
1.  Introduction
Sensitivity analysis investigates how the uncertainty of model output can be attributed to the different 
uncertain input factors and their interactions (Pianosi et al., 2016). The model output refers to the varia-
ble obtained after the model is executed. The model input factors, also known as input variables, refer to 
any aspects of the model that can be changed before model execution, such as model parameters, initial 
states, forcing data, model parameterization, and model temporal/spatial resolution in case of dynamic 
models (Pianosi et  al., 2016). The most common input factor in sensitivity analysis is model parameters 
(Norton, 2015).

Abstract  Global sensitivity analysis (GSA) enhances our understanding of computational models and 
simplifies model parameter estimation. VarIance-based Sensitivity analysis using COpUlaS (VISCOUS) is a 
variance-based GSA framework. The advantage of VISCOUS is that it can use existing model input-output data 
(e.g., water model parameters-responses) to estimate the first- and total-order Sobol’ sensitivity indices. This 
study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model 
(GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. 
We observe that its performance depends on function dimension, input-output data size, and non-identifiability. 
Function dimension refers to the number of uncertain input factors analyzed in GSA, and non-identifiability 
refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first-order 
sensitivity with a small amount of input-output data (e.g., 200 in this study), regardless of function dimension. 
It always ranks input factors correctly in both first- and total-order terms. For estimating total-order sensitivity, 
it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due 
to the challenge of producing sufficient input-output data for accurate GMCM inferences (e.g., more than 
10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces 
non-identifiability issues that impact its performance. We provide a didactic example and an open-source 
Python code, pyVISCOUS, for broader user adoption.

Plain Language Summary  Global sensitivity analysis is a method used to better understand 
and estimate parameters in computational models. VarIance-based Sensitivity analysis using COpUlaS 
(VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different 
uncertain model input factors by using the existing input and output data (e.g., water model parameters 
and responses). This study improved VISCOUS and tested it with various functions. We found that its 
performance depends on the number of input factors, the amount of input and output data available, and our 
ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual 
input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input 
factor importance, whether individually or collectively. When estimating the importance of input factors 
together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is 
challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input 
factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the 
difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and 
an open-source Python code, pyVISCOUS.
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Sensitivity analysis is useful in many ways, such as ranking input factors, fixing negligible factors, determining 
the region of the input space that has a substantial control on model output, and prioritizing data acquisition 
processes to focus on the model inputs that have the largest effect on the desired outcome (Nossent et al., 2011; 
Razavi & Gupta, 2015; Saltelli et al., 2008; van Griensven et al., 2006). Sensitivity analysis can also lend insight 
into the dominant processes that govern spatiotemporal variability of a system by exploring the full spectrum 
of its behavior and the strengths and weaknesses of the water system model (Demaria et al., 2007; Markstrom 
et al., 2016; Razavi et al., 2021).

Sensitivity analysis methods can be generally classified into local and global methods. Local sensitivity anal-
ysis methods evaluate the effects of the input variations around a specific point in the input space, and global 
sensitivity analysis (GSA) evaluates the effects of the input variations across the entire input space (Pianosi 
et al., 2016). In GSA, a well-established and widely used method is the variance-based approach, for example, the 
method of Sobol’ which decomposes the total variance into contributions from different input factors (Homma 
& Saltelli, 1996; Sobol’, 2001).

Variance-based methods are attractive because they are model independent, they measure interaction effects 
among input factors, and they handle groups of input factors (Saltelli et al., 2008). The major challenge associated 
with application of variance-based methods is their computational cost, because they require model evaluations 
for a considerable number of input samples. Running a model for a large number of input samples may be diffi-
cult to achieve if the model is computationally expensive. Therefore, much recent research aims to find efficient 
numerical algorithms to compute variance-based sensitivity indices (Hu & Mahadevan, 2019; Sheikholeslami 
et al., 2019).

