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Abstract We assess the overall watershed system representation via fully coupling a generic reservoir
operation model with a conceptual rainfall-runoff model. The performance of the coupled model is evaluated
comprehensively by examining watershed outflow simulations, model parameter values, and a key internal flux
of the watershed model (here reservoir inflow). Five published generic reservoir operation models are coupled
with a watershed rainfall-runoff model, and results are compared across the coupled models and one additional
model called ResIgnore that ignores reservoir operation. Traditional loosely coupled watershed hydrologic
models (where calibrated inflow is routed through reservoir operation models) are used as baselines to examine
the differences in simulation performance and parameterization obtained from the fully coupled models. We
find that fully coupling the Generic Data-Driven Reservoir Operation Model (GDROM) and the Dynamically
Zoned Target Release (DZTR) reservoir operation models with the rainfall-runoff model obtains robust
simulations of watershed outflow with realistic parameterization, suggesting that they can be reliably integrated
into large-scale hydrological models for simulating streamflow in heavily dammed watersheds. Our results also
show that compared to Reslgnore, the fully coupled watershed models more accurately simulate the entire
distribution of watershed outflow, obtain more realistic values of model parameters, and simulate reservoir
inflow with higher accuracy. Finally, we note that the prediction intervals of watershed outflow obtained from
the GDROM- and DZTR-based fully coupled models consistently envelop observed watershed outflow across
the study watersheds, indicating that GDROM and DZTR can be suitable reservoir components of large-scale
hydrology models.

Plain Language Summary Reservoir operations greatly influence streamflow in heavily dammed
watersheds, and hence incorporating a realistic reservoir component in watershed hydrological models to
simulate the impacts is important. Recent efforts have greatly advanced generic reservoir operation model
development. We couple various generic reservoir operation models with a rainfall-runoff model to develop
watershed hydrological models. We use a comprehensive evaluation method with state-of-the-art metrics to
examine the performance of the coupled watershed models in terms of simulated watershed outflows, model
parameterization, and simulated internal variables. Fully coupled watershed models based on recently
developed reservoir operation models obtain significantly improved representations of the watershed system
(i.e., reservoir operation + natural rainfall-runoff processes) compared to models that ignore reservoir
operations or use simplified representations of reservoirs.

1. Introduction

Reservoirs constructed for irrigation, flood control, water supply, hydropower generation, etc., have had a pro-
nounced effect on river flow regimes and terrestrial hydrology (Ekka et al., 2022; Haddeland et al., 2014; Kar-
esdotter et al., 2022; Poff et al., 1997). Consequently, the development of reservoir operation models that can be
integrated with rainfall-runoff process simulation in hydrologic models has received significant attention (Chen
etal., 2022; Coerver et al., 2018; Dang et al., 2020; Déll et al., 2003; Hanasaki et al., 2006; Haddeland et al., 2006;
Meigh et al., 1999; Solander et al., 2016; Turner, Steyaert, et al., 2021; Van Beek et al., 2011; Wisser et al., 2010;
Yang et al., 2019; Yassin et al., 2019; G. Zhao et al., 2016). Developing a realistic reservoir component for
hydrological models is paramount for hydrologic process simulation accuracy and further for water resources
planning and management. However, the lack of details regarding reservoir operations, especially the impact of
operators' behaviors that are usually intractable, has impeded the development of realistic generic watershed
hydrologic models. In addition, the lack of a transparent easy-to-understand structure and heavy data re-
quirements of certain complex reservoir operation models limit the potential for coupling with rainfall-runoff
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process simulation. Finally, watershed hydrologic models that couple unrealistic reservoir operation models could
end with unrealistic model parametrization and biased simulations of internal fluxes (Dang et al., 2020; Hejazi,
Cai, & Borah, 2008). In this paper, we examine the representation of the overall watershed system (i.e., reservoir
operation + rainfall-runoff processes) obtained by coupling recently developed generic reservoir operation
models with a rainfall-runoff model. The performance of the coupled models is studied in terms of watershed
outflow, watershed model parameters, and a key internal flux of the watershed model (the reservoir inflow
simulated by the rainfall-runoff model applied to the drainage area of the reservoir).

Lack of details on reservoir operation has led to some outstanding modeling issues, such as ignoring the existence
of reservoirs (Abbaspour et al., 2015; De Paiva et al., 2013), assuming no human control on reservoir storage (e.g.,
a scheme implemented in the National Water Model which utilizes level pool routing) (D6l et al., 2003; Gochis
et al., 2020; Meigh et al., 1999), and setting up simplified reservoir operation rules for routing flows through a
reservoir (Hanasaki et al., 2006; Wisser et al., 2010). The simplified approaches for modeling reservoirs range
from defining an empirical linear relationship between reservoir inflow and reservoir release (as in Wisser
et al., 2010) to specifying total releases for the entire year based on storage at the beginning of the year (Hanasaki
et al., 2006). Simplified approaches have found widespread applications in global modeling studies. For example,
studies such as Hanasaki et al. (2008), D6ll et al. (2009), Biemans et al. (2011), Pokhrel et al. (2012), and
Yoshikawa et al. (2014) have adapted the simplified reservoir operation model developed by Hanasaki
et al. (2006) into global hydrological models; similarly, the simple reservoir operation model proposed by Wisser
et al. (2010) has been adopted by Fekete et al. (2010) for modeling global hydrology. Optimization schemes have
also been proposed for simulating reservoir releases and adopted widely (Bierkens et al., 2019; Haddeland
et al., 2006; Van Beek et al., 2011). Unfortunately, “optimized rules” may not directly correspond to real-world
practices and such optimization models may be limited by imperfect objective(s) and missing or incorrect var-
iables and constraints. In general, reservoir operation models, both optimization models and simulation models,
have limited representation of the behaviors and actual operations of reservoir operators (Hejazi, Cai, &
Borah, 2008; Solander et al., 2016). While operators normally follow regulations (usually embedded in the
predesigned reservoir operation rule curve), they have flexibility to use their own judgment and behavior in
response to hydrologic variability, change, and uncertainty associated with reservoir release forecasts. Hence,
reservoir operation models that can justifiably capture reservoir operators' behavior are required for inclusion in
modeling watershed hydrology. In particular, large-scale hydrologic models usually include both rainfall-runoff
processes in a river basin (crossing multiple watersheds) and human interferences such as storage regulation, and
an appropriate reservoir component will be needed for more realistic overall watershed system representation.

A few studies in literature have examined the problems arising from coupling unrealistic reservoir operation
models with rainfall-runoff process simulations (Dang et al., 2020; Hejazi, Cai, & Borah, 2008). Hejazi, Cai, and
Borah (2008) showed that a watershed hydrologic model could end with unreasonable calibrated parameter values
(e.g., curve numbers) that are out of their physical ranges, if human controls on reservoir storage were ignored.
The problem could be mitigated by accounting for the human interferences associated with human regulation of a
reservoir located in the study watershed. Similarly, Dang et al. (2020) calibrated the variable infiltration capacity
(VIC) model to the Upper Mekong basin with and without a reservoir component. They found that the model
trained without reservoirs mimicked dry season releases from hydropower reservoirs through unrealistic model
parameters that increased soil water storage capacity, baseflow and infiltration. These deficits could be resolved
by the inclusion of an explicit reservoir component in hydrological models. In general, ignoring storage regulation
including both physical effect (such as those captured in level pool routing), and human control, can lead to poor
reproduction of the seasonal differences between reservoir inflows and releases for meeting operational demands
such as irrigation, hydroelectricity, water supply or flood control.

Auspiciously, with the growing availability of historical reservoir operation data, it becomes feasible to derive
reservoir operators' behaviors in a region or country via data mining and machine learning methods (Chen
et al., 2022; Giuliani & Herman, 2018; Hejazi, Cai, & Ruddell, 2008; Q. Zhao & Cai, 2020). Recent efforts have
attempted to incorporate reservoir operators' behaviors for developing generic reservoir operation models as a
more realistic component of watershed hydrologic models. In particular, progress has been made to derive
operation rules from observations of reservoir inflow, release, demand, and climate condition for many reservoirs
serving various operational purposes (Chen et al., 2022; Coerver et al., 2018; Turner, Steyaert, et al., 2021; Yang
et al., 2019; Yassin et al., 2019). These efforts recognize the fact that even if rule curves are available for a
reservoir, directly implementing them into a model can ignore expected operational modification introduced by
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reservoir operators (Hejazi, Cai, & Borah, 2008; Solander et al., 2016). Chen et al. (2022) developed the generic
data-driven reservoir operation model (GDROM) which can simulate daily reservoir operation dynamics. They
used a data-driven approach to derive reservoir release rules from long-term daily operational records as a set of
if-then conditions. Thus, GDROM benefits from having a transparent structure and can represent what reservoir
operators actually did in response to intra-year seasonal variations, and inter-year changes in inflow and water
demand. GDROM can also capture potentially different operational strategies used under drought or flooding
conditions (Q. Zhao & Cai, 2020). Chen et al. (2022) successfully applied GDROM to over 450 reservoirs in the
conterminous United States (CONUS). They also provided derived if-then rules for these reservoirs in an online
repository in the form of text files for direct integration with watershed hydrological models (Li et al., 2023a).
Another generic reservoir operations model, named dynamically zoned target release (DZTR) (Yassin
et al., 2019), indirectly accounts for seasonally varying reservoir operators' behavior through model parameters
that are derived from long-term observed records of reservoir storage and release. Yassin et al. (2019) have
applied the DZTR model to 37 global reservoirs with reasonable performance. In addition, Turner, Steyaert,
et al. (2021) derived a generic reservoir operation model called Inferred Storage Target and Release Functions
(ISTARF) for 1,930 reservoirs in the CONUS, and provided model parameters for integrating ISTARF with
hydrological models (Turner, Voisin, et al., 2021).

