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ABSTRACT 

Understanding the basic life history patterns of highly migratory species is important for effective 

management. For sea turtles, evidence of developmental biogeography and discrete life stage 

residency provides key information for understanding resource use and population threats and 

defining conservation priorities. Resolving these knowledge gaps is not straightforward, however. 

Inaccessible habitats, low survivorship, late maturity ages, and technology limitations all 

complicate monitoring individuals continuously throughout their life span. Here we expand on 

previous studies and document a near-complete tissue record in the ultimate posterior marginal 

scutes of hawksbill sea turtle (Eretmochelys imbricata) carapace. Stable isotope analysis (SIA) of 

ventral scute surfaces reveals differences between 3 geographically isolated populations in the 

Pacific and Atlantic basins. Additionally, sequential sampling and SIA along growth line contours 

of sectioned scutes reveals developmental movements. Perhaps surprisingly, no clear or general 

patterns emerge. Bivariate isoscape data (stable carbon, δ13C, and nitrogen δ15N) indicate only 1 

of 6 Central Pacific hawksbills showed a distinct ontogenetic shift. And while all 3 Western 

Pacific individuals showed evidence of ontogenetic shifts, these individuals had 3 unique 

patterns. We summarize regional stable isotope values for common hawksbill foraging items, 

discuss drivers of regional nitrogen structure, and make recommendations for future study.  
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INTRODUCTION  

Stable isotope analysis (SIA)  is a relatively  low-cost diagnostic tool  for inferring individual-based 

ecological  information from  marine consumers. Isotopic compositions of  animal  tissues integrate 

ecosystem and foraging  information (Deniro and Epstein 1981; Popp et al. 2007), and thus, when  

an animal moves among  geographically  discrete food webs  the stable isotope values of its tissues 

reflect  these habitat  shifts (Reich et al. 2007; Hobson and Wassenaar  2008; Ramirez et al. 2015). 

Known as stable isotope tracking, this method carries  some advantages over traditional  

population monitoring  via mark-recapture or  biotelemetry tracking. One, SIA does not  require an 

initial marking of individuals to obtain subsequent  data but provides  information on prior  

experiences.  Two, if the sampled tissues provide a developed chronology, then SIA may provide 

a time series and not simply a snapshot of ecological  information (Becker et al. 1991; Grottoli  

and Eakin 2007;  Trueman et al. 2012). Three, unlike most  biotelemetry  studies  that focus on  

geographic locations, SIA  also has  the potential  to reveal foraging  niche and trophic position  

(Seminoff  et  al. 2012; Clyde-Brockway et al. 2022).  Four, SIA and other diagnostic tools can be 

applied to both living  organisms and dead tissues, and therefore may  access  natural history  

archives to expand sample sizes and derive novel historical  records  (Gagné et al. 2018b;  Miller  et  

al. 2020).  

As distinct  isotopic patterns have been described across marine regions (“isoscapes”), 

stable isotope tracking has  been broadly  applied to understand the life history  of sea turtles. 

Researchers have analyzed soft high-turnover tissues  like skin and blood (Seminoff et  al. 2006;  

Seminoff et al. 2012;  Wedemeyer-Strombel et  al. 2021; Clyde-Brockway et al. 2022), as well as 

hard tissues with sequential layering like scute and bone (Reich et al. 2007; Avens  et al. 2013;  

Van Houtan et  al. 2016a;  Turner  Tomaszewicz et al. 2017). When time-specific growth layers in 

these hard tissues are serially sampled, researchers can  measure isotope values across  an 

organism’s distinct life stages. Pioneering work by  Reich et  al. (2007) performed SIA of keratin 

plugs of  old and new scute  tissues from green turtles (Chelonia mydas)  in the western North 

Atlantic to reveal a transition from oceanic to neritic habitats during early  juvenile development. 

However, Reich et  al. (2007) only sampled two points in each individual’s life history, and thus 

were unable to validate the duration of  transition age of these discrete stages. SIA  of scute plugs 

has since been conducted on successive scute growth layers to study  habitat  use  by  green and 

hawksbill (Eretmochelys  imbricata) turtles (Vander Zanden et al. 2013;  Wedemeyer-Strombel et  

al. 2021), yet  without producing a contiguous and complete life history record.  

SIA has also been examined in the growth layers of  humerus bones from  loggerhead  

(Caretta caretta), Kemp’s ridley (Lepidochelys kempii), green, and hawksbill  turtles to document  

chronologies of habitat use (Avens et  al. 2013; Ramirez et al. 2015;  Turner  Tomaszewicz et al.  

2017; Avens et al. 2020;  Turner  Tomaszewicz et al. 2022). While these studies  have provided 

new and important  life history insights, one limitation of this approach is that  complete life 

history  records are frequently  precluded by the loss  of  early growth layers due to inner bone 

resorption (Snover 2002;  Van Houtan et al. 2014a) or scute sloughing  (Caine 1986; Palaniappan 

2007). A n ideal  tissue for SIA chronology study in sea  turtles would sequentially deposit  layers, 

retain early life stage layers, and provide a  full  life record. Known as tortoiseshell in international  

trade (Donnelly 2008; Miller et al. 2019), the robust keratin deposits in hawksbill  carapace scutes 

present  a good candidate for study. Van Houtan et al. (2016a) advanced earlier studies  of  

hawksbill carapace scutes  (Tucker et  al. 2001; Palaniappan 2007) by discovering a near-complete 

chronology in the ultimate posterior marginal  (PM) scutes  from hawksbill carapaces, tabulating  

internal growth lines, and using bomb radiocarbon (δ14C) to estimate tissue age.  

