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Abstract This study assesses snow water equivalent (SWE) simulation uncertainty in the National Water
Model (NWM) due to forcing and model parameterization, using data from 46 Snow Telemetry (SNOTEL) sites
in the Upper Colorado River Basin (UCRB). We evaluated the newly developed Analysis of Record for
Calibration (AORC) forcing data for SWE simulation and examined the impact of bias correction applied to
AORC precipitation and temperature. Additionally, we investigated the sensitivity of SWE simulations to
choices of physical parameterization schemes through 72 ensemble experiments. Results showed that NWM
driven by AORC forcings captured the overall temporal variation of SWE but underestimated its amount.
Adjusting AORC precipitation with SNOTEL observations reduced SWE root‐mean‐square error (RMSE) by
66%, adjusting temperature trimmed it by 10%, and adjusting both decreased it by 69%. Among the physical
processes, the snow/soil temperature time scheme (STC) demonstrated the highest sensitivity, followed by the
surface exchange coefficient for heat (SFC), snow surface albedo (ALB), and rainfall and snowfall partitioning
(SNF), while the lower boundary of soil temperature (TBOT) proved to be insensitive. Further optimization of
the parameterization combination resulted in a 12% SWE RMSE reduction. When combined with the bias‐
corrected AORC precipitation and temperature, this optimization led to a remarkable 78% SWE RMSE
reduction. Despite these enhancements, a persistent slow and late spring ablation suggests model deficiencies in
snow ablation physics. The study emphasizes the critical need to enhance the accuracy of forcing data in
mountainous regions and address model parameterization uncertainty through optimization efforts.

Plain Language Summary This study examines how accurately the National Water Model (NWM)
predicts the amount of snow water equivalent (SWE) in the Upper Colorado River Basin (UCRB). Using data
from 46 monitoring sites, we looked at how different factors affect the model's accuracy. We found that while
the NWM can show changes in SWE over time, it consistently underestimates the actual amount when using
certain forcing data. Adjusting this data with observations improved the model's accuracy significantly. We also
identified specific model settings that strongly influence the results. Although optimizing these settings only
improved accuracy by a small amount, combining them with adjusted forcing data led to a significant
improvement. Despite these improvements, the model still struggles to predict late spring snowmelt accurately.
This study emphasizes the importance of using accurate data and model settings for managing water resources
effectively in mountainous areas.

1. Introduction
Snowmelt plays a crucial role in driving streamflow throughout the western United States (US; Li et al., 2017;
Siirila Woodburn et al., 2021), accounting for 50%–80% of the region's annual runoff (Stewart et al., 2004).
Therefore, accurate and timely prediction of snowpack evolution and snowmelt is essential for water resources
management in this region (Hammond & Kampf, 2020; Trujillo & Molotch, 2014). Within the western US,
snowpack prediction is particularly critical for the headwaters of the Upper Colorado River Basin (UCRB; Xiao &
Lettenmaier, 2021), where runoff generated by snowmelt supplies to∼40 million people across five US states and
Mexico and supports ∼$1.4 trillion in annual economic activity and ∼16 million jobs (James et al., 2014).
However, this task is challenging since model‐simulated snowpack often significantly deviates from in situ
observations, showing discrepancies such as lower snow depth, delayed ablation, or other variations (Broxton
et al., 2016; Mortimer et al., 2020).
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To date, a variety of hydrologic and land surface models (LSMs) with varying levels of complexity have been
developed to simulate snow accumulation and ablation processes (Clark et al., 2011; Fisher & Koven, 2020).
Intercomparison projects, including the Project for the Intercomparison of Land‐Surface Parameterization
Schemes (PILPS) Phase 2(d) (Slater et al., 2001) and Phase 2(e) (Bowling et al., 2003) and the Snow Model
Intercomparison Project (SnowMIP) Phase 1 (Echevers et al., 2004) and Phase 2 (Rutter et al., 2009), have shown
that (a) differences in model physics and parameterization schemes often result in large differences in simulated
snowpack and snowmelt, and (b) simulated snowpack evolution is highly sensitive to the errors in the prescribed
forcings.

Exploring the roles of model physics deficiencies and forcing errors in shaping errors in simulated snowpack and
snowmelt has been an important theme in snow hydrology and land surface modeling (Günther et al., 2019; Kim
et al., 2021). For instance, in a study by Chen et al. (2014), the performance of six LSMs in reproducing snow
water equivalent (SWE) simulation within the Colorado River Headwaters region was evaluated. This study
revealed a significant intermodal disparity arising from the treatment of snow albedo and its subsequent impacts
on surface energy deficit, surface temperature, stability correction, and turbulent fluxes. Xiao et al. (2021)
investigated the performance differences of four LSMs in reproducing observed SWE during the ablation season
at 10 Snow Telemetry (SNOTEL; Serreze et al., 1999) stations. The study demonstrated that net radiation
exhibited stronger correlations with observed melt rates than air temperature. The variations in net radiation were
mainly attributed to differences in net shortwave radiation, which, in turn, were primarily caused by variations in
ground surface albedo and vegetation shading effects among the models. Broxton et al. (2016) compared six
reanalysis products and five Global Land Data Assimilation System (GLDAS; Rodell et al., 2004) products with
three high‐resolution SWE data sets. They found that all products underestimated SWE in the conterminous US
(CONUS), especially in the western region, due primarily to excessive snow ablation occurring at near‐freezing
temperatures. In addition, forcing bias in precipitation and temperature also contributed to the underestimation of
SWE, either worsening or alleviating the bias. Nevertheless, the specific contributions of these forcing biases
have not been precisely quantified.

