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Abstract Reservoir operations are influenced by hydroclimatic variability, reservoir characteristics (i.e.,
size and purpose), policy regulation, as well as operators' experiences and justification. Data-driven reservoir
operation models based on long-term historical records shed light on understanding reservoir operation rules
and patterns. This study applies generic data-driven reservoir operation models (GDROMs) developed for 452
data-rich reservoirs with diversified operation purposes across the CONUS to explore typical operation rules
and patterns. We find that the operating policies of any of these reservoirs can be modeled with a small number
(1-8) of typical operation modules. The derived modules applied to different conditions of the 452 reservoirs
can be categorized into five basic types, that is, constant release, inflow-driven piecewise constant release,
inflow-driven linear release, storage-driven piecewise constant release, and storage-driven nonlinear (or
piecewise linear) release. Additionally, a joint-driven release module, constructed from these five basic types,
has been identified. The analysis further shows the module application transition patterns featuring operation
dynamics for reservoirs of different operation purposes, sizes, and locations. The typical module types can be
used as “Lego” bricks to build operation models, especially for data-scarce reservoirs. These module types and
their application and transition conditions can inform Standard Operation Policy (SOP) and Hedging Policy
(HP) with specific inflow, storage, and/or both conditions.

1. Introduction

Dams and reservoirs have been extensively constructed and operated to serve human societies around the world.
Globally, there are over 50,000 large dams (higher than 15 m), and the cumulative storage capacity is approxi-
mately 8,000 km3. This volume is comparable to 15% of the annual river flow into the oceans (Hanasaki
etal., 2006; Lehner et al., 2011). The United States is a notable “dam nation,” with all major rivers being dammed
and a total storage capacity that approximates the mean annual runoff (Graf, 1999). Thus, reservoirs play a critical
role in human societies by regulating streamflow for water supply, irrigation, flood control, hydropower gen-
eration, navigation, and recreation. While numerous efforts have been made to simulate or/and optimize reservoir
operations for individual reservoirs via either physical-based or data-driven models, this paper explores typical
operation modules and their application transition patterns for a broad range of reservoirs with diverse reservoir
characteristics like size, operation purpose, and geographic location (climate). We hypothesize that those typical
modules functionally respond to various inflow and storage conditions and release and/or storage demands, for
example, storage for future water supply, recreation, or regulating peak flow for flooding control; release for
navigation, water supply, and/or irrigation; both release and storage for hydropower generation, etc.

Despite longstanding efforts for reservoir operation studies (Labadie, 2004; Wurbs, 1993; Yeh, 1985), our
modeling capability and understanding of real-world reservoir operation complexities remain limited. One of the
main reasons why knowledge gap exists is intractable human behaviors of real-world reservoir operators. While
operators must adhere to regulations such as operation curves, they usually have space to use their own judgment
and experience in real-world practices when facing uncertainties in inflow and water demands (Oliveira &
Loucks, 1997), especially during an extreme event (e.g., drought or flood). Such behaviors of reservoir operations
are usually intractable, presenting significant challenges for understanding and modeling reservoir operations in
the real world.

To fill this knowledge gap, many recent studies attempted to extract reservoir operation behaviors from historical
records. Among those studies, some employed supervised machine learning techniques to replicate observed
release using predictor variables for selected case study reservoirs (e.g., Coerver et al., 2018; Corani et al., 2009;
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Ehsani et al., 2016; T. Yang et al., 2016, 2020). For example, T. Yang et al. (2016) developed a decision tree
model that accurately simulates the operations of several major reservoirs in California. Their model incorporates
amyriad of predictors, including reservoir states, hydrological conditions, river indices, as well as the interactions
with the California State Water Project. Such heavy data requirements make it difficult to apply the data-driven
model to reservoirs with limited data availability. Meanwhile, other studies focused on extracting general
operation patterns from historical operations for reservoirs within a region, given growing availability of his-
torical operation data for many reservoirs (e.g., Chen et al., 2022; Giuliani & Herman, 2018; Hejazi et al., 2008;
Q. Zhao & Cai, 2020). Following this line of thought, generic data-driven reservoir operation models have been
developed and validated for hundreds of large reservoirs across the CONUS (Chen et al., 2022; Turner
et al., 2020, 2021; Yassin et al., 2019; Q. Zhao & Cai, 2020). Generic models do not depend on reservoir-specific
characteristics and are based on operation rules that are applicable to any reservoir; thus, these models can be used
to derive generic operation rules for reservoirs when a sufficiently long operation record is available. For
example, Q. Zhao and Cai (2020) developed a hidden Markov-decision tree (HM-DT) model to derive repre-
sentative operation rules for 61 reservoirs in the Upper Colorado River Basin and found that a small number of
modules present operation rules under specific operation conditions such as refill or pre-flood release. Following
Q. Zhao and Cai (2020), Chen et al. (2022) developed Generic Data-driven Reservoir Operation Models
(GDROMs) for 4504+ reservoirs in the CONUS. GDROMs identify representative operation modules and their
application transition conditions from long-term operation records. It is reasonable to assume that the operation
modules derived from such a large number of reservoirs with different sizes, operation purposes, and geographic
locations can be used to synthesize some typical or representative operation modules, which might be applicable
to any reservoirs and enable more generalized understanding of real-world operations. To this end, we will
address the first specific research question of this study: What typical operation modules, especially those that are
not well presented in the literature, exist with all the 452 reservoirs?

Reservoir operation dynamics is characterized with seasonal transitions of operation rules, which deal with
uncertainties and fluctuations in inflows and water demands. Data-driven models handle the seasonality issue of
reservoir operation in different ways. With supervised machine learning methods, the seasonal information is
often included implicitly, reflected in input variables like long-term inflow and storage records, and/or embedded
in model structures, like the weighted links in neural networks (Ehsani et al., 2016) or the ensemble trees in
random forests (T. Yang et al., 2016). Yet, the patterns of these transitions are hidden in a “black box” model and
are not explicitly represented. Contrastingly, data-mining studies attempted to shed light on these seasonal
transitions directly from observed data (e.g., Giuliani & Herman, 2018; Hejazi & Cai, 2009). Giuliani and
Herman (2018) deployed eigen-behavior analysis and clustering techniques on long-term monthly storage data
from 172 Californian reservoirs, and identified four typical operation behaviors, each characterized by unique
drawdown and refill patterns. In a more recent study, Brunner and Naveau (2023) reconstructed seasonal vari-
ations of reservoir operation from streamflow series and analyzed the spatial patterns of reservoir operations in the
Alpine region, Europe using daily streamflow data for 10 or more years before and after dam operation to infer
reservoir seasonality. In the current study, we will investigate the seasonality of reservoir operations with greater
details for 452 reservoirs across the CONUS using daily inflow, storage, and release data with a historical record
of 15 years or longer to analyze their seasonal applications and transitions of data-derived operation modules.
Specifically, we address the second research question of this study: What are the seasonal patterns for the
application transition of typical operation modules for different reservoirs, and how are those patterns associated
with reservoir size, operation purpose, and location across the CONUS?