Here we expand on previous approaches  by examining  SIA in the ventral  surface of  

central scutes and internal layers of PMs  in hawksbill sea turtles. We first  source hawksbill  scutes  

through a variety of pathways and institutional  partnerships (see Methods)  to obtain scutes  from  
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94 all  demographic stages and spanning 4 marine regions. Then, we compare SIA results from the 

most recently deposited ventral  surface keratin tissues to examine patterns across  ontogeny  within 

and between geographic regions. Next, we perform SIA on sequential  scute growth layers for 6 

hawksbills from Hawaii and 3 hawksbills from the Western Pacific  to reveal  details from the 

cryptic early life history phase. Lastly, we collect  stable isotope values  and compile published 

records for  common hawksbill forage items across  the Pacific  as  a comparative reference.  

 

MATERIALS and METHODS  

Specimen  collection  

We obtained hawksbill carapace  samples from strandings, museum  collections, and U.S. f ederal  

repositories  in accordance  with U.S. End angered Species Act  guidelines  (U.S. Fish &Wildlife  

Service  permit #TE-72088A-0). Originating institutions provided sample metadata including  

location of  origin, date of  death or  receipt, morphometrics, and sex. Specimens arrived in a 

variety of dispositions:  whole organisms  (frozen,  taxidermized), whole carapaces  (dried), and 

disintegrated scutes. Strandings were from  NOAA’s  ongoing sea turtle stranding  program  at the 

Pacific Islands Fisheries Science Center  in Honolulu, Hawaii ( see:  Work et al. 2004;  Van Houtan 

et al. 2010; Balazs et al. 2015; Brunson et  al. 2022).  The Bernice Pauahi Bishop Museum  

provided samples from their collections and the US Fish  &  Wildlife Service, O ffice of Law  

Enforcement  (Clark R. Bavin National Fish and Wildlife Forensics  Laboratory, an d National  

Wildlife Property Repository)  provided seized  specimens. H atchling  scutes  came from  emerged 

or partially-emerged, deceased  hatchlings during  nest  excavations on Maui and Hawaii Islands  in 

conjunction with nest monitoring programs  (e.g., Seitz et al. 2012; Gaos et al. 2021).  Table S1 

provides more details and metadata on the hawksbill  specimens.  

Hawksbill  forage item  samples (macroinvertebrates and macroalgae)  were derived from  

field surveys  and  stranded turtles, and supplemented with additional data from  the published 

literature.  Previous  nearshore reef surveys collected macroalgae in the Main Hawaiian Islands  

(Van Houtan et al. 2014b).  We supplemented these collections with surveys of  established  

hawksbills foraging sites  on Oahu, Maui, and Hawaii islands in 2012-2014, and at Rose Atoll,  

American Samoa in 2012.  During necropsy, we obtained additional undigested forage specimens  

from the upper  gastrointestinal  tract  (i.e., esophagus)  of  2 hawksbills from Kwajalein Atoll, 

Republic of the Marshall Islands. These turtles died from traumatic injuries in September  1992, 

were kept  in a freezer, and necropsied in July  2012 f ollowing  established protocols  (Work 2000). 

Published studies provided further  isotope  values from  additional  hawksbill  forage items 

collected on Hawaii  island  in 2007-2008 ( Graham 2009)  and at  Palmyra Atoll  in  2008-2010  

(Kelly 2012).  

Specimen preparation  and sample  extraction  

Following published methods (Van Houtan et al. 2016a; Miller et al. 2019)  we prepared  all  

hawksbill  scute specimens  for  imaging, microsampling and diagnostic analysis. We began by  

separating  carapace and marginal  scutes  from  their  adjoining tissues  through natural  tissue  

degradation. This  process enclosed  carapaces in perforated heavyweight polypropylene  bags  and  

submerged  them in seawater  for  <  7 days. Then we removed surface algae, epibionts, debris, and 

cleaned scute surfaces  with tap water and mild detergent. We rinsed the cleaned scutes  first with 

deionized water, then with  90%  ETOH  and air-dried scutes  in a fume hood for 24  hours. 

Following  previous studies  (Dailer et  al. 2010; Van Houtan et al. 2014b)  we rinsed collected 

macroalgae in deionized water, patted samples  dry  with cloth towels, and  placed them on 

aluminum foil  in a drying oven at 60 °C  until  fully desiccated  (24-48 hours). We  repeated this 

same procedure for  additional  hawksbill  forage items, separating  forage items into  discrete 
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141 taxonomic groups.  

We first  sampled superficial scute surfaces as previous studies  examined these tissue 

sections  for  patterns of  growth (Tucker et  al. 2001; Palaniappan 2007) and  stable isotope  content  

(Reich et al. 2007;  Kelly 2012). Using central  carapace  scutes  from  Hawaii, Caribbean, and 

American Samoa specimens, we examined the newest  tissue  deposits—the center  of the ventral  

side of  the scute that  directly  contacts  the living  epidermis  (see below, also Palaniappan 2007)— 
to capture  a snapshot of  their most recent  life history and ecosystem experience (Van Houtan et  

al. 2016a). With a scalpel, we scraped the exterior  of  ventral  scute surfaces, moving  perpendicular  

to the edge of a No. 21 blade (at <  0.5 mm depth)  to create  5 m g of sample  material. For  

hatchlings only, as  this demographic has  no pronounced scute  chronology, we shredded whole  

scutes using  medical grade scissors  (Excelta® #364, 1.25” blade). Using a ceramic mortar and 

pestle, we further homogenized all  extracted scute and forage item  material into a fine powder  

storing  all sample homogenate in 1.5 mL NalgeneTM  cryogenic vials for  isotope  analysis.  

Seeking  a more complete life history  record, we supplemented these  ventral sc ute surface 

samples  by revealing and sampling sequential growth  layers  within posterior marginal (PM)  

scutes, derived  from  Western Pacific  and Hawaii  specimens. Following  Van Houtan et  al. 