The past model intercomparison projects produced insights to key processes that regulate snow accumulation and
ablation, but these alone are often too specific to inform optimal models or parameterization schemes (Terzago
et al., 2020). For the latter purpose, investigators resort to unified modeling frameworks that implement multiple
parameterization options for the same processes (Best et al., 2011; Clark et al., 2015; Niu et al., 2011). The control
simulations using these options allow for testing hypotheses concerning the fidelity of a single, or a combination
of parameterization schemes in reproducing specific processes. For example, Essery et al. (2013) used a single
model with various options for snow‐related processes to test 1701 scheme combinations of differing complexity
and found a group of scheme combinations with good performance at an alpine site. You et al. (2020) applied the
same methods as in Zhang et al. (2016) and Gan et al. (2019) to identify the most critical processes and optimal
scheme combinations in the Noah‐MP model (Niu et al., 2011) for snow simulations at eight sites with diverse
snow climates. While these works shed light on the interplays among parameterization schemes and helped
determine possible optimal combinations, they share the common flaw of not accounting for errors in the forcing
data.

The impacts from forcing errors can be as large as, if not larger than, those stemming from inadequacy of model in
representing snow processes, and their roles can be particularly prominent in mountain regions where meteo-
rological variables are strongly modulated by terrain and where observation networks are sparse (Beniston
et al., 2018; Raleigh et al., 2015; Y. Wang et al., 2020). For example, He et al. (2019) employed five different
precipitation forcing data sets to evaluate precipitation uncertainty in snowpack simulation over the western US
mountains. They found that precipitation significantly impacts simulated SWE and snow depth, while it has
limited effects on snow cover fraction and surface albedo. M. Pan et al. (2003) found that errors in precipitation
and air temperature are a main cause of low modeled SWE in the western US by comparing the first phase North
American Land Data Assimilation System (NLDAS‐1; Mitchell et al., 2004) forcings with SNOTEL measure-
ments. Terzago et al. (2020) showed that a simple correction to the average temperature bias in the forcing data,
based on site observations, can effectively remove the snowfall bias and lead to more accurate simulation of SWE.
However, the same correction applied to precipitation data leads to a decrease in the snow model's performance.
While traditional bias correction methods have been employed in previous research to rectify forcing errors, it is
important to acknowledge the broader spectrum of efforts in the literature dedicated to bias correction using data
assimilation (DA) techniques (Cluzet et al., 2022; Magnusson et al., 2014; Winstral et al., 2019). Some of these
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more advanced DA techniques not only address errors in forcing data but also account for uncertainties in model
parameterizations and physics.

The National Water Model (NWM; https://water.noaa.gov/about/nwm), which became operational for water
prediction in 2016, uses Noah‐MP as its core LSM and has a default set of parameterization schemes for various
land surface processes. However, Gan et al. (2022) observed a pronounced negative bias in SWE simulation
within the UCRB when driven by the North American Land Data Assimilation System project phase 2 (NLDAS‐
2; Xia et al., 2012) forcings. While forcing errors and model physics deficiencies both apparently played roles, we
would like to explore the following questions: (a) How do errors in meteorological forcing data, particularly
precipitation and air temperature, impact the precision of snowpack simulations? (b)What is the relative influence
of model parameterization schemes on the accuracy of snowpack simulations? (c) Can the adoption of optimal
parameterization schemes, combined with bias‐corrected forcing data, enhance the predictability of snowpack
evolution in the UCRB? (d) What insights can these investigations provide for enhancing snow models in
complex mountainous regions?

In light of these questions, the present study conducts a series of experiments with the overarching aim to
distinguish the specific roles played by the forcings errors and parameterization scheme limitations to the
observed SWE bias in the UCRB. In these experiments, we employed both original and bias‐corrected forcing
data derived from the Analysis of Record for Calibration (AORC; Fall et al., 2023) to drive the NWM to quantify
the individual impacts of forcings errors. Furthermore, we evaluated alternative parameterization schemes in
conjunction with the bias‐corrected forcing data through NWM simulations to identify specific deficiencies in
land process representations and their consequent effects on simulated SWE. This research draws lessons from the
diagnostic work by Broxton et al. (2016), but differs from the latter by (a) quantitatively assessing the isolated
impacts of forcing errors and model physics limitations, and (b) identifying parameterization schemes that render
the most physically realistic representation of snowpack evolution. The insights gained from this study may
directly guide efforts to enhance the accuracy of forcings and improve physical process representations, not only
for Noah‐MP but also for other widely used, physics‐based snow models. This, in turn, can significantly enhance
their predictive capabilities for seasonal snowpack in complex mountainous terrains.

The rest of this paper is organized as follows. Section 2 describes the study area and data. Section 3 introduces the
model and experimental setup. Results are described and discussed in Section 4. Finally, conclusions are sum-
marized in Section 5.

2. Study Area and Data
2.1. Study Area

The UCRB (Figure 1) features a 277,000 km2 drainage area, an elevation range of 1,056–4,328 m, and an average
elevation of 2,146 m. According to the US Geological Survey (USGS) 24‐category land cover classification
(Loveland et al., 2000), about 57% of the land is shrubland, 22% evergreen needleleaf, 7% deciduous broadleaf
forest, 7% grassland, and 4% barren/sparsely vegetated. 63% of the annual precipitation in the UCRB is snow,
falling mainly from November–April, until melting starts in late April or early May (Kalra et al., 2017).

2.2. Static Data

We obtained the static data for the CONUS from the National Water Center (NWC) and subset it for the UCRB
(870 × 603 1‐km grid cells). The 1‐km resolution land surface model grid and relevant geospatial data were
processed from the geographical static data using the Weather Research and Forecasting (WRF) model Pre-
processing System (WPS; W. Wang et al., 2017). The primary sources of static data include the following: (a)
USGS 30‐s Global Multi‐resolution Terrain Elevation Data 2010 (GMTED2010; Danielson & Gesch, 2011); (b)
USGS 30‐s 24‐category land cover data (Loveland et al., 2000); (c) the National Environmental Satellite, Data,
and Information Service (NESDIS) 0.15‐degree monthly 5‐year climatology surface albedo and 0.144‐degree
monthly 5‐year climatology green vegetation fraction data (Gutman & Ignatov, 1998); (d) the State Soil
Geographic (STATSGO)/Food and Agriculture Organization (FAO) 30‐s 16‐category soil texture data
(FAO, 1991); and (e) the International Satellite Land‐Surface Climatology Project Initiative I (ISLSCP‐I) 1‐
degree annual mean 2‐m air temperature (Sellers et al., 1996), which is used as bottom boundary layer condi-
tions for soil models. In addition, the 250‐m resolution routing‐related data (e.g., elevation, flow direction, and
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stream order) were processed from the National Hydrography Data set Plus Version 2 (NHDPlusV2; McKay
et al., 2012) using the WRF‐Hydro GIS Pre‐processor v5.1.1 (Sampson & Gochis, 2020).