Furthermore, hydrological information is important for reservoir operators to prioritize or deal with various,
uncertain hydroclimatic conditions. Gaining clarity on the role of the priority in operators' decisions is critical to
understanding realistic operation rules, as well as building more realistic operation models. Hejazi et al. (2008)
assessed the importance of a wide range of input variables for daily release decisions across 79 reservoirs in
California and the Great Plains. They related the most important variables to specific reservoir attributes, such as
size, location, and operation seasons. These identified variables and relationships were then used as potential state
variables to develop a more realistic operation optimization model (Hejazi & Cai, 2011). In the current study, we
will extend relevant previous studies to a greater number of reservoirs and address the third research question of
this study: What hydroclimatic information is prioritized for the operation of different reservoirs?

The three research questions outlined above focus on some crucial aspects of real-world reservoir operations:
typical operation modules, seasonal operation patterns, and the role of hydrological information. We will address
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these questions by employing an approach that is designed not only to synthesize and interpret real-world
reservoir operation practices but also to offer a potential framework and insights for building more realistic
reservoir models using typical operation modules derived from historical records. In the rest of this paper, we will
first provide background on the GDROMs for 452 reservoirs in the CONUS. Following that, we will present the
results synthesized from the GDROMs, especially the typical operation modules, module application transition
patterns, and prioritized hydroclimatic information in release decisions, in a form that explicitly relates release
decisions to water availability conditions (inflow and storage) and reservoir characteristics (size, operation
purpose, and location/climate). Furthermore, we will discuss how the typical modules and their application
transition patterns can be used to inform the development of more realistic reservoir operation models.

2. Background

The GDROMs for 452 reservoirs are introduced, including the fundamental concepts and methods, data sources
and data pre-processing procedures, and model outputs (Li et al., 2023).

2.1. Generic Data-Driven Reservoir Operation Model (GDROM)

The GDROM comprises a small number of representative operation modules derived from the historical oper-
ation data for a particular reservoir by the hidden Markov model. An operation module represents a specific
operation rule to simulate daily release under specific water availability conditions, such as inflow and storage in a
wet/dry period; in the GDROM which is in the form of DT, a module is represented as a branch of the DT (i.e., a
sub-DT). The module application conditions are identified by the Classification and Regression Tree (CART,
Breiman et al., 1984) algorithm (see Figure S1 in Supporting Information S1 for the GDROM model structure).
Eventually, a number of operation modules and their application conditions form the GDROM, with four input
variables: daily inflow to the reservoir, initial daily storage, day of the year (DOY, representing seasonality;
Bessler et al., 2003), and the Palmer Drought Severity Index (PDSI, represent the climate/weather; Palmer, 1965).
These input variables represent the hydroclimatic conditions that trigger different operation modules to simulate
release that reflects water demand levels, operational policies, as well as operators' behaviors. For detailed
explanation of the GDROM, readers should be referred to Chen et al. (2022) and Q. Zhao and Cai (2020).

Compared with existing data-driven reservoir operation models having complicated model structures and
requiring reservoir-specific data, for example, the random forest (RF) model (T. Yang et al., 2016) and the neural
network (NN) model (S. Yang et al., 2019), the GDROMs have relatively simple and consistent model structure
and common inputs (i.e., inflow, storage, DOY, and PDSI). Although the simulation accuracy with some res-
ervoirs is lower than that from the RF and NN models, the GDROMs gain higher generality and can be applied to
most reservoirs with data available from multiple data sets (Chen et al., 2022).

Another merit of the GDROMs is the model interpretability and transparency attributed to the decision tree-based
model structure. In particular, the GDROM:s depict the operation dynamics, that is, module transition over periods
with specified triggering conditions. To extract the time-varied operation patterns, we obtain long-term operation
records with high granularity, that is, daily release and storage change, along with hydrological conditions
provided by the USBR (2021), the USACE (2021), and the ResOpsUS database (Steyeart et al., 2022a, 2022b). In
addition, we retrieve monthly PDSI data statewide from the portal of the National Oceanic and Atmospheric
Administration (NOAA; 2021).

Moreover, the GDROM has been shown to capture long-term operation rule changes represented by the identified
emerged hidden Markov states, which reflect changed operation rules over years. Within the GDROM, operation
modules are re-sequenced to model the inter-year changes, that is, different modules are applied during the same
season in earlier and more recent years (Chen et al., 2022; Q. Zhao & Cai, 2020). These operational changes are
associated with both altered hydroclimatic conditions (e.g., inflow), water demand (e.g., release), and/or policy
changes, which are reflected in the input variables, and in turn captured via CART training and validation. A
detailed description of training the GDROM for reservoirs exhibiting intra- and inter-year operational changes is
referred to Chen et al. (2022).

We name DGROMs as generic models because GDROM:s applied to any of the 452 reservoirs have the common
inputs and they are structured with common module types (Section 3.2). In addition, they are derived using a
common data mining method relying on historical records to derive operation rules, therefore capturing implicitly
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Figure 1. Location of 452 reservoirs across the CONUS with their primary operation purposes, retrieved from the GRanD
database (Lehner et al., 2011).

specific reservoir characteristics such as reservoir size, seasonality, and water demand. Thus, they do not use
reservoir characteristics as direct inputs.

2.2. Overview of 452 Reservoirs in the CONUS With Long-Term Operation Records

The GDROM has been applied to 452 large reservoirs across the CONUS (Figure 1), which regulate the major
rivers in the United States for multiple purposes, including flood control, water supply for irrigation and
municipal demands, and hydropower. Many reservoirs are operated with seasonally specific rules, manifested by
intra-year variation of storage and release, in response to seasonally varied hydro-climatic conditions and water
demands. Some of the large reservoirs regulate the river system inter-annually and play a vital role in water
conservation for drought mitigation. Notably, the operation policies of some reservoirs have changed, or will
likely change in the future in response to non-stationary hydrological conditions, changed water demand, and
more restricted environmental requirements (Conway & Mahé, 2009; Giuliani & Herman, 2018; Wallington &
Cai, 2020). Among the 452 reservoirs, those primarily operated for flood control take the largest portion (43%),
which are primarily located in Eastern and Central United States; following flooding control is irrigation (23%),
mostly distributed in the Western United States. We also have hydropower reservoirs (17%) primarily located in
the Southeastern United States and the Pacific Northwest, water supply reservoirs (9%), recreation reservoirs
(5%), and navigation reservoirs (3%) in the various CONUS regions. The majority length of the records is 15+
years, most of which are sufficiently long to contain inter-annual operation patterns and long-term changes.

The data preprocessing for the 452 reservoirs follows our recently published work (Chen et al., 2022). In real-
world reservoir operations, it is difficult to measure the actual inflow to a reservoir with accuracy because of
evaporation loss, seepage loss, and recharge/discharge between a reservoir and the surrounding aquifer (Deng
et al., 2015). The net inflow computed based on water balance is often used (USBR, 2021). Compared to inflow,
the release and storage observations bear fewer errors (i.e., release is human-controlled; storage can be converted
from easily observed elevation), and the errors involved in the release and storage data obtained from USBR or
USACE are ignored in this study. This study employs observed release and storage to calculate net inflow, as
detailed in Chen et al. (2022).

The raw data are also processed for the requirement of training the GDROMs. Since the observed operation (i.e.,
daily release series) is assumed to follow the Markov process, the training samples must be continuous, while
multiple continuous pieces are also acceptable. Thus, we detect and remove the missing dates and break the
operation record into multiple continuous pieces from the missing data points. Note that the pieces without
sufficient observations cannot capture the latent temporal dependencies of the release decisions, and thus only
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pieces with more than 100 continuous observations are retained for training. These segmented continuous time
series are treated as independent samples for model training (Q. Zhao & Cai, 2020). In addition, for each reservoir,
the inflow, storage, and release are normalized by the maximum historical storage during the observation period,
which avoids the effect of reservoir size and reduces the time required for hyperparameter tuning.