(2016a), we used a low  speed precision cutter  (Buehler IsometTM, No. 11-1280-170) with 

diamond wafering blades (Buehler 15HC, No. 11-4244) to make 1.5 mm  thick  sagittal cross  

sections in  ultimate PM scutes.  To  reveal  growth  layers, we polished the cross sectioned wafers 

(Buehler ECOMET IIITM 800 Polisher, Mark V Laboratory® A/O lapping film)  sequentially  

moving from coarse to finer lapping film. We imaged each polished PM cross section with a 

brightfield, phase contrast,  and darkfield equipped microscope (scope: Olympus BX41TM , 

camera: ImagingPlanet 20MPX  TM, adapter: Olympus U-TVO.5XC-3, firmware:  IMT i-Solution 

Lite), using software (Adobe Photomerge®)  to stitch a single composite image from  multiple 

sub-field image frames  (e.g., Fig. 2B). The variable illumination and contrast capabilities of this 

microscope was  useful  for  identifying growth  lines  across  variously  melanized sections of sc ute  

keratin.  

Following  (Van Houtan et  al. 2016a), we counted the apparent growth lines  on each PM 

composite image and extracted tissue samples  with a Carpenter Microsystems CM2  

microsampling system  (Avens et al. 2013;  Turner  Tomaszewicz et  al. 2017). H ere, we drilled ~1 

mm paths along PM growth contours  (see Figs. 3-4), extracting  > 1.5 mg of keratin powder  for  

each microsample, repeating this process  to capture material  representing distinct  developmental  

stages  in each PM. Further  treatment of scute material  for  lipid extraction was not  required due to 

low C:N ratios among samples ( see below;  Turner  Tomaszewicz et al. 2015).  

Isotope Analysis  and Data Visualization  

We determined bulk  δ13C and δ15N stable isotope  compositions using an on-line C-N analyzer  

coupled with an isotope ratio mass spectrometer (Finnigan ConFlo II/DeltaPlus).  Approximately  

1.0 mg of each sample was loaded into sterilized Sn  capsules and analyzed by a continuous-flow  

isotope-ratio mass spectrometer  at  the Light  Stable Isotope and Mass Spectrometry  Laboratory at  

University of Florida  (Gainesville, Florida, USA). We  used a Costech ECS 4010 elemental  

combustion system interfaced via a ConFlo III device (Finnigan MAT)  to a DeltaPlus gas  

isotope-ratio mass spectrometer (Finnigan MAT).  The elemental analyzer combusted samples  in 

pure O2, resultant gasses were reduced to N2  and CO2  and passed through a series of thermal  

conductivity detectors and element traps to determine  percent  compositions.  Besides isotopes,  

this method also provided bulk elemental composition  (%)  for  carbon and nitrogen.  Acetanilide 

(C8H9NO: 71.09% C;  10.36 % N) was the calibrant. W e sent a small subset of  additional samples  

(n < 20)  to the Biogeochemical Stable Isotope Facility at the University of Hawaii, where similar  

analyses and procedures were followed.  
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189 We expressed sample stable isotope ratios relative to the isotope standard  following  

conventional delta (δ)  notation in parts per thousand (‰), using  δ  = ([Rsample/Rstandard] –  1)*(1000), 

where Rsample  and Rstandard  are the corresponding ratios of heavy to light isotopes  (e.g., 15N/14N) in 

the sample and standard, respectively. Rstandard  for  13C was Baker Acetanilide  (δ13C = -10.4)  

calibrated monthly against the Peedee Belemnite limestone formation international standard. The 

R 15 15
standard  for  N was IAEA  N1 Ammonium Sulfate/(NH4)2SO4  (δ N = 0.4) calibrated monthly  

against  atmospheric N2  and USGS  nitrogen standards. All analytical runs included  known 

standards placed every 6-7 samples  to  calibrate against  instrument  drift. Hundreds of replicate 

assays of reference materials indicated measurement errors of 0.06‰ for  carbon and 0.12‰ for  N  

for  this setup  (e.g., Seminoff et  al. 2006; Seminoff et al. 2012).  

We generated a series  of visualizations from  the scute imaging and SIA data, with a few 

provisions.  First,  the Caribbean hawksbill scutes alone were disintegrated from the original  

carapace  with no accompanying demographic data. For these scutes, we previously  (see Miller et  

al. 2019)  estimated  the straight carapace length (“SCL”)  of  the turtle from which they  originated  

from the area  of  individual  scutes. Second, in plotting the stable isotope values from  scute 

microsampling, we recognized t hat  drilled transect paths always exceeded individual growth 

lines, and at times imperfectly  followed growth line contours  (range = 2–35 growth lines, mean  = 

6.1). As a result, we recorded the minimum and maximum  growth line number  of each transect  

drill path and plotted SIA results graphically against  the median growth line.  

Third, to compare isotope trajectories  through development between samples, we 

generated an ensemble model for  δ13C and δ15N values  across development. As we have no 

telemetry or genetics  data to indicate these adjoining  regions hold completely distinct  populations  

(Gaos et al. 2020), we  conservatively  pooled data from all  North Pacific turtles  (Central  and 

Western Pacific). The resulting  ensemble is a locally-weighted regression  (Cleveland and Devlin  

1988)  of the average stable isotope values  in each 10 growth line wide bin (lines 0–9, 10–19... 

190–199, etc.) of the median microsampled po sition value. We use this not  to make population 

inferences, but  only to illustrate a stage-specific stable isotope value reference. To augment  

sample sizes  in each of these bins  (range: 1–7 samples,  mean  3.1 samples), we  added the results 

from  the previous  ventral surface scrapings  from  the Hawaii  samples only. For these samples, the 

growth line number attributed to the sample  was  the maximum  growth line number for that  

individual. [Here, growth lines were calculated and described in a previous study  (Van Houtan et 

al. 2016a).]  We excluded hatchling  data as well as data originating  from  scutes  from other ocean 

subbasins from  these ensemble models.  