2.3. Forcing Data

We evaluated the uncertainty of SWE simulation with the NWM using 1‐km hourly AORC forcing data (Fall
et al., 2023) for the water years (WYs) 2016–2019 (1 October 2015–30 September 2019). The AORC forcing data
set was developed by National Oceanic and Atmospheric Administration (NOAA) National Weather Service
(NWS) to ensure long‐term consistency for land surface and hydrologic model calibrations. It covers the CONUS,
southern Canada, and northern Mexico from 1979 to near present and is derived from various sources. For the
period 2016–near present, UnRestricted Mesoscale Analysis (URMA; Raby et al., 2020), Next‐Generation
Weather Radar (NEXRAD) Stage IV (Lin & Mitchell, 2005), and NLDAS‐2 (Xia et al., 2012) data sets were
the main sources. Within the CONUS, the AORC products over recent years (after 2016) did not undergo bias
correction due to unavailability of climatology for this period. The sources, methods, and verification of AORC

Figure 1. Spatial distributions of the selected SNOTEL snow survey sites in the Upper Colorado River Basin (UCRB). The
upper right corner shows the location of the UCRB in the US.
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data are described in Office of Water Prediction (2021). The 1‐km hourly AORC data was downloaded from
Amazon Web Services (AWS; https://registry.opendata.aws/nwm‐archive) and subset for the study area.

2.4. Observation Data

We compared SWE at point‐scale using data from SNOTEL sites, as large‐scale SWE observations in moun-
tainous regions are unavailable (Dozier et al., 2016). The Natural Resources Conservation Service (NRCS)
operates the SNOTEL program, which consists of over 800 mid‐ to high‐elevation mountain stations in the
western US. In operation since 1980, the program provides snowpack and basic meteorological data using
automated measuring devices, such as pressure‐sensing snow pillows, storage precipitation gauges, and air
temperature sensors (Schaefer & Paetzold, 2000). To mitigate data uncertainty, we utilized bias‐corrected and
quality‐controlled (BCQC) SNOTEL data developed at the Pacific Northwest National Laboratory (available at
https://www.pnnl.gov/data‐products), including daily SWE, precipitation, and mean air temperature. The BCQC
procedure applied to the original SNOTEL data set involved several essential steps, such as the removal of
outliers and erroneous values (e.g., negative SWE and precipitation), elimination of inconsistent SWE and
precipitation values (e.g., peak SWE exceeds associated precipitation by more than 5%), and the correction of
temperature and precipitation biases (e.g., addressing snowfall under‐catch). Detailed information regarding this
method can be found in Yan et al. (2018) and Sun et al. (2019).

We conducted a screening process by comparing the elevations of all SNOTEL sites with the equivalent grid cells.
Sites with an absolute elevation difference greater than 50 m were excluded (63 out of 127), following the
approach byM. Pan et al. (2003). Additionally, we removed sites where the total amount of missing data exceeded
one‐third of the validation period WYs 2017–2019 (18 out of 64). Figure 1 displays the spatial distributions of the
final 46 SNOTEL sites in UCRB, with elevations ranging from 2,359 to 3,414 m. It's crucial to recognize the
potential impact of scale differences when comparing model outputs with point‐scale observations (Molotch &
Bales, 2005; Trujillo & Lehning, 2015). We've taken measures to address the scale mismatch issue, including
incorporating as many observation sites as possible and comparing the simulations with observations using multi‐
site averaging. Nevertheless, we advise readers to remain mindful of this scale‐related limitation when inter-
preting the results.

3. Methodology
3.1. Experimental Design

Figure 2 presents the flowchart of our research, which outlines the three main steps involved in our study. An
overview of the experimental design is described below.

Step 1: Evaluation of AORC‐driven SWE. We evaluated the accuracy of NWM‐simulated SWE driven by
AORC forcings (CTL experiment) by comparing them to SNOTEL site observations. This helped

Figure 2. Flowchart illustrating the key steps in the research, highlighting the use of various forcing data and parameterization
scheme combinations at each stage for running the NWM.

Water Resources Research 10.1029/2023WR035303

GAN ET AL. 5 of 19

https://registry.opendata.aws/nwm-archive/
https://www.pnnl.gov/data-products


determine the limitations of NWM and the forcings for SWE simu-
lation. We focused on the uncertainties in precipitation and air
temperature due to the continuous observations available from
SNOTEL. We aggregated hourly AORC precipitation to daily and
averaged hourly AORC air temperature to daily for comparison. We
extracted daily SWE simulations, as well as daily precipitation and
air temperature forcings for grid cells containing SNOTEL sites. The
daily AORC precipitation and temperature forcings, AORC‐driven
SWE simulations, and corresponding SNOTEL observations are
then averaged across all sites for comparison.

Step 2: The role of forcing. To improve the accuracy of SWE simulation, we corrected the biases in AORC
precipitation and temperature forcings for grid cells with available site observations. We disaggregated
observed daily precipitation into hourly data, using either the diurnal distribution of the forcing pre-
cipitation (when daily precipitation of the forcing is greater than 0) or a uniform distribution (when daily
precipitation of the forcing equals 0). The newly created hourly precipitation data based on observations
was then substituted for the hourly AORC forcing precipitation data. Hourly forcing temperature data
was scaled to match the daily mean of observations. We conducted three experiments using different
adjusted forcing variables in conjunction with the CTL experiment (Table 1) to assess the impact of
precipitation and temperature on SWE simulation. These experiments used the same configurations, with
only variations in precipitation and/or temperature inputs.