In addition, there are some outliers with abnormal sudden storage changes in the operation records, which might
be due to measurement errors (or documentation typos). These storage outliers often result in a large negative net
inflow followed by a positive net inflow with a similar absolute value in two consecutive days, and vice versa. To
resolve this issue, we detect the days with outliers and replace the storage values with linearly interpolated values
between the normal storage values in two adjacent days, as detailed in Li et al. (2023).

2.3. Data Sets of 452 Reservoirs Across the CONUS

As demonstrated by Chen et al. (2022), the GDROM can provide reliable release predictions for various reservoir
types, as evaluated by the Nash-Sutcliffe Efficiency and Percent of Bias metrics (Moriasi et al., 2007). By
applying the GDROM to model 452 large reservoirs throughout the CONUS, we have constructed a compre-
hensive data set containing data-driven operation rules for these reservoirs and made this data set openly
accessible via HydroShare (Li et al., 2023). For each reservoir, the derived operation rules comprise represen-
tative operation modules and corresponding module application conditions, which form the basis of the subse-
quent analyses presented in this study.

The GDROM-based data set for deriving reservoir release rules is not the first inventory at the CONUS level;
another notable example is the ISTARF-CONUS developed by Turner et al. (2021). However, considerable
differences in the model structures yield distinct capabilities for specific application scenarios. ISTARF con-
structs a release function using a predetermined structure based on reservoir states (e.g., storage), characteristics
(e.g., capacity), and seasonal variability, with function parameters estimated via regression. Importantly, these
parameters can be extrapolated to data-scarce reservoirs, enabling ISTARF to parameterize the operation of 1930
large reservoirs in the CONUS. On the other hand, GDROM, a semi-supervised machine learning model
leveraging hidden Markov and decision tree techniques, does not predefine the release rule formula or operation
model structure. Instead, it automatically identifies operation modules from historical records, providing greater
flexibility when modeling various reservoirs (Hastie et al., 2009a). Furthermore, GDROM can depict the oper-
ation dynamics and thus facilitates the discovery and comparison of operation patterns, which is the primary focus
of this study.

3. Representative Module Categorization and Operation Pattern Analysis

In this section, we first analyze the representative modules of the GDROM for the 452 reservoirs. This is
accomplished through a synthesis of all the modules derived for different reservoirs, which are subsequently
categorized into six typical types. Following that, we show the seasonal operation patterns in terms of module
selection and transition for reservoirs with different primary operation purposes. We further investigate the role of
hydrological information in the seasonal operation patterns considering the impact of reservoir size, operation
purpose, and location. It should be noted that some results in the following sections are intuitive, which are
presented to demonstrate the model capability for extracting real-world operations. Meanwhile we will highlight
new insights that expand understanding of reservoir operations in practice.

3.1. The Number of Modules for Different Reservoirs

The modules characterize the release decisions of a reservoir in a certain period (e.g., of flooding control, irri-
gation, storage refill, or drought management) and respond to a certain hydrological condition in terms of inflow
and/or storage. It is found that different numbers of modules are identified for reservoirs with different operation
purposes, reflecting the diversity of operation schemes applied in reservoir operation practice. Figure 2a shows
the distribution of the number of modules that are identified from long-term historical operation records. A
notable observation is that the operation of any of these reservoirs can be effectively approximated using 1-8
modules, irrespective of their size, operation purpose, or location. The majority of these reservoirs require
only a minimal number of modules, with most requiring less than six modules. To break it down, 25% of the 452
reservoirs use just one module; 54% use two or three; 19% use four or five; only 2% require six or more.
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Figure 2. Distribution of number of extracted operation modules, (a) for individual reservoir across the CONUS, (b) for
reservoirs grouped by their primary operation purposes.

A notable spatial pattern in the numbers of modules is observed in the Pacific Northwestern, Tennessee, and North
Atlantic regions. In these areas, the majority of the reservoirs are found with only a single module. Specifically,
62% of single-module reservoirs in the Pacific Northwestern region are primarily operated for hydroelectric
power generation; 91% in the Tennessee region are mainly utilized for either hydropower or navigation. This is
also shown in Figure 2b, the module numbers with different operation purposes. In contrast, in the North Atlantic
region, the reservoirs are predominantly used for flood control. However, the storage capacity of these reservoirs
is relatively small (all falling below 10,000 acre-feet), which sets limited operation function, thereby precluding
multi-module operations (see more discussion on flood control reservoirs in Section 3.3.3). In addition, reservoirs
operated for navigation in any region in sample have a limited storage capacity, and the release mainly depends on
the inflow; therefore, the operation rules for those reservoirs do not change significantly.

Among the reservoirs with different operation purposes and different module numbers shown in Figure 2b,
reservoirs primarily operated for hydropower present an interesting case. Nearly 80% of those reservoirs are
operated with only a single or two modules, and 20% are operated with three or more modules. This results from
mixed types of hydropower reservoirs in the real world: (a) the run-of-river hydropower dams (e.g., John Day
Dam on the Columbia River) harvesting energy from streamflow with small storage, which are operated by one or
two modules; (b) the impoundment hydroelectric facilities (e.g., Glen Canyon Dam on the Colorado River), with
large regulation capacity, which are operated by more than two modules to respond to complex conditions and the
transition between the conditions.

Irrigation reservoirs usually operate in a seasonal manner; flood control reservoirs are usually operated with other
purposes such as water supply, irrigation, and hydropower; the operation of recreational reservoirs corresponds to
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inflow, storage, and seasonality. Therefore, the numbers of modules for the reservoirs with irrigation, water
supply, flood control, and recreation as a primary operation purpose are relatively large. Specifically, 89% irri-
gation reservoirs, 79% flood control reservoirs, 86% water supply reservoirs, and 61% recreation reservoirs
employ two or more modules.

As expected, the operation of large reservoirs vitally supplying water for populated regions is featured with
multiple modules; for example, Lake Powell in the Upper Colorado River Basin regulates streamflow inter-
annually and employs four modules in its operations. Especially, large reservoirs serving multiple purposes
usually adopt various operation schemes, necessitating the use of several operation modules. The Fort Peck Dam,
for example, the highest dam along the Missouri River, utilizes six operation modules to achieve its multi-
objective operation, including flood control, irrigation, and hydropower.

3.2. Classification of Module Categories

Among the 1,155 modules derived from the 452 reservoirs in the CONUS (though only a small number of
modules for a particular reservoir), five typical module types are identified with respect to the primary driven
variables, namely, constant release, inflow-driven piecewise constant release, inflow-driven linear release,
storage-driven piecewise constant release, and storage-driven nonlinear (or piecewise linear) release, as shown in
Figure 3. The cumulative distribution of the magnitude of release associated with each type of the modules is
illustrated in Figure S2 in Supporting Information S1.

The constant release modules represent the operation scheme characterized by constant or near constant releases,
regardless of the inflow and storage levels (see Figure 3a). The constant release modules are mainly found in
operations with low releases during a low-flow period, such as the water discharge during the refill season for
building reservoir storage or the restricted releases during dry periods for water conservation. For example, the
Clark Canyon Dam in Montana State constantly has low releases from November to April for storage building
(and high release from May to September, Figure S4 in Supporting Information S1). In addition, the constant
release modules are commonly observed with extremely large reservoirs, where the releases are relatively stable
and demand-driven, with little effect from inflow and storage. For example, the Garrison Dam in North Dakota
State applies two constant release modules in most of the months, and the non-constant release modules are only
applied in response to flood events (Figure S5 in Supporting Information S1).

