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Abstract
The National Weather Service (NWS) Office of Water Prediction (OWP), in con-
junction with the National Center for Atmospheric Research and the NWS National 
Centers for Environmental Prediction (NCEP) implemented version 2.1 of the National 
Water Model (NWM) into operations in April of 2021. As with the initial version im-
plemented in 2016, NWM v2.1 is an hourly cycling analysis and forecast system that 
provides streamflow guidance for millions of river reaches and other hydrologic in-
formation on high-resolution grids. The NWM provides complementary hydrologic 
guidance at current NWS river forecast locations and significantly expands guidance 
coverage and water budget information in underserved locations. It produces a full 
range of hydrologic fields, which can be leveraged by a broad cross section of stake-
holders ranging from the emergency responder and water resource communities, to 
transportation, energy, recreation and agriculture interests, to other water-oriented 
applications in the government, academic and private sectors. Version 2.1 of the 
NWM represents the fifth major version upgrade and more than doubles simulation 
skill with respect to hourly streamflow correlation, Nash Sutcliffe Efficiency, and bias 
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1  |  INTRODUC TION

The roots of the National Water Model (NWM) can be traced back to hydrologic forecasting activities which have been an important com-
ponent of National Weather Service (NWS) operations for many decades. Supporting the core NWS mission of the “protection of life and 
property and enhancement of the national economy”, these forecasts seek to provide information on the serious riverine floods, flash floods, 
coastal floods and droughts which impact the United States each year (https://​www.​nws.​noaa.​gov/​missi​on.​php).

Floods are devastating natural disasters, causing billions of dollars of damage each year and putting many lives in danger (Ashley & 
Ashley, 2008; Zhou et al., 2018). With the exception of excessive heat, flooding leads to more weather-related fatalities on average than any 
other cause (NWS, 2022c). Given this, accurate and timely predictions of floods are essential. Unfortunately, the nature of these events makes 
them quite difficult to monitor and predict. Flash floods feature a fast onset, less than 6 h from the causative event (NWS, 2002), are local in 
scope, and depend greatly on fine-scale weather and land surface conditions. While slower-developing, riverine floods feature their own pre-
diction challenges, including their potentially large spatial scale, with interrelated impacts across emergency management, water management, 
infrastructure and forecasting boundaries.

As dangerous as too much water in the wrong place or at the wrong time can be, a paucity of water can ultimately impact a broader area for 
a longer duration than floods, leading to more extensive and persistent, if less obvious, damage. Touching practically every corner of society, 
from water management, to power and industrial production, to agriculture and recreation, drought has inflicted billions of dollars in damage 
to the U.S. economy since 1980 (NOAA NCEI, 2022).

Given the severe impacts of these water extremes, NWS forecasters have developed a variety of modeling tools to produce the hydrologic 
analyses and forecasts that are essential to ensuring public safety and optimal resource management. One of the mainstays in operational 
forecasting is the Community Hydrologic Prediction System (CHPS) (Restrepo et  al.,  2010). However, as skillful as lumped modeling ap-
proaches like those in CHPS are, they are limited by the fact that they only provide information at the outlet of the smallest basin modeling 
unit and cannot provide guidance inside of each basin, reflecting the highly variable land surface and meteorological conditions that impact 
spatially distributed flooding (Paudel et al., 2011; Reed et al., 2004). An alternative to lumped modeling is spatially-distributed modeling, which 
can provide streamflow and land surface information at any grid point within the model domain (Paudel et al., 2011).

Some spatially distributed gridded models used by NWS forecasters inform flash flood prediction operations indirectly—via feeding into 
the Flash Flood Guidance (Sweeney, 1992) postprocessor, which calculates the amount of rain needed for streams to reach bankfull conditions. 
Other gridded models, like the Flooded Locations and Simulated Hydrographs (FLASH) system (Gourley et al., 2017) produce simulations of 
streamflow and surface runoff for direct characterization of flash flood conditions. Optimized for speed, FLASH contains a simplified set of 
physics geared towards warm-season riverine flash flooding. The model is used at NWS Weather Forecast Offices (WFOs) and demonstrates 
the power of distributed modeling in short lead time flash flooding situations.

To cover longer-lead times, anthropogenic influences and snow-melt-driven flooding, River Forecast Centers (RFCs) leverage a range 
of modeling tools to produce streamflow forecasts for approximately 3800 locations across the United States (NWS, 2022a). These vital 
forecasts are used to inform emergency response, optimize power generation and commercial navigation, and further water management 
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activities. When distributed across the country, however, even this seemingly large number of forecast locations (3800) leaves wide swaths of 
the domain without forecast coverage, with only 100,000 out of 3,500,000 miles of river covered by a forecast. These spatial gaps include a 
wide variety of areas such as power generation sites, ecologically sensitive regions, cities and recreation areas—locations where guidance on 
water flow is critical. Variation in approach also handicaps development efforts, as there is no single, uniform nationwide system which can act 
as a unified platform for model development.

Lastly, the current suite of regional RFC hydrologic models are manually labor-intensive and do not represent the full set of coupled 
inland-coastal-cryosphere-groundwater processes necessary to fully capture the hydrologic cycle. While the streamflow forecasts from 
these models are, in and of themselves, highly useful, the holy grail for emergency responders and many end users is flood inundation—
namely the extent of the ground which is covered by flood waters. Without direct knowledge of this quantity via maps of surface inundation 
for all portions of their area of interest, end users lack key, actionable intelligence allowing them to understand and react to an ongoing or 
forecast flood event.

Against this backdrop, the National Academy of Sciences (NAS) issued a report in 2012 with guidance on the improvements needed in the 
NWS hydrologic forecasting enterprise (National Research Council, 2012). A sampling of the critical recommendations includes:

•	 Implement a new hydrologic modernization effort.
•	 Improve pathways for collaboration and accelerate research to operations efforts.
•	 Transition RFC forecasters away from the execution of labor-intensive models and towards an “over the loop” role, enabling a shift in focus 

to model and product development, forecast interpretation, and decision support.
•	 Add value to hydrologic forecasts through the use of more advanced models, data assimilation (DA) and employment of more sophisticated 

ensemble techniques.

Combined with the previously noted forecast system shortcomings, these NAS recommendations firmly established the outlines for a new 
NWS operational hydrologic forecasting capability—the NWM. These outlines were translated into a physical system via a timely combination 
of five main resources:

1.	 The Integrated Water Resource Science and Services (IWRSS) consortium—consisting of Federal Water Agency partners (NOAA, 
USGS, USACE, FEMA) and seeking to develop shared plans for a virtual or physical center to advance water resources prediction 
nationwide;

2.	 The new National Water Center in Tuscaloosa, Alabama—acting as a catalyst and collaborative focal point for hydrologic research and opera-
tions support (Title III of Public Law No: 116-271—Coordinated Ocean Observations and Research Act of 2020, 2020);

3.	 The creation of the Weather Research and Forecasting (WRF) Hydrological Modeling Extension (WRF-Hydro; Gochis et al., 2020) at the 
National Centers for Atmospheric Research (NCAR)—providing a flexible, community-based hydrologic modeling foundation;

4.	 The NWS-CUAHSI Summer Institute program at the National Water Center—providing a testbed for continental-scale real-time hydrologic 
modeling; and

5.	 Congressional programmatic mandates to improve hydrologic forecasting—providing the resources needed to accomplish hydrologic mod-
eling and product modernization

These driving forces provided the comprehensive mix of science, programmatic, staffing and funding resources needed to create the 
operational NWM hydrologic modeling system. This system delivers guidance which complements the essential and skillful forecasts already 
produced by RFCs, as well as addresses the needs of an expanded set of end users and critical mission areas.