Step 3: The role of parameterization. We conducted 72 experiments to analyze how different parameteri-
zations affect SWE simulation, focusing on five snow‐related physical processes. Table 2 shows the
parameterization schemes for these five physical processes, and a brief overview of the physical pro-
cesses and their corresponding parameterization schemes is provided in Appendix A.

3.2. National Water Model Configuration

We utilized the NWM v2.1 for hydrologic simulation in UCRB. The model's core is WRF‐Hydro (Gochis
et al., 2020), which is a physically based distributed hydrologic model configured to use Noah‐MP to simulate
land surface processes. We used the default model parameterization schemes (Table S1 in Supporting Infor-
mation S1) and parameters (available at https://water.noaa.gov/about/nwm) of the NWM v2.1 for our study. We
set the land surface processes resolution to 1‐km with an hourly timestep. The subgrid overland routing was
executed on a 250‐m grid mesh, with terrain and channel routing timesteps of 10 and 300 s, respectively. We used
NCEP Final Operational Global Analysis data (National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce, 2000) as the initial conditions and spun up the model for 20 years
(five cycles for WYs 2016–2019) to reach an equilibrium state for soil temperature, moisture, and groundwater.

Table 1
Experiments With Different Adjusted Forcing Variables

Experiment ID Experiment name Adjusted forcing variables

1 CTL None

2 adj_prec Precipitation

3 adj_temp Temperature

4 adj_both Precipitation and temperature

Table 2
Noah‐MP Parameterization Schemes Investigated in This Study

Physical process Parameterization schemes

Surface exchange coefficient for heat (SFC) 1. Monin–Obukhov (Monin & Obukhov, 1954; default)

2. Chen97 (Chen et al., 1997)

Snow surface albedo (ALB) 1. BATS (Yang et al., 1997; default)

2. CLASS (Verseghy, 1991)

Rainfall and snowfall partitioning (SNF) 1. Jordan91 (Jordan, 1991; default)

2. BATS (Dickinson et al., 1986)

3. Noah (Chen et al., 1996)

Lower boundary of soil temperature (TBOT) 1. Zero‐flux (Niu et al., 2011)

2. Noah (H.‐L. Pan & Mahrt, 1987; default)

Snow/soil temperature time scheme (STC) 1. Semi‐implicit (Yang, Cai, et al., 2011; Yang, Niu, et al., 2011)

2. Fully implicit (H.‐L. Pan & Mahrt, 1987)

3. Modified semi‐implicit (Yang, Cai, et al., 2011; Yang, Niu, et al., 2011; default)
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We conducted experiments for WYs 2016–2019, excluding results from the first WY for analysis to minimize
initial condition uncertainty.

3.3. Evaluation Metrics

Model performances were evaluated against different sources of reference data using bias (BIAS), relative bias
(RB), root‐mean‐square error (RMSE), Pearson correlation coefficient (CC; Pearson, 1895), and normalized
standard deviation (NSD).

BIAS =
1
N
∑
N

i=1
(Si − Oi) (1)

RB =

1
N ∑
N

i=1
(Si − Oi)

O
× 100 (2)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑
N

i=1
(Si − Oi)2

√
√
√

(3)

CC =
∑
N

i=1
(Oi − O) (Si − S)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(Oi − O)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(Si − S)

2
√ (4)

NSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(Si − S)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
N

i=1
(Oi − O)

2
√ (5)

where Si andOi are the simulated and observed values at time i, respectively; N is the number of time points; and S
andO are the mean values of simulations and observations, respectively. The primary evaluation metric is RMSE,
offering a more precise measure of the error between simulated and observed data. BIAS and RB are employed to
assess whether the model exhibits positive or negative bias, while CC and NSD are utilized in the Taylor diagram
(Taylor, 2001).

3.4. Analysis Methods

For most evaluations, we directly compare the evaluation metrics to assess the performance of different exper-
iments. To objectively evaluate the distinctions among the large ensemble of model physical parameterization
configurations, it's essential to establish a sensitivity index. Assume that there are m distinct physical processes
(here m = 5), each with various parameterization schemes (2 or 3 for different processes). The mean value of the
evaluation metric (RMSE in this paper) for each specific scheme j ( j = 1, 2,⋯) within a given process i (i = 1, 2,

⋯, m) can be represented as Y(i)j . We defined an index to quantify the sensitivities of these physical processes as
follows:

Si =
∆Y(i)

max{∆Y(1), ∆Y(2), ⋯, ∆Y(m)}
(6)

where ∆Y(i) = Y(i)max − Y
(i)
min is the difference between the largest and the smallest mean values of the evaluation

metric for the i th process.
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4. Results and Discussion
4.1. Evaluation of AORC‐Driven SWE

We first assessed AORC precipitation and air temperature, as well as NWM‐simulated SWE driven by AORC
forcings (CTL experiment), against the SNOTEL observations. Figure 3 shows a comparison of mean daily
precipitation, air temperature, and SWE between all SNOTEL sites and their corresponding grid cells. While
NWM captures the overall temporal variation of SWE, it underestimates its amount by 36% (RMSE = 62.6 mm).
This underestimation is partially attributed to a 21% precipitation underestimate (RMSE = 1.7 mm) and a slight
air temperature overestimate of 0.7 K (RMSE = 1.3 K), despite which may fall within the range of instrument
noise for some sites. An additional factor could be model deficiencies, evident in the notably higher peak SWE
bias compared to the accumulated precipitation bias during the snow accumulation period (110.7 vs. 109.9 mm
forWY 2017, 120.5 vs. 96.6 mm forWY 2018, and 146.2 vs. 138.7 mm forWY 2019). Furthermore, slower snow
ablation is noted inWY 2017 (July 4 vs. June 18 for the snow ending date) andWY 2019 (July 18 vs. July 9 for the
snow ending date), while faster snow ablation occurs in WY 2018 (May 29 vs. June 5 for the snow ending date)
compared to the observations. These discrepancies may stem from model deficiencies in snow ablation physics,
including aspects such as snow albedo and net radiation (Xiao et al., 2021), as well as errors in the forcing data,
such as downward shortwave radiation. These findings align with studies by Chen et al. (2014) and He
et al. (2019), which, despite employing different forcings and models, similarly attribute the SWE underesti-
mation to forcing errors and model deficiencies.