To overcome the aforementioned computational bottleneck, Sheikholeslami et al.  (2021) developed a compu-
tationally frugal GSA framework called VISCOUS (VarIance-based Sensitivity analysis using COpulaS). 
VISCOUS first uses a Gaussian Mixture Copula Model (GMCM) to approximate the joint probability distribu-
tion between the input (e.g., the perturbations in the model parameters) and output data (e.g., the model responses 
given parameter perturbations); and then approximates the first- and total-order Sobol’ sensitivity indices based 
on the fitted GMCM. VISCOUS belongs to the class of given-data approach, also known as the data-driven 
approach. This approach allows GSA to be applied to existing input-output data, regardless of whether the under-
lying relationships or mechanisms are known. It is beneficial for computationally intensive models when the 
input-output data exist (Sheikholeslami & Razavi, 2020).

In comparison to other variance-based GSAs, VISCOUS provides an advantage by eliminating the need for 
input-output data to follow specific sampling strategies, as required in traditional Monte Carlo methods for 
Sobol’ sensitivity indices (e.g., Homma and Saltelli,  1996, Saltelli,  2002). This is because input-output data 
in VISCOUS are not used to directly calculate Sobol’ sensitivity indices but are used for training the GMCM. 
Therefore, input-output data can be from previous model runs for other modeling purposes, such as calibration 
and uncertainty analysis. Moreover, VISCOUS does not impose assumptions on the structure of input-output 
data, as required in many emulator-based GSA, especially those employing ANOVA (Analysis of Variance). For 
example, assumptions about negligible higher-order interactions, as required in Borgonovo et al. (2012), Plischke 
et al. (2013), and Stanfill et al. (2015), are not enforced by VISCOUS. This characteristic enhances VISCOUS's 
applicability in diverse models.

The motivation of this research is to improve the VISCOUS of Sheikholeslami et al. (2021). In Sheikholeslami 
et al. (2021), the GMCM marginal densities are defined as the standard normal distribution along all variable 
dimensions (i.e., zero mean and unit variance). However, these marginal densities are inefficient as they remain 
fixed during the GMCM inference process, neglecting the impact of updated GMCM parameters. This may result 
in biased GMCM parameter estimates and inaccurate sensitivity indices, especially when insufficient iterations 
are allowed in GMCM inference. The objective of this paper is to improve the VISCOUS methodology by refin-
ing the GMCM marginal densities. This methodological advance will lead to a more efficient GMCM inference 
and improved sensitivity index estimates.

The structure of this paper is organized as follows. Section  2 explains the methodology of the improved 
VISCOUS framework. Section 3 evaluates VISCOUS using three types of Sobol’ functions and demonstrate 
how its performance is affected by function dimension, input-output data size, and GMCM non-identifiability. 
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Section 4 introduces the Python code of VISCOUS called pyVISCOUS. The paper concludes with discussion of 
future work and potential utility of VISCOUS for different modeling applications.

2.  Methodology
This section describes the methodology of the improved VISCOUS framework. The essence of VISCOUS is 
to develop and use the Gaussian mixture copula model (GMCM) to calculate the Sobol’ sensitivity indices. To 
explain VISCOUS, we first review the Sobol’ variance-based GSA method and then explain the GMCM method 
in detail, including the improved handling of the GMCM marginal densities. With both, we provide the deriva-
tions of the first- and total-order Sobol’ sensitivity indices. Finally, we explain the implementation steps of the 
VISCOUS framework using Monte Carlo-based approximations.

In the following, random variables are denoted by capital letters, and their values are denoted by lowercase letters. 
For example, FX(x) is the cumulative distribution function of the random variable X evaluated at x. Bold face 
letters denote vectors or matrices, such as X = [X1,…,Xd], where d is the number of variables.

2.1.  Overview of the Sobol’ Global Sensitivity Analysis

Assume a water system model is expressed as:

𝑌𝑌 = 𝐻𝐻(𝑋𝑋1, 𝑋𝑋2, . . . , 𝑋𝑋𝑑𝑑)� (1)

where a total of d input factors are evaluated in sensitivity analysis. Assume the variance of model outputs is a 
good proxy of output uncertainty and input factors are random and independent. The variance of model response 
(Y) can be decomposed into partial variances: first-order variance (Vi), second-order variance (Vij), …, until 
d-order variance (Vi..d) (Saltelli, 2002; Saltelli et al., 2008).

