for the industry and marine safety,
we recommend a dedicated study focusing on improving these
variables in the future.

The error growth curves and graphics indicate that beyond
day 3, the ensemble mean significantly overperforms the control
member, showing lower scatter errors and higher correlation co-
efficients. It demonstrates the superior performance of the wave
ensemble forecast compared to deterministic forecasts while
also illustrating the inadequacy of relying on deterministic fore-
casts for week 2 and beyond. Despite the improved quality of
the ensemble mean, starting from week 2 forecasts, it tends to
overestimate the smaller waves and underestimate more severe
events above the 90th percentile. The evolution of error metrics
as a function of forecast lead time, in Figs. 13, 14, and 20, indi-
cates large scatter errors and low correlation coefficients beyond
day 10, stabilizing from day 15 onward. This does not necessarily
disqualify the ensemble application for midrange to long range
but implies that ensemble forecast results should be processed
differently. Rather than being restricted to the ensemble mean
or individual members, a probabilistic approach using spatiotem-
poral analysis must be adopted.

The spatial validation using altimeter data revealed highly
heterogeneous distributions in systematic and scatter errors.
The amplified RMSE of U10 over warm currents directly
compromised the wave model’s performance, leading to in-
creased Hs RMSE. This emphasizes the critical role of fully
coupled systems in mitigating regional deficiencies. In a
broader perspective, the global error maps indicated that the
eastern parts of the Pacific and Atlantic Oceans exhibit posi-
tive bias and low scatter errors, while the central-western re-
gions display negative bias and higher scatter errors. These
errors can be reduced by postprocessing bias correction
trained with altimeter data, incorporating latitude and longi-
tude information to model spatial variability, as proposed by
Campos et al. (2020b).

Finally, this research project and reforecast construction de-
manded substantial computational resources, storage, extensive
scripting, and multidisciplinary scientific discussions. It demon-
strated successful coordination among various NOAA centers,
including the Atlantic Oceanographic and Meteorological Labo-
ratory (AOML), Ocean Prediction Center (OPC), Environmen-
tal Modeling Center (EMC), and Climate Prediction Center
(CPC). Within the same research project, a companion paper is
in production, focusing on probabilistic wave forecasts for week
2 using a distinct validation approach based on fuzzy verification,
proposed by Ebert (2008). Our future plans include (i) adding
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more observations to the validation and expanding the statistical
analyses, (ii) further developing bias-correction algorithms using
machine learning techniques, and (iii) designing new strategies
dedicated to probabilistic wave forecasts for hurricane conditions.
We believe these initiatives will address certain gaps and over-
come current limitations in the GEFSv12 wave ensemble forecast
outlined in this paper.
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