The two types of Inflow-driven modules are demonstrated in Figures 3b and 3c. Under the inflow-driven
piecewise constant release module, the release is constant within a certain inflow range. For the inflow-driven
linear release modules, the release changes linearly with the inflow. The inflow-driven piecewise constant
release modules are often applied for low releases; conversely, the inflow-driven linear release modules are more
applied for high releases (Figure S2 in Supporting Information S1). The Yatesville Dam in Kentucky State that is
primarily operated for flood control, demonstrates the different applications of the two inflow-driven modules
(Figure S6 in Supporting Information S1).

Similar to the inflow-driven modules, the storage-driven modules use reservoir storage as the most decisive
factor, and the storage-driven piecewise constant release modules and storage-driven nonlinear release modules
are illustrated in Figures 3d and 3e. Under the storage-driven piecewise constant release modules, releases are
decided in a piecewise constant manner with the reservoir storage (i.e., constant releases remain at different values
corresponding to different storage levels). This type of modules is mainly observed with low or normal releases.
These modules usually maintain certain storage levels. By comparison, under the storage-driven nonlinear release
modules, the release remains relatively low when the reservoir storage is less than a threshold; beyond the
threshold, the release significantly increases. This reflects the hedging policy (You & Cai, 2008) adopted in
practice as a conservative strategy during dry periods. The Deerfield Reservoir in South Dakota presents an
example (Figure S7 in Supporting Information S1). The storage-driven nonlinear release modules are also applied
during the transition between the refill period and the high-release period. For example, the Fresno Reservoir has a
storage-driven nonlinear release module applied in April and September, the transition months between low- and
high- releases (Figure S8 in Supporting Information S1).

Besides the five basic module types, the joint-driven modules do not determine the release solely depending on
inflow or storage but on the combined information of both. The decision trees of the joint-driven modules are
characterized by multiple layers with both inflow and storage as splitting nodes. In other words, the conditions of
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Figure 3. Examples for inflow-driven and storage-driven modules: (a) constant release; (b) inflow-driven piecewise constant release, (c) inflow-driven linear release,
(d) storage-driven piecewise constant release, (e) storage-driven nonlinear release. Note that for the purpose of illustration, the inflow, storage, and release shown in the
figure are observed values taken from different reservoirs for each module type. These values are normalized by maximum reservoir storage. Additional illustrations
from a single reservoir are included in Figure S3 in Supporting Information S1.

the decision rules are collectively constructed with inflow and storage. The joint-driven module is associated with
a relatively high release level, which is typically applied for flood control, where the inflow and storage are both
important in the release decision. For example, the Tom Jenkins Dam in Ohio (Figure S9 in Supporting
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Table 1
Application Frequencies of Each Module Type for Reservoirs With Different Operation Purposes

Constant Inflow-driven constant Inflow-driven linear Storage-driven constant Storage-driven nonlinear Joint

Irrigation 48% 5% 19% 9% 8% 11%
Water supply 34% 18% 19% 10% 6% 13%
Hydropower 21% 8% 36% 16% 7% 12%
Flood control 39% 12% 13% 10% 5% 21%

Information S1) illustrates the application of a joint-driven module for high-release operation during the flood
season or a high-flow period.

The application frequencies of the five types of operation modules and the joint-modules by operation purposes
are provided Table 1, that is, the ratio of days with the application of a module type to all days of a year. Notably,
the constant release module type is applied in over 20% of days in a year for all primary operational purposes
listed in the table, showing its prevalence in low-release periods. This is particularly evident for irrigation res-
ervoirs (48%), reflecting their typical operation cycle of refill and release and the need for stable releases during
the irrigation season. In contrast, hydropower reservoirs exhibit a high application of the inflow-driven linear
release module type, which aligns with a large portion of run-of-river hydropower plants among the selected
hydropower reservoirs. Flood control reservoirs have a high application of constant release (39%) and joint-driven
release modules (21%), indicating the complexity during the flood control period, that is, pre-release before a
flood event, storage filling and release below a threshold for downstream safety during the flood event and
possibly spill, release after the flood event, and refill around the end of the flooding season. In addition, the
application of storage-driven nonlinear module type has relatively low application frequencies 5%—8% among all
types of reservoirs, which shows the non-linear form hedging policy has limited applications in the past practices.
This is reasonable since non-linear hedging policy is usually applied to extreme conditions such as seasonal or
long-term droughts (Zeng et al., 2021).

However, it is important to note the module application is not only affected by reservoir operation purposes, but
other factors, as explored in greater depth in the subsequent sections and summarized in Table 2 appearing at the
end of Section 3.

3.3. Seasonal Module Selection and Transition Pattern for Different Types of Reservoirs

Multiple operation rules are usually adopted for large reservoirs and applied to different periods within a year in
response to intra-annual variation of hydrological conditions, water demands (e.g., the seasonal agricultural water
requirements), and/or extreme events such as droughts and floods. We assume that a typical seasonal operation
pattern exists with reservoirs of similar characteristics such as sizes, primary uses, and/or locations (associated
with climates); while the patterns differ among reservoirs of considerable dissimilarity. To explore this
assumption, we identify the most frequently used operation module for each reservoir during each calendar month
throughout the entire historical operation period (of a series of years) for the month. Following that, we group
reservoirs according to their primary uses, size ratios (defined as the ratio of storage capacity to average annual
inflow (Anghileri et al., 2016)), or regions. The percentage of the reservoirs with the most frequently used module
type in a month is calculated within each group of the reservoirs (Figures 4-7). Note that only reservoirs with
multiple modules are grouped for analyzing the transition between different modules from 1 month to another,
and Figures 4-7 display both the selection of module types and the transition between different types of modules.

3.3.1. Seasonal Operation Patterns for Reservoirs of Different Sizes

As shown in Figure 4, the seasonal module type selection and transition are associated with the reservoir size.
Reservoirs with relatively smaller size ratios are likely to employ the inflow-driven linear release modules
throughout the year. By comparison, reservoirs with larger size ratios exhibit a more frequent application of
constant release. For example, for reservoirs with size ratio between 0.0 and 0.2 (relative to the mean annual
inflow), if accounting the modules on a monthly basis, on average, the inflow-driven linear release modules are
adopted for 58% of the reservoirs. In contrast, for those reservoirs with size ratio larger than 1, the constant release
modules are adopted for 71% of the reservoirs. This is consistent with the regular observations that smaller
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Table 2

Summary of Operation Conditions for Each Type of Modules

Module type

Representative release levels

Typical reservoir types

Regional applications

Constant release

Inflow-driven piecewise constant release

Inflow-driven linear release

Storage-driven piecewise constant release

Storage-driven nonlinear release

Joint-driven release

Low release during low-flow or
conservation periods; stable
release from large reservoirs

Low to medium release, driven by
critical inflow levels

Medium to high release during high-
flow periods; releases from small
TeServoirs

Low to medium release, usually
determined for maintaining
certain storage levels

Low or high release, depending on the
storage level usually during dry
periods or transition periods
between low- and high-release