Compared to many other reservoir models that were developed for individual reservoirs (serving specific
operational purposes such as hydropower, irrigation, flood control, etc.), GDROM, ISTARF, and DZTR models
exhibit a generic and transparent structure describing reservoir operation, which makes it easy to incorporate the
reservoir models into any rainfall-runoff model structure. In addition, many reservoir operation models require
data such as reservoir bathymetry or downstream demands for determining release rules, and incorporating such
models presents data requirement challenges. In contrast, GDROM, ISTARF, and DZTR models have relatively
low and easily available data requirements, as described in the following section. Thus, GDROM, ISTARF, and
DZTR have a strong potential for integration with generic rainfall-runoff process models and ultimately the
development of generic hydrologic models of all spatial scales.

In this paper, we couple generic reservoir operation models like GDROM, ISTARF, and DZTR that have generic,
transparent structures and can represent reservoir operators' behavior with a rainfall-runoff model. We then assess
the overall representation of the watershed system obtained by the coupled watershed models. We also couple
several other generic published reservoir operation models with the same rainfall-runoff model for comparing the
coupled models with various reservoir operation components. A critical technical issue is the model performance
assessment to illustrate the impact of a reservoir model coupled with the rainfall-runoff process on hydrologic
process simulation accuracy. As discussed above, Hejazi, Cai, and Borah (2008) and Dang et al. (2020) proposed
an approach focusing on the effect on model parameterization. Another option proposed by Khatami et al. (2019)
is to examine the simulation performance of modeled internal fluxes of a watershed model, which has been
adopted by previous studies focused on developing water quality models (Apostel et al., 2021; Wallington &
Cai, 2023). We examine the overall watershed system representation comprehensively by studying watershed
outflow simulations, model parameters, and internal fluxes of the watershed models. State-of-the-art model
performance metrics are used to evaluate the coupled models in terms of both simulated watershed outflows and
internal fluxes.

2. Methodology

Our analysis involves coupling a conceptual rainfall-runoff model, called FO3+ here (D. Farmer et al., 2003), with
five generic reservoir operation models for simulating streamflow in watersheds that drain into five reservoirs
located in the CONUS (Section 2.1). We conduct a comprehensive evaluation of the coupled watershed models in
terms of watershed outflow simulations, model parameters, and simulation of internal fluxes (Section 2.2).
Aggregated goodness-of-fit (GoF) metrics and factors such as representation of the distributional properties of
streamflow (Flow duration curves (FDC) and L-moments) are considered when evaluating watershed outflow and
internal fluxes (Section 2.3).

2.1. Coupling Reservoir Operation Models With a Rainfall-Runoff Model

Generic reservoir models—GDROM (Chen et al., 2022), ISTARF (Turner, Steyaert, et al., 2021), DZTR (Yassin
et al., 2019), HANA (Hanasaki et al., 2006), and WISS (Wisser et al., 2010) (Section 2.1.1) are coupled with
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Figure 1. (a) A conceptual diagram showing the watershed system (reservoir + reservoir drainage area) and locations where
FCMs and LCMs are calibrated; (b) the model evaluation technique used to examine the overall watershed system
representation obtained by fully coupling alternative reservoir operation models (WISS, HANA, DZTR, ISTARF, GDROM)
with FO3+. For the FCMs, FO3+4’s parameters are adjusted jointly with the pre-trained reservoir operation models to
maximize KGE g0 and LNSEq 40w thus obtaining the best simulation of watershed outflow. For the LCMs, an “Inflow”
model is first developed by adjusting FO3+’s parameters to maximize KGEy,, and LNSE; ... The calibrated inflow
simulations from the “Inflow” model are then routed through the reservoir operation models. The ResIgnore approach
ignores the existence of reservoirs and directly adjusts FO3+’s parameters to maximize KGEg, o,y and LNSEq50y,-
Watershed outflow simulations, model parameters, and reservoir inflow simulations obtained using all three approaches are
compared.

FO03+ (Section 2.1.2) to simulate daily flows in each watershed. Reservoirs in the coupled model are treated as
nodes, a scheme implemented by G. Zhao et al. (2016). At every time step, the reservoir model receives simulated
flows from FO3+ as inputs. Subsequently, the reservoir model transforms the simulated inflows into reservoir
releases; reservoir storage is updated according to the inflow and releases. Actually, the coupling procedure is
identical to that used by Hanasaki et al. (2006) and Wisser et al. (2010).

Here, we make a distinction between fully coupled models (FCM) and loosely coupled models (LCM)
(Figure 1a). In the context of our study, FCMs are defined as models in which FO3+’s parameters are calibrated
jointly with previously trained reservoir operation models to simulate watershed outflow. For LCMs, which have
been used in most previous studies, reservoir inflow is simulated by FO3+ applied to the drainage area of the
reservoir, and the simulated inflow is routed through reservoir operation models to simulate reservoir release.
Thus, the LCMs conduct data exchange between two independently calibrated models: “Inflow” models (FO3+,
calibrated to reservoir inflow) and reservoir operation models. For the watersheds we analyze, the reservoirs are
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Figure 2. Watersheds modeled in our analysis. A reservoir is located at the outlet of each watershed. Hence, reservoir outflow
is the same as watershed outflow in our analysis. Table 1 includes additional reservoir related details.

located at the watershed outlet. Hence, the simulated reservoir releases are the simulated watershed outflows from
the coupled watershed model (Figure 2).

In this study, we use LCMs as baselines to evaluate differences in simulation performance and parameterization
arising from the use of FCMs. We expect a trade-off between the LCMs and FCMs in terms of watershed outflow
simulations and model parameterization. As the “Inflow” models used for LCMs are calibrated to the drainage
area upstream of a reservoir, they are unaffected by reservoir operation, and thus obtain relatively realistic pa-
rameters representing the “natural condition” (i.e., without storage regulation). On the other hand, as the FCMs
are calibrated using watershed outflow, they may perform better in simulating watershed outflows than LCMs.
However, the parameters of FCMs and LCMs are likely different as the former are calibrated with watershed
outflow and the latter are calibrated using reservoir inflow. We observe that FCMs and LCMs should not
demonstrate extremely different parameterization, as this indicates unrealistic trade-offs made by FCMs to
achieve improved watershed outflow simulations. Ideally, FCMs should improve watershed outflow simulations
and demonstrate a parameterization resembling that obtained by the “Inflow” models, which are part of the
LCMs. We argue that, in general, such a trade-off should be addressed in calibrated large-scale hydrological
models that incorporate human interferences (especially storage regulation) as an internal component along with
natural hydrologic processes.

2.1.1. Generic Reservoir Operation Models

GDROM derives reservoir release rules from operational records as a function of inflow, current storage, palmer
drought severity index (PDSI) and the day of the year (DOY) (Chen et al., 2022). Its predictors such as DOY and
PDSI implicitly account for factors such as seasonality in reservoir operation, and the effects of dryness and
wetness conditions on reservoir operation strategies. Being derived from operational records, GDROM also
incorporates reservoir operators' experience regarding decisions taken under specific inflow, storage, dryness, and
wetness conditions at different times of the year. For a particular reservoir, GDROM provides a set of regression
trees and a classification tree. The regression trees are termed operation modules. Each operation module predicts
reservoir release based on specific inflow and storage conditions. The operation module to be applied for release
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prediction is selected using the classification tree based on inflow, storage, PDSI and DOY. As decision trees have
a transparent structure, GDROM also does not suffer from the lack of model interpretability which are issues
faced by other data-driven models such as neural networks.

Turner, Steyaert, et al. (2021) developed the ISTARF model by proposing that reservoir storage targets and
releases can be modeled using harmonic functions. They fitted harmonic functions to observed reservoir storage
records for defining a normal operating range (NOR) of storage for each reservoir, which varies weekly. For
conditions where the reservoir storage falls within the NOR, Turner, Steyaert, et al. (2021) predicted a weekly
value of reservoir release by fitting a harmonic function to observed reservoir releases. They also developed a
linear adjustment equation to adjust the predicted weekly release depending on the actual reservoir inflow and
current storage. Turner, Steyaert, et al. (2021) trained ISTARF for 595 data-rich reservoirs and extrapolated them
to 1,335 data-scare reservoirs in the CONUS, creating a data set of 1,930 reservoirs with ready-to-apply inferred
policies (Turner, Voisin, et al., 2021).