Figure 4 presents the Taylor diagram for mean daily precipitation, air temperature, and SWE across different
WYs. Among these three variables, AORC air temperature demonstrates the best agreement with the observa-
tions, only slightly overestimating them (with a normalized standard deviation of 1.02–1.03) and exhibiting a high
correlation of 0.99 for all WYs. AORC precipitation, on the other hand, shows a relatively small negative bias
(with a normalized standard deviation of 0.89–0.93) but the lowest correlation (0.75–0.84) compared to the other
variables. While AORC‐driven SWE maintains high correlations with the observations (0.97–0.99), it experi-
ences the most significant negative bias (with a normalized standard deviation of 0.48–0.72) among the three
variables. Additionally, WY 2018 exhibits the most significant negative bias in SWE compared to WYs 2017 and
2019, which could be attributed to the relatively higher bias of precipitation in this year as indicated by both the
normalized standard deviation (0.89 vs. 0.90 and 0.93) and correlation (0.75 vs. 0.79 and 0.84).

Figure 3. Comparison of mean daily AORC precipitation (PCP; top), air temperature (TMP; middle), and AORC‐driven
snow water equivalent (SWE; bottom) with SNOTEL observations. The horizontal dashed black line represents the freezing
temperature (273.15 K), while the vertical gray lines segment the water years into snow accumulation and ablation periods
based on observed peak SWE dates. The statistics illustrate the differences between AORC data and corresponding SNOTEL
observations.
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4.2. The Role of Forcing

We then examined the impact of bias correction applied to AORC precipi-
tation and temperature on the simulated SWE. Figures S1 and S2 in Sup-
porting Information S1 illustrate the comparison between the adjusted and
default AORC forcing data against site observations for precipitation and air
temperature, respectively. AORC precipitation displays the most substantial
mean bias in March (− 0.8 mm/d) and the least mean bias in June–August
(− 0.1 mm/d). Conversely, AORC air temperature shows its largest mean
bias in August (1.2 K) and the least mean bias in March (0.1 K). The adjusted
AORC forcings align seamlessly with the observations, with a correlation of 1
and bias of 0, in contrast to the default AORC forcings.

Figure 5 compares the mean daily SWE across all sites for four experiments
(CTL, adj_prec, adj_temp, and adj_both) against observations. Notably,
adjusting precipitation (adj_prec) results in a significant enhancement in
SWE simulation. It minimizes RMSE by 66% (from 62.6 to 21.3 mm) and
decreases bias by 87% (from − 40.1 to − 5.2 mm). Similarly, adjusting
temperature (adj_temp) also has a positive impact on SWE simulation. It
trims RMSE by 10% (from 62.6 to 56.6 mm) and lowers bias by 12% (from
− 40.1 to − 35.5 mm). The adjustment of both precipitation and temperature
(adj_both) exhibits remarkable improvements in SWE simulation. It reduces
RMSE by 69% (from 62.6 to 19.2 mm) and decreases bias by 98% (from
− 40.1 to 0.8 mm). This implies that SWE simulations are more responsive
to AORC precipitation adjustments compared to adjustments in air
temperature.

4.3. The Role of Parameterization

4.3.1. Sensitivity Analysis of the Physical Processes

We investigated the impact of the parameterization schemes on SWE simulation by comparing 72 ensemble
experiments driven by adjusted AORC forcings (both precipitation and temperature). Figure 6 shows the
sensitivity indices of the five physical processes, calculated based on the RMSE of the simulated SWE. Among
these processes, STC demonstrates the highest sensitivity, while TBOT is the least sensitive. Following in

Figure 4. Taylor diagram showing the statistics between mean AORC data
and corresponding SNOTEL observations for daily precipitation (PCP), air
temperature (TMP), and snow water equivalent (SWE) of different water
years. The radial distance from the origin to the points shows the normalized
standard deviation and the azimuthal position of the points displays the
correlation coefficient.

Figure 5. Mean daily SWE across all sites for four experiments with varying forcings. The CTL experiment used the default
AORC forcings, the adj_prep experiment adjusted AORC precipitation, the adj_temp experiment adjusted AORC
temperature, and the adj_both experiment adjusted both AORC precipitation and temperature for the simulations. All four
experiments employed the default parameterization scheme combination of the NWM.
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sensitivity are SFC, ALB, and SNF, ranked as the second, third, and fourth
most sensitive physical processes, respectively. While their differences are
not substantial, all exhibit much lower sensitive compared to STC.

4.3.2. Combinatorial Optimization of the Parameterization Schemes

Figure 7 displays the distribution of RMSEs for all sites mean SWE time
series of the ensemble experiments categorized by the five selected physical
processes (left panel) and all sites mean SWE time series of the ensemble
experiments classified by parameterization schemes of the identified sensitive
physical process (right panel). By comparing the performance of different
schemes, we can identify underperforming schemes and eliminate them,
reducing uncertainty in subsequent analysis.

The first discarded scheme is STC‐2, with a considerably higher mean RMSE
(243.5 mm) compared to STC‐1 (19.5 mm) and STC‐3 (19.1 mm), as depicted
in Figure 7a. STC‐2 generates a more prolonged snow season with a higher
and later SWE peak, significantly deviating from observations (Figure 7f).
This finding aligns with previous studies by You et al. (2020) and Li
et al. (2021), and is attributed to STC‐2's (the fully implicit scheme) tendency
to generate larger coefficients B in the thermal diffusion equation, resulting in

smaller increments for the snow surface temperature, which leads to more extensive snow cover and delayed snow
ablation.