𝑉𝑉 (𝑌𝑌 ) =

𝑑𝑑
∑

𝑖𝑖=1

𝑉𝑉𝑖𝑖 +

𝑑𝑑
∑

𝑖𝑖=1

𝑑𝑑
∑

𝑗𝑗=𝑖𝑖+1

𝑉𝑉𝑖𝑖𝑖𝑖 + . . . + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖� (2)

where V(Y) is the variance of the model response Y.

The first-order sensitivity index (Si) is calculated as:

𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑖𝑖

𝑉𝑉 (𝑌𝑌 )
=

𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖))

𝑉𝑉 (𝑌𝑌 )
� (3)

where V(E(Y|Xi)) is the variance of mean Y over Xi alone. It represents the contribution of the single input 𝐴𝐴 𝐴𝐴𝑖𝑖 to the 
variance of response Y. The first-order sensitivity index is also called the main effect sensitivity index.

The total-order sensitivity index (STi) is calculated as:

𝑆𝑆𝑇𝑇𝑇𝑇 = 1 − 𝑆𝑆∼𝑖𝑖 = 1 −
𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖))

𝑉𝑉 (𝑌𝑌 )
� (4)

where 𝐴𝐴 𝐴𝐴 (𝐸𝐸(𝑌𝑌 |𝑿𝑿∼𝑖𝑖)) is the variance of mean Y over all X except Xi. It represents the total contribution of non-Xi, 
denoted as 𝐴𝐴 𝐗𝐗∼𝑖𝑖 , to the variance of response 𝐴𝐴 𝐴𝐴  . The total-order sensitivity index is also called the total effect sensi-
tivity index. It includes not only the first-order effects of an input variable but also its higher-order interactions 
with other input variables.

Sobol’ sensitivity indices range from zero to one. The closer an index value is to one, the better the associated 
input variable explains the model output. Moreover, from Equations  3 and  4, we see that the calculation of 
conditional expectations, E(Y|Xi) and 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑿𝑿∼𝑖𝑖) , is the cornerstone of the variance-based sensitivity analysis. In 
the following sections, we will explain the GMCM method and the use of it to calculate E(Y|Xi) and 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑿𝑿∼𝑖𝑖) .

2.2.  Gaussian Mixture Copula Model (GMCM)

Assume a random vector [X,Y] = [X1,…,Xd,Y], and each element has a continuous cumulative distribution function 
(CDF). If X is a continuous random variable with CDF FX, then FX is uniformly distributed between zero and one 
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based on the probability integral transform theorem. Therefore, 𝐴𝐴
[

𝐹𝐹𝑋𝑋1
(𝑥𝑥1), . . . , 𝐹𝐹𝑋𝑋𝑑𝑑

(𝑥𝑥𝑑𝑑), 𝐹𝐹𝑌𝑌 (𝑦𝑦)
]

=
[

𝑢𝑢𝑥𝑥1 , . . . , 𝑢𝑢𝑥𝑥𝑑𝑑 , 𝑢𝑢𝑦𝑦
]

 , 
where each u ∈ [0,1] follows the uniform distribution.

The joint distribution FX,Y can be expressed as a function of the marginal distributions based on Sklar's theorem 
(Sklar, 1959; Tewari et al., 2011):

𝐹𝐹𝐗𝐗,𝑌𝑌 (𝐱𝐱, 𝑦𝑦) = 𝐶𝐶(𝐮𝐮𝑥𝑥, 𝑢𝑢𝑦𝑦)� (5)

where x = [x1,…,xd], ux = [u1,…,ud]. FX,Y is the joint CDF of (X,Y). C is the copula function defined as the joint 
CDF of (ux,uy). The copula function specifies the distribution of (X,Y) by specifying their marginal distributions 
and linking the marginal distributions through the copula function.