2  |  OPER ATIONAL MODEL CONFIGUR ATION

The operational configuration of the NWM was driven by the wide variety of end user needs including flood and drought forecasting, water 
resource management and emergency response. Several configurations of the NWM are run operationally on the NOAA Weather and Climate 
Operational Supercomputing System (WCOSS) computing platform over the range of modeling domains depicted in Figure 1. These configu-
rations include: (1) A simulation of the past several hours using the best available observed forcings and streamflow DA to establish initial 
conditions for forecasting, which we call the “CONUS Analysis and Assimilation” cycle, (2) CONUS Short-Range 18 h deterministic forecast, 
(3) CONUS Medium-Range 10 day ensemble forecast, (4) CONUS Long-Range 30 day ensemble forecast, (5) Hawaii and Puerto Rico/USVI 
Analysis and Assimilation current snapshot, and (6) Hawaii and Puerto Rico/USVI 48 h short range forecast (Table 1). Open-loop (no DA) con-
figurations of the Analyses, CONUS medium-range, and island short-range forecasts are executed as well.
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2.1  |  Continental United States configurations

The accuracy of hydrologic forecasts are heavily influenced by the quality of the model initialization (Li et al., 2009). As such, the various 
analysis and assimilation (AnA) configurations which initialize each NWM forecast play a critical role in the modeling process. Over the United 
States, these initial conditions come from a set of three separate AnA cycles—two linked to the NWM short- and medium-range forecasts, and 
one linked to the NWM long-range forecast. Each of these analysis cycles is started from the previous AnA iteration, making them continu-
ously linked rather than event-based in nature, and eliminating the need for spin-up simulations. Further details of these configurations are 
given in Appendix A.

The Short-Range Forecast configuration produces guidance for forecasters and emergency responders who deal with events such as flash 
floods and other situations which can rapidly evolve based on changing meteorological and hydrologic conditions. It cycles hourly, is forced 
with meteorological data from the High-Resolution Rapid Refresh (HRRR) and Rapid Refresh (RAP), is initialized from the latest AnA solution, 
and produces hourly deterministic forecasts of streamflow and hydrologic states out to 18 h.

The Medium-Range Forecast configuration which is executed four times per day at 00Z, 06Z, 12Z, and 18Z, is initialized from the lat-
est AnA solution and is forced with Global Forecast System (GFS) model output. Unlike the deterministic Short-Range configuration, the 

F I G U R E  1  National Water Model (NWM) v2.1 operational domains including CONUS (right), the Hawaiian Islands (upper left) and Puerto 
Rico and the US Virgin Islands (lower left). Blue lines are a thinned depiction of NWM streamflow channels, while shading indicates land 
surface modeling domain.

TA B L E  1  Description of each NWM v2.1 modeling configuration, with abbreviations as analysis and assimilation (AnA), Short-Range 
Forecast (SRF), Medium-Range (MR), and Long-Range Forecast (LR).

NWM v2.1 model configuration Simulation length Cycling frequency Atmospheric inputs Additional detail

CONUS Extended AnA 28 h lookback 1× day HRRR, RAP, MRMS, MPE Features data assimilation

CONUS AnA 3 h lookback 24× day HRRR, RAP, MRMS, MPE Features data assimilation

CONUS SR 18 h forecast 24× day HRRR, RAP

CONUS MR 240 h forecast 4× day GFS 7 ensemble members

CONUS LR 30 day forecast 4× day CFS 4 ensemble members

Hawaii AnA 3 h lookback 24× day NAM-Nest, MRMS Features data assimilation

Hawaii SR 48 h forecast 2× day WRF-ARW, NAM-Nest

PR/USVI AnA 3 h lookback 24× day NAM-Nest, WRF-ARW Features data assimilation

PR/USVI SR 48 h forecast 2× day WRF-ARW, NAM-Nest

Abbreviations: CFS, Climate Forecast System; GFS, Global Forecast System; HIRESW WRF-ARW, High-Resolution Window Forecast System 
Advanced Research Weather Research and Forecasting; HRRR High-Resolution Rapid Refresh; MPE, Multisensor Precipitation Estimator; MRMS, 
Multi-Radar Multi-Sensor; NAM-Nest, North American Model High-Resolution Nest; RAP, Rapid Refresh; WRF, Weather Research and Forecasting.
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Medium-Range configuration produces ensemble guidance. Member 1 of this configuration is forced with model output from the most recent 
GFS NWP model run, and extends out to 10 days. While starting from the same set of initial conditions as member 1, members 2–7 ingest 
time-lagged forcing data from successively older forecast cycles of the GFS. These six members extend to 8.5 days, creating an overall seven 
member equal-weighted medium range ensemble forecast with an 8.5 day forecast horizon. At 30-days in length, the longest set of NWM 
forecasts is produced by the Long-Range Forecast. As with the Medium-Range configuration, the Long-Range configuration is a forcing-based 
ensemble which cycles at 00Z, 06Z, 12Z, and 18Z. However, it differs in that it consists of four members which are each forced with a different 
Climate Forecast System (CFS) forecast member from a single CFS model cycle.

Adding to the standard configurations outlined above, several open-loop or “no-DA” configurations are executed as well. These open loop 
analyses lack the assimilation of USGS stream gauge observations that occur in the standard analysis, and provide end users with insight into 
the native model behavior, unaffected by observation-based corrections. These open loop analyses are also used to initialize corresponding 
CONUS medium-range, and island short-range forecasts.

All of the analyses and forecasts are executed with the same 1 km resolution land surface grid, and use the same NHDPlus-based hydro-
fabric supporting routed channel output at over 2.7 million stream reaches. Additionally, the Analysis, Short-, and Medium-Range simulations 
rely on identical 250 m CONUS routing grids to perform surface and sub-surface (non-channelized) routing.

2.2  |  Hawaii and Puerto Rico/USVI configurations

The NWM v2.1 operational Hawaii and Puerto Rico/USVI configurations feature several important differences from the CONUS configura-
tions discussed above. These differences are driven by the selection of observation- and model-based forcing data which is available for these 
island domains. The most significant difference is that only Analyses and Short-Range forecasts are produced—the latter extending out to 
a 48-h forecast horizon. Further, whereas the CONUS Analysis and Short-Range cycles are driven in part by data from the HRRR and RAP 
models, the island configurations draw meteorological input from (1) Shortwave and Longwave Radiation: North American Model Nest (NAM-
Nest; Carley et al., 2017; Rogers et al., 2017) and (2) Remaining Fields: WRF-ARW models. The final difference lies in the spatial resolution of 
the Hawaii and Puerto Rico NWM configurations. While they rely on the NHDPlus-based hydrofabric and feature the same 1 km base land 
surface grid resolution, the surface and subsurface routing grid is set at 100 m, versus the 250 m resolution used over the CONUS, reflecting 
the high topographic relief of the islands. As occurs in operations over the CONUS, real-time USGS streamflow observations are assimilated 
into the Island Analysis configuration. Additionally, MRMS precipitation is ingested as forcing into the Hawaii Analysis, while the Puerto Rico/
USVI Analysis relies upon the HIRESW—with both island Analysis configurations using precipitation from the NAM-NEST when their primary 
sources are unavailable. The remaining Analysis forcing fields are obtained from the NAM-NEST.

3  |  NWM STRUC TUR AL OVERVIE W

Functioning across the variety of domains and forecast configurations described above, the NWM is a multi-faceted modeling system as op-
posed to a singular hydrologic process model. It consists of the community WRF-Hydro modeling system, a detailed geospatial-hydrofabric set 
of data layers, a Meteorological Forcing Engine (MFE) and an automated model calibration system. Each of these components is flexible and 
extensible, with structural support for the addition of new modular process modeling capabilities.