The generic DZTR model developed by Yassin et al. (2019) is based on the premise of dividing the reservoir
storage into various operational zones based on long-term inflow and release data. Reservoir release is then
related to reservoir storage using piecewise-linear functions for each of the defined zones. Yassin et al. (2019)
improved upon promising previous models that were based on the same premise but had data requirement
limitations or were applicable to reservoirs serving only specific operational purposes. For example, a previous
model developed by G. Zhao et al. (2016) required bathymetric data to define operational zones and water demand
data to determine releases; another model proposed by Dang et al. (2020) was applicable to hydropower purpose
only. To address such issues, Yassin et al. (2019) proposed a generalized algorithm to derive monthly varying
operational zones and target releases for each zone from long-term observed data of reservoir storage and releases.
By virtue of deriving model parameters (operation zones and target releases) from operational records, the DZTR
model indirectly accounts for reservoir operators' behaviors responding to various inflow and climate conditions.
Yassin et al. (2019) also developed a version of DZTR with optimized model parameters, however, we adopt the
generalized DZTR model in our analysis due to lower data requirements and a transparent structure. In this study,
we determine the model parameters for the DZTR model, that is, operational zones and release targets for each
month, using data for the same period used for training GDROM models.

The Hanasaki et al. (2006) model is generic and only requires information regarding reservoir storage capacity
and inflow to simulate releases for reservoirs serving primarily non-irrigation purposes (hydropower, flood
control, etc.). We adopt a modified version of the model proposed by Hanasaki et al. (2008), HANA henceforth.
The HANA model determines total release in an operational year depending on the storage level at the beginning
of that operational year, that is, reservoir storage in the first month when mean monthly inflow falls below mean
annual inflow. If reservoir storage at the beginning of an operational year is greater than normal, releases are
increased throughout the year and vice versa. The target reservoir release suggested in the HANA model for non-
irrigation reservoirs is the mean annual inflow. This target release is adjusted depending on storage at the
beginning of the operational year. For reservoirs with small storage capacities (Section 3), additional adjustments
to the target release are made depending on actual daily inflow into the reservoir.

The Wisser et al. (2010) model, referred to as WISS in our analysis, proposes a piece-wise linear relationship
between reservoir release and reservoir inflow applicable to all reservoirs. The constants of the equation were
found empirically using operational data of 30 global reservoirs. Note that reservoir storage was not used as a
predictor for reservoir release in the WISS model. We observe that the piece-wise relationship suggested by WISS
would predict a reservoir release equal to the mean annual reservoir inflow if current reservoir inflow is much
smaller than the mean annual inflow. Correspondingly, for large reservoirs, a constant release equaling the mean
annual inflow may be simulated by WISS during the dry season.

We also consider a case, defined as ‘“Reslgnore” in this study, that ignores reservoir operation and directly applies
FO03+ for simulating watershed outflow.

We note that the total reservoir release may include diversions for use in addition to streamflow releases to the
downstream of the reservoir. We notice that not explicitly accounting for the diversions when training FCMs
could result in systematic errors in storage simulation at each timestep (via mass balance) and their propagation
crossing times. As watershed outflow simulations from the FCMs depend on simulated reservoir storage, sys-
tematic errors in storage simulations would lead to the accumulation of large biases in simulated watershed
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outflow. Hence, to account for diversions, we develop a two-step approach. In the first step, GDROM, ISTAREF,
and DZTR are used to identify a relationship between observed current conditions (storage, inflow, PDSI, DOY)
and observed river releases. Similarly, in the second step a relationship between observed current conditions and
observed total releases is determined. In the coupling, the relationship found from the first step is used to simulate
river streamflow downstream of a reservoir depending on current conditions; while the relationship obtained from
the second step is used to simulate the total reservoir release, which is used for updating reservoir storage for the
next time step. We recognize that the above “two-step” approach can only be applied if data on diversions
occurring from a reservoir are available. The WISS model directly predicts river release and does not require
storage as an input for predicting release. Hence, no modifications are required for applying the WISS model to
reservoirs where total release exceeds river release. On the other hand, the widely applied HANA model that was
also developed to simulate river release requires reservoir storage as an input for predicting reservoir release.
Unfortunately, the HANA model is theoretical, with the theoretical target river release being the mean annual
inflow for non-irrigation reservoirs. The HANA model may be extended to determine theoretical diversions from
the reservoir; however, this is beyond the scope of our paper. Hence, the HANA model is applied without any
modifications following past literature that performs global hydrological modeling using the HANA model. We
note that taking this approach can impact reservoir storage simulations, however, in our case, the issue only
impacts one of the study areas we examine - Buffalo Bill Reservoir, Wyoming (Section 3).

2.1.2. Rainfall-Runoff Model

Our analysis adopts FO3+, a modified form of the simple conceptual rainfall-runoff model developed by D.
Farmer et al. (2003). The modifications include a multiple bucket formulation based on the Xinanjiang distri-
bution introduced by Bai et al. (2009) to represent spatial variations in runoff generation and additional pa-
rameters to represent plant phenology suggested by Sawicz (2013). FO3+ has 12 parameters spread across four
modules representing snow, vegetation, near surface soil moisture accounting and deep recharge and routing. The
snow module includes the parameters degree day factor (DDF), threshold temperature for snow formation (TTH),
and base temperature for snow melt (TB). The vegetation module parameters are fractional cover of deep-rooted
vegetation (M), and minimum and maximum leaf area index (LAImin and LAImax). The near surface soil
moisture accounting module has the parameters depth of soil store (SB), shape factor (B), and field capacity
threshold (FC). The soil storage is divided into saturated and unsaturated storages based on the parameter FC. The
deep recharge and routing module comprises of the parameters deep recharge coefficient (KD) which controls the
rate of percolation to the deep groundwater store from the saturated store, the recession coefficient for saturated
soil (ASS) which controls the rate of subsurface runoff generation from the saturated store, and the baseflow
recession coefficient (ABF) which controls the rate of drainage from the deep groundwater store as base flow. A
detailed description of the FO34+ model can be found in the supplementary section of Vora and Singh (2022).

The simple and parsimonious structure of FO3+ allows easy examination of parameter differences arising from
the use of different reservoir operation models for coupled model development. FO3+ can be easily applied to
multiple sub-watersheds to simulate flows in a large watershed with reservoir impacts. It is also benefitted from
low data and computational requirements. Any other rainfall-runoff model may also be used to develop a coupled
model and reproduce our results. A priori parameter value ranges for parameters DDF, TTH, TB, LAImax,
LAImin, B, and KD of FO3+ are obtained from literature (Bai et al., 2009; D. Farmer et al., 2003). Feasible
parameter value ranges for M, FC, SB, ASS, and ABF are derived from observed land cover characteristics, soil
properties, and recession curve analysis using the procedure described in Singh et al. (2014).

2.2. Evaluation of System Representation

Our comprehensive model performance evaluation method is focused on examining the overall representation of
the watershed system (i.e., reservoir + rainfall-runoff components) obtained by fully coupling reservoir operation
models with FO3+. We consider three aspects to evaluate the system representation: watershed outflow, model
parameters, and internal fluxes. The system representation evaluation is based on calibrated models, including
FCMs, LCMs and ResIngore. We use the NSGA-II multi-objective optimization algorithm with the Kling Gupta
Efficiency (KGE) (Gupta et al., 2009) and log-transformed Nash Sutcliffe Efficiency (LNSE) (Nash & Sut-
cliffe, 1970) objective functions for model calibration. The decision variables of the optimization algorithm are
the 12 parameters of FO3+4 (Section 2.1.2). Using trial-and-error, a population size of 20 is selected and evolved
over 250 generations to obtain Pareto-optimal solutions; the configuration resulted in consistent Pareto-optimal
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solutions over different runs. The optimization algorithm is run five times with different random seeds to account
for effects of randomness in the initial population. Pareto optimal solutions that produce streamflow simulations
better than the mean of the observed streamflow at every time step are considered acceptable and selected for
further analysis. Knoben et al. (2019) found that using the mean flow as a benchmark yields a KGE value of —0.41
and an LNSE value of 0. Hence, we consider that Pareto optimal solutions with KGE > —0.41 and LNSE > 0 are
acceptable. Note that KGE and LNSE values are calculated using daily observed and simulated streamflows. The
GoF estimators KGE and LNSE are selected to capture high and low flow simulation performance, respectively,
following Dang et al. (2020) who also considered high flow and low flow objectives for FCM development.
Reasonable simulations of both high and low flows are important for riverine ecosystems downstream of a
reservoir (Hoang et al., 2016; Poff et al., 1997). The KGE and LNSE estimators are selected also due to their lower
variability across samples than other popular estimators such as the classical Nash Sutcliffe Efficiency (NSE)
(Clark et al., 2021; Lamontagne et al., 2020). Finally, including LNSE for model calibration may also address the
issues of heteroskedasticity in model residuals to some extent (Kuczera, 1983; Mclnerney et al., 2017).

For FCM and Reslgnore, the model parameters are optimized to maximize watershed outflow GoF estimators
(i.e., KGE 10w and LNSEq10w)- For LCM, the “Inflow” model is first calibrated by maximizing the reservoir
inflow GoF estimators (i.e., KGE, . and LNSE; 4,.) (Figure 1b). Calibrated inflow simulations are then routed
through trained reservoir models. Note that the reservoir model parameters remain fixed in both FCM and LCM
calibrations. Correspondingly, the FCM calibration procedure determines FO34’s parameters that work best in
conjunction with trained reservoir operation models.