Medium to high release, usually
applied during high-flow periods

Irrigation reservoirs during storage
refill period (80%)

Flood control reservoirs during the
non-flood season or non-flood
days for storm-driven
floods (68%)

Water supply reservoirs with stable
water demand (53%)

Large reservoirs for stable releases

Medium and small reservoirs (39%
for reservoirs with size ratio
below 0.5)

Flood control reservoirs during flood
season (34%)

Irrigation and water supply reservoirs
with high water
requirements (49%)

Run-of-river hydropower dams

Reservoirs for recreation, navigation,
hydropower, and flood control to
maintain certain storage level

Irrigation, water supply and
hydropower reservoirs with
medium and large storage

All types of reservoirs

Irrigation reservoirs in
Western United
States (72%)

Flood control reservoirs (in
non-flood periods) in
Pacific Northwest
Region (60% sampled)
and Eastern United
States (53% sampled)

Trrigation reservoirs (in
high-flow or irrigated
periods) in Western
United States (51%)

Flood control reservoirs (in
high-flow periods) in
Pacific Northwest (56%)
and Southeastern United
States (69%)

Reservoirs in California
Region

Reservoirs in drought-prone
regions

Trrigation reservoirs (in
irrigation periods) in
Pacific Northwest and
Upper Colorado
Region (44%)

Flood control reservoirs (in
flood periods) in Pacific
Northwest, Arkansas-
White-Red, and Ohio
Region (71%)

Note. Empirical sampled percentage is provided for typical reservoir types and regional applications.

reservoirs are more likely to be operated according to inflow conditions, while larger ones are less inflow-driven
and more regulated by storage, resulting in more stable and consistent release across months.

Additionally, some reservoirs have a medium storage capacity but small streamflow during most months of the
year, resulting in relatively large size ratios, and thus the constant release modules with low release levels are
applied for these reservoirs in most months. The existence of these reservoirs with a size ratio greater than 1.0 may
cause the abruptly increased application of the constant release modules (Figure 4e). Furthermore, seasonal
module transitions occur more frequently with the reservoirs with larger size ratios (as can be seen by comparing
Figures 4a—4c with Figures 4d and 4e.) The transition between constant (associated with low-release) and inflow-
driven (with high-release) modules indicates the switch between storage refill and water release with large
Ieservoirs.
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Figure 4. Percentage of reservoirs with monthly most frequently used module type for each size ratio. The vertical axis shows
the percentage of reservoirs taking each module type (five basic types and the joint type) as a major module in a given month.
Here, constant represents constant release module; linear-inflow represents inflow-driven linear release module; constant-
inflow stands for inflow-driven piecewise constant release module; nonlinear-storage represents storage-driven nonlinear
release module; constant-storage stands for storage-driven piecewise constant release module; joint stands for joint-driven
release module.

3.3.2. Seasonal Operation Patterns for Reservoirs of Different Operation Purposes

Primary operation purposes also play a major role in determining seasonal operation patterns (Figure 5). A
notable intra-year transition pattern is observed among the various uses, particularly for irrigation reservoirs, due
to the relatively consistent operation for irrigation season, as illustrated in Figure 5a. More specifically, the
monthly application frequency of each module type is shown in Table S1 in Supporting Information S1. From
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Figure 5. Percentage of reservoirs with monthly most frequently used module type for each primary operation purpose:
(a) irrigation, (b) water supply, (c) hydropower, (d) flood control.

September to March, constant release modules prevail for 74% of the irrigation reservoirs on a monthly basis. In
contrast, the percentage of constant release modules decreases to 38% during May to July. This seasonal module
transition reveals a distinctive seasonal operation cycle of refill and release essential to irrigation reservoirs. Such
a cycle is characterized by the shift and transition between (a) the constant release modules utilized for reservoir
storage refill during the low-flow season, and (b) water-release modules (e.g., inflow-driven linear release and
joint-driven release modules) applied during the irrigation season.

For water supply reservoirs (Figure 5b and Table S2 in Supporting Information S1), the application of the inflow-
driven linear release module increases between April and October; meanwhile, the application of the two storage-
driven modules decreases. These months lie in the high-flow periods in Texas-Gulf Region, where most water
supply reservoirs are obtained for our analysis. The constant release module and the inflow-driven piecewise
constant release module have relatively stable applications, which is due to the minor variation of water supply
demand across the seasons. For hydropower reservoirs (Figure Sc and Table S3 in Supporting Information S1),
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Figure 6. Percentage of irrigation reservoirs with monthly most frequently used module type within selected water regions.
The highlighted area in left panel illustrates the specific water region, and the right panel shows the percentage of monthly
most frequently used module type for the selected area. (a) Pacific Northwest Region, (b) California Region, (c) Great Basin
Region, (d) Upper Colorado Region, and (e) Missouri Region. Note that irrigation is an equally important function of most
large reservoirs in the California Region, while it is classified as secondary in the GRanD. For this sake, we also include
reservoirs with irrigation as secondary operation purpose in (b).

the relatively simple inflow-driven release rules are mostly adopted throughout a year with occasional transitions
to storage-driven or joint-driven operation modules, reflecting the fact that many of the hydropower plants are
run-of-river plants. In addition, the stable application of storage-driven piecewise constant release module se-
lection across months implies that a certain level of storage (head) is reserved for hydropower reservoirs un-
derlying storage regulation.

It should be noted that the seasonal module transitions are less significant when reservoirs are grouped by primary
uses (Figure 5). As can be observed from Table S4 in Supporting Information S1, the monthly frequency of the six
module types are relatively even, especially for inflow- or storage-driven modules. This is because the module
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Figure 7. Percentage of flood control reservoirs with monthly most frequently used module type within selected water
regions. The highlighted area in left panel illustrates the specific water region, and the right panel shows the percentage of
monthly most frequently used module type for the selected area. (a) Pacific Northwest Region, (b) California Region,

(c) Missouri Region, (d) Arkansas-White-Red Region, (e) Tennessee Region and South Atlantic-Gulf Region, and (f) Ohio
Region.

transition could be hidden when the modules of reservoirs with different flow and water demand conditions are
aggregated at the CONUS scale, especially for flood control reservoirs (Figure 5d). The regional specific seasonal
transitions are illustrated in the following section.
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3.3.3. Seasonal Operation Patterns for Reservoirs at Different Locations

Since hydroclimatic and water use conditions are closely associated with reservoir locations, in the following we
discuss the seasonal selection and transition of modules in different regions across the CONUS with irrigation or
flood control as the primary use. Given the data availability for this study, we omit the discussion on hydropower
since most hydropower plants are run-of-river plants and a relatively simple operation pattern is applied to the
reservoirs; we also omit the discussion on water supply reservoirs since they are mainly located in one region
(Texas-Gulf Region).