We previously  aged  turtles  through a validated, bomb radiocarbon δ14C method or  

estimated age  from a derived von Bertalanffy growth function (Van Houtan et al. 2016a). As the 

PM for one individual  turtle was worn (see below), its early  tissue  record is absent, and i ts 

discernable count of growth lines  (n  = 110)  is truncated. As a result, we estimated its total growth 

line count  (n  = 200)  from a derived length-to-growth-line model  (Van Houtan et  al. 2016a)  and 

plot  its isotope data beginning at the difference between that estimate and its documented count  

(e.g., 90).  

 

RESULTS  

Sampling the ventral  surfaces  of  central  scutes  does not indicate a clear stable isotope pattern 

throughout development, though it  suggests some regional structure.  Fig. 1 plots the δ13C and 

δ15N values  and bulk  carbon and nitrogen  content  from  scute surface samples from  n  = 106 

hawksbills. Of  these samples, 28 originated from Hawaii  (4.0–88.7 SCL), 60 from  Caribbean  

(38.5–84.3 SCL), and 18 from American Samoa (27.7–68.4 SCL).  Scatter and density plots show 

somewhat  clustered  and normally distributed δ13C values (Fig. 1AB, -15.8 ± 1.32  ‰, 95%  CI: -
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237 18.3 t o -13.2  ‰), but  simple linear regressions reveal no significant  trends  across  development  

(F1,105  =  0.002, P  = 0.97, adjusted R2  = -0.01). The δ15N  plots (Fig. 1 CD) indicate more spread in 

the N isotope data (10.0  ±2.48  ‰, 95%  CI: 5.1–14.9  ‰). This is evidenced in the long tail  

towards heavier  N  isotopes (Fig. 1D) and as  6 American Samoa juveniles and 2 Hawaii adults are 

heavier  than the 95% CI  for  δ15N  (Fig. 1C). Simple  linear  regression suggests  significant  δ15N  

changes over development  (F1,105  = 4.73, P  = 0.03), however, the model’s explanatory power  is 

weak (adjusted  R2  = 0.03). When regions were considered separately, the δ13C (-16.1  ±1.38  ‰) 

and δ15N (10.1  ±2.29  ‰) values from  Hawaii are consistent with the pooled results. The 

American Samoa (δ13C:  -16.9  ±1.44  ‰; δ15N:  13.7  ±2.85  ‰)  and Caribbean  (δ13C:  -15.3 ± 0.95  

‰; δ15N:  8.8  ±0.86  ‰) also overlap with the pooled results but show more δ15N structure. Fig. 

1EF details the bulk elemental  composition, with  carbon = 48.9 ±1.37%, N  = 14.7 ±0.63%, and 

the remaining 36.4% arising from H, O, S, and other elements. The C:N ratio for all  ventral  scute 

surface samples was 3.33 ±0.08. Table S1 provides further  details on sample metadata. As the 

SCL domains differ between regional  sample groups, we cannot  rigorously model population  

differences in stable isotopes. However, the stable isotope values  from  these surface samples  

show no clear  developmental  trends.  

Fig. 2 illustrates  a  general  model  that  ultimate PM scutes  capture  growth continuously  

throughout development, containing a near-complete life history record. Fig. 2A  locates  the left  

ultimate PM scute on a dry-archived, juvenile  hawksbill carapace, and the ventral surface  regions 

sampled (white dashed line rectangle). When sectioned sagittally and polished, these PM scutes  

reveal  internal  incremental  growth layers ( Fig. 2B). Pa rallel growth layers  occur on either side of  

the central suture line, where the dorsal carapace and ventral  plastron fuse.  Here in this 44.2-cm  

SCL juvenile, the PM contained 50 g rowth lines. Bomb radiocarbon techniques  aged t his turtle at  

6.8 years, suggesting it deposited an average of  7 growth lines annually  (Van Houtan et  al. 

2016a).  

Continuous sampling of  δ13C and δ15N values throughout the life history of 6 Hawaii  

hawksbill turtles, reveals individual life histories, bu t no consistent pattern (Fig. 3). Only  1 turtle 

shows a clear ontogenetic shift indicated by abrupt  coincident  changes  in the δ13C and δ15N 

values  between the early and late growth lines  sampled (Fig. 3F). Here,  δ13C values decrease  from  

growth lines 0–60 and then flatten out near  -16 ‰ δ13C. By  contrast, δ15N values  increase  through 

development, jumping from near 6 ‰ to near 15 ‰ δ15N between growth lines 40 to 60.  When 

the full isoscape for this turtle is plotted (δ15N plotted against δ13C) a dramatic dietary  (and/or  

habitat)  shift  is apparent  (highlighted by the orange arrow, Fig. 3F). This pattern suggests a  

discrete biogeographical and developmental phase shift, perhaps being an early life history  shift  

from pelagic to neritic ecosystems  (Reich et al. 2007;  Bjorndal  and Bolten 2010).  The remaining  

5 turtles  reveal more subtle patterns and suggest no distinct developmental biogeography. Fig. 3A 

and 3E show a slight  decrease  of δ13C values  in growth lines 0–40, but the accompanying δ15N 

values are either  absent  or  constant.  Two turtles  (Fig. 3BC) show a gradual  enrichment  in δ13C in 

growth lines 0-80 but  reveal no significant δ15N patterns. The last turtle (Fig. 3D)  abraded its 

early life history tissue, so this record is lost, but  has remarkably constant  δ13C and δ15N values  

throughout. Fig. 3G shows the geographic origins of  the samples  in the Main Hawaiian Islands, 

unless unknown (Fig. 3E).  Though the 13C  Suess effect is  seemingly  strongest in the surface  

waters of the North Pacific  (Eide et  al. 2017)  it seems an unlikely influence to these patterns as  

we observe no consistent  δ13C  trend, and its magnitude is weak (< 0.02 ‰  yr-1) to our observed 

changes (Figure 3).  