Our evaluation of the watershed system begins with the examination of the system output, that is, watershed
outflow simulations. Ideally, the FCMs should achieve better simulations of watershed outflow than the LCMs in
both calibration and validation periods. Simulation performance of watershed outflow is studied in terms of
aggregated GoF estimators (i.e., KGEq 0w and LNSEq s10w)> as Well as the ability to represent the distributional
properties of observed streamflow through errors in estimated L-moment ratios and the FDC (Section 2.3).

We use kernel density estimation to visualize the acceptable Pareto optimal FCM, LCM, and Reslgnore pa-
rameters. The calibrated parameters are compared to understand the differences in model parameterization
occurring with the use of a particular modeling approach. In particular, we note that ignoring reservoir operation,
as with Reslgnore, introduces structural errors in the watershed model leading to parameter values that deviate
from their true natural values (Dang et al., 2020; Hejazi, Cai, & Borah, 2008). We hypothesize that resolving
structural errors by adding reservoir operation models for FCM development results in improved watershed
model parameterization compared to Reslgnore; moreover as mentioned earlier, ideally, FCMs should have a
parameterization resembling that obtained by the “Inflow” models, which are part of the LCMs. These hypotheses
will be tested and validated by results of this study.

In addition, the effects of differences in parametrization arising from the different modeling choices can also be
explored by studying internal fluxes of the watershed model. A convenient internal flux in our framework is the
inflow to the reservoir. We thus examine the aggregated GoF estimators associated with reservoir inflow and
metrics quantifying the distributional properties of reservoir inflow.

2.3. Evaluation of Model Ability to Represent Streamflow Distributional Properties

We examine the ability of the coupled watershed models to represent the distributional properties of observed
streamflow. This analysis includes examining the watershed model's performance in reproducing the L-moments
and FDC of observed streamflow.

We recognize that even after calibration, all hydrological models have residual errors, that is, differences in the
observed and simulated responses. Consequently, during application, simulated responses from calibrated hy-
drological models have uncertainties due to unknown model errors (W. H. Farmer & Vogel, 2016). Application of
coupled models for water management downstream of a reservoir warrants the addition of model errors back to
the simulation by making a suitable assumption regarding the distribution of model errors (McInerney et al., 2017;
Shabestanipour et al., 2023). Ignoring model errors can lead to unrealistic predictions of hydrologic extremes, and
hence, for operational purposes, using a deterministic model (without adding model errors back to the simulation)
is not recommended (W. H. Farmer & Vogel, 2016). We use a post-processing approach to add model error back
to deterministic simulations and generate stochastic simulations of watershed outflow corresponding to each
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acceptable Pareto-optimal parameter set. The post-processing approach is based on the procedure developed by
Shabestanipour et al. (2023) with only one difference; we assume that the log-transformed and differenced model
errors have a Gaussian distribution with zero mean and constant variance. A detailed description of the post-
processing approach we use is included in Supporting Information S1 Text S1.

To examine model performance in reproducing the L-moment ratios of observed streamflow, we compare the L-
moment ratios of each streamflow simulation with the L-moment ratios of the observed streamflow (as simulated
L-moment ratio minus observed L-moment ratio). The median difference in the observed and simulated L-
moment ratios across all simulations is reported.

The FDC presents a relationship between specific values of discharge and the probability with which those
discharge values may be equaled or exceeded, that is, the exceedance probability. Deterministic streamflow
simulations are used to obtain the 50% confidence interval (75th minus 25th percentile of simulated flows) and
95% confidence interval (97.5th minus 2.5th percentile of simulated flows) of the FDC. Similarly, stochastic
streamflow simulations are used to obtain the 50% and 95% prediction intervals of the FDC. We examine the
extent to which the observed FDC is enveloped by the prediction or confidence intervals of the simulated FDCs
obtained from various models, to understand whether using a specific modeling approach is associated with errors
in the simulated flow at specific exceedance probabilities.

3. Study Watersheds and Data Sources

We simulate the hydrology of selected watersheds draining into five reservoirs in the CONUS - Folsom,
Fontenelle, Pine Flat, Wappapello, and Buffalo Bill (Figure 2). The selected reservoirs differ in size and serve a
range of operational purposes so that results may be applicable for large-scale hydrologic modeling (Table 1).
Reservoir sizes are defined in relation to the mean total annual inflow into the reservoirs following Hanasaki
et al. (2006). Reservoirs with storage capacities (SC) that are smaller than half of the mean total annual inflow

(Imean) are termed small reservoirs. For example, the ratio of SC to I for Folsom reservoir is 0.33 (i.e.,

mean
<0.5), and hence, it is termed a small reservoir. We include two small reservoirs and three large reservoirs in
our analysis (Table 1). Literature suggests that releases from reservoirs with smaller values of SC/I,,.,, have a
greater dependence on inflow in comparison to those with large values of SC/I.,, (>0.5). Releases from larger
reservoirs are more dependent on reservoir storage (Coerver et al., 2018; Hanasaki et al., 2006; Yassin

et al., 2019).

The climate data required for modeling, that is, daily precipitation, and daily maximum and minimum
temperatures are obtained from the Global Historical Climatology Network daily (GHCNd) database. The
Hargreaves method (Hargreaves & Samani, 1982) is used to estimate daily potential evapotranspiration.
Climate data for all gauges operational between 10 October 1979 and 30 September 2021 within each
watershed are downloaded to determine the period and gauges with maximum data availability. Geometric
averaging across selected gauges is used to obtain lumped values of temperature and precipitation to be
supplied as inputs to FO3+. When unavoidable, we fill missing temperature data using linear interpolation for
periods shorter than 7 days. Longer periods are filled using long-term average values (10 October 1979-30
September 2021) for that gauge for that period. We fill missing precipitation data using recorded rainfall at
temporarily operational neighboring precipitation gauges. Observed daily flows are obtained from the United
States Geological Survey (USGS) National Water Information System (NWIS). In case of unavailable
streamflow gauges for measuring inflow into a reservoir, we use approximated inflow determined using the
water balance equation. Li et al. (2023a) share information on approximated inflow along with GDROM
models using the HydroShare platform developed by the Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI). Information on the extent of vegetation coverage and soil data for
defining a priori ranges of F03+4 parameters is obtained from the USGS National Land Cover Database
(NLCD) and the United State Department of Agriculture (USDA) Soil Survey Geographic Database
(SSURGO), respectively.

4. Results

Here we examine the overall representation of a watershed system obtained by coupling reservoir operation
models with a rainfall-runoff model; we compare the results obtained by using different reservoir operation
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Table 1
Data on Selected Reservoirs and Watersheds

Reservoir name Operational purpose SC (Acre-feet) SC/,ean Calibration period Validation period

a) Folsom, California IRR (ELE, WSP, FCON) 970,487 0.33 1 Oct 1999-30 Sept 2007 1 Oct 2010-30 Sept 2019
b) Fontenelle, Wyoming ELE (WSP) 350,698 0.35 1 Oct 1993-30 Sept 2001 1 Oct 2012-30 Sept 2019
c) Wappapello, Missouri FCON 758,643 0.52 1 Oct 2007-30 Sept 2012 1 Oct 2012-30 Sept 2015
d) Pine Flat, California FCON (IRR, ELE) 998,852 0.60 1 Oct 2011-30 Sept 2018 1 Oct 2003-30 Sept 2010
e) Buffalo Bill, Wyoming ELE (IRR, WSP) 646,647 0.75 1 Oct 1991-30 Sept 1999 1 Oct 2000-30 Sept 2008

Note. Reservoirs considered are sorted in increasing order of size as defined by SC/I

For reservoirs serving multiple operational purposes, secondary operational

mean*

purposes are mentioned in brackets. FCON: Flood control; ELE: Hydroelectricity; IRR: Irrigation; WSP: Water supply.

models to build watershed models via two calibration approaches (FCM and LCM) for five watersheds flowing to
reservoirs of different sizes.

4.1. Simulation Performance of Watershed Outflow

Examining the GoF estimators KGE 0 and LNSEq 0w 10 the calibration period, we note that the FCMs
outperform the LCMs in simulating watershed outflow for all watersheds using any reservoir operation model
(Figure S1 in Supporting Information S1). Higher values of KGEq 10w and LNSE 0y are noted from the FCMs
than the LCMs for all watersheds, irrespective of which reservoir operation model is used. Moreover, the sim-
ulations of watershed outflow from the FCMs result in L-moment ratios that are closer to the observed values than
those from the LCMs (Figure S2 in Supporting Information S1). This result, however, is expected as the FCMs are
designed to achieve the best simulation of watershed outflow (by maximizing KGEq 0w and LNSEq 0., in the
calibration period. To indicate truly improved watershed outflow simulations from FCMs, higher values of the
GoF estimators in both calibration and validation periods are necessary; higher values of GoF from FCMs than
LCMs only in the calibration period can be indicative of unrealistic parameterization of the FCMs.