The joint PDF of (X,Y), fX,Y, is obtained by computing the derivative of Equation 5:

𝑓𝑓𝐗𝐗,𝑌𝑌 (𝐱𝐱, 𝑦𝑦) =
𝜕𝜕𝑑𝑑+1𝐶𝐶(𝐮𝐮𝑥𝑥, 𝑢𝑢𝑦𝑦)

𝜕𝜕𝜕𝜕𝑥𝑥1 ⋅ . . . ⋅ 𝜕𝜕𝜕𝜕𝑥𝑥𝑑𝑑 ⋅ 𝜕𝜕𝜕𝜕𝑦𝑦
⋅

𝑑𝑑
∏

𝑖𝑖=1

𝜕𝜕𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

⋅

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
= 𝑐𝑐(𝐮𝐮𝑥𝑥, 𝑢𝑢𝑦𝑦) ⋅

𝑑𝑑
∏

𝑖𝑖=1

𝑓𝑓𝑋𝑋𝑖𝑖
(𝑥𝑥𝑖𝑖) ⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦)� (6)

where c(ux,uy) is the copula density. In GMCM, a Gaussian Mixture Model (GMM) is used to approximate the 
copula function as there is no simple analytical formula for the copula function (Tewari et al., 2011).

2.2.1.  Gaussian Mixture Model (GMM)

A GMM is a probabilistic model that assumes all the data points are generated from a mixture of a finite number 
of Gaussian distributions (Singh, 2019; Xu & Jordan, 1996). The GMM CDF is denoted by:

𝐹𝐹
𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦) =

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 ⋅Φ
(

𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦|𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘

)

,�

where 𝑧𝑧𝑥𝑥𝑖𝑖 = Φ−1
𝑧𝑧𝑥𝑥𝑖𝑖

(

𝑢𝑢𝑥𝑥𝑖𝑖

)

, 𝑧𝑧𝑦𝑦 = Φ−1
𝑧𝑧𝑦𝑦

(

𝑢𝑢𝒚𝒚
)

, 𝑖𝑖 = 1, . . . , 𝑑𝑑� (7)

where K is the total number of Gaussian components or clusters. λk is the weight of the kth Gaussian component. 

λk > 0 and 𝐴𝐴

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 = 1 . Φ is the CDF of a multivariate Gaussian distribution with mean μk and covariance Σk. The 

GMM parameter vector combines the weights, mean vectors and covariance matrices of all the Gaussian compo-
nents, notated as Θ in the rest of the paper.

In the improved VISCOUS, 𝐴𝐴 Φ𝑧𝑧𝑥𝑥𝑖𝑖
 and 𝐴𝐴 Φ𝑧𝑧𝑦𝑦

 are the GMM marginal CDF for 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 and zy, respectively. 𝐴𝐴 Φ−1
𝑧𝑧𝑥𝑥𝑖𝑖

 and 𝐴𝐴 Φ−1
𝑧𝑧𝑦𝑦

 are 
the corresponding inverse distribution function. There is no closed form expression for the inverse function, so a 
linear interpolation is used to obtain the inverse values based on the GMM parameters Θ (Tewari et al., 2011). 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 
and zy are the obtained inverse values of 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 and uy, respectively. More details about the GMM are in Appendix A.

2.2.2.  Gaussian Mixture Copula Model (GMCM)

The GMCM function is derived from the GMM. When the Gaussian mixture copula function is approximated 
by a GMM:

𝐶𝐶(𝐮𝐮𝑥𝑥, 𝑢𝑢𝑦𝑦) ≈ 𝐹𝐹
𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦)� (8)

the copula density, c(ux,uy), is approximated by:

𝑐𝑐(𝐮𝐮𝑥𝑥, 𝑢𝑢𝑦𝑦) ≈ 𝑓𝑓
𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦) ⋅

𝑑𝑑
∏

𝑖𝑖=1

𝜕𝜕𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜕𝜕𝑥𝑥𝑖𝑖

⋅

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕𝑦𝑦
=

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦)