Continuous PM microsampling of  stable isotope values for 3 Western Pacific  hawksbills  

suggests ontogenetic shifts across  isotopically distinct  areas might be more common in this region 

(Fig. 4). Despite a lack of adult  tissues ( these juveniles  measured 42-50 cm SCL, estimated at  5–7 

years old)  each turtle shows some evidence of  a distinct  developmental  shift. Here, individual  
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286 isoscape plots of δ13C against δ15N are particularly revealing with each showing two clusters of  

data points. Though these  isotope data suggest  developmental changes to diet and ecosystem  

through development, they do not  record the same pattern  across  turtles. The isoscape clusters  

reveal  dramatic  δ13C increases with gradual δ15N increases  (Fig. 4A), gradual δ13C declines with 

dramatic δ15N declines  (Fig. 4B), and significant δ13C increases with significant δ15N declines  

(Fig. 4C). Like the Hawaii  hawksbills in Fig. 3, there is no clear  agreement  in overall pattern.  Fig. 

4D shows the geographic origin of these turtles  in Palau and the Marshall Islands, and origin of  

some of the forage samples in Fig. 5.  

Though non-exhaustive, Fig. 5 summarizes  available bulk  stable isotope  values  of  typical  

hawksbill  forage items  from 4 Pacific Ocean regions. The  data comprise  89 samples  from 36 

morphospecies  representing 5 major forage groups: sponges, other  macroinvertebrates, red algae, 

green algae, and brown algae. H awksbills are omnivores and while this dataset  is not exhaustive, 

it represents all known forage groups for hawksbills in this region  (Graham 2009).  Based on the  

limited data from  these samples, the isoscape  reveals some apparent structure  of hawksbill  forage 

items between Pacific regions. This is particularly  true for  δ15N  values. The macroinvertebrates  

and sponges of Palmyra Atoll  (δ15N >  9  ‰), for example, have δ15N values  almost  twice  that of  

the  same groups in the Main Hawaiian Islands  (δ15N <  5  ‰). The macroinvertebrates  and sponges  

sampled from  Kwajalein Atoll  are between the two extremes with δ15N values near 7  ‰. Across  

locations and forage groups, δ13C  values  are highly variable by comparison with δ15N values.  The 

limited representation of only green algae from Rose Atoll shows high variability in both δ13C 

and δ15N values.  Tables S2 provides more details on these forage items, including species  and 

samples sizes.  

 

DISCUSSION  

Given their  critical  conservation status and ongoing exploitation (Mortimer and Donnelly 2008;  

Miller et al. 2019), understanding the spatial population structure of hawksbill sea turtles may be 

important  for developing effective management strategies  (Monzón-Argüello et al. 2010;  Wallace 

et al. 2010; Seminoff et al. 2015). This may  require  a dedicated endeavor for hawksbills,  

however, as  their  omnivorous and variable life history  traits  defy simple characterization, 

especially among disparate regional populations. U nlike other sea  turtle species, satellite 

telemetry  (Hawkes et al. 2012; Marcovaldi  et  al. 2012;  Walcott et al. 2012)  and fishery bycatch 

data (Van Houtan et  al. 2016b)  reveal no clear  developmental biogeography  for hawksbills. 

Furthermore, intensive habitat  use  studies indicate that  much remains cryptic about hawksbill life 

history  (Gaos et  al. 2012; Liles et al. 2015). Together, this may suggest for hawksbills that at  

regional  and global  scales  the pattern may be that there is no typical  pattern.  

Diagnostic tissue analysis may  help supplement other  data streams and be useful to 

resolve life history  questions.  Early, limited analysis of homogenized outer scute layers from 2   

Florida and 2 B ahamas  hawksbills had  mean δ15N of  ~5.5 ‰ and δ13C of ~ -17 ‰ (Reich et al. 

2007), providing the first  insights into hawksbill  scute stable isotopes. C omparing  distinct  

developmental  stages  of  scute growth layers in nesting females  from the Lesser Antilles, Fireman 

(2021)  found highly variable stable isotope values  (mean:  δ15N = 8.9  ‰, δ13C = -13.4  ‰)  and 

clear evidence  of ontogenetic shifts in just 8% (4 of 50) of  sampled individuals.  Whole blood and 

skin biopsy analysis from juvenile hawksbills in the eastern tropical Pacific of Costa Rica show a 

broad δ13C niche  (range:  -19 t o -13 ‰) by comparison  to δ15N (range: 12 to ~14  ‰)  (Clyde-

Brockway et al. 2022).  Biopsy samples of 4 scute growth layers in  juvenile and subadult  

hawksbills in the eastern tropical Pacific of Nicaragua and El Salvador showed a general  

depletion through growth across a  broad range of δ13C values (range:  -27 to -17  ‰) (Wedemeyer-

Strombel et al. 2021). Lo ngitudinal skeletal  sampling  of  hawksbills in the eastern tropical Pacific 
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334 of El Salvador shows consistent  decline through development  of  δ13C (from ~ -15 to ~ -24)  and 

δ15N (from ~14 to ~11), indicating an oceanic to nearshore shift  (Turner  Tomaszewicz et al. 

2022).  