For the validation period, we observe a performance of the FCMs that is more dependent on reservoir operation
models than the calibration period. We notice that GDROM- and DZTR-based FCMs obtain watershed outflow
simulations that are comparable, if not better than LCMs (Figure 3). For example, the median KGE 4, from
the GDROM-based FCM for the Folsom reservoir watershed is 0.72, which is much higher than 0.60 from the
LCM. On the other hand, comparable performance is seen for the Pine Flat reservoir watershed (median
KGEgufiow = 0.80 for both the GDROM-based FCM and LCM). Similarly, the DZTR-based FCM of the
Fontenelle reservoir watershed achieves a higher median KGEq .. Value of 0.69, compared to 0.59 from the
LCM. Comparable performance is also noted for the DZTR-based models of the Pine Flat reservoir watershed
(median KGEg 0w = 0.75 from the FCM and median KGEg,,,, = 0.80 from the LCM). GDROM-based
FCMs and LCMs also obtain comparable values of LNSEq, 0w for all the watersheds, though slightly
improved median LNSEg .., Values from the FCMs are observed for three watersheds: Fontenelle, Pine Flat
and Buffalo Bill. We observe that the GDROM-based FCMs obtain either equal or better median KGEq 10w
values than the DZTR-based FCMs for all the watersheds we analyzed. Similarly, except for the Pine Flat
reservoir watershed, GDROM-based FCMs either perform as well as or better than DZTR-based FCMs in terms
of LNSEq1ow- GDROM-based FCMs outperform DZTR-based LCMs particularly for watersheds with smaller
reservoirs (i.e., Folsom and Fontenelle) (Figure 3).

The ISTARF-based FCMs of the Wappapello and Pine Flat reservoir watersheds show higher values of
KGEg 10w and LNSEq 510w than the LCM alternatives. It is notable that the GDROM- and DZTR-based coupled
models (both LCM and FCM) significantly outperform the ISTARF-based FCM of the Pine Flat reservoir
watershed. Although the WISS-based FCMs outperform the LCMs in terms of median KGEg, 0 and
LNSEq 0w for Wappapello, Pine Flat, and Buffalo Bill reservoir watersheds, the overall performance of the
WISS-based models is poor with negative values of LNSE 0y for all the study watersheds in both FCMs and
LCMs (Figure 3). The HANA-based models result in negative LNSE 0 Values for watersheds that drain into
reservoirs with SC/I .., > 0.5.
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Figure 3. Validation period boxplots of KGEg 0 and LNSEq 0 (columns) obtained using acceptable Pareto-optimal
parameter sets to simulate watershed outflow for different watersheds (rows). Each reservoir operation model (x-axis) is used
to construct an FCM and an LCM; hence, two boxplots are plotted for each reservoir operation model. The boxplot on the left
with the gray border corresponds to LCM results, while the boxplot on the right with the black border shows FCM results. A
single boxplot with a gray border (i.e., LCM) is shown if none of the FCM Pareto optimal parameter sets yield
KGEgyfiow > —0.41 and LNSE 1, > 0 in the calibration period (e.g., WISS and ISTARF for Folsom reservoir). ResIgnore
results also have a single boxplot. No boxplot is shown corresponding to HANA for the Folsom reservoir watershed, as
HANA cannot be applied to irrigation reservoir without additional data.

Examining the ability of coupled watershed models to capture the distributional properties of watershed outflow
during the validation period shows that GDROM- and DZTR-based FCMs demonstrate lower errors in the es-
timates of L-moment ratios than corresponding LCMs. Moreover, the GDROM-, DZTR- and ISTARF-based
models (both FCM and LCM) demonstrate lower errors in the estimates of L-moment ratios than those ob-
tained from the HANA- and WISS-based coupled models, emphasizing the significance of using reservoir
operation models that can capture operator behavior. In addition, significant errors in the L4 moment estimates are
observed for the flood control reservoirs Wappapello and Pine Flat for all watersheds (for FCM and LCM). We
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Figure 4. Median absolute percentage errors in the estimates of all four L-moment ratios (x-axis) from stochastic outflow
simulations obtained using LCMs (left column) and FCMs (right column) based on different reservoir operation models
(rows) in the validation period. ResIgnore presents the case where reservoir operation is ignored for watershed model
development. Only acceptable Pareto optimal parameter sets are used to generate stochastic outflow simulations; tiles are
grayed if none of the FCM Pareto optimal parameter sets yield KGEq 1y, > —0.41 and LNSE, 1., > 0 in the calibration
period. The y-axis corresponds to different reservoirs within each row. Lower errors correspond to more intense green shades
of the tiles. No tiles shown for Folsom reservoir using the HANA reservoir operation model, as the HANA model cannot be
applied to irrigation reservoirs without additional data.

attribute these errors in part to errors in the watershed outflow simulations and the procedure used to generate
stochastic streamflow simulations, as described later in this section.

The results also show clear advantages of including a reservoir component in the watershed model; the GDROM-,
DZTR- and ISTARF-based FCMs show lower errors in the estimates of the L-moment ratios than the ResIgnore
models, especially for the Fontenelle and Pine Flat reservoir watersheds (Figure 4). The WISS- and HANA-based
FCMs also obtain better estimates of the L-moment ratios than the ResIgnore models for the Fontenelle reservoir
watershed. The large errors in the estimates of the L-moment ratios from the ResIgnore models suggests that
humans alter streamflow through reservoir operations to the extent that a rainfall-runoff model that ignores
reservoir operation cannot accurately simulate the entire distribution of observed streamflow. Examining the
simulated deterministic FDCs of watershed outflow from the ResIgnore models confirms this; the ResIgnore
models show large errors at multiple exceedance probabilities representing low, intermediate, and high flows
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(Figures S3—S7 in Supporting Information S1). Furthermore, the stochastic FDCs of watershed outflow simulated
by the Reslgnore models show extremely wide prediction intervals for Fontenelle, Pine Flat, and Buffalo Bill
reservoirs, indicating that the structural error of ignoring reservoir operation generates simulations that are un-
suitable for operational use (Figures S8-S12 in Supporting Information S1).

4.1.1. Watershed Outflow Flow Duration Curves

Examining validation period FDCs and hydrographs obtained using the different reservoir operation models
reveals interesting insights regarding reservoir operation model functioning (Figures S3—S17 in Supporting In-
formation S1). Our results show that the deterministic FDCs simulated by the WISS and HANA models for
relatively larger reservoirs (Wappapello, Pine Flat, and Buffalo Bill) do not envelope large segments of the
observed FDCs (Figures S5-S7 in Supporting Information S1). For large reservoirs, the WISS and HANA models
tend to predict a constant average outflow with negligible variations resulting in large underpredictions at lower
exceedance probabilities (<40%) (Figures S5-S7 and S15-S17 in Supporting Information S1). Large over-
predictions are seen at higher exceedance probabilities from the WISS and HANA models of Pine Flat reservoir
(Figure S6 in Supporting Information S1). For Wappapello reservoir, large underpredictions are noted even at
higher exceedance probabilities (Figure S5 in Supporting Information S1). Stochastic simulations of HANA-
based watershed outflows for Wappapello, Pine Flat, and Buffalo Bill reservoirs have wide prediction in-
tervals as the error model adds large random errors to compensate for overall poor simulations (Figures S10-S12
in Supporting Information S1). Similarly, wide prediction intervals are also observed for WISS-based watershed
outflows for the Pine Flat reservoir (Figure S11 in Supporting Information S1). Poor stochastic simulations of
watershed outflow from WISS- and HANA-based models also explain the large errors in estimated L4 moments
noted for Wappapello and Pine Flat reservoir watershed in Figure 4.

For the ISTARF model, the deterministic FDCs tend to demonstrate errors for low flows over the 75% exceedance
probability, and high flows below the 5% exceedance probability (Figures S3—S7 in Supporting Information S1).
A thresholding behavior is noted in the outflow FDCs for ISTARF, where an almost constant value of watershed
outflow is simulated above 75% and below 5% exceedance probabilities. Large errors in the overall outflow FDC
are noted for the ISTARF-based LCMs of the Folsom and Buffalo Bill reservoir watersheds (Figures S3 and S7 in
Supporting Information S1). This is consistent with the poor LNSEq . Values obtained using the ISTARF
model for these reservoirs (Figure 3 and Figure S1 in Supporting Information S1). Using stochastic simulations to
generate FDC prediction intervals for ISTARF-based model simulations removes the thresholding behavior for
all reservoirs, however, the prediction intervals of the simulated stochastic FDCs only envelop the observed FDC
reasonably for Folsom and Fontenelle reservoirs (Figures S8-S12 in Supporting Information S1). This explains
the large errors in the L4 moment estimates as shown in Figure 4 for Wappapello and Pine Flat reservoirs.

The DZTR-based models reproduce watershed outflow reasonably for all watersheds; however, we observe a
pattern of minor but consistent errors in the deterministic FDCs simulated by those models (Figures S3—-S7 in
Supporting Information S1). The ranges of exceedance probability showing errors vary by watershed. For
example, for the Folsom reservoir watershed, slight overpredictions of watershed outflow are observed from the
DZTR-based FCM above the 50% exceedance probability. Similarly, minor but consistent underpredictions are
noted from the DZTR-based FCM of the Fontenelle reservoir watershed above the 50% exceedance probability.
For the Wappapello reservoir watershed, slight overpredictions are noted between the 25%—75% exceedance
probabilities, and slight underpredictions are seen above the 75% exceedance probability. Minor errors are also
noted from the DZTR-based FCM of the Pine Flat reservoir watershed outside the 40%—90% exceedance
probability range. Finally, for Buffalo Bill reservoir, the deterministic watershed outflow FDC from the DZTR-
based FCM shows underpredictions beyond the 50% exceedance probability. The minor but consistent errors
from DZTR-based FCMs explain the lower KGEq 0w a0d LNSEq 510w Values those models achieve compared
to GDROM-based FCMs (Figure 3).