𝑑𝑑
∏

𝑖𝑖=1

𝜙𝜙𝑧𝑧𝑥𝑥𝑖𝑖

(

𝑧𝑧𝑥𝑥𝑖𝑖

)

⋅ 𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

�

where 𝑓𝑓
𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦) =

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙
(

𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦|𝝁𝝁𝑘𝑘,𝚺𝚺𝑘𝑘

)

� (9)

where 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦) is the GMM PDF. ϕ is the PDF of a multivariate Gaussian distribution with mean μk and 

covariance Σk. 𝐴𝐴 𝐴𝐴𝑧𝑧𝑥𝑥𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝑧𝑧𝑦𝑦

 are the GMM marginal PDF for 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 and zy, respectively.
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From Equation 9, we see that the dependence structure of the GMCM is obtained from the GMM. Moreo-
ver, the GMCM function shares the same parameter set as the GMM function. The GMCM parameters Θ 
are estimated by a modified Expectation-Maximization (EM) algorithm of Tewari et al.  (2011) (detailed in 
Appendix B).

Here it is worth noting the algorithmic advancement relative to the VISCOUS of Sheikholeslami et al. (2021). 
In Sheikholeslami et al. (2021), the marginal densities 𝐴𝐴 Φ𝑧𝑧𝑥𝑥𝑖𝑖

 and 𝐴𝐴 Φ𝑧𝑧𝑦𝑦
 are defined as the standard normal distri-

bution along all variable dimensions (i.e., zero mean and unit variance). As such, the marginal densities are 
independent of the formula of GMCM. This has a subsequent impact on the GMCM inference as the marginal 
densities ignore the updated GMCM parameters and remain fixed in the inference process. This may lead 
to optimizing GMCM parameters taking longer than necessary, and introducing biases in these parameter 
estimates and inaccurate sensitivity index estimates. The presented methodology in this paper overcomes this 
shortcoming by defining the GMCM marginal densities based on the formula of GMCM and adopting itera-
tively updated marginal densities based on the GMCM parameters in the inference process. This methodolog-
ical advance helps to obtain a GMCM function that fits the input-output data more efficiently and provides 
better sensitivity index estimates.

2.3.  GMCM-Based Sobol’ Sensitivity Index Estimation

As explained in Session 2.1, the variance-based sensitivity index estimation relies on the conditional expecta-
tions, E(Y|Xi) and 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑿𝑿∼𝑖𝑖) . The following explains the general use of GMCM to compute the conditional PDF, 
fY|X. With fY|X, it then explains the computation of E(Y|Xi) and the first-order sensitivity index. The computation 
of 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑿𝑿∼𝑖𝑖) and the total-order sensitivity index follows a similar logic.

2.3.1.  Model Conditional PDF of Y

To compute the conditional PDF of Y, fY|X, we need the joint PDF of (X,Y) and the marginal PDF of X. In GMCM, 
the joint PDF of (X,Y), fX,Y, is estimated based on Equations 6 and 9:

𝑓𝑓𝐗𝐗,𝑌𝑌 (𝐱𝐱, 𝑦𝑦) ≈

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦)

𝑑𝑑
∏

𝑖𝑖=1

𝜙𝜙
(

𝑧𝑧𝑥𝑥𝑖𝑖

)

⋅ 𝜙𝜙(𝑧𝑧𝑦𝑦)

⋅

𝑑𝑑
∏

𝑖𝑖=1

𝑓𝑓𝑋𝑋𝑖𝑖
(𝑥𝑥𝑖𝑖) ⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦)� (10)

The marginal PDF of X, fX, is estimated as:

𝑓𝑓𝐗𝐗(𝐱𝐱) ≈
𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
(𝐳𝐳𝑥𝑥)

𝑑𝑑
∏

𝑖𝑖=1

𝜙𝜙
(

𝑧𝑧𝑥𝑥𝑖𝑖

)

⋅

𝑑𝑑
∏

𝑖𝑖=1

𝑓𝑓𝑋𝑋𝑖𝑖
(𝑥𝑥𝑖𝑖)� (11)

where 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
(𝐳𝐳𝑥𝑥) is the GMM marginal PDF of Zx obtained with Equation A5 of Appendix A.