Here we provide a novel  longitudinal  record of stable isotopes  in the keratin growth 

layers of carapace PM scutes for underrepresented populations. Our  overarching result is the 

documentation of multiple  types  of development and habitat  use. The  initial  ventral  surface 

sampling shows no clear patterns of  isotope depletion or enrichment across development from  

hatchlings  to breeding females  (Fig. 1), but  like skin or  blood samples, this technique summarizes  

a life history record that  is both  recent  and brief. Analogous to tree  rings (Schweingruber 2012)  

and fish otoliths (Pannella 1971), cross-sectioned and polished PM scutes  reveal  a near-complete 

tissue  record (Fig. 2)  with potential  to yield new insights into age, diet, and migrations (Van 

Houtan et al. 2016a). For Hawaiian  hawksbills, only 1 of 6 turtles (17%) has clear  evidence of an 

ontogenetic shift (Fig. 3). This corroborates a previous analysis of  bycatch, strandings, and 

opportunistic observations that  hawksbills aged 0–4 years mostly  remain in the coastal waters of  

Hawaii  (Van Houtan et  al. 2016b). This proportion, however,  is roughly  consistent with what has  

been inferred from isotopes from hawksbills from the Lesser Antilles (Fireman 2021), but  is 

significantly less than the eastern tropical Pacific populations (Wedemeyer-Strombel et al. 2021;  

Turner  Tomaszewicz  et al. 2022). The longitudinal  stable carbon records of  Hawaii hawksbills 

further  disagree, containing  both patterns of  13C  enrichment and depletion through development  

(Fig. 3) . By contrast  to the Hawaii  specimens, all  3 Western Pacific  turtles show  a clear  

ontogenetic shift. However, the isoscape plots reveal perhaps 3 different  types of shifts and no 

single habitat-use  pattern (see orange arrows in Fig. 4A-C).  Together  this suggests that the early  

development phase of Western Pacific hawksbills may  have less association with nearshore 

waters, specifically  by comparison to Hawaii  hawksbills. While such sequential and repeated 

sampling within individual  tissues holds promise, especially as a complement to other sampling  

techniques, the present analysis represents a  small sample and should be expanded.  

 Beyond providing new information about  individual migrations, our  results add to  a 

growing body of evidence that  tissue  isotopes vary regionally between hawksbill populations. 

Fig. 1 shows a gradual structure in scute N isotopes between Caribbean, Central Pacific, and 

South Pacific populations that  is consistent with the isotopes of  regional  forage items (Fig. 5),  

Caribbean hawksbill scutes  (Reich et al. 2007; Fireman 2021), and other reef taxa in these regions 

(CocheretdelaMorinière et  al. 2003; Fiore et al. 2013).  Across  hawksbill  populations, there  

remains a  substantial need to document the site-specific dietary composition and forage 

characteristics, however. While recent studies  are encouraging ( Méndez-Salgado et al. 2020;  

Clyde-Brockway et al. 2022;  Turner  Tomaszewicz et al. 2022), most  geographic regions are 

persistently  data poor, limiting ecological knowledge and conservation planning  for the species. 

Future studies should therefore expand ecological monitoring  efforts to increase data collection  

on the habitat use  and f oraging ecology  of hawksbills as well as  the diagnostic analysis of  their  

forage items.  Of note, the regional  δ15N  patterns we describe here (Fig. 1C–D) from hawksbill  

scutes parallel  the differences in seabird trophic position from the same marine regions (see Fig. 

S1) which have been correlated with anthropogenic factors  (Gagné et al. 2018a). As δ15N  patterns 

of consumers are derived from  15N values at  the food web base, future work may  investigate 

whether these values  are fixed in time or whether  they are impacted by  anthropogenic pressures  

such  as overfishing and climatic change.  

Fig. 5 summarizes available stable isotope values for common hawksbill forage items in 

the Central, South, and Western Pacific. As  these forage data are  not exhaustive, we are 

prevented  from running  a formal mixing  model  (Lemons et  al. 2011; Stock and Semmens 2016;  

Gagné et al. 2018b; Stock et al. 2018), and cannot  infer diets or  dietary shifts through 

development  for these individuals. From the data we possess, however, one thing may be clear. 
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383 The sampled forage items from Hawaii  are relatively  exhaustive (41 samples  from 21 species 

across 5 forage groups, see Table S2), h ave δ15N values ranging from 2–5  ‰, yet  are somehow 

lacking  the full complement of hawksbill prey species. While the mean δ15N values across  

development for Hawaii hawksbills in Fig. 3 is ≥ 9  ‰, two adult  turtles  (Fig. 3C, F) have  δ15N 

values  that  exceed 15  ‰. Given that  published sea turtle tissue δ15N discrimination values  are ≤  
4.0  ‰ (Seminoff  et  al. 2006;  Vander Zanden et al. 2012), these  2 adults are likely  consuming  

items not  displayed in Fig. 5.  A possible explanation is that these individuals recently migrated 

from another  region with heavier N  forage. However, this is unlikely given the isolation of  the 

Hawaiian archipelago, and that none of  the foraging items for any Pacific regions in Fig. 5 can 

support such high tissue δ15N values. Since  these  turtles both stranded in the 1980s, these  turtles  

may have foraged on high-trophic level species  that no longer occur  in such abundance, or  this 

may be reflecting  that  food web compression has occurred  in recent decades in Hawaii’s reef  
ecosystems. Another  explanation is that  these  individuals foraged in impaired watersheds with 

high N footprints  (e.g., Van Houtan et  al. 2010). However, such influences are thought to be 

greater in subsequent decades  yet are not observed in hawksbills from  these later  time periods.  

 Resolving  individual life histories though the longitudinal analysis of  hawksbill scutes  

shows promise, but much work remains. In this study  we expand on earlier  pioneering studies  

that first demonstrated successional layering in hawksbill scutes (Tucker et al. 2001; Palaniappan 

2007), and later  documented  a near-complete chronology  in the ultimate PM scutes (Van Houtan 

et al. 2016a). Using the same tissues and preparations, here  we sequentially sampled along scute 

growth line contours  and performed SIA  to understand individual  life histories  and regional  

population structure. As we have shown, especially when combined with other traditional and 

diagnostic tools, such methods can reveal  previously unknown  information with obvious 

conservation applications.  