The GDROM-based models tend to reproduce the high and intermediate flows reasonably across all watersheds.
However, low flow simulations (above the 75% exceedance probability) demonstrate some errors (Figures S3—-S7
in Supporting Information S1). A thresholding behavior like that noted for ISTARF is also seen with GDROM;
however, the constant average release simulated by GDROM above the 75% exceedance probability is close to the
observed mean of low flows. This explains the comparatively high LNSE s Values obtained from GDROM
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compared to ISTARF, despite a similar thresholding behavior in low flow simulations. Like ISTARF, adding
model residuals back using stochastic simulations for GDROM removes the thresholding behavior.

Our procedure for generating stochastic streamflow simulations assumes that model error is identically distrib-
uted over time, which can lead to overprediction of peaks as the error model compensates for poor low flow
simulations. We associate the assumption of identically distributed model error with errors in the L4 moments of
watershed outflow from GDROM- and DZTR-based models of the Wappapello and Pine Flat reservoir water-
sheds. A more sophisticated approach for generating stochastic simulations that may explicitly account for the
heteroskedasticity of model error should lead to better L4 moment estimates; however, this is beyond the scope of
our study. Overall, the prediction intervals of the stochastic FDCs obtained from the GDROM- and DZTR-based
models tend to consistently envelope the observed outflow FDC for most exceedance probabilities (Figures S8—
S12 in Supporting Information S1). Hence, the GDROM and DZTR models may be suitable for operational use in
hydrology models in their current form.

4.2. Parameterization of the Watershed Models

We compare acceptable Pareto optimal parameters of the watershed models to understand differences arising
from the use of different reservoir operation models for developing FCMs (Figure 5 and Figures S18-S21 in
Supporting Information S1). We observe that there are study area dependent differences in the parameters which
are affected when using the FCMs and ResIgnore models. For example, FCMs developed for Pine Flat reservoir
show deviations in parameters of the near surface soil moisture accounting module (SB, FC) from those obtained
by calibrating FO3+ to natural reservoir inflow (i.e., the “Inflow” model part of LCM) (Figure 5). On the other
hand, parameters in the deep recharge and routing module (KD, ASS, ABF) demonstrate differences from those
obtained by the “Inflow” model for FCMs of the Wappapello and Buffalo Bill reservoir watersheds (Figures S20
and S21 in Supporting Information S1). The extent of differences in parameters is found to depend on the
reservoir operation model used for FCM development. For example, the GDROM-based FCM of the Pine Flat
reservoir watershed shows smaller deviations in the SB and FC parameters compared to FCMs based on other
reservoir operation models (Figure 5). Values of the ABF parameter obtained using the GDROM-based FCM for
the Pine Flat reservoir watershed are also the closest to those obtained from the “Inflow” model which calibrates
F03+ to reservoir inflow.

For the Folsom reservoir watershed, ignoring reservoir operation results in a model parameterization that mimics
reservoir storage by increasing moisture storage across the watershed in various forms including snowpack, near
surface soil moisture, and deep groundwater storage (Figure S18 in Supporting Information S1). TTH shows an
increase compared to the natural state (i.e., “Inflow” model) when using ResIgnore resulting in greater snowpack
accumulation because snowfall is simulated at warmer temperatures. ResIgnore also increases SB resulting in
greater soil moisture storage capacity. Under Reslgnore, a larger portion of the precipitation reaching the soil
surface enters the saturated soil moisture store and subsequently the deep groundwater store due to a reduction in
FC; a reduction in FC reduces the moisture holding capacity of the unsaturated soil moisture store. Abstractions
from the saturated store occur at slower rates under ResIgnore due to reduced ASS. The DZTR- and GDROM-
based FCMs improve the watershed model parameterization in terms of FC and KD, indicating improvements
achieved by the inclusion of a reservoir operation model. The DZTR-based FCM also obtains ASS values that are
within ranges of those obtained by the “Inflow” model.

The Reslgnore model greatly reduces ABF for the Fontenelle reservoir watershed, reducing the rate of drainage
from the deep groundwater store (Figure S19 in Supporting Information S1). All the FCMs obtain an ABF value
closer to that obtained under natural conditions compared to ResIgnore. However, in general, the FCMs increase
the value of FC. The DZTR-, WISS-, and ISTARF-based FCMs also show reduced values of KD compared to the
natural state. A reduction in KD reduces the rate at which the deep groundwater store is recharged via drainage
from the saturated soil moisture store. The FC values obtained using the GDROM-based FCM are closest to those
obtained under natural conditions. The GDROM- and HANA-based FCMs also obtain KD values close to those
obtained by calibrating FO3+ to reservoir inflow.

For the Wappapello reservoir watershed, the Reslgnore model greatly increases KD and ABF (Figure S20 in
Supporting Information S1). The ResIgnore model also demonstrates a large reduction in B compared to the natural
state indicating differences introduced by Reslgnore in the near surface soil moisture accounting module. The
WISS-, DZTR- and GDROM-based FCMs bring ABF values within natural ranges, although reductions in ABF
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Figure 5. Visualizations of acceptable Pareto-optimal parameters (with KGE > —0.41; LNSE > 0) of watershed models
developed for the Pine Flat reservoir watershed. Each grid corresponds to one of the 12 calibrated model parameters. In each
grid, the y-axis states the name of the reservoir operation model used for FCM development. ResIgnore shows parameters
found when reservoir operation was ignored (i.e., FO3+ calibrated to streamflow downstream of the reservoir). Inflow
corresponds to parameters found by calibrating FO3+ to reservoir inflow (i.e., natural flow upstream of the reservoir).
KGE 1w and LNSE 50 are used for calibrating FCMs and ResIgnore models, while KGE, 4, and LNSE, .., are used
for LCMs.
are noted. Similarly, although all the FCMs obtain KD values closer to those under the natural state compared to
Reslgnore, small reductions in KD are observed. All the FCMs obtain improved parameterization of B. Finally, the
WISS-based FCMs show large increases in the SB and FC parameters compared to the “Inflow” model.
The acceptable Pareto optimal parameters determined by the WISS- and HANA-based FCMs differ greatly from
the natural state for the Buffalo Bill reservoir watershed (Figure S21 in Supporting Information S1). This result,
however, is expected as HANA and WISS cannot model the diversions from Buffalo Bill reservoir that occur in
addition to downstream river releases. The ResIgnore model decreases TTH and ASS values, while increasing
SB, KD and DDF values compared to the natural state. The DZTR-based FCM improves upon Reslgnore,
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Figure 6. Validation period boxplots of KGE ., and LNSE ;... (columns) obtained using acceptable Pareto-optimal
parameter sets to simulate reservoir inflow for different watersheds (rows). No boxplot is shown if none of the FCM Pareto
optimal parameter sets yield KGEq 0w > —0.41 and LNSE 0. > 0 in the calibration period (Ex., WISS and ISTARF for
Folsom reservoir). No boxplot is shown corresponding to HANA for the Folsom reservoir watershed, as the HANA model
cannot be applied to irrigation reservoirs without additional data. An identical plot for the calibration period is included in the
as Figure S32 in Supporting Information S1.

obtaining values of SB that are close to those obtained by calibrating FO3+ to reservoir inflow. The GDROM-
based FCM obtains TTH and DDF values that are closer to the natural state than ResIgnore. The HANA-, DZTR-
and GDROM-based FCMs show increases in ABF values compared to those obtained under a natural state.

4.3. Reservoir Inflow Simulations

In general, the inclusion of a reservoir component in the FCMs results in greatly improved simulations of
reservoir inflow compared to ResIgnore. The FCMs obtain KGE, ., exceeding that obtained by ResIgnore for
all cases except the WISS-based and DZTR-based FCMs of the Buftfalo Bill and Pine Flat reservoir watersheds
respectively (Figure 6). Furthermore, the KGE,, 4., values achieved by the FCMs are close to those obtained by
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Figure 7. Median absolute percentage errors in the estimates of all four L-moment ratios (x-axis) from deterministic reservoir
inflow simulations obtained using FCMs based on different reservoir operation models (grid rows) in the validation period.
Only acceptable Pareto optimal parameter sets are used to generate deterministic reservoir inflow simulations; tiles are
grayed if none of the FCM Pareto optimal parameter sets yield KGEq 0, > —0.41 and LNSE,1,,, > 0 in the calibration
period. The y-axis corresponds to different reservoirs within each row. Lower errors correspond to more intense green shades
of the tiles. No tiles shown for Folsom reservoir using the HANA reservoir operation model, as the HANA model can only be
applied to non-irrigation reservoirs. An identical plot for the calibration period is included in the as Figure S33 in Supporting
Information S1.

the “Inflow” models from LCMs; this indicates reasonable trade-offs between FCMs and LCMs (Section 2.1).
Although the values of LNSEy, 4., obtained from Reslgnore and the FCMs are comparable, clear benefits of
including a reservoir component can be noted by examining errors in the estimates of the L-moment ratios of
reservoir inflow. The FCMs demonstrate lower errors in the estimates of the L-moment ratios of reservoir inflow
compared to Reslgnore, especially FCMs developed using GDROM, DZTR and ISTARF (Figure 7). The specific
effects of differences in optimal parameterization found by the various FCMs and Reslgnore models are
examined by studying the deterministic FDCs of reservoir inflow.
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The Reslgnore-based deterministic FDC of reservoir inflow for Folsom reservoir shows large underpredictions of
high flows (below the 10% exceedance probability) and large overpredictions of intermediate flows between the
25%-90% exceedance probabilities (Figure S22 in Supporting Information S1). These errors can be explained by
changes in ASS and FC introduced by ResIgnore for the Folsom reservoir watershed which result in streamflow
simulations mimicking reservoir operation (Figures S18 and S23 in Supporting Information S1). Slowed drainage
from the saturated soil moisture zone due to reduced ASS lowers streamflow peaks, while increased moisture
accumulation in the deep groundwater store due to reduced FC combined with reduced ASS increases and
sustains baseflow in the dry season, causing elevated intermediate flows. The DZTR- and GDROM-based FCM
simulations of the deterministic FDC of reservoir inflow show significantly lower errors compared to ResIgnore
till the 75% exceedance probability on account of their improved estimate of FC. The DZTR-based FCM also
obtains better peak flow simulations compared to Reslgnore due to relatively more realistic values of ASS
(Figures S18 and S22 in Supporting Information S1). Both the DZTR- and GDROM-based FCMs show sig-
nificant underpredictions for low reservoir inflows above the 75% exceedance probability.