The conditional PDF of Y, fY|X, is obtained by dividing fX,Y by fX:

𝑓𝑓𝑌𝑌 |𝐗𝐗(𝑦𝑦|𝐱𝐱) =
𝑓𝑓𝐗𝐗,𝑌𝑌 (𝐱𝐱, 𝑦𝑦)

𝑓𝑓𝐗𝐗(𝐱𝐱)
≈

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦)

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
(𝐳𝐳𝑥𝑥)

⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦)� (12)

2.3.2.  First-Order Sensitivity Index

When the input variable Xi is fixed to a value xi, the resulting conditional expectation of Y is:

𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) = ∫
Ω𝑌𝑌

𝑦𝑦 ⋅ 𝑓𝑓𝑌𝑌 |X(𝑦𝑦|𝑥𝑥𝑖𝑖)d𝑦𝑦� (13)
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where ΩY is a region of Y over which integration is conducted. Equation 13 is approximated using Equation 12:

𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) ≈ ∫
Ω𝑌𝑌

𝑦𝑦 ⋅

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥,𝑍𝑍𝑦𝑦
(𝐳𝐳𝑥𝑥, 𝑧𝑧𝑦𝑦)

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
(zx)

⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

⋅ 𝑓𝑓𝑌𝑌 (𝑦𝑦)d𝑦𝑦� (14)

Since 𝐴𝐴
d𝑢𝑢𝑦𝑦

d𝑦𝑦
= 𝑓𝑓𝑌𝑌 (𝑦𝑦) , the above equation becomes:

𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) ≈ ∫
1

0

𝑦𝑦 ⋅

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑥𝑥,𝑍𝑍𝑦𝑦
(𝑧𝑧𝑥𝑥, 𝑧𝑧𝑦𝑦)

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑥𝑥
(𝑧𝑧𝑥𝑥)

⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

d𝑢𝑢𝑦𝑦� (15)

To drop the dependence upon the specific value xi, the variance of E(Y|Xi) is estimated by integrating E(Y|Xi = xi) 
over the probability density function of Xi, expressed as:

𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖)) = ∫
Ω𝑥𝑥𝑖𝑖

𝐸𝐸
2(𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖)d𝑥𝑥𝑖𝑖 −

[

∫
Ω𝑥𝑥𝑖𝑖

𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖)d𝑥𝑥𝑖𝑖

]2

� (16)

E(Y|Xi) and V(E(Y|Xi)) can be estimated using Monte Carlo approximations, which is the content of the next 
section. With V(E(Y|Xi)), the first-order sensitivity index is computed based on Equation 3. Similar approach can 
be used to calculate 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑿𝑿∼𝑖𝑖) , 𝐴𝐴 𝐴𝐴 (𝐸𝐸(𝑌𝑌 |𝑿𝑿∼𝑖𝑖)) , and the total-order sensitivity index by replacing the Xi with 𝐴𝐴 𝐗𝐗∼𝑖𝑖 
and is detailed in Appendix C. The above also shows that two loops are needed in the computation of V(E(Y|Xi)). 
The inner loop is to compute E(Y|Xi) by integrating over uy. The outer loop is to compute the variance of E(Y|Xi) 
by integrating over xi.

2.4.  Steps for Performing VISCOUS

This section explains the implementation steps of the VISCOUS framework using Monte Carlo-based approx-
imations. Six steps are involved (Figure  1). Same as in Section  2.3, we take the first-order sensitivity index 
of Xi as an example. The procedure is the same for the total-order sensitivity index except replacing Xi with 

𝐴𝐴 𝑿𝑿∼𝑖𝑖 and is detailed in Appendix C. Additionally, Appendix D demonstrates the implementation steps using the 
two-parameter Rosenbrock function. This didactic example aims to help users to better understand the details 
within the VISCOUS method and apply it for their own applications.