WRF-Hydro is a community modeling framework that was initiated in 2003 as the ‘Noah-distributed’ modeling system (Gochis & Chen, 2003) 
and encompasses several modules and datasets, which together allow for efficient and robust, continental-scale, high-resolution simulations 
of the Nation's hydrologic systems. Representations of infiltration, soil hydraulic physics, evapotranspiration, snowpack accumulation and 
ablation, lateral overland and subsurface flow, baseflow and river channel flow exist inside the model within various model components. 
These processes can each run on different spatial frameworks (e.g. rectilinear grids, catchments, river reach vectors and reservoir objects) 
thus providing flexibility in process representation and computational efficiency. The multi-scale WRF-Hydro system has been developed for 
application on large clusters and high performance computing systems so is applicable to large-domain, high-resolution simulations. It is cur-
rently used for a wide range of hydrometeorological research and operational forecasting applications (Arnault et al., 2021; Givati et al., 2016; 
Lahmers et al., 2019; Pal et al., 2020; Rummler et al., 2019; Senatore et al., 2015, 2020; Verri et al., 2017; Xiang et al., 2017; Yucel et al., 2015).

3.1  |  NWM hydro-geo fabric

Each of the components within WRF-Hydro are supported by a detailed hydro-geospatial fabric of inputs—the means by which the modeling 
system represents the geometry and topology of river networks and the description of the land surface and shallow subsurface at scales 
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appropriate for NWM simulations and end-use applications. The NWM V2.1 modeling domain extends from central Mexico to central Canada, 
and includes the major Hawaiian Islands, Puerto Rico, and the U.S. Virgin Islands (Figure 1). Land surface processes are modeled using a 1 km 
gridded resolution over all domains, with surface overland flow and saturated sub-surface flow routed on a 250 m grid over the CONUS, 
and on a 100 m grid over Hawaii, Puerto Rico, and the U.S. Virgin Islands. In the NWM configuration of WRF-Hydro, channel routing of run-
off occurs on a vector-type network of channel reaches (Table 1). The NWM channel routing network is largely derived from the National 
Hydrography Dataset Plus Version 2 (NHDPlus; McKay et al., 2012), which is based on an integration of the medium-resolution National 
Hydrography Dataset (NHD), National Elevation Dataset (NED), and National Watershed Boundary Dataset (WBD). While a high-resolution 
version of NHDPlus has become available, the NWM leverages the 1:100,000 scale flowlines, catchments, waterbodies, gauge associations, 
and value-added attributes of the Medium Resolution NHDPlus for operations, providing streamflow output for over 2.7 million river reaches 
nationwide.

While the NHDPlus Version 2.1 dataset underpins the vast majority of the features within the NWM hydrofabric, a number of modifi-
cations were necessary to support the spatial requirements of the NWM's extensive domain. The large catchments representing upstream 
areas in Canada and Mexico were replaced with hydrography and elevation-derived catchments roughly equivalent in scale to NHDPlus. 
Additionally, divergent flow paths were eliminated, Strahler stream orders re-calculated, and a continuous flow network was ensured by ex-
amining all interior network endpoints and reconnecting the network wherever possible. In this way, a seamless computational river network 
was constructed which could support operational hydrologic needs across the country. In areas tributary to the U.S., the channel networks 
and catchment delineations were custom-derived and linked to the NHDPlus networks. In areas beyond tributary regions, no channel routing 
is performed in the NWM. The USGS-World Wildlife Federation 90 m ‘Hydrosheds’ topography dataset was used in these regions where 
NHDPlus data was unavailable (Lehner et al., 2008).

3.2  |  Physics processes

3.2.1  |  Column land surface physics

The core physics of the multi-scale WRF-Hydro modeling system consists of multiple process modules including a column land surface 
model, modules for overland and saturated subsurface lateral flows, a bucket-type parameterization for baseflow, a channel flow module, 
and a reservoir routing module. The column land surface model used in the NWM is an updated version of the community NoahMP land 
surface model (Niu et al., 2011; Yang et al., 2011). NoahMP is itself a multi-physics model with numerous process representation options 
for the accounting of canopy energy exchange, snowpack, runoff and infiltration, groundwater, dynamic vegetation, surface aerodynamic 
exchange and land cover description. The time-step for the execution of NoahMP is identical to that of the meteorological forcing input 
which is 60 min.

3.2.2  |  Overland flow formulation

While the NoahMP land surface model is configured to run on a 1 km rectilinear grid, the overland and saturated subsurface flow routines 
execute on a 250 m CONUS (100 m over the Hawaii and Puerto Rico/Virgin Island domains) rectilinear grid that is forced to edge-match the 
1 km grid. Infiltration-capacity excess from NoahMP which exceeds a pre-defined retention depth value is allowed to flow overland using an 
option within WRF-Hydro that is an explicit formulation of the diffusive wave simplification of the full St. Venant equation for overland flow, 
similar to Julien et al. (1995; Gochis et al., 2020). The one-dimensional steepest descent gradient estimation option within WRF-Hydro is used 
in the NWM to minimize forecast latency. To satisfy Courant constraints in the diffusive wave formulation, when executed at a 250 m grid 
spacing an overland flow routing time step of 10 s is used. Overland flow, with depths exceeding the specified retention depth, and intersect-
ing 250 m grid cells that have been designated as ‘channel’ grid cells, is sequestered as channel inflow. Overland flow-derived channel inflow 
for each NHDPlus channel reach is aggregated from all channel grid cells within each NHDPlus catchment associated with each NHDPlus 
channel reach. We note here that the 250 m overland and subsurface (described below) routing functions are used in all NWM configurations 
except the long-range, 30-day forecast configuration due to computational constraints in completing the long-range forecasts. Instead of 
performing the high-resolution overland and subsurface routing, the long-range configuration simply aggregates surface runoff and base-flow 
across NHDPlus catchments and the stream inflow contributions. This more simplistic formulation greatly reduces computational expense 
in forecast production but both reduces the kind of outputs produced by the model and also requires a separate calibration due to differing 
process representations.]
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3.2.3  |  Saturated subsurface flow formulation

Similar to overland flow, shallow saturated subsurface flow is executed on a 250 m rectilinear grid (100 m over the island domains). A Boussinesq 
approximation is employed as in Wigmosta et al. (1994) which results in an effective 2-dimensional calculation of saturated subsurface lateral 
transport. In versions 1.0–2.1 of the NWM, subsurface soil saturation characterization is determined from the 2 m deep, 4-discretization soil 
moisture representation in NoahMP. In this soil column, the water table is defined as the top-most discretization which features saturated soil. 
As such, the subsurface flow routine in WRF-Hydro does not represent perched lateral transport. The 60-min time-step of saturated lateral 
flow is synchronized with the execution of the NoahMP time step. Soil moisture accounting following lateral transport can result in full column 
saturation and exfiltration of soil water to the land surface where it may subsequently participate in overland flow. Numerical details of the 
saturated subsurface flow formulation are provided in Gochis et al. (2020).

3.2.4  |  Baseflow formulation

Deeper groundwater contributions to streamflow are represented using a relatively simplistic, non-linear, conceptual baseflow bucket model. 
The spatial unit of the baseflow buckets is that of the uniquely-defined NHDPlus catchments. Inflow into the buckets is derived from drainage 
through the NoahMP soil column and is calculated as a scaled free-drainage boundary flux. A spatial weighting of NoahMP grid cells encom-
passed within the NHDPlus catchments is used to estimate which grid cells and fractions of grid cells contribute soil column drainage to each 
bucket. The baseflow bucket then discharges baseflow to the upstream node of the corresponding NHDPlus stream segment associated with 
each NHDPlus catchment using an empirical exponential storage-discharge formulation, where the discharge from the bucket to the river 
channel is specified as a function of the fractional storage capacity of the bucket.

3.2.5  |  Channel flow

Channel inflow components coming from overland and baseflow are ingested into the channel at the upstream node of the relevant 
NHDPlus channel reach. Channel flow is then estimated using the iterative Muskingum-Cunge hydrologic routing formulation adapted 
from Chow (1959) as described in detail by Read et al.  (2023), and flows are routed down the NHDPlus-defined channel and reservoir 
network.