Like noted for the Folsom reservoir watershed, the deterministic FDC of reservoir inflow obtained using
ResIgnore for the Fontenelle reservoir watershed also demonstrates severe underpredictions below the 10%
exceedance probability and overpredictions between the 25%-90% exceedance probabilities (Figure S24 in
Supporting Information S1). The reduction in ABF caused by ResIgnore reduces baseflow contributions to daily
streamflow, lowering streamflow peaks (Figure S19 in Supporting Information S1). ABF also influences base-
flow in the dry season; lower ABF drains the deep groundwater store slowly, leaving more moisture available for
baseflow generation in the dry season. Thus, the ResIgnore model of the Fontenelle reservoir watershed mimics
reservoir operation in terms of attenuated high flow releases and increased dry season releases to satisfy envi-
ronmental and water supply demands (Figure S25 in Supporting Information S1). For the FCMs, increased FC
results in reduced subsurface and baseflow generation, leading to underpredictions of low reservoir inflows
(Figure S24 in Supporting Information S1). Further underpredictions of low reservoir inflow are noted for the
DZTR-, WISS, and ISTARF-based FCMs due to reduced KD which reduces baseflow by lowering the rate of
groundwater recharge. The simulated deterministic reservoir inflow FDCs from the GDROM- and HANA-based
FCMs are very similar to that obtained by calibrating FO34 to reservoir inflow, due to comparable FC and KD
values.

For the Wappapello reservoir watershed, increase in KD under ResIgnore mimics reservoir operation, resulting in
underpredictions and overpredictions of reservoir inflow below and above the 10% exceedance probability
respectively (Figures S20, S26 and S27 in Supporting Information S1). The higher rate of drainage to the deep
groundwater store under ResIgnore, due to increased KD, reduces moisture available in the near surface saturated
store for fast subsurface runoff generation, leading to underpredictions of high flows. At the same time, the
increased moisture accumulated in the deep groundwater store results in increased baseflow, causing over-
predictions of low flows. The GDROM-, DZTR- and ISTARF-based FCMs accurately simulate the reservoir
inflow peaks and high flows below the 25% exceedance probability due to relatively better estimates of KD
(Figures S20 and S26 in Supporting Information S1). However, we note large underpredictions of reservoir
inflows beyond the 25% exceedance probability from the GDROM-, DZTR-, and WISS-based FCMs. This may
be associated with the combined effects of reduced KD and ABF on the deep groundwater store (Figure S20 in
Supporting Information S1). The deep groundwater store is recharged at a slower rate due to reduced KD and
drains at a slower rate due to reduced ABF, leading to greatly reduced baseflow production.

The Pine Flat reservoir modifies incoming streamflow by attenuating and delaying the peaks, an effect that the
ResIgnore model mimics by increasing SB (i.e., the overall moisture holding capacity of the near surface soil
moisture zone), leading to underpredictions of high reservoir inflow (Figure 5; Figures S28 and S29 in Supporting
Information S1). Increases in SB of differing extent noted for the FCMs (see Section 4.2) result in under-
predictions of high reservoir inflow of differing magnitudes. The GDROM-based FCM shows relatively lower
magnitudes of high flow underpredictions due to more realistic SB values. The ISTARF-based FCM also shows
negligible underpredictions of high flows, however, this may partially be influenced by increases in ABF; in-
creases in ABF can increase high flows and reduce low flows via mechanisms described previously in this section.
Notably, the ISTARF-based FCM shows underpredictions of low reservoir inflows which we associate with
increased ABF. Reservoir inflow simulations from the DZTR-based FCM are also impacted by changed ABF;
DZTR-induced reductions in ABF lead to greater underpredictions of high flows below the 25% exceedance
probability, and overpredictions at higher exceedance probabilities.
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The Reslgnore-based deterministic FDC of reservoir inflow for the Buffalo Bill reservoir watershed shows large
underpredictions below the 25% exceedance probability and above the 60% exceedance probability (Figure S30 in
Supporting Information S1). The reductions in high flows can be explained by the increases in SB and decreases
in ASS introduced by Reslgnore via mechanisms described previously in this section. Deterministic FDCs of
reservoir inflow from the DZTR- and GDROM-based FCMs show smaller underpredictions of high flows due to
improved estimates of SB. We note that improvements in high flow simulations from the GDROM- and DZTR-
based FCMs may also be influenced by increases in ABF. Underpredictions of low inflows noted for the DZTR-
and GDROM-based FCMs may also be ascribed to increased ABF values.

5. Discussion
5.1. Implications for Modeling Hydrology Over Large Spatial Scales

Overall, our results show that GDROM- and DZTR-based watershed models (both FCMs and LCMs) achieve a
consistently reliable watershed outflow simulation performance (in terms of aggregated GoF estimators, L-
moments and FDCs) across all five watersheds considered in our study. Recall that the reservoirs included in
our study differ in size and serve a range of operational purposes including hydroelectricity, flood control,
irrigation, and water supply. Correspondingly, the consistent reliable performance we find from the watershed
scale GDROM- and DZTR-based models provides evidence that GDROM and DZTR may be coupled with
hydrological models at the various larger scales such as river basin, national, continental, global, etc.

Large-scale hydrological models (such as national or global models) are applied in both calibrated and uncali-
brated forms (Kauffeldt et al., 2016). The integration of GDROM or DZTR into uncalibrated large-scale hy-
drological models would yield the simulation performance that is noted for LCMs in this study, if the hydrological
model reliably simulates reservoir inflow. On the other hand, for calibrated large-scale hydrological models,
depending on whether the streamflow gauge used for hydrological model calibration is upstream or downstream
of a reservoir, the simulation performance for either LCM or FCM will be attained. We find that GDROM and
DZTR can be reliably used in both FCM and LCM modes for streamflow simulation. Moreover, the parame-
terization found by FCMs and LCMs based on GDROM and DZTR are comparable despite that LCMs are not
affected by reservoir storage regulation (Figure 5 and Figures S18-S21 in Supporting Information S1). That is to
say, the FCMs do not obtain “the right answers for the wrong reasons.”

The ability of FCMs to obtain parameters that are comparable to LCMs, and simulate streamflow as well as, if not
better than LCMs, demonstrates strong potential for using FCMs in large-scale multi-reservoir systems. For
multi-reservoir systems, releases from upstream reservoirs impact inflows into downstream reservoirs. Applying
LCMs to such systems would require performing “calibration in parts,” that is, defining incremental drainage
areas for each reservoir and calibrating each incremental drainage area separately; this becomes increasingly
complicated as the calibration progresses downstream. Our results show that FCMs could be used to reliably
represent all the reservoirs in a multi-reservoir system simultaneously, thus avoiding the “calibration in parts”
issue and improving computational efficiency.

It should be noted that reservoirs in a multi-reservoir system are often operated in coordination. Ignoring the
effects of coordinated reservoir management has been shown to misrepresent reservoir impacts during flood and
drought conditions (Rougé et al., 2021). The reservoir operation models in our study are parameterized inde-
pendently, and hence, there is no explicit consideration of coordinated reservoir management. However, as
mentioned by Chen et al. (2022) and Rougé et al. (2021), inferring reservoir operation rules using machine
learning techniques can implicitly capture coordinated reservoir operational behavior to some extent. We
recognize that while the limited number of predictors used for GDROM may not comprehensively capture co-
ordinated reservoir management, predictors such as DOY and PDSI can account for seasonality and basin dryness
conditions, respectively, which are important factors affecting coordination. However, we would admit that the
impacts of factors such as the institutional context, forecasts, etc., may need explicit consideration for modeling
reservoirs operated in coordination, which in turn will affect the ease and generality of incorporating GDROMs
into large-scale hydrological models.