Figure 1.  Flowchart of performing the VISCOUS framework. CDF denotes the cumulative distribution function. GMCM 
denotes the Gaussian mixture copula model. EM denotes the Expectation-Maximization algorithm. AIC denotes the Akaike 
information criterion.
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2.4.1.  Part A. Data Preparation

Step 1.  Select the evaluated input and output data based on the goal of sensitivity analysis. For example, when 
calculating the first-order sensitivity index of variable Xi, the selected input-output data are (xi,y).

Step 2.  Normalize the selected input-output data using the min-max normalization method. Normalization 
transforms data into a common scale without changing the relationships among data. This improves the 
performance and training stability of the GMCM. The produced normalized data 𝐴𝐴

(

𝑥𝑥′
𝑖𝑖
, 𝑦𝑦′

)

 will be used in the 
calculation of Sobol’ sensitivity indices.

Step 3.  Calculate the rank-based empirical CDF for each variable of the normalized data, getting the marginal 
CDF data (ux,uy). Rank transformation is a common procedure to get marginal CDFs when the data distri-
bution is unknown or complex (Saltelli and Sobol’,  1995). The marginal CDFs are used to derive the 
inverse CDF values (zx,zy) in the following GMCM inference.

2.4.2.  Part B. GMCM Inference

Finding the best fitted GMCM involves solving two problems. The first problem is to determine the optimal 
number of Gaussian components (K). The second problem is to determine the optimal GMCM parameters (Θ). 
Therefore, the following two steps are conducted interactively.

Step 4.  To find the optimal value of K, we use a statistic known as Akaike information criterion (AIC). AIC estimates 
the quality of a model by balancing its goodness of fit (log-likelihood) and complexity (penalty to the number of 
model parameters) (Akaike, 1974). Readers can explore alternative model selection criteria based on their data 
characteristics and analysis goals. For instance, Bayesian information criterion (BIC) is another popular model 
selection criterion (Vrieze, 2012) and has been added as an alternative in pyVISCOUS.
Step 4 compares the AICs of multiple GMCMs with different Gaussian component (K) values (e.g., 
K = 1, 2,…,9 in this study). For each candidate K value, use a modified EM algorithm to estimate its 
corresponding GMCM parameters (Step 5), and then compute the AIC score for the estimated GMCM. 
The GMCM that achieves the lowest AIC value is identified as the best fitted GMCM, and its corre-
sponding K value is the optimal K value.

Step 5.  Given a Gaussian component value K, estimate the GMCM parameters using a modified EM algorithm. 
The EM algorithm is explained in Appendix B. In the EM, the marginal densities of GMCM change with 
every GMCM parameter update. The corresponding inverse distribution values (zx,zy) vary based on the 
form of the GMCM. A Python library called Copulas is used to perform the modified EM.

2.4.3.  Part C. Sensitivity Index Estimation

Step 6.  Once the best fitted GMCM is determined, generate the Monte Carlo samples 𝐴𝐴
(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑥𝑥𝑖𝑖

, 𝑧𝑧𝑀𝑀𝑀𝑀
𝑦𝑦

)

 from the 
GMCM, and calculate the variance-based first-order sensitivity index based on the samples. Step 6 is 
detailed in the following.

Based on the inferred GMCM, two rounds of sampling are performed to generate Monte Carlo samples. 
The first round of sampling generates N1 samples, namely 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

1
 in Equation 17. 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

1
 provides samples for 

integration over xi to obtain V(E(Y|Xi)) in the outer loop.

���
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

���
1,��

���
2,��

⋮

���
�1 ,��

���
1,�

���
2,�

⋮

���
�1 ,�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ���
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

���
�1 ,��

���
�1 ,��

⋮

���
�1 ,��

�′��
1,�

�′��
2,�

⋮

�′��
�2 ,�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, �1 = [1, . . . , �1].� (17)

The second round of sampling generates N2 samples, for example, 𝐴𝐴 𝐳𝐳
𝑀𝑀𝑀𝑀

2
 in Equation  17. 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

2
 provides 

samples for integration over uy to get E(Y|Xi = xi) in the inner loop. The second round of sampling needs 
repeating N1 times by looping through each sample of 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