3.2.6  |  Reservoir accounting

Given the thousands of reservoirs spread across the country, and the degree to which they can impact streamflow across all flow regimes, 
accurate representation of reservoirs is critical for NWM analyses and forecasts. More than 5000 of these reservoirs are already represented 
in the NWM, but in a fairly simplistic fill-and-spill manner. This basic approach does not mimic the real-world manual operation of reservoirs, 
and instead uses fixed orifice discharge and reservoir spillway estimation methods. Given the impractical nature of obtaining and applying 
thousands of operating functions, a new module was developed in NWM v2.0 to simulate the anthropogenic impacts of reservoirs with a two-
pronged automated approach for use at several hundred of these locations. The approach uses a persistence-type treatment whereby USGS 
and USACE-supplied streamflow measurements at, or immediately downstream of, reservoirs are used to correct NWM reservoir states and 
releases. Additionally, RFC-supplied observations and forecasts of reservoir outflow are assimilated into the NWM for use in the NWM analy-
sis and short- and medium-range forecasts (Figure 2a). Future versions of the NWM will leverage this flexible ingest mechanism to assimilate 
RFC-sourced observations and forecasts of diversion-related flow.

3.3  |  Real-time streamflow DA

The NWM has assimilated real-time streamflow observations, specifically volumetric flow rates, since its v1.0 inception. The purpose of as-
similating streamflow observations is to help mitigate the impact of background model error propagating downstream of observed flow loca-
tions in the NWM's analysis cycle and on its forecast initial conditions (Figure 2b). The value of the NWM streamflow DA in reducing model 
forecast errors increases proceeding downstream on streams and rivers which have progressively more gauges, due to the influence the 
gauges have on conditioning upstream flows.
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A simplified, computationally-efficient nudging DA was selected for use in the operational NWM. Real-time streamflow observa-
tions from the USGS NWIS data service are quality screened and directly assimilated, or inserted, into the analysis cycle of the model. 
Assimilation temporal weighting factors are applied to the observations, which relax the model solution back to its open-loop, or un-
assimilated, value. Streamflow observations deemed to be of high quality that were recorded within 15 min of the model analysis time are 
given full weight, while observations between 15 min and 2 h old are given proportionately lower weights. Observations older than 2 h 
are not used. The NWM also relies on the data quality and error flags accompanying real-time USGS streamflow observations. Generally, 
for well-managed gauging sites with long periods of record and well-established rating curves streamflow observations with high quality 
rankings can be considered reliable estimates of streamflow. It is acknowledged that there may be instances where site and flow dynamics 
may be evolving disproportionately and may not be detected until future stream surveys. In such instances, there may be additional un-
certainty in the model. Similarly, during the forecast cycles of the NWM, the influence of the observation in the forecast is relaxed as the 
model iterates away from its initial state. At this initial state, the model flow solution is forced to match the observed flow solution, with 
the influence of the streamflow observation decaying to zero by 2 h into the forecast. Streamflow observations are applied only on the 

F I G U R E  2  Impact of assimilating River Forecast Center (RFC)-supplied reservoir outflow data (a; left) and USGS streamflow observations 
(b; right) on NWM v2.1 medium-range streamflow forecasts.
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local stream reach where the observation is made, and then allowed to propagate under the model's flow solution downstream from the 
observation location. Streamflow DA is underpinned with data drawn from the USGS NWIS data service. While the NWM is able to ingest 
data from over 8000 gauge sites, the availability of observations varies with time, with many fewer gauge discharge values available during 
the winter due to frozen river conditions.

3.4  |  Meteorological forcing prescription

The NWM is not interactively coupled to a parent atmospheric model. Rather, it ingests meteorological forcing from a variety of external 
sources including Multi-Radar Multi-Sensor (MRMS, Zhang, Howard, et al., 2016) radar-gauge and Stage IV Multisensor Precipitation Estimator 
(MPE) observed precipitation data, HRRR (Dowell et al., 2022), RAP (Benjamin et al., 2016), NAM-Nest, High-Resolution Window Forecast 
System Advanced Research Weather Research and Forecasting (HIRESW WRF-ARW; Skamarock et al., 2008), GFS (NWS, 2022b) and CFS 
(Saha et al., 2014) Numerical Weather Prediction (NWP) forecast data. Each of these forcing sources is ingested into the NWM MFE which is 
a set of unique configurations of the more general WRF-Hydro MFE (https://​github.​com/​NCAR/​WrfHy​droFo​rcing​). The NWM MFE performs 
source data ingest, variable and units standardization, spatial interpolation, downscaling, statistical bias correction, product layering, and file 
output. The NWM requires seven meteorological variables; precipitation rate, 2-m air temperature, 2-m specific humidity, 10 m wind speed, 
surface pressure, incoming shortwave radiation, and incoming longwave radiation. Because all of the meteorological variables come from 
gridded analyses or other models whose grid structures are different from the NWM, each variable is interpolated to the 1 km NWM land 
surface model grid. In addition to spatial interpolation, several variables are subjected to downscaling and/or statistical bias correction within 
the MFE. When downscaling is needed, temperature, humidity and pressure terms are downscaled using climatological lapse rate adjustments 
while incoming shortwave radiation is downscaled using terrain adjustments to incoming solar radiation for terrain slope and aspect variations 
(terrain shading is not performed) on the 1 km model grid (Garnier & Ohmura, 1968; Zangl, 2005). A description of each variable, its required 
units and the processing operations applied to it are provided in Table 2. The MFE also applies a preferential layering approach to incoming 
precipitation datasets, the details of which are provided in Appendix A.

The Long Range configuration of the NWM utilizes statistically-processed model output from the CFS as forcing. The availability of 
a long reforecast archive of the CFS system provides a large, stable climatological database that makes the enhanced bias correction of 
CFS data possible. NCEP CFSv2 outputs covering the full set of required NWM forcings are first post-processed to correct biases in the 
raw CFSv2 data, and then downscaled and disaggregated to the standard space–time resolution of NWM MFE inputs. This bias correction 
approach is based on the quantile mapping (Panofsky & Brier, 1958; Wood et al., 2002) of CFSv2 outputs to match the North American 
Land Data Assimilation (NLDASv2) climatology (Cosgrove et al., 2003; Xia et al., 2012). Parametric quantile mapping is used for all variables, 
with a Dirac delta function to model instances of zero precipitation, and a Weibull distribution to model non-zero precipitation. A Gaussian 
distribution is used for 2-m temperature, surface pressure, and downward longwave radiation; a gamma distribution for specific humidity 
and wind speed; and a mean scaling of non-zero shortwave radiation. The parameters of the distributions are estimated on the CFSv2 grid 
and varied for all grid points across forecast hours for each specific initialization time, with a centered ±2-day moving window applied to 
increase sample sizes. This bias-correction procedure yields four cycles per day of bias-corrected CFS data which then force the 6-hourly 
NWM Long-Range ensemble.

TA B L E  2  Description of each NWM forcing variable, required units and processing operations applied for the AnA, Short-Range Forecast, 
Medium-Range Forecast (MRF), and Long-Range Forecast (LRF) configurations.

Variable Units Downscaling Bias correction

2 m air temperature K CONUS: MRF, LRF
OCONUS: HI-AnA & SR, PR-AnA & SR

CONUS: SRF, MRF, LRF

2 m specific humidity kg/kg CONUS: MRF, LRF
OCONUS: HI-AnA & SR, PR-AnA & SR

CONUS: LRF

Surface pressure hPa CONUS: MRF, LRF
OCONUS: HI-AnA & SR, PR-AnA & SR

CONUS: LRF

Wind speed m/s CONUS: MRF, LRF

Incoming shortwave radiation W/m2 CONUS: MRF, LRF
OCONUS: HI-AnA & SR, PR-AnA & SR

CONUS: SRF, MRF, LRF

Incoming longwave radiation W/m2 CONUS: SRF, MRF, LRF

Precipitation rate mm/s CONUS: LRF

https://github.com/NCAR/WrfHydroForcing
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3.5  |  Model parameter specification

As a process-based, high resolution, spatially-distributed hydrological modeling system, the NWM has a very large number of model param-
eters which must be specified. The parameter specification process has three primary steps:

1.	 Initial parameter specification.
2.	 Parameter calibration.
3.	 Parameter regionalization.

Initial parameter specification is performed during model setup using landscape classification information for soils, vegetation, land use, 
channel hydrography, lakes and reservoirs. The datasets for these landscape classifications come from a variety of data sources which are 
listed in Table 3. Initial model parameter estimates are spatially-mapped to the NWM using these classifications and model parameter tables 
which associate model parameters with a specific classification (e.g. leaf area index, soil hydraulic conductivity, soil porosity, canopy roughness 
heights, etc). There currently is no sub-grid land cover/vegetation or soils type classification within the NWM, and each model grid cell has a 
unique classification and set of parameter values.