Figure 6 shows the seasonal module selection and transition for reservoirs primarily operated for irrigation in five
selected regions in western United States. For all the regions, the inflow-driven linear release module is more
applied during the irrigation season but with various percentages of the reservoirs involved among the selected
five regions (Figures 6a—6e). Meanwhile, the constant release modules are applied during the non-irrigation
season for most of the reservoirs. Specific results are highlighted as follows by region. In Pacific Northwest
Region (Figure 6a), besides the irrigation months in the summer, the inflow-driven linear release module is more
applied from November to February than in other regions, corresponding to the high rainfall months in this region,
where high-release operation rules are employed. In California Region (Figure 6b), the inflow-driven linear
release module is less applied in the irrigation month, corresponding to little rainfall in the summertime, and
irrigation water supply is mainly provided by the storage built up from the high-precipitation months. Thus, the
application of storage-driven modules (storage-driven piecewise constant release module and storage-driven
nonlinear release module) is significantly higher in this region than others. Great Basin Region (Figure 6c)
shows a higher application of inflow-driven linear release modules during spring, attributed to irrigation re-
quirements during the dry season and the occurrence of high inflow caused by snow melting. Moreover, this
region includes a number of small reservoirs (especially in Utah), which need to release more water during the
snow-melting months. Upper Colorado Region (Figure 6d) is similar to Pacific Northwest Region in terms of
more applications of the joint-driven modules than other regions during the high-flow months, implying that
storage is jointly considered with inflow in high-release decisions. In both Missouri Region (Figure 6e) and
California Region (Figure 6b), more irrigation reservoirs in the two regions apply the constant release modules
and fewer reservoirs apply the inflow-driven linear release modules during the period of May—September,
resulting in relatively stable and low releases. This is also related to the common climate feature of the two regions
—both are drought-prone and flood events occur very occasionally. In summary, regarding the module selection
among regions and crossing months of a year, all regions show a clear transition between the constant release
modules during low-flow months and the inflow-driven linear release modules during high-flow months, which
represents the common pattern of the seasonal refill-release cycle for irrigation reservoirs.

Figure 7 shows regionally distinctive seasonal operation patterns for the reservoirs primarily operated for flooding
control for six selected regions across the CONUS. The module selection and transition show considerable
variation across months and among regions. In Figure 7a, the inflow-driven linear release module is more applied
from November to January in Pacific Northwest Region than other regions. The joint-driven module is also
significantly higher in several months following February, corresponding to the rainy season when flood man-
agement is critical in this region. Moreover, there exists a major adoption of the modules with constant releases
(i.e., the constant-release, inflow-driven piecewise constant release, and storage-driven piecewise constant release
modules) during the summer months (e.g., June—September, the dry season in the region), which are associated
with low releases, as observed during this period in Pacific Northwest Region. The gradual transition between
higher-release modules (inflow-driven linear release module and joint-driven release module) and lower-release
modules (constant-related modules) depicts the distinctive management profiles in wet and dry seasons.

Being opposite to Pacific Northwest Region, in California Region, inflow-driven linear release and joint-driven
modules are more applied during summer, and the constant release modules are more applied during winter, as
shown in Figure 7b. Since many reservoirs in California Region are managed for water supply and irrigation along
with flood control, the storage-driven piecewise constant release module is applied with higher frequency
throughout the year, and the transition shown in Figure 7b is affected by the multi-purpose operation of those
reservoirs, which is somewhat similar to the irrigation reservoirs in the region (Figure 6b).

For the Missouri Region (Figure 7c), the abrupt switch between low-release and high-release modules, as
observed in other regions, is not apparent. This is because most areas in this region are drought-prone and have
high agricultural water consumption. Thus, the reservoirs in this region are not operated for flood control during
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the normal and dry years, and consequently, the seasonality of flood control is hidden, with examples shown in
Figures S5 and S10 in Supporting Information S1 for some selected reservoirs. By comparison, for the flood-
prone Arkansas-White-Red Region (Figure 6d), it is observed a clear seasonal transition between the flood
period and the non-flood period, with joint-driven modules mostly applied for flood control and constant release
modules dominantly adopted in the non-flood period. In addition, the seasonal pattern may be underestimated due
to the existence of some reservoirs with small storage capacity, which quickly respond to storm-driven floods
without exhibiting a significant seasonal pattern, for example, Canton Lake in Oklahoma (Figure S11 in Sup-
porting Information S1).

For the Southeastern United States (Figure 7e), the unique operation patterns show a significantly higher
application of inflow-driven modules, especially the inflow-driven linear release module, which agrees with high
releases throughout the year in this water-rich region. Figure 7f shows the seasonal module application for flood
control reservoirs in Ohio Region, where flood events are mainly episodic and storm-driven, which could occur
all year long. Many reservoirs in this region are operated to deal with the various types of flood events, and the
typical operation follows the low-release modules (e.g., constant release modules) applied for non-flooding days
and the high-release (e.g., joint-driven release modules) modules applied for flood days. The abrupt switch be-
tween modules occurs when a flood event starts, as demonstrated in Figures S11-S13 in Supporting Informa-
tion S1 with three selected reservoirs. Although major floods can occur at any time of the year, those caused by
winter storms are more frequent in the region (USACE, 1995). Therefore, it is observed that there is a higher
application of high-release modules during winter and a lower application of low-release modules during sum-
mer, as shown in Figure 7f.

The summary of seasonal operation patterns for the various types of modules applied to different types of res-
ervoirs are provided in Table 2. Furthermore, the relationship between the regional variability of the patterns and
reservoir size is discussed in Text S1 in Supporting Information S1; as shown in Figure S15 in Supporting In-
formation S1, the regional patterns remain for both small and large flood control reservoirs. The potential use of
these basic module types and their transition patterns is further discussed in Section 4.

It is well-understood that many reservoirs serve multiple purposes. Here, we illustrate how operation module
transitions between different operation purposes can be effectively captured using GDROM decoded modules.
We use the John H. Kerr Dam in Virginia as an example, as depicted in Figure 8. The dam is primarily operated
for hydroelectric power generation, which requires maintaining reservoir levels within a range to optimize energy
production. The reservoir also plays a crucial role in flood control during flooding events. Figure 8 clearly shows
that module O is predominantly applied to supporting hydropower operations by maintaining a nearly constant
storage; meanwhile, module 1 is employed mainly during flooding events, allowing the reservoir storage to
increase significantly to help mitigate the risk of peak outflow from the reservoir. The shift from module O to
module 1 reflects the seasonal operation change from hydropower generation to flood management. During the
relatively dry period from 1999 to 2002, high incoming flows with flood risks are minimal compared to normal or
wet years. As a result, module 0 are used more frequently, with minimal switch to module 1, indicating that the
operations are primarily focused on hydroelectricity.

3.4. The Role of Hydrological Information in the Operation of Various Reservoirs

Hydrological information, for example, inflow, dry/wet condition, and storage state, is considered by reservoir
operators with different priorities for the operations of reservoirs with different characteristics (Hejazi
et al., 2008). Determining when and under which hydrological condition to switch from one module to another is
the key for dynamic operation decisions. The questions to address here are: which hydrological variables are
primarily employed in real-world operations of different reservoirs? How is the variable importance related to
reservoir characteristics? In order to quantify the importance of an input variable to the release, we use the
measure of variable importance in the DT, that is, the feature importance, a built-in output of the CART algorithm,
representing the relative importance of an input variable to build a predictive model. For reservoirs with a single
module, the variable importance of the single DT is used for those reservoirs. For reservoirs with multi-modules
(i.e., multiple DTs), rather than calculating the variable importance for all modules, we just use the variable
importance in the classification tree that determines the module application condition. This is because each in-
dividual module represents a specific set of release decision rules tailored to a certain hydrological condition, and
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Figure 8. Operation time series of the John H. Kerr Dam in Virginia State: (a) inflow (net), (b) storage, and (c) release. The
operation series is labeled by the two operation modules (module 0 and module 1) decoded from GDROM.

the overall importance of a hydrological variable for reservoir operation is prominently captured by modules
application conditions characterized by inflow, storage, PDSI, and/or DOY.