The second discarded scheme is SNF‐3, with a mean RMSE of 23.5 mm, higher than SNF‐1 and SNF‐2 (17.2 mm
for both), as evident in Figure 7b. Additionally, its time series displays a greater negative bias compared to the
other two schemes (Figure 7g). This is because SNF‐3 (Noah) partitions less precipitation into snowfall due to its
lower air temperature threshold. Despite outperforming SNF‐3 in precipitation phase partitioning, SNF‐1 and
SNF‐2 may still underestimate snowfall because precipitation is likely to fall as snow in warm and dry air
conditions, while a low air temperature‐based threshold may only represent cold and humid air conditions (Y.‐H.
Wang et al., 2019). Precipitation phase is influenced by various factors beyond just temperature, such as humidity,
air pressure, and precipitation rates (Harpold et al., 2017). To improve the accuracy of snow simulation, incor-
porating humidity information into precipitation phase prediction models has been suggested, which could
potentially increase the snow fraction (Jennings et al., 2018; Y.‐H. Wang et al., 2019).

The third discarded scheme is SFC‐1, with a mean RMSE of 18.4 mm compared to 15.9 mm for SFC‐2
(Figure 7c). While SFC‐1's temporal variation is comparable to SFC‐2, it has a larger negative bias during the
snow accumulation period and a larger positive bias during the late snow ablation period (Figure 7h), which aligns
with Zhang et al. (2016) and Li et al. (2022). This is because SFC‐2 (Chen97) produces a higher CH than SFC‐1
(M–O) due to the application of a different stability correction and the inclusion of planetary boundary layer
effects (Yang, Cai, et al., 2011; Yang, Niu, et al., 2011), which results in a more efficient land surface ventilation
and lower surface skin temperature (Niu et al., 2011). While Niu et al. (2011), Yang, Cai, et al. (2011), and Yang,
Niu, et al. (2011) have reported that Chen97 may lead to greater sublimation, potentially resulting in less snow
mass in certain river basins, we observed that in the case of UCRB, Chen97 generates more SWE due to its lower
melting rate.

The fourth discarded scheme is ALB‐1, which yields a larger mean RMSE than ALB‐2 (17. 5 vs. 14.3 mm, as
shown in Figure 7d). While ALB‐1 (BATS) results in higher SWE than ALB‐2 (CLASS), it prolongs the ablation
period, leading to a greater bias at the end of the ablation season (Figure 7i). This is attributed to the BATS scheme
producing a slightly higher snow surface albedo and, consequently, retaining more snow than the CLASS scheme,
primarily due to its weaker snow aging effects (Niu et al., 2011). Molotch and Bales (2006) have noted that BATS
tends to overestimate spring snow albedo due to an inclination to overestimate albedo for large grains, which are
more prevalent during ablation periods. Although the simpler CLASS scheme can adequately simulate average
albedo decay rates, it falls short in capturing the temporal variability in decay rates as influenced by time‐change
factors. This is because it assumes that optical or environmental factors affecting snow albedo remain constant
over time (Abolafia‐Rosenzweig et al., 2022). Optimizing BATS albedo parameters holds the potential to

Figure 6. Sensitivity indices of the five physical processes. SFC = surface
exchange coefficient for heat; ALB = snow surface albedo; SNF = rainfall
and snowfall partitioning; TBOT = lower boundary of soil temperature;
STC = snow/soil temperature time scheme.
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enhance the simulation of albedo decay, as it accounts for complex factors like snow metamorphism and im-
purities that impact the evolution of snow albedo (Abolafia‐Rosenzweig et al., 2022).

The final scheme that could be discarded is STC‐1, with a slightly larger mean RMSE than STC‐3 (14.4 vs.
14.2 mm, as seen in Figure 7e), although the difference in time series is not significant (Figure 7j). The difference
between STC‐1 and STC‐3 lies in how they handle ground surface temperature for grid cells with snow but above
freezing. STC‐1 sets the whole grid cell to freezing temperature, while STC‐3 only sets the snow‐covered part to
freezing temperature, producing more realistic ground surface temperature.

Figure 7. (a–e) Distribution of RMSEs for all sites mean daily SWE time series of the ensemble experiments categorized by the selected physical processes and (f–j) all
sites mean daily SWE time series of the ensemble experiments classified by parameterization schemes of the identified sensitive physical process (highlighted with a
gray background in the left panel). In each subfigure on the left panel, the horizontal dashed line represents the mean RMSE of all ensemble experiments, colored
numbers denote different parameterization schemes, the numbers at the bottom show the counts of ensemble members for corresponding schemes, and the numbers at
the top show the average RMSEs of all ensemble members with corresponding schemes. SFC = surface exchange coefficient for heat; ALB = snow surface albedo;
SNF = rainfall and snowfall partitioning; TBOT = lower boundary of soil temperature; STC = snow/soil temperature time scheme.
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The optimal schemes identified for each process are SFC‐2, ALB‐2, SNF‐1/
SNF‐2, TBOT‐1/TBOT‐2, and STC‐3, respectively. This leads to four com-
binations that exhibit no significant difference in SWE simulation. The ulti-
mate optimized scheme combination, yielding the smallest SWE bias,
consists of SFC‐2, ALB‐2, SNF‐1, TBOT‐1, and STC‐3.

4.3.3. Comparison Between the Optimized and Default Scheme
Combinations

The comparison of mean daily SWE between the optimized and default
scheme combinations is depicted in Figure 8. Two sets of comparisons,
namely CTL versus adj_none‐opt_para and adj_both versus adj_both‐
opt_para, were conducted to illustrate the impact of the optimized scheme
combination. The first set employed the default AORC forcings, while the
second set used the adjusted AORC forcings (adjusting both precipitation and
temperature). The RMSEs for different experiments across different water
years are given in Table S2 in Supporting Information S1.

The optimized scheme combination demonstrates improved performance,
reducing the RMSE by 12% with the default AORC forcings (from 62.6 to
55.4 mm) and by 27% with the adjusted AORC forcings (from 19.2 to
14.0 mm) compared to the default scheme combination. In comparison to the
CTL experiment, the optimized scheme combination coupled with adjusted
AORC forcings (adj_both‐opt_para) impressively reduces the RMSE by 78%

(from 62.6 to 14.0 mm). Despite producing a larger positive bias between February and April 2017, the optimized
scheme combination generally agrees better with the observations, not only during the accumulation period but
also throughout the snow ablation period. The key differences between the default and optimized scheme
combinations lie in the selection of SFC and ALB schemes. The optimized scheme combination utilizes SFC‐2
and ALB‐2 instead of SFC‐1 and ALB‐1 in the default scheme combination. This is because SFC‐2 (Chen97)
accumulates more snow during the accumulation period due to its lower melting rate (Figure 7h), and ALB‐2
(CLASS) melts more snow during the ablation period due to its slightly lower snow surface albedo (Figure 7i)
compared to their counterparts.