TA B L E  3  Land surface datasets used in NWM v2.1.

Parameters Data source

Elevation CONUS: National Elevation Database
OCONUS: HydroSHEDS

Channel and waterbody data CONUS: NHDPlusv2 Medium Resolution
OCONUS: Modified Great Lakes Hydrography Dataset (GLHD) and Elevation-Derived 

Hydrography

Soil type CONUS: STATSGO
Hawaii: SoilGrids
Puerto Rico/USVI: gSSURGO

Land cover CONUS: NLCD 2016
OCONUS: MODIS, Ontario Provincial Land Cover

LAI and greenness fraction MODIS-based Monthly Climatologies

F I G U R E  3  Depiction of basins directly calibrated using streamflow observations in NWM v2.1.
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3.6  |  Calibration and regionalization

The significant physics and parameter upgrades inherent in each version of the NWM necessitate recalibration of the NWM before each ver-
sion enters into NWS operations. The calibration period for the CONUS domain of the current operational version of the NWM (v2.1) extends 
from October 2008 through September 2013, with a validation period spanning October 2013 through September 2016, and 2007 used 
for spin-up. Meteorological forcing is drawn from the Analysis of Record for Calibration (AORC) dataset developed by the NWS OWP (Fall 
et al., 2023). To avoid complications introduced by water management activities, direct calibration is limited to 1365 lightly regulated basins 
selected from USGS, California Department of Water Resources (CADWR) and Canadian sites (Figure 3). Complementing this CONUS calibra-
tion, 47 basins are calibrated over Puerto Rico and 29 basins are calibrated across the Hawaii Islands, each using multi-year NAM-Nest-based 
forcing datasets unique to those domains, with observed precipitation supplied by the local RFC. The calibration and validation periods for 
Hawaii are, respectively, January 2005 to January 2010 and January 2010 to January 2014. Similarly, for Puerto Rico, calibration spans January 
2009 to January 2014, with validation from January 2014 to September 2017.

Across the CONUS domain, a total of 14 model parameters (Table 4) are calibrated with an iterative Dynamically Dimensioned Search ap-
proach (Tolson & Shoemaker, 2007). A similar set of parameters, minus the MFSNO melt factor, are calibrated for the Hawaii and Puerto Rico 
domains. In this technique, the model is cycled over the calibration period 300 times to minimize an objective cost function. For the NWM, the 
objective cost function is a weighted Nash-Sutcliffe Coefficient of Efficiency (NSE) consisting of equal parts NSE (Nash & Sutcliffe, 1970) and 
NSE calculated for the log of the discharge (NSElog) using hourly streamflow observations. Once direct calibration is complete, parameters for 
the rest of the NWM domain are then derived via a regionalization process.

The regionalization process transfers optimized parameters from calibrated basins to the portions of the domain which cannot be directly 
calibrated due to a lack of observations or flow complications from water management. The basis for this procedure is the concept that basins 
featuring similar vegetation, topography, geology, soil properties and climate will have similar hydrologic parameters, and will be characterized 
by similar streamflow responses. To accomplish this regionalization, one of two techniques is applied, as determined through multi-year test 
simulations. For the full-physics NWM configuration (i.e. with the 250 m overland and subsurface routing functions active), the degree of sim-
ilarity between each uncalibrated and calibrated basin is measured with the Gower's distance metric (Gower, 1971), while for the long-range 
NWM configuration an ecoregion-based approach is leveraged. Once matches are made between the directly calibrated donor basins and the 
uncalibrated receiver basins, parameters are mapped to the remainder of the NWM domain.

4  |  NWM OUTPUT

Output from the NWM encompasses a wide range of hydrologic variables, which vary between modeling configurations based on end user 
needs and computational resource limitations. Real-time output totals nearly 1 Tb per day and is produced in a fully automated 24 × 7 opera-
tional fashion, the cadence of which varies by forecast configuration. By contrast, only one long-term retrospective run is released with each 
NWM version. Forced with AORC meteorological data, and executed without DA, the NWM v2.1 long-term retrospective run spans the period 
1979–2020.

As extensive as the list of NWM output fields is, it is of very limited use unless it's paired with effective dissemination and visualiza-
tion services. Towards this end, OWP has partnered with NCEP, NCAR, CUAHSI, and Big Data partners to leverage a set of foundational 
capabilities that will expand over time. The chief outlet for basic distribution of NWM data is the NOAA Operational Model Archive and 
Distribution System (NOMADS) hosted by NCEP. This publicly accessible system distributes data from models run operationally on the NOAA 
WCOSS, including the NWM. Full-domain NetCDF NWM output files are hosted on NOMADS and are made available for download via ftp 
and https protocols. Complementing this basic distribution are post-processed files, targeted for ingest into the NWS RFC operational forecast 
environment.

In addition to these operationally supported data sites, there exist a growing number of joint data ventures with both academic and private 
entities. These collaborations with Big Data partners and CUAHSI are especially important, given the challenges associated with distributing 
and processing the large amount of data produced by the NWM.

5  |  MODEL PERFORMANCE

NWM simulation performance is assessed through a variety of approaches and metrics. Output from real-time forecast, historical refore-
cast, and retrospective analysis runs each provide a different window into NWM skill, and so are all assessed as part of the research to 
development to operations pipeline. These assessment activities document not only the skill of a particular version of a model but also the 
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version-over-version evolution as new features are added (Table 5). Together they help focus development efforts on where they are most 
needed, and inform forecasters as to the level of confidence which characterizes NWM forecasts.

5.1  |  Streamflow verification—Retrospective output

Assessment of NWM streamflow is based on comparison against USGS hourly streamflow observations. As with verification of meteorologi-
cal models, the number of model output points (over 2.7 million) dwarfs the number of available observation sites (~10,000). However, the 
sequentially connected nature of many of the stream reaches acts as a mitigating factor, allowing downstream gauges to be used to verify, 
by proxy, nearby upstream stretches of the river. This effectively reduces the spatial gap in verification data, but does not address another 
verification challenge—anthropogenic influences. Given the profound impact that dams, diversions and other similar elements have on natu-
ral streamflow, USGS data are divided up into two NWM verification sets: (1) The full USGS observation collection of approximately 10,000 
stations, and (2) A reference stream gauge dataset from the Geospatial Attributes of Gages for Evaluating Streamflow version II (GAGES-II; 
Falcone, 2017) database, which includes a subset of non- or lightly-regulated streams (approximately 1600 stations).

Using the full USGS dataset as the baseline, Figure 4 displays NWM hourly percent bias values as CONUS-aggregate histograms. Output 
is from a continuous retrospective simulation using the full-routing formulation of the model. This validation run was executed from 2013 to 
2016, directly after the 2008 to 2013 NWM calibration period, and separate from the long-term 1979–2020 retrospective run. It was driven 
with AORC meteorological forcing data, and did not assimilate USGS streamflow observations. Progressing from NWM V1.0 through V2.1, 
each new version of the NWM has seen a related reduction in simulated streamflow bias. In particular, while 31% of verification sites have a 
bias of ±20% (the most favorable category) in V1.0, 52% of those same sites reach that level of accuracy in V2.1. This improvement is accompa-
nied by a favorable tightening of the histogram distribution, with a decrease in wet and dry extremes. The spatial distribution of the errors are 
somewhat uneven, with wet biases more prevalent in the middle of the CONUS than in other regions. Removing the influence of streamflow 
regulation from the assessment, Figure 5 displays bias statistics from the same simulation, but this time validated against the GAGES-II subset 
of observations. The same general findings hold, although performance levels are predictably higher given the lack of complications intro-
duced by reservoirs and diversions. Bias levels of ±20% are seen in 36% of validation locations in V1.0, increasing to 68% by V2.1 of the NWM.