Different importance values of input variables are identified for reservoirs with different uses. Figure 9 shows the
relative importance of inflow, storage, DOY, and PDSI for reservoirs operated for different primary purposes. For
example, the relative importance of inflow is near 1.0 (i.e., the highest importance) for almost all navigation
reservoirs, indicating that inflow plays a sole decisive role in operating these reservoirs. Similarly, inflow is
recognized as a more important variable than others for reservoirs operated primarily for hydropower because a
large portion of the hydropower reservoirs is run-of-river reservoirs. However, for some hydropower reservoirs,
other variables such as storage and PDSI also play an important role. It is observed that inflow also plays the most
critical role in flood control reservoirs, although the storage impact is non-negligible. As expected, this indicates
the importance of high inflows and also reflects the request to maintain a critical storage level for flood control
(Ding et al., 2015; Huang et al., 2018). As expected, it is found that DOY is the most important information for
irrigation reservoirs, reflecting that the operation of these reservoirs generally follows a seasonal pattern for water
refill and release to fulfill agricultural water demands. Finally, reservoirs primarily operated for water supply and
recreation are found to have both inflow and storage critically accounted for release decisions, but with slightly
higher importance on storage.
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Figure 9. Importance of input variables in reservoir operation, grouped by the primary operation purpose.

The spatial pattern of the role of the various hydrological variables for reservoir operation is further explored.
Figures 10a—10c illustrates the spatial distribution of the reservoirs, of which the operations are mainly deter-
mined by inflow, DOY, and storage, respectively. Inflow is prevalently adopted as the most critical variable for
reservoirs across the CONUS (see Figure 10a), including some flood control reservoirs and irrigation reservoirs
with a relatively small regulation capacity, most hydropower reservoirs, and almost all navigation reservoirs.
Compared to inflow, DOY is not prevalent at the CONUS level, although DOY is identified as the dominating
variable for a large portion of reservoirs in the Western United States, most of which are primarily operated for
irrigation (Figure 10b). Reservoirs primarily operated for water supply, recreation, and flood control are clustered
in the Southcentral United States, which prioritizes the reservoir storage status over other hydrological infor-
mation (Figure 10c). Specifically, in Arkansas-White-Red Region, there exist two sets of flood control reservoirs,
one of which recognizes inflow as the most critical variable (Figure 10a) and the other prioritizes storage
(Figure 10c). This is consistent with the discussion on seasonal operation pattern for flood control reservoirs in
Section 3.2, corresponding to two types of flood events in Arkansas-White-Red region: seasonal floods and
storm-driven floods. Similar to the irrigation reservoirs, the distinctive use of inflow and storage for the flood
control reservoirs is also largely associated with the reservoir regulation capacity.

Finally, it is noted that there are only a small number of reservoirs of which the operation is primarily operated by
PDSI. Although many reservoirs play a critical role in mitigating drought stresses, the drought response operation
is usually released after experiencing extremely low PDSI for consecutive days or months, which eventually ends
with low inflow and dropping storage that a reservoir operator considers more directly. Therefore, PDSI is not
commonly found as dominating information in reservoir operations due to the information overlap with inflow
and/or storage (see G. Zhao & Gao, 2019 for the relation between PDSI and reservoir surface area and storage).

4. Discussions
4.1. Implications for Improving Reservoir Operation Model Formulation

Previous studies have demonstrated that data analysis findings could be used to improve reservoir operation
model formulation, for example, Hejazi and Cai (2011) identified new state variables and used them to formulate
a more realistic stochastic dynamic programming model for reservoir operation. Giuliani and Herman (2018) and
Q. Zhao and Cai (2020) demonstrated a diagnostic step based on data mining toward a realistic representation of
reservoir operations in an optimization model and a simulation model, respectively. Brunner and Naveau (2023)
highlighted the potential of using reconstructed seasonal reservoir signals to inform the representation of res-
ervoirs in hydrologic models. Following these studies, the current paper provides greater details of seasonal
patterns and discusses how the patterns can be used to inform reservoir model formulation.

As presented above, this study synthesizes the GDROMs for 452 reservoirs in the CONUS to identify typical
operation modules (rules) and patterns of module applications and transitions. Furthermore, seasonal patterns of
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Figure 10. Reservoirs with mostly affected input variable: (a) inflow, (b) DOY, (c) storage. Marker styles and colors
distinguish the reservoir primary operation purpose, and marker sizes represent the reservoir regulation capacity, that is, size
ratio.

reservoir operation are identified based on the applications and transitions of derived modules within a particular
season and across different seasons (Figures 4—7 in Section 3.3). The decoded seasonal information can be built
into reservoir operation models to simulate seasonal operation dynamics. Specifically, the five types of modules
and the joint module summarized in Table 1 can be used as elementary components to build a new model or
improve an existing model developed for a particular reservoir with given operation purpose(s), storage size,
climate, and water management institution at a location across the CONUS. In addition, some highlights on
seasonal operation patterns are provided below:

LI ET AL.

19 of 23



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2023WR036686

o Irrigation reservoirs adopt a typical refill-release cycle characterized by low and constant release mainly
applied during the refill period and high release during the high-flow or irrigation season.

« Water supply reservoirs usually adopt a relatively stable release pattern applied most of the year, with high
release applied during high-flow or intensive water requirement periods.

o Run-of-river hydropower plants have the inflow-driven release scheme as the principal operation rule; me-
dium to large reservoirs with hydropower as a primary purpose mostly use storage and inflow-driven operation
modules jointly.

¢ Flood control reservoirs use operation rules that are complicated by both climate and flood features. For
example, reservoirs in Pacific Northwest Region are operated for flood control during the local rainy season;
while those in Ohio Region respond more to winter storms. Additionally, different operation rules are
considered for different types of floods. Reservoirs dedicated to episodic and storm-driven floods employ
linear release-inflow relationships during the flood days and constantly low release for non-flood days; in
contrast, those operated for regular and seasonal floods consider different operation schemes for flood and
non-flood seasons and the transition between the two seasons.

On top of the reservoir operation purpose, the design of the operation scheme strongly depends on the reservoir
size ratio. In general, inflow-determined modules are formulated for small reservoirs while modules with constant
and stable release or storage are adopted for large reservoirs.

It should be noted that in terms of reservoir operation model formulation, the analysis presented in this study
highlights the necessity to represent distinct regional features in an operation model (Section 3.3). This request is
highlighted by the persistent differences in module application transitions even among reservoirs of similar size
and same operation purpose. Most existing models for reservoir operation (e.g., Hanasaki et al., 2006; Yassin
et al., 2019; G. Zhao et al., 2016) typically conceptualize the operation transitions based on reservoir storage and
seasonal inflow information for a particular operation purpose. Future work will be valuable to simulate the
transition between operation modules (or schedules) by considering a complex interaction of multiple factors,
including the regional contexts in terms of climate and operation regulations.