One notable observation from all experiments, whether with or without adjusted forcings and/or optimized pa-
rameterizations, is the model's manifestation of slow and late spring ablation, resulting in an extended snow
season (Figure 8). This phenomenon aligns with findings from the SnowMIP2 project (Rutter et al., 2009) and is
supported by Chen et al. (2014). The persistence of this behavior may be attributed to model deficiencies in snow
ablation physics (He et al., 2019) and holds the potential for improvement through optimization of the snow
albedo scheme (Abolafia‐Rosenzweig et al., 2022).

5. Summary and Conclusions
This study aimed to assess the uncertainties of NWM in SWE simulation resulting from forcing and model
uncertainties, using data from 46 SNOTEL sites within the middle elevation range of the UCRB. The influence of
bias correction applied to AORC precipitation and air temperature was examined. The impact of parameterization
selection on SWE simulation was also investigated by comparing 72 ensemble experiments of five physical
processes. The key findings are summarized below:

1. NWM simulation driven by AORC forcings captured the overall temporal variation of SWE but under-
estimated its amount, yielding a mean RMSE of 62.6 mm/d.

2. Adjusting AORC precipitation with SNOTEL observations reduced SWE RMSE by 66%, adjusting the
temperature trimmed it by 10%, and adjusting both decreased it by 69%.

3. Among the physical processes, snow/soil temperature time scheme (STC) demonstrated the highest sensi-
tivity, followed by surface exchange coefficient for heat (SFC), snow surface albedo (ALB), and rainfall and
snowfall partitioning (SNF), while the lower boundary of soil temperature (TBOT) proved to be insensitive.

Figure 8. Mean daily SWE across all sites for four experiments with varying
parameterization schemes and forcings. The CTL experiment employed the
default AORC forcings and parameterization scheme combination, the
adj_none‐opt_para experiment utilized default AORC forcings and the
optimized parameterization scheme combination, the adj_both experiment
adjusted both AORC precipitation and temperature while using the default
parameterization scheme combination, and the adj_both‐opt_para
experiment adjusted both AORC precipitation and temperature while
utilizing the optimized parameterization scheme combination for
simulations.
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4. Further optimization of parameterization scheme combination led to a 12% reduction in SWE RMSE. When
combined with bias‐corrected AORC precipitation and temperature, this optimization achieved a remarkable
78% reduction in SWE RMSE.

However, it is important to note that this study's scope is confined to the UCRB and may not be entirely
generalizable to other regions. The development and implementation of high‐resolution snow modeling frame-
works, particularly for mountainous regions, remains a challenging but critical area of snow research. To further
this field, there is a need to augment the quality of forcing data by incorporating more in situ observations, either
directly or through climatological adjustments. This enhancement aims to improve the precision of high‐
resolution precipitation and temperature data in mountainous regions. Additionally, future research should
focus on optimizing model structures and mitigating model parameterization uncertainties to bolster the accuracy
of SWE simulations.

Appendix A: Physical Parameterization Schemes
A1. Surface Exchange Coefficient for Heat (SFC)

This process offers two methods for calculating heat exchange coefficients (CH) between the land‐surface and
atmosphere: Monin–Obukhov (M–O) by Monin and Obukhov (1954) and Chen97 by Chen et al. (1997).

M–O : CH =
k2

[ln(z− d0z0m
) − ψm(

z− d0
L )] [ln(

z− d0
z0h
) − ψh(

z− d0
L )]

(A1)

Chen97 : CH =
k2

[ln( zz0m) − ψm (
z
L) + ψm (

z0m
L )] [ln(

z
z0h
) − ψh ( zL) + ψh(

z0h
L )]

(A2)

where k is the von Kármán constant, L is the Monin–Obukhov length (m), z is the reference height (m), z0m and z0h
are roughness lengths for momentum and heat, respectively (m), and d0 is the zero‐displacement height for theM–
O scheme (m). Both methods take the same stability correction functions ψm and ψh for stable and unstable
conditions, respectively. The difference between them is that M–O accounts for d0 and assumes z0m = z0h, while
Chen97 accounts for the difference between z0m and z0h but does not account for d0.

A2. Snow Surface Albedo (ALB)

This process provides two methods for calculating snow surface albedo: BATS by Yang et al. (1997) and CLASS
by Verseghy (1991).

BATS scheme calculates snow albedos for both visible and near‐infrared bands under both direct and diffuse
radiations. For diffuse radiation, snow albedos for visible and near‐infrared bands are calculated by

⎧⎨

⎩

αdif,VISs = 0.95(1 − 0.2fage)

αdif,NIRs = 0.65(1 − 0.5fage)
(A3)

where snow age function fage is parameterized as

fage =
τt

τt + 1
(A4)

where t denotes current timestep and τt is defined as

τt =
⎧⎨

⎩

0, SWEt ≤ 0

max(0, ( τt− 1 + ∆τ)(1 − ∆s)), SWEt > 0
(A5)
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with

∆τ = 10− 6∆t(r1 + r2 + r3) (A6)

and

∆s =
max(0,SWEt − SWEt− 1)

SWEc
(A7)

where SWEt and SWEt− 1 are snow water equivalents of the current and previous timesteps, respectively; SWEc is
the critical value of new SWE to fully cover the old snow, which is set to 1 mm; ∆t is the timestep; r1 represents
the effects of grain growth due to vapor diffusion; r2 represents the additional effects of grain growth near or at the
freezing of meltwater; and r3 represents the effect of dirt and soot. The three parameters r1, r2, and r3 are
defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r1 = exp(5000(
1
T frz

−
1
Tg
))

r2 = exp(min(0,10 × 5000(
1
T f rz

−
1
Tg
)))

r3 = 0.3

(A8)

where Tfrz is the freezing temperature which is set to 273.16 K; and Tg is the ground temperature (K).