An assessment of hourly model correlation and normalized Nash Sutcliffe Efficiency (NNSE, Nossent & Bauwens, 2012) provides additional 
insight into NWM performance. Verification results at GAGES-II locations are presented in Figures 6 and 7 using an approach similar to that 
taken with bias. As with bias, a strong improvement in results is seen version-over-version. While only 18% of verified reaches have a correla-
tion of 0.8 or greater in V1.0, improvements between versions leads to a value of 52% by V2.1 (Figure 6). Similarly, only 43% of verification 
basins have an hourly NNSE of 0.6 or greater in v1.1, rising to 81% in v2.1. The spatial variation in results for both metrics is also somewhat 
similar to that of bias, with lower values noted over the midsection of the CONUS.

Verification of the simplified NWM configuration used in Long-Range CONUS applications (i.e. without the 250 m terrain routing) was also 
conducted for GAGES-II locations over this same retrospective time period. Summarizing results from V1.2 through V2.1, Figure 8 shows the 
improvements in streamflow correlation between model versions. Overall, model results are less favorable than those seen in Figure 7, which 
is to be expected given the lack of explicit surface and sub-surface routing in this simplified, long-range configuration of the NWM.

Complementing the CONUS verification is a parallel assessment covering the NWM domains outside of the CONUS, namely Hawaii and 
Puerto Rico. Over the relatively new Hawaii domain, great strides in performance were made between V2.0—when the domain was first 

TA B L E  5  Overview of major new features implemented within each version of the NWM.

Operational NWM version Notable new features

V1.0 (2016) Initial version of the NWM with CONUS coverage

V1.1 (2017) Expansion along CONUS border, first detailed calibration of parameters, increased forecast cycling 
frequency and length

V1.2 (2018) Improved calibration and streamflow data assimilation, additional domain expansion along CONUS 
border

V2.0 (2019) Expansion to Hawaii, seven-member medium-range CONUS ensemble, use of RFC MPE precipitation, 
improved calibration, increased reservoir representation, improved forcing downscaling and 
model physics

V2.1 (2021) Expansion to Puerto Rico/US Virgin Islands and Great Lakes Drainage domains, implementation of 
reservoir outflow data assimilation, forcing upgrades, new open-loop configurations, improved 
physics and calibration

V3.0 (2023) Total water level coastal coupling component, expansion to Alaska, ingestion of National Blend 
Models forcing, improved runoff module, and improved physics and calibration



260  |    COSGROVE et al.

introduced—and v2.1. Figure 9 depicts a significant reduction in the model's overall wet bias, with biases remaining high in areas with signif-
icant anthropogenic impacts (e.g. diversions, urbanization) and particularly dry regions. An increase in correlation (not depicted) is noted as 
well. Across the NWM's other island domain, which includes Puerto Rico and the USVI, strong initial performance metrics are noted in v2.1, 
the version in which it was implemented. Here, 51% of the verification sites show a streamflow bias of less than ±20%, while 48% (79%) of 
sites display an hourly (daily) streamflow correlation greater than 0.6 (Figure 10).

F I G U R E  5  Hourly NWM streamflow bias (%) from version 1.0 through version 2.1. Statistics are for the 2013–2016 post-calibration 
validation period are based on the Gauges II subset of CONUS USGS gauges.

F I G U R E  4  Hourly NWM streamflow bias (%) from version 1.0 through version 2.1. Statistics are for the 2013–2016 post-calibration 
validation period are based on the full set of CONUS USGS gauges.
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5.2  |  Snowpack verification

The NWM contains a multi-layered, energy-balance-based snowpack formulation which tracks snowpack conditions on the 1-km LSM grid 
over the entire model domain. The performance of the snowpack representation in each model version has been evaluated against Natural 
Resources Conservation Service (NRCS) SNOwpack TELemetry (SNOTEL) station observations and against the NOAA OWP gridded Snow 
Data Assimilation System (SNODAS) analysis product (Carroll et al., 2006). Figure 11 shows a comparison of model performance between v2.0 
and v2.1 of the NWM against these observations for retrospective run spanning 2011–2017. Figure 11a shows that, in general, a modest bias 

F I G U R E  6  Hourly NWM streamflow correlation from version 1.0 through version 2.1. Statistics are for the 2013–2016 post-calibration 
validation period are based on the Gauges II subset of CONUS USGS gauges.

F I G U R E  7  Hourly NWM streamflow Normalized Nash Sutcliffe Efficiency (NNSE) from version 1.1 through version 2.1. Statistics are for 
the 2013–2016 post-calibration validation period are based on the Gauges II subset of CONUS USGS gauges.
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improvement in modeled snowpack performance—as quantified by local model minus observed values and aggregated across RFC regional 
SNOTEL locations—was achieved in v2.1 for most, though not all, regions. Figure 11b shows the Central Rocky Mountain, regionally averaged 
time-series of snow water equivalent for the two NWM versions and the SNODAS product. Modest improvement in v2.1 snowpack accumula-
tion volume is found both in terms of the regional mean and max/min range of values during the 2011–2017 retrospective assessment period. 

F I G U R E  8  Hourly NWM streamflow correlation from version 1.2 through version 2.1. Statistics are for the 2013–2016 post-calibration 
validation period are based on the Gauges II subset of CONUS USGS gauges and are computed using the simplified Long-Range 
configuration of the NWM.

F I G U R E  9  Hourly NWM streamflow bias (%) for versions 2.0 and 2.1. Statistics are for the 2010–2013 post-calibration validation period 
are based on the full set of Hawaii USGS gauges.
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Improvements in snowpack conditions are attributed to improvements in the snow physics formulation related to snowpack storage and re-
lease of melt water as well as to improved calibration of some of the snowpack model parameters during automated calibration.

5.3  |  Streamflow verification—Real-time operational output

Of equal importance with the preceding suite of verification statistics derived from the assessment of NWM retrospective validation simu-
lations is a parallel set of statistics based on real-time operational NWM forecast output. These assessments yield information which then 
guides use of the model by forecasters and other end users. Unlike the historical runs which are forced with observed precipitation, real-time 
NWM forecasts are forced with NWP-based precipitation. This changes the error profile of the model significantly, with input precipitation 
now an increased source of error.

Focusing on the short-range configuration, Figure 12 depicts the improvements in performance between NWM versions 2.0 and 2.1. The 
sizable overestimation of peak discharge in v2.0 (especially at longer lead times) is greatly reduced in v2.1, with the distribution of the median 
absolute percent peak bias centered near zero. This is mirrored by improvements in event-type statistics including probability of detection 
(POD), false alarm ratio (FAR) and critical success index (CSI). Peak streamflow timing error is similar in v2.1 and v2.0, with the forecast stream-
flow too quick to peak.

As highlighted in Figure 13, overall improvement is also noted in the medium-range real-time forecast configuration. Peak bias and peak 
timing errors improve during the first 6 h, but change little in the hours that follow. Model improvement is more pronounced when examining 
categorical flood prediction scores. Here, notable decreases are seen in the FAR, accompanied by sizable increases in the CSI. Similar results 
are found for days 4–10, with the medium-range ensemble means exhibiting higher scores (not shown). Focusing on the performance of 

F I G U R E  1 0  Hourly NWM streamflow bias (%) and correlation for version 2.1. Statistics are for a 2009–2017 evaluation period are based 
on the full set of Puerto Rico USGS gauges.

F I G U R E  11  Assessment of NWM v2.0 and v2.1 snowpack against SNOwpack TELemetry (SNOTEL) (percent bias, left; a) and Snow Data 
Assimilation System (SWE volume, right; b) data for 2011–2017 retrospective assessment period. In (b), line colors denote model, line styles 
denote statistic.