Moving  forward, future progress can be made in several  distinct  ways. The novel  

sclerochronology  methods we developed here can be  applied universally to reconstruct  the long-

term habitat use of  individual hawksbill sea turtles  in any geographic region. We  recommend 

expanding the approach to increase both the samples  and populations analyzed here. This might  

prioritize  data poor regions  of  the South Atlantic, Indian, West Pacific and South Pacific basins  as 

well  as the Eastern Pacific and the Northwest Atlantic. We also recommend refining our  

techniques with ultimate PM scutes, comparing it with other scute tissues, and further aligning it  

with growth line and ageing studies (e.g, Van Houtan et  al. 2016a). As it was  here, partnerships 

with museums, natural  history repositories, law enforcement agencies, and stranding programs 

may  be important  to obtain specimens  as well as to demonstrate  additional  applied contexts for  

such isotopic research  (Espinoza et  al. 2007). I n addition to replicating and refining this work, we 

recommend supplementing  the existing mass spectrometry diagnostics of carbon and nitrogen to 

additional  elements. As Fig. 1E-F demonstrates, 36%  of scute tissues are composed of H, O, S, 

and other  trace elements. Although H and O can display low variability between regions, δD, 

δ18O, and δ34S have demonstrated use in marine systems (Cardona et al. 2009; Clark and Fritz  

2013;  Tucker et al. 2014; Duarte et al. 2018;  Miller et al. 2019)  and may be useful  for  sea turtle 

populations.  Together, these programs will allow  for  the development of robust  mixing  models, 

advance our understanding of individual  life histories, and increase the effectiveness of  

conservation management for critically endangered hawksbill sea  turtles.  
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FIGURE CAPTIONS  

Figure  1. Bulk stable isotope and elemental composition from the ventral surfaces of  

hawksbill carapace scutes.  (A) Raw results and (B)  density of  δ13C content  (-15.8 ±1.32  ‰),  

with (C) raw results and (D) density of  δ15N values  (10.0 ±2.48  ‰). Filled shapes are individual  

turtles comprising 10 hatchlings (4–5 cm SCL), 77 juveniles  (28–71 cm SCL), and 19 adults (72– 
89 cm SCL) from Hawaii  (grey circles), Caribbean (purple squares), and American Samoa 

(orange triangles) populations.  Horizontal grey lines are the normalized 95%  interval of all 106 

samples. Simple linear regressions of both series  (adjusted correlation coefficients listed) show no 

trend through development. Density plots of  (E)  carbon  and (F)  nitrogen composition (expressed  

as a percentage, median values listed) indicate 36.4% of scute material  is exclusive of  carbon and 

nitrogen.  Sampled tissue  is from the ventral scute surfaces and captures  the ecosystem experience 

preceding each turtle’s demise. Hatchlings are ecologically naïve, and their  tissues are maternally  

derived. As we lack samples from 8–28 cm SCL (0–4 years old)  these plots do not represent the 

cryptic early life history phase.  

Figure  2. Unlike surface  material, cross sections of posterior marginal (PM)  scutes from  

hawksbills contain a longitudinal chronology.  (A) Dorsal carapace view of a 44.2 cm SCL 

juvenile Hawaii hawksbill  with the left ultimate PM removed. PM scutes both retain the largest  

keratin archives on the shell and can be less frequently  damaged than carapace scutes. White 

dashed rectangle indicates the ventral surface region sampled in Figure 1. (B) PM sagittal  cross  

section reveals a  chronology of growth lines, with tissue accretion from left (posterior, old) to 

right (anterior, new). Cross se ction polished to 1 mm thickness and imaged under  magnification 

using a combination of  reflected and transmitted light. This turtle had 50 growth lines, with every  

tenth contour labelled and highlighted for clarity.  

Figure  3. Stable isotope values from  scute growth contours shows several developmental  

patterns in Hawaii hawksbills.  (A–F) Imaged cross sections, drilled transects, and stable isotope 

results for 6 hawksbill turtles. Hollow circle δ13C  values and age estimates  are from a previous 

study  (Van Houtan et  al. 2016a), filled circles are from the current study. Black lines interpolate 

values, are a LOESS when multiple data sources  are available, and grey line is the ensemble 

average for  all individuals (Figs. 3–4). From left to right (A–D, F) or  top to bottom (D), drill  line 

paths increase in age. Juvenile tissue in one turtle (D) is missing from abrasion. (G) Map of the 

Hawaiian archipelago locates each turtle’s stranding site (E is unknown). There is  no single  
pattern in either  carbon or  nitrogen isotopes across development envisioned in either single or  

dual variable plots. (F) Apparently demonstrates a discrete habitat  shift  (orange arrow), reflected 

in δ13C and δ15N values,  perhaps due to nearshore settlement. Gradual shifts in δ13C values (A–B, 
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478 E) and (E) also indicate potential  habitat shifts. Scale bar is 5 mm. Asterisk (*)  indicates  turtle 

age estimated with a Von Bertalanffy  growth function (see Methods).  

Figure  4. Stable isotope values from scute growth contours of  Western Pacific  hawksbills.  
Though the turtles from (A) Palau and (B-C) Kwajalein Atoll are all  relatively young, stable 

isotopes document potential shifts in both habitat and forage. Symbology retained from Figure 3, 

scale bars are 5 mm. Asterisk (*) indicates  age estimated using measured length and previously  

derived VBGF parameters (Van Houtan et  al. 2016a)  as we had no date metadata for this 

specimen. Stranding  dates  of (B-C) allow us to estimate birth year; (A) has  no stranding date. 