An additional measure must be taken regarding flow diversions directly from reservoirs to meet water demands.
Not accounting for the diversions would not only introduce errors in simulated reservoir releases at the reservoir
where diversions occur, but also lead to incorrect inflow simulations for all reservoirs located downstream. In our
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analysis, we accounted for flow diversions from the Buffalo Bill reservoir using a two-step approach (Sec-
tion 2.1.1). Future studies may analyze the resulting inconsistencies introduced in large-scale hydrological models
when water management activities such as flow diversions are ignored.

GDROM and DZTR have been developed with the intention of coupling with large-scale hydrological models,
and in our analyses, they result in better coupled model performance than with HANA and WISS which have
already been integrated into global hydrological models (Chen et al., 2022; Fekete et al., 2010; Hanasaki
et al., 2008; Wisser et al., 2010; Yassin et al., 2019). We notice that GDROM has been rigorously tested for
simulating reservoir outflow using observed inflow across 467 reservoirs in the CONUS (Chen et al., 2022); while
Yassin et al. (2019) have shown good performance of the DZTR model over only 37 reservoirs across the globe,
of which 18 are located within the CONUS. Although we also obtain good performance using DZTR for res-
ervoirs not tested by Yassin et al. (2019), we believe that GDROM may be more applicable for studies in the
CONUS given its more in-depth validation by Chen et al. (2022) over the CONUS.

We hope that our analyses help inform researchers in coupling reservoir operation models with hydrological
models at various spatial scales. To aid researchers in building coupled models, following the method of this
study, we provide freely accessible code that can be used to derive operation rules for DZTR, HANA and WISS
models from historical reservoir operation records, and convert the derived rules into reservoir components that
can be easily integrated with rainfall-runoff models (Vora et al., 2024). Li et al. (2023b) have provided code to
derive GDROM operation rules from historical reservoir operation records. Derived reservoir operation rules for
the GDROM (Li et al., 2023a) and ISTARF (Turner, Voisin, et al., 2021) models are available publicly for
reservoirs in the CONUS. The code we provide with our study can also read GDROM- and ISTARF-based
operation rules and convert them into reservoir components.

5.2. Reasons for Differences in the FCM Performance

We associate the FCM performance with the incorporated reservoir operation model's ability to accurately
simulate reservoir outflow, which in turn depends on the reservoir operation model's formulation. For example,
the formulations of the HANA and WISS models simulate a constant reservoir outflow irrespective of variations
in daily reservoir inflow for large reservoirs (see in Section 2.1.1 and Figures S15-S17 in Supporting Infor-
mation S1). These near constant reservoir release simulations throughout the analysis period lead to low values of
LNSE 10w a1d KGEq10» as well as poor estimates of the L-moments of watershed outflow from HANA- and
WISS-based LCMs and FCMs (Figures 3 and 4). In fact, the HANA and WISS models obtain negative
LNSEq 0w Values even when routing calibrated inflow through the Wappapello, Pine Flat and Buffalo Bill
reservoirs (Figure 3 and Figure S1 in Supporting Information S1).

For the ISTARF-based models, near constant values of watershed outflow are also simulated above the 75% and
below the 5% exceedance probabilities, which may be explained by the formulation of ISTARF (Figures S3—-S7 in
Supporting Information S1). The NOR approach of ISTARF can result in the simulation of near constant releases
when reservoir storage is above or below a particular value. If the reservoir storage is below the NOR for ISTARF,
a constant minimum release is simulated. For reservoir storage above the NOR, the ISTARF model simulates
outflows aimed at bringing the reservoir storage back into the NOR, subject to a maximum permissible outflow.
Widening the NOR for the ISTARF models and choosing different values of minimum release (currently the 95th
percentile of observed release is used) might improve outflow simulation performance of the ISTARF models.
Furthermore, for certain reservoirs, the ISTARF model only predicts a seasonal pattern of reservoir outflow which
is not affected by reservoir inflow or storage (when reservoir storage lies within the NOR); Buffalo Bill is one
such reservoir. This disconnect between reservoir inflows and outflows may explain the negative LNSEqif1ow
values obtained even when calibrated inflow is routed through Buffalo Bill reservoir using the ISTARF model (as
in the LCM; Figure S1 in Supporting Information S1).

The minor but consistent errors observed from DZTR-based FCMs may be explained by the parameterization
chosen to define operational zones and target releases in the generalized DZTR reservoir operation model. Yassin
et al. (2019) suggested that the operation zone and target release parameterization could be optimized using a bi-
objective optimization approach, however, we adopted the generalized DZTR model for analysis due to lower
computational and data requirements. This decision is in-line with the intention to couple generic reservoir
models with simple and transparent structures and low data and computational requirements with rainfall-runoff
models.
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For GDROM, constant average releases above the 75% exceedance probability can be explained by the fact that
GDROM was originally trained to maximize NSE values. Correspondingly, GDROM is inherently biased toward
better simulations of relatively higher flows. For lower flows, GDROM tends to predict an average constant value
that is close to the observed mean of the low flows; this leads to errors, albeit of smaller magnitudes than those
observed for ISTARF. Improved low flow simulations may be obtained if the original GDROM model is retrained
with an LNSE objective. Doing so should lead to even better representation of watershed systems from GDROM-
based FCMs.

Reservoir operation model accuracy in simulating releases also impacts FCM parameterization, and thereby
reservoir inflow simulations. For example, below a threshold level of reservoir inflow, the WISS and GDROM
models of Wappapello reservoir simulate a constant value of reservoir release, irrespective of the value of
reservoir inflow (Figure S5 in Supporting Information S1). Correspondingly, parameters controlling relatively
lower levels of reservoir inflow are rendered insensitive to the calibration process which is designed with the sole
objective of accurately simulating reservoir outflow (via maximizing KGEg 4., and LNSEqi0w). For DZTR-
based FCMs, the parameterization obtained compensates for deficiencies in reservoir outflow simulations from
DZTR. For example, the DZTR-based LCM of Folsom reservoir shows minor but consistent overpredictions of
watershed outflow beyond the 50% exceedance probability (Figure S3 in Supporting Information S1). To
compensate for this, the DZTR-based FCM of Folsom reservoir reduces reservoir inflows beyond the 50% ex-
ceedance probability (Figure S22 in Supporting Information S1). Improvements in reservoir operation models
should remedy parameterization related issues. Additionally, our results show that currently available reservoir
operation models do obtain reasonable model parameterizations when used in FCMs. We acknowledge that the
sensitivity of the rainfall-runoff model parameters should be accounted for when comparing the parameterization
obtained by FCMs and LCMs. Ideally, more sensitive parameters should have consistent values between FCMs
and LCMs, which can be explored by future studies.

6. Summary and Conclusions

We assess the overall representation of a watershed system (i.e., reservoir operation + rainfall-runoff processes)
via fully coupling realistic reservoir operation models with a rainfall-runoff process simulation model. Full
coupling entails obtaining rainfall-runoff model parameters that work best in conjunction with trained reservoir
operation models for simulating watershed outflow. We couple five generic reservoir operation models—WISS,
HANA, DZTR, ISTARF, and GDROM, with a 12-parameter conceptual rainfall-runoff model called FO3+. The
GDROM, ISTARF, and DZTR reservoir operation models are derived from long-term observed reservoir
operation records, and to some extent, can represent reservoir operators' behavior in release decisions. The HANA
and WISS models represent widely applied reservoir operation models that use simplified rules to route inflows
through a reservoir. Our evaluation of the watershed system representation includes examining watershed outflow
simulations, model parameters, and reservoir inflow (an internal flux of the FCMs) simulations.

Our results show that fully coupled watershed models based on GDROM and DZTR obtain parameters that are
comparable to loosely coupled models, and watershed outflow simulations that are as good, if not better than
loosely coupled models. Correspondingly, our results show that the fully coupled models can be used to model
large multi-reservoir systems without loss of physical significance. We also find that the prediction intervals of
watershed outflow FDC obtained by the GDROM- and DZTR-based watershed models (both fully coupled and
loosely coupled) consistently envelope the observed watershed outflow FDC. Thus, the GDROM and DZTR
models may be used for developing realistic large scale hydrology models for operational use. Finally, we note
that simulations from the ResIgnore models cannot represent the distributional properties of watershed outflow.
Large errors in the estimates of the L-moment ratios of watershed outflow are found when applying ReslIgnore,
indicating significant human impacts on watershed hydrology that cannot be captured without including a
reservoir component in the watershed model.

The effects of improvements in watershed model parameterization are clearly seen by examining the reservoir
inflow simulation performance. We find that the ResIgnore model introduces changes in parameters controlling
near surface soil moisture storage and deep groundwater storage to mimic reservoir operation. Consequently, the
FDC:s of reservoir inflow simulated by the ResIgnore models show large errors. Including a reservoir component,
as in the fully coupled approach, improves watershed model parameterization and reservoir inflow simulation.
The fully coupled watershed models achieve significantly higher KGE,, 4., values and obtain better estimates of
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the L-moment ratios of reservoir inflow compared to ResIgnore. The extent of improvements in parameterization
achieved by the fully coupled models depends on the performance of the reservoir operation models in simulating
reservoir outflow; limited improvements are achieved for parameters controlling reservoir inflow in the ranges
where reservoir outflow simulations are not influenced by reservoir inflow. Improving the reservoir outflow
simulation performance of the reservoir operation models across a wider range of values (low, intermediate, and
high flows) would lead to fully coupled watershed models that achieve even better representations of the
watershed systems.
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gov/mapper/index.html.
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