For the direct radiation, snow albedos for visible and near‐infrared bands are calculated by

⎧⎨

⎩

αdir,VISs = αdif,VISs + 0.4fZ (1 − αdif,VISs )

αdir,NIRs = αdif,NIRs + 0.4fZ (1 − αdif,NIRs )
(A9)

where fZ is a factor accounts for the impact of solar zenith angle Z

fZ = max{
1.5

1 + cos Z
− 0.5, 0} (A10)

CLASS scheme assumes that the snow albedos for the visible and near‐infrared bands under both direct and
diffuse radiations are identical and can be calculated by

αs = α1 +
min(Qs, SWEc/∆t) (0.84 − α1)

SWEc/∆t
(A11)

where Qs is the snowfall rate (mm/s), SWEc and ∆t are stated before, and α1 is parameterized as

α1 = 0.55 + (αolds − 0.55) exp(− 0.01∆t/3600) (A12)

where αolds is the snow albedo from the previous timestep.

A3. Rainfall and Snowfall Partitioning (SNF)

This process has three methods to divide precipitation into rainfall and snowfall: Jordan91 (Jordan, 1991), BATS
(Dickinson et al., 1986), and Noah (Chen et al., 1996). The proportion of snow (Ps) is calculated as follows:
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Jordan91 : Ps =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, Tsf c > T frz + 2.5

0.6, T frz + 2<Tsf c ≤ T frz + 2.5

1 − (− 54.632 + 0.2Tsf c), T frz + 0.5<Tsf c ≤ T frz + 2

1, Tsf c ≤ T frz + 0.5

(A13)

BATS : Ps =
⎧⎨

⎩

0, Tsf c ≥ T frz + 2.2

1, Tsf c < T frz + 2.2
(A14)

Noah : Ps =
⎧⎨

⎩

0, Tsf c ≥T f rz
1, Tsf c <T f rz

(A15)

where Tsfc is the surface air temperature (K), and Tfrz is the freezing temperature (K). A higher air temperature
threshold leads to a higher snowfall rate.

A4. Lower Boundary of Soil Temperature (TBOT)

This process provides two methods for calculating heat flux from the bottom of soil column (Fb, W m
− 2), which

affects snow melting: zero‐flux (Niu et al., 2011) and Noah (H.‐L. Pan & Mahrt, 1987).

Zero − flux : Fb = 0 (A16)

Noah : Fb =
Kn (Tb − Tn)

0.5(Zn− 1 + Zn) − Zb
(A17)

where n is the number of soil layers, Kn is the thermal conductivity for the n th soil layer (W m
− 1 K− 1), Tb is the

bottom condition for soil temperature (K), Tn is the temperature for the n th soil layer (K), Zn − 1 and Zn are layer‐
bottom depths from snow surface for the (n − 1) th and n th soil layers (m), respectively, and Zb is the bottom depth
from the snow surface (m). The zero‐flux scheme assumes that there is no heat flux from the bottom of the soil
column, whereas the Noah scheme assumes that there is an existing heat flux at the 8 m soil depth.

A5. Snow/Soil Temperature Time Scheme (STC)

This process involves solving the following thermal diffusion equation using three numerical schemes: semi‐
implicit, fully implicit, and modified semi‐implicit Crank‐Nicolson methods.

C
∂T
∂t
=
∂
∂z
(K
∂T
∂z
) (A18)

The thermal diffusion equation describes the temperature of snow/soil T (K) as a function of time t and snow/soil
depth z (m), with C as the volumetric heat capacity (J m− 3 K− 1) and K as the thermal conductivity (W m− 1 K− 1).

The semi‐implicit (or modified semi‐implicit) and fully implicit schemes differ in their calculation of one of the
coefficients (B) of the thermal diffusion equation for the surface snow layer.

Semi − implicit/Modified semi − implicit : Bm =
Km

0.5zmzm+1Cm
(A19)

Fully implicit : Bm =
Km

0.5zmzm+1Cm
+

Km
0.5zmzmCm

(A20)
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wherem is the index for the surface snow layer (m could be − 2, − 1, and 0, which represents 3, 2, and 1 snow layer
(s), respectively).

The semi‐implicit and fully implicit methods handle the surface temperatures for vegetated ground (Tg,v, K) and
bare ground (Tg,b, K) differently in comparison to the modified semi‐implicit schemes. The semi‐implicit and
fully implicit methods set the ground temperatures to the freezing temperature (Tfrz, K) if they are above it and the
ground is covered by snow (snow depth >0.05 mm). The modified semi‐implicit method uses a weighted average
of the ground temperature and the freezing temperature.

Semi − implicit/Fully implicit :
⎧⎨

⎩

Tg,v = T frz
Tg,b = T frz

(A21)

Modified semi − implicit :
⎧⎨

⎩

Tg,v = (1 − Fs) Tg,v + FsT f rz
Tg,b = (1 − Fs)Tg,b + FsT f rz

(A22)

where Fs is the snow cover fraction.

Data Availability Statement
Software—The NWM used to generate the results is based on the WRF‐Hydro (Gochis et al., 2020), which is
accessible at https://ral.ucar.edu/projects/wrf_hydro. The WPS (W. Wang et al., 2017) was used to process the 1‐
km resolution land surface model static data and the WRF‐Hydro GIS Pre‐processor version 5.1.1 was used to
process the 250‐m resolution routing‐related static data (Sampson & Gochis, 2020). Figures were created using
ArcGIS version 10.7 (ESRI, 2019) and NCL version 6.4.0 (Meier‐Fleischer et al., 2017). Data—The static data
are available at https://water.noaa.gov/about/nwm. The AORC forcing data (Fall et al., 2023) are available at
https://registry.opendata.aws/nwm‐archive. The bias‐corrected and quality‐controlled SNOTEL observations
(Yan et al., 2018) are available at https://www.pnnl.gov/data‐products. The outputs of different experiments for
the 46 SNOTEL sites are available in Gan (2024).
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