4.2. Toward Better Understanding of Standard Operation Policy (SOP) and Hedging Policy (HP)

SOP and HP, the two types of general reservoir operation policies, are extensively studied in the literature (e.g.,
Draper & Lund, 2004; You & Cai, 2008; Zeng et al., 2021). The module types and module application transition
patterns derived from the GDROMSs may provide better understanding and modeling of SOP and HP. First, the six
typical modules can be referred to different segments of SOP and HP. As shown in Figure S16 in Supporting
Information S1, the SOP curve is composed of three linear segments with the following conditions: the release is
equal to inflow (i.e., the inflow-driven linear release modules); the release is constant and equal to the full demand
before the reservoir is full (i.e., one of constant release module types); the release is equal to the full demand plus
the spill when the reservoir is full (i.e., the inflow-driven linear release modules). The HP curve overlaps with the
SOP curve by all the segments except for the segment between the hedging start point and endpoint, which can be
either linear or nonlinear (Zeng et al., 2021). This special segment of HP is referred to the storage/inflow-driven
module type, the storage/inflow-driven piecewise constant release, or approximated by multiple piecewise linear
segments (Zeng et al., 2021). The different stages of SOP or HP, which are usually developed for irrigation or
water supply reservoirs, respond to intra-year cycle of water refill and release, for example, water conservation via
a constant release module and water supply via a linear or nonlinear release module.

As an illustration example of the correspondence between GDROM modules and SOP/HP stages, Figure 11a
shows the operation policy of Ochoco Dam in Oregon State, with a primary purpose of irrigation during a selected
period (1990-1992), relatively “dry” years in the historical records. The operation of this reservoir is charac-
terized by three modules—constant (during the low flow period), inflow-linear with low inflow levels, and
storage-nonlinear when the inflow level reaches a certain level. The inflow-linear module represents the first stage
of the SOP (along the 1:1 line, Figure S14 in Supporting Information S1); The storage-nonlinear module rep-
resents the nonlinear hedging segment (Figure S16 in Supporting Information S1). Thus, the GDROM of this
reservoir shows a typical hedging policy featured by a two-phase release policy: an initial linear phase to meet
current demand (a common stage for both SOP and HP) and a follow-up nonlinear phase under HP. In addition,
Figure 11b demonstrates the operation of the Eucha Dam in Oklahoma which is primarily used for water supply.
There is a clear trend of near-constant releases when WA falls below a certain threshold (approximately 76,000
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Figure 11. Examples of real-world operation demonstrating the segments of SOP/HP. (a) Operation of the Ochoco Dam in Oregon State during 1990-1992, a dry period.
Low-release months during winter are not displayed in order to highlight the hedging operation part during major supply months. (b) Operation of the Eucha Dam in
Oklahoma state during 2009-2011. Each point shows the pair of monthly water availability (WA) and release. Release and WA are aggregated into monthly values.

acre-feet), beyond which release increases with WA linearly. The near-constant releases, fit the flat stage of the
SOP shown in Figure S14 in Supporting Information S1; the release linearly increasing with WA fits the spill
stage when WA discounted by the constant release is larger than the maximum storage (a segment for both SOP
and HP curve shown in Figure S14 in Supporting Information S1).

Moreover, in existing SOP and HP studies, the “water availability” item aggregates inflow and storage, thus the
condition that justifies the transition of the various operation stages (Figure S14 in Supporting Information S1)
does not specify the separate roles of inflow and storage regarding their contribution to water availability. The six
operation module types separate the rules by storage and release, which reflects more specific conditions of water
availability and can provide more operation options, especially with HP, for example, strategic control of storage,
higher priority for inflow forecast considering uncertainty and risk aversion, etc. Thus, the six types of modules
and application transition patterns can be used to improve SOP or HP with more specified inputs, that is, inflow,

storage, and/or both.

5. Summary and Conclusions

This study synthesizes the outputs of generic data-driven reservoir operation models (GDROMs; Chen
et al., 2022) developed for 452 data-rich reservoirs of different sizes, operation purposes, and locations (climates
and regulations) across the CONUS. Based on the synthesis, typical operation modules and their application
transition patterns are uncovered, and major driving forces are identified for the release decisions.

It is found that a small number of modules (up to eight in our findings) can effectively represent the operation of
any of those reservoirs in sample. Most hydropower and navigation reservoirs use a single module, while flood-
control and irrigation reservoirs mostly use multiple modules, reflecting the adoption of multiple operation
schemes and seasonal transitions in operating these reservoirs. Furthermore, the operation modules are categorized
into five basic types and joint modules (summarized in Table 1). Notably, constant release modules are common in
reservoirs with large regulation capacity; irrigation reservoir operation can generally be modeled using low-
release and high-release modules and their intra-year transitions, with regional variability adjusted. In contrast,
the operation of flood control reservoirs is modeled with a more complex structure, with consideration of regional
climate characteristics and flood types (storm-driven or seasonal). The roles of each hydroclimatic variable
(inflow, storage, PDSI, and DOY) are prioritized for release decisions of reservoirs operated for different pur-
poses. It is found that for irrigation reservoirs in the western United States, the role of inflow and DOY depend on
the reservoir size ratio (ratio of storage capacity to annual inflow), with inflow dominating small reservoirs and
DOY dominating large ones. For flood control reservoirs in the central US, inflow is mostly considered by res-
ervoirs with a relatively small storage capacity and storage is mostly considered for those with a large storage
capacity. Similarly, for hydropower reservoirs, inflow is prioritized information for relatively small reservoirs
(when the size ratio is less than 0.3); while storage is mostly found as the prioritized information for relatively large
TeServoirs.
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The discovered typical modules and their application transition patterns extend the rules and conditions of
standard operation policy (SOP) and hedging policy (HP), and thus can be informative for building more realistic
SOP and HP models by using respective inflow and storage conditions (i.e., the rules corresponding to different
segments of SOP and HP can be conditioned with either inflow or storage, or both). Moreover, the findings with
the 452 reservoirs across the CONUS can be used to build a data-driven operation model for reservoirs with
limited data availability, especially those in developing countries. In this way, the GDROMSs can be extended to
data-scarce reservoirs. Furthermore, since GDROMs have an interpretable and transparent decision tree-based
model structure and four input variables, they can be easily incorporated into the rainfall-runoff processes of a
large-scale hydrologic model, as a generic reservoir modeling module. Thus, GDROM:s can be interesting to the
community of large-scale hydrologic modeling (Vora et al., 2024).

We have to admit that the derived five basic types of operation modules from 452 CONUS reservoirs may not be
applicable to some other reservoirs. The patterns can be validated and applied to new reservoirs when more data
are available. Moreover, it should be noted that the data-driven models (GDROMs) used in this work can be
limited in representing flood control rules given that some reservoirs are operated in sub-daily time intervals
during a flood event. In addition, the GDROM performs relatively weak (Chen et al., 2022) with abnormally high
inflows and releases in some regions such as the North and Mid-Atlantic. In the future, the GDROMs can be
improved by using robust loss functions to overcome the bias caused by extreme values (outliers) to replace the
currently employed mean square error (Hastie et al., 2009b). Alternatively, the model structure may be modified
to fit the extreme and regular releases separately, that is, the model could be specifically applied and tuned for
flood events for improved simulation of extremely high releases.

Data Availability Statement

The historical operation data is retrieved from the USBR water operation database (USBR, 2021), accessed
separately for each USBR Region via the “Water Operations” link; the WM data dissemination (USACE, 2021)
via the “Project Webservices” section under “Data Discovery,” and the ResOpsUS database (Steyaert
et al., 2022b). The inventory of trained operation rules and the training data are available at the HydroShare
repository established by Li et al. (2023). The code and notebook for building and running the GDROM is
available at the Zenodo repository (Li & Chen, 2023).
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