264  |    COSGROVE et al.

streamflow prediction downstream from reservoirs, Figure 14 isolates the impact of upgrades made to the reservoir module. In these two 
representative examples, the application of observation persistence and the ingestion of RFC-sourced reservoir forecasts in NWM v2.1 lead 
to sizable benefits.

Switching focus to the NWM's offshore domains, large version-over-version improvements in Hawaii streamflow prediction skill are shown 
in Figure 15. The large overestimation of peak discharge in v2.0 is significantly reduced in v2.1 across all lead times, and the peak timing error 

F I G U R E  1 2  Median peak bias (%, top left), median peak timing error (hours, top right), and categorical flood verification metrics (bottom 
right) for NWM v2.1 versus NWM v2.0, for NWM short-range configuration. Calculated with data from July 1 to August 9, 2020.

F I G U R E  1 3  Median peak bias (%, top left), median peak timing error (h, top right), categorical flood verification metrics (bottom left) 
for member 1 of the NWM medium-range configuration, with categorical scores calculated for approximately 3000 sites. Additionally, 
correlation by lead time member 1 and the ensemble mean for both NWM v2.0 and v2.1 (bottom right). Calculated with data from July 1 to 
August 9, 2020.
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distribution has a smaller range in v2.1 than v2.0. Additionally, categorical flood detection is greatly improved in V2.1 (similar results for hours 
13–48, not shown), with a reduction from 23 false alarms in V2.0 to zero in v2.1. Improvements in the selection and processing of source 
precipitation data as well as improvements in calibration methods are attributed to this increase in skill over Hawaii.

The NWM's second domain outside of the CONUS—Puerto Rico—is new for v2.1, and so there is no prior NWM version against which to 
compare results. However, it is still instructive to examine the performance of this first implementation. Figure 16 shows that peak discharge is 
generally underestimated across all lead times, while the median peak timing error is relatively small (median within ±3 h). Assessing the output 
from a categorical event perspective, it can be seen that this first implementation of the Puerto Rico domain displays reasonable categorical 
flood forecast skill, with a POD of 0.7 and a FAR of 0.42. These scores support initial use of the model, complementing information streams 
that are already available, and future versions of the NWM will improve upon these scores.

An in-depth comparison of NWM and RFC-produced streamflow forecasts has the potential to increase understanding of the relative mer-
its of each approach and aid in the effective use of each source of data. Such a study would provide insight into the use of a complementary mix 

F I G U R E  14  Relative change in NNSE from NWM v2.0 to v2.1 at sites with three different sources of reservoir outflows for both the 
short-range (top row) and medium-range (bottom row) forecast configurations. Note that the plots show the version-on-version change in 
NNSE, not the actual NNSE values, and are calculated with data from July 1 to August 9, 2020.

F I G U R E  1 5  Event-based assessments by lead time for NWM v2.0 and v2.1 Short-Range forecasts over Hawaii domain. Median peak bias 
(%, left), median peak timing error (hours, upper right), and table of false alarms (bottom right). Calculated with data from July 1 to August 9, 
2020.
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of data, across various hydrologic situations in time and space. However, a meaningful intercomparison is hampered by the many differences 
between NWM and RFC forecast systems, as well as from RFC-to-RFC. These increase the complexity of an assessment and interpretation of 
the results to such an extent that it moves beyond the scope of this overview article. In particular, RFC forecasts are produced over differing 
spatial regions, at a different cadence, using differing input forcing data sources and with forecaster modifications to forcing inputs, model 
states and parameters. A direct and informational comparison against the NWM would entail conducting reforecasts or reanalyses with both 
platforms using the same forcing data, but would still fail to capture important differences in model performance for the aforementioned rea-
sons. Until completion of a study focusing exclusively on such an in-depth and multifaceted assessment, the summary statistics in this NWM 
overview article serve to highlight the current performance characteristics of the NWM, and provide both a basis for use and a foundation for 
a future, in-depth intercomparison article.

6  |  ONGOING DE VELOPMENT

6.1  |  Operational enhancements

Established in 2016, the NWM is a relatively young modeling system. The NWM continues to undergo cyclic upgrades so as to improve and 
expand version-over-version capabilities guided by the assessments described above. Certain foundational components of the NWM are im-
proved with each upgrade, while other components are added for the first time, or may only receive sporadic updates. Improvements which 
accompany each new model version include updated calibrated parameters, fixes to the hydro-fabric connections and waterbody attributes, 
along with updates to the workflow, model and MFE to improve execution robustness and efficiency.

Nowhere is the drive towards improved representation of hydrologic processes more important than along coastal regions. In this area, 
over 100 million people currently lack a forecast of the integrated impacts of freshwater, storm surge, waves and tidal flooding. Within version 
3.0 of the NWM, a new routing capability will support linkage of NWM freshwater modeling capabilities to a coastal-estuary model, the Semi-
implicit Cross-scale Hydroscience Integrated System Model (SCHISM) (Zhang, Ye, et al., 2016). Atmospheric forcing will be drawn from the 
existing set of NWM forcing data described above, while ocean forcing will be drawn from the Surge and Tide Operational Forecast System 
(STOFS; Funakoshi et al., 2012) and Probabilistic Tropical Storm Surge (P-SURGE; Taylor & Glahn, 2008) models. This approach will be applied 
over the East, Gulf and Pacific coasts of the CONUS, along with the coastlines of the Hawaii, Puerto Rico, and US Virgin Islands, within the 
AnA, Short-Range, and Medium-Range forecast configurations. It will provide enhanced guidance to emergency responders and will improve 
the accuracy of NWM-based flood inundation maps along the coast.

F I G U R E  1 6  Event-based assessments by lead time for NWM v2.1 Short-Range Forecast over Puerto Rico domain. Median peak bias (%, 
left), median peak timing error (hours, upper right), and table of false alarms (bottom right). Calculated with data from July 1 to August 9, 
2020.



    |  267
NOAA'S NATIONAL WATER MODEL: ADVANCING OPERATIONAL HYDROLOGY 
THROUGH CONTINENTAL-SCALE MODELING

Service provision will be further improved via first-time NWM coverage for Alaska, wherein an NWM configuration is scheduled for oper-
ational deployment over the Cook Inlet and Copper River Basin regions (Figure 17). Several upgrades were introduced into the NWM in order 
for it to better function in this cold land process-dominated area. Chief among these are a linkage with a snow-ice model (Vionnet et al., 2012) 
and the capability for ingest of RFC-provided forecasts of streamflow from glacial lake outbursts. Combined with forcing and hydrofabric 
datasets tailored to the needs of this particular domain, this implementation will bring much-needed comprehensive and complementary 
hydrologic guidance to the south-central Alaska region.

Complementing the foundational enhancements above will be a shift to updated land cover and channel datasets, improved treatment of 
infiltration, the creation of a dynamic parameter update capability, and use of the National Blend of Models as an input forcing source.

Taken together, the wide-ranging process modules and forcing enhancements discussed above combine with the NWM's underlying dis-
tributed modeling structure to support key nationwide hydrologic applications in a way not before possible, and connect back to the driving 
factors behind the NWM's creation. A prime example of this is the advent of coast-to-coast flood inundation mapping (Aristizabal et al., 2023). 
Critical for emergency managers in times of extreme flow, this application leverages NWM analyses and forecasts to provide distributed 
inundation information down to the neighborhood structure level. The NWM's fine scale NHD-based stream network, along with its repre-
sentation of multiple processes including coastal total water level, supports seamless production of this information from summit to sea, and 
will continue to evolve with each iteration of the NWM.