Orange arrows indicate an apparent habitat and dietary shift. (D)  Map of the central and Western 

Pacific  with all sample collection regions noted.  

Figure  5. Stable isotope values of  typical hawksbill  forage item groups from  four Pacific 

Island  regions. Hawksbills are omnivores  that forage on sponges, other macroinvertebrates, and 

macroalgae. Above stable isotope values are crowdsourced from the literature (Palmyra Atoll, 

Pacific Remote Island Areas USA), our own collection efforts (Kwajalein Atoll, Marshall Islands;  

Rose Atoll, American Samoa), or a combination of both (Main Hawaiian Islands). Filled circles  

represent  the group mean, lines  are standard error. Though there is significant variability in δ13C 

values within each region, and sometimes within a single region’s forage item groups, there is 

some structure of δ15N values between regions. These data are meant to report what currently  

exists, but not  represent  an exhaustive list  of all potential hawksbill forage items in all population 

regions.  
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Figure 1. Bulk stable isotope and elemental composition from the ventral surfaces of 

hawksbill carapace scutes. (A) Raw results and (B) density of δ13C mean values (-15.8 ±1.32 

‰), with (C) raw results and (D) density of δ15N values (10.0 ±2.48 ‰). Filled shapes are 

individual turtles comprising 10 hatchlings (4–5 cm SCL), 77 juveniles (28–71 cm SCL), and 19 

adults (72–89 cm SCL) from Hawaii (grey circles), Caribbean (purple squares), and American 

Samoa (orange triangles) populations. Horizontal grey lines are the normalized 95% interval of 

all 106 samples. Simple linear regressions of both series (adjusted correlation coefficients listed) 

show no trend through development. Density plots of (E) carbon and (F) nitrogen composition 

(expressed as a percentage, median values listed) indicate 36.4% of scute material is exclusive of 

carbon and nitrogen. Sampled tissue is from the ventral scute surfaces and captures the ecosystem 

experience preceding each turtle’s demise. Hatchlings are ecologically naïve, and their tissues are 

maternally derived. As we lack samples from 8–28 cm SCL (0–4 years old) these plots do not 

represent the cryptic early life history phase. 

Caption repeated from above for clarity 
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Figure 2. Unlike surface material, cross sections of posterior marginal (PM) scutes from 

hawksbills contain a longitudinal chronology. (A) Dorsal carapace view of a 44.2 cm SCL 

juvenile Hawaii hawksbill with the left ultimate PM removed. PM scutes both retain the largest 

keratin archives on the shell and can be less frequently damaged than carapace scutes. White 

dashed rectangle indicates the ventral surface region sampled in Figure 1. (B) PM sagittal cross 

section reveals a chronology of growth lines, with tissue accretion from left (posterior, old) to 

right (anterior, new). Cross section polished to 1-mm thickness and imaged under magnification 

using a combination of reflected and transmitted light. This turtle had 50 growth lines, with every 

tenth contour labelled and highlighted for clarity. 
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Figure 3. Stable isotope values from scute growth contours shows several developmental 

patterns in Hawaii hawksbills. (A–F) Imaged cross sections, drilled transects, and stable isotope 

results for 6 hawksbill turtles. Hollow circle δ13C values and age estimates are from a previous 

study (Van Houtan et al. 2016a), filled circles are from the current study. Black lines interpolate 

values, are a LOESS when multiple data sources are available, and grey line is the ensemble 

average for all individuals (Figs. 3–4). From left to right (A–D, F) or top to bottom (D), drill line 

paths increase in age. Juvenile tissue in one turtle (D) is missing from abrasion. (G) Map of the 

Hawaiian archipelago locates each turtle’s stranding site (E is unknown). There is no single 

pattern in either carbon or nitrogen isotopes across development depicted in either single or dual 

variable plots. (F) Apparently demonstrates a discrete habitat shift (orange arrow), reflected in 

δ13C and δ15N values, perhaps due to nearshore settlement. Gradual shifts in δ13C values (A–B, E) 

and (E) also indicate potential habitat shifts. Scale bar is 5 mm. Asterisk (*) indicates turtle age 

estimated with a von Bertalanffy growth function (see Methods). 
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Figure 4. Stable isotope values from scute growth contours of Western Pacific hawksbills. 

Though the turtles from (A) Palau and (B-C) Kwajalein Atoll are all relatively young, stable 

isotopes document potential shifts in both habitat and forage. Symbology retained from Figure 3, 

scale bars are 5 mm. Asterisk (*) indicates age estimated using measured length and previously 

derived VBGF parameters (Van Houtan et al. 2016a) as we had no date metadata for this 

specimen (see Methods). Stranding dates of (B-C) allow us to estimate birth year; (A) has no 

stranding date. Orange arrows indicate an apparent habitat and dietary shift. (D) Map of the 

central and Western Pacific with all sample collection regions noted. 
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Figure 5. Stable isotope values of typical hawksbill forage item groups from four Pacific 

Island regions. Hawksbills are omnivores that forage on sponges, other macroinvertebrates, and 

macroalgae. Above stable isotope values are crowdsourced from the literature (Palmyra Atoll, 

Pacific Remote Island Areas USA), our own collection efforts (Kwajalein Atoll, Marshall Islands; 

Rose Atoll, American Samoa), or a combination of both (Main Hawaiian Islands). Filled circles 

represent the group mean, lines are standard error. Though there is significant variability in δ13C 

values within each region, and sometimes within a single region’s forage item groups, there is 

some structure of δ15N values between regions. These data are meant to report what currently 

exists, but not represent an exhaustive list of all potential hawksbill forage items in all population 

regions. 
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