6.2  |  Community assessment and development

To date a number of published works have documented various performance aspects of the NWM. These works have analyzed several 
aspects of the skill of reservoir inflow forecast performance (Viterbo, Read, et al., 2020) and snow model performance (Garousi-Nejad & 
Tarboton, 2022). Viterbo, Mahoney, et al.  (2020) explored the ability of the NWM to forecast specific high-impact flooding events while 
Tijerina et al. (2021) provided a multi-metric assessment of NWM model performance in comparison with another state-of-the-art hydrologic 
model. The research community surrounding the NWM has also produced a number of other papers centering on development aspects for 
specific processes within the NWM, including the improvement of the NWM for semi-arid environments (Lahmers et al., 2019, 2022), the de-
velopment of hydro-geo-fabric data for the Great Lakes region (Mason et al., 2019), the assimilation of remotely sensed vegetation data (Elmer 
et al., 2022), the enhancement of channel routing physics (Read et al., 2023) and the impact of tile drainage processes on NWM simulation 
performance (Valayamkunnath et al., 2022).

F I G U R E  17  Depiction of the new NWM Alaska domain, to be released in version 3.0 of the model.
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Now at version 2.1, with NWM v3.0 arriving in late 2023, the continued success of the NWM ultimately depends on continual improve-
ment of model accuracy and capabilities—something which, in turn, depends on a vibrant and robust development community with a clear and 
efficient link to the NWS operational pipeline. With this in mind, OWP is embarking upon a major, multi-year effort, to build on and expand the 
NWM development and applications community. OWP and agency partners are improving upon the existing modularity of NWM processes 
and are establishing the Next Generation Water Resources Modeling Framework (NextGen) (Ogden et al., 2021). NextGen is a standards-
based model interoperability framework that allows for the use of spatially varying modeling techniques which are the most appropriate 
for each region. Utilizing the Basic Model Interface (Hutton et al., 2020) coupling standard, NextGen facilitates linkage to a wide range of 
community-sourced modules. The NextGen framework also employs the National Hydrologic Geospatial Fabric Reference Hydrofabric (Bock 
et al., 2022) developed jointly by USGS and NOAA. This reference hydrofabric adopts the WaterML version 2.0 Hy_Features data model 
(OGC, 2017). The overarching end goal for all of these activities is a system which supports community development and funnels innovation 
into a common standards-based platform that can be leveraged for both research and operations across a wide range of scales and applica-
tions. The NOAA-NWS OWP anticipates that Version 4.0 of the NWM will use the NextGen Framework beginning in late 2025 or 2026.

7  |  CONCLUDING THOUGHTS

With the NWM in NWS operations since 2016, the hydrologic community has a nationwide platform which will further both operational 
and research interests. The NWM features forecast horizons from 18 h to 30 days, covers the CONUS and nearby regions along with Hawaii, 
Puerto Rico and US Virgin Islands, and soon south-central Alaska. It provides hydrologic output for over 2.7 million stream reaches and land 
surface output on high-resolution 100 m to 1 km grids. The model continues to evolve through version-over-version upgrades, providing pow-
erful guidance to complement the vital forecasts already being produced by the RFCs, and filling in spatial gaps where little to no hydrologic 
information was previously available—a critical advance, as population growth combined with aging infrastructure increases hydrologic vulner-
ability. The model's density of coverage ensures a gap filling, quantifiable increase in the proximity of guidance, with a current CONUS domain-
wide average distance to an NWM output location of less than 975 meters. This supports access not only to relevant NWM streamflow and 
related hydrologic guidance, but to key advances in seamless flood inundation mapping products.

Beyond increases in coverage, the NWM's unique mix of high spatial resolution, multiple forecast horizons, nationwide domain, operational 
robustness and accessible code allow it to serve as focal point for government agencies across the water spectrum, from NOAA to the USGS, 
USACE, EPA, USDA, FEMA, NASA, and the USBR. At the same time, increasing links with academia and private industry are providing the 
foundation for a rich and responsive development environment. Combined with Big Data partnerships and strengthened use of GIS-based 
services to lower data access barriers, the NWM provides information needed to further the NWS mission of protecting lives and property, 
and to support a broad range of other hydrologic applications in ways not before possible.
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APPENDIX A

A.1 | National Water Model analysis configurations
The main baseline analysis and assimilation (AnA) cycle initializes the short- and medium-range forecasts cycles hourly and has a three-hour 
lookback period. This lookback period begins 3 h before the current cycle time, and progresses up to the current cycle time (i.e., the 12Z AnA 
begins at 09Z and ends at 12Z). The benefit of the lookback period is that it enables the model to ingest observation- in addition to forecast-
based precipitation forcing data. This forcing data are drawn preferentially from the Multi-Radar Multi-Sensor (MRMS) gauge-adjusted prod-
uct, with the MRMS radar-only observed precipitation product used if the primary source is unavailable. Short-range Rapid Refresh (RAP) and 
High-Resolution Rapid Refresh (HRRR) forecasts are used in areas or for times where MRMS radar coverage is poor. One-hour RAP and HRRR 
forecasts supply the other meteorological forcing information. Real-time USGS streamflow observations are assimilated into this configuration 
via the nudging approach discussed previously. Taken together, this system produces a real-time snapshot of the current streamflow and gen-
eral hydrologic states across the country which can be used both to initialize National Water Model (NWM) short- and medium-range forecasts 
and as input to various end user applications.

Once per day, this baseline AnA is supplemented by an extended lookback AnA. The 28-h lookback period of this alternate configuration 
allows for the ingestion of higher-quality precipitation data from the National Centers for Environmental Prediction Stage IV precipitation 
dataset. This dataset is a CONUS mosaic of the separate observation-based multisensor precipitation estimator (MPE) grids produced by the 
12 CONUS River Forecast Centers (RFCs) (Kitzmiller et al., 2013). The use of this high-quality product by the Extended AnA increases the ac-
curacy of the resulting hydrologic simulations, and also promotes operational consistency with the RFCs which use MPE precipitation data in 
their operational river forecasting activities. With its 28-h lookback period, this simulation runs from 12Z the previous day, to 16Z the current 
day. Model states from the end of this simulation replace the baseline AnA states valid at that same time, ensuring that once per day there is 
an injection of higher quality states from this independently cycling simulation.

The third CONUS AnA configuration is the Long-Range AnA used to initialize NWM Long-Range forecasts. Executed four times per day 
with a 12 h lookback period, this configuration differs further from the other two CONUS AnA cycles via its use of the simplified approach 
to routing surface water discussed earlier. Configured in this way to reduce execution time, this approach mirrors the physics configuration 
within the NWM Long-Range forecast. The same set of forcing data is used in the Long-Range AnA as in the baseline AnA, with the same set 
of USGS observations assimilated as well.

https://doi.org/10.3390/w12102897
https://doi.org/10.1029/2001JD000659
https://doi.org/10.1029/2011JD016048
https://doi.org/10.1029/2010jd015140
https://doi.org/10.1029/2010jd015140
https://doi.org/10.1175/MWR2895.1
https://doi.org/10.1111/1752-1688.13184

	NOAA's National Water Model: Advancing operational hydrology through continental-­scale modeling
	Abstract
	1|INTRODUCTION
	2|OPERATIONAL MODEL CONFIGURATION
	2.1|Continental United States configurations
	2.2|Hawaii and Puerto Rico/USVI configurations

	3|NWM STRUCTURAL OVERVIEW
	3.1|NWM hydro-­geo fabric
	3.2|Physics processes
	3.2.1|Column land surface physics
	3.2.2|Overland flow formulation
	3.2.3|Saturated subsurface flow formulation
	3.2.4|Baseflow formulation
	3.2.5|Channel flow
	3.2.6|Reservoir accounting

	3.3|Real-­time streamflow DA
	3.4|Meteorological forcing prescription
	3.5|Model parameter specification
	3.6|Calibration and regionalization

	4|NWM OUTPUT
	5|MODEL PERFORMANCE
	5.1|Streamflow verification—Retrospective output
	5.2|Snowpack verification
	5.3|Streamflow verification—Real-­time operational output

	6|ONGOING DEVELOPMENT
	6.1|Operational enhancements
	6.2|Community assessment and development

	7|CONCLUDING THOUGHTS
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST STATEMENT
	FUNDING INFORMATION
	DATA AVAILABILITY STATEMENT

	REFERENCES