1
 . Per iteration, N2 Monte Carlo samples are 

generated from the inferred GMCM, and then all the values of 𝐴𝐴 𝐴𝐴𝑥𝑥𝑖𝑖 are replaced by a sample of 𝐴𝐴 𝐳𝐳
𝑀𝑀𝑀𝑀

1
 . See 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

2
 

in Equation 17 as an example, the entire first column of 𝐴𝐴 𝐳𝐳
𝑀𝑀𝑀𝑀

2
 is replaced by the 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡

1
 sample of 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

1
, 𝑧𝑧𝑀𝑀𝑀𝑀

𝑟𝑟1 ,𝑥𝑥𝑖𝑖
 . N1 

and N2 can be but do not have to be the same (N1 = N2 = 2,000 in our study).
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With the two rounds of Monte Carlo samples, we can approximate E(Y|Xi) and V(E(Y|Xi)) in Equations 15 
and 16. The conditional expectation E(Y|Xi) in Equation 15 is approximated by:

𝐸𝐸
(

𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,𝑖𝑖

)

≈
1

𝑁𝑁2

∑𝑁𝑁2

𝑟𝑟2=1
𝐹𝐹

−1

𝑌𝑌

(

𝑢𝑢
𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

⋅

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑥𝑥𝑖𝑖
,𝑍𝑍𝑦𝑦

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟1 ,𝑥𝑥𝑖𝑖

, 𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑥𝑥𝑖𝑖

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟1 ,𝑥𝑥𝑖𝑖

) ⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)� (18)

where 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀

𝑟𝑟1 ,𝑖𝑖
 is the 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡

1
 sample of 𝐴𝐴 𝐳𝐳

𝑀𝑀𝑀𝑀

1
 , r1 = [1,…,N1]. 𝐴𝐴

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟1 ,𝑥𝑥𝑖𝑖

, 𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

 is the 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡
2

 sample of 𝐴𝐴 𝐳𝐳
𝑀𝑀𝑀𝑀

2
 , r2 = [1,…,N2]. 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀

𝑟𝑟2 ,𝑦𝑦
 

and 𝐴𝐴 𝐴𝐴𝑧𝑧𝑦𝑦

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

 are the marginal CDF and the marginal PDF of the GMM at 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

 , respectively. 𝐴𝐴 𝐴𝐴 −1

𝑌𝑌

(

𝑢𝑢𝑟𝑟2 ,𝑦𝑦
)

 is 
the inverse CDF of 𝐴𝐴 𝐴𝐴𝑟𝑟2 ,𝑦𝑦 in the normalized space of Y, 𝐴𝐴 𝐴𝐴 −1

𝑌𝑌

(

𝑢𝑢𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

= 𝑦𝑦′
𝑀𝑀𝑀𝑀

𝑟𝑟2
 .

The variance of E(Y|Xi) in Equation 16 is approximated by:

𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝑋𝑋𝑖𝑖)) ≈
1

𝑁𝑁1

∑𝑁𝑁1

𝑟𝑟1=1
𝐸𝐸

2
(

𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,𝑖𝑖

)

−

[

1

𝑁𝑁1

∑𝑁𝑁1

𝑟𝑟1=1
𝐸𝐸
(

𝑌𝑌 |𝑋𝑋𝑖𝑖 = 𝑥𝑥
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,𝑖𝑖

)

]2

� (19)

With Equations 18 and 19, and Equation 3, the first-order sensitivity index can be computed. The proce-
dure for calculating the total-order sensitivity index is similar and detailed in Appendix C.

3.  Evaluation of the VISCOUS Framework
This section evaluates the improved VISCOUS framework using three types of Sobol’ functions. We will first 
introduce the three types of functions, followed by comparative performance evaluation. We will also inves-
tigate three factors that affect the performance of VISCOUS: function dimension, input-output data size, and 
non-identifiability. Function dimension means the number of uncertain input factors analyzed in GSA, and 
non-identifiability refers to the inability to estimate the GMCM parameters.

3.1.  Sobol’ Function

According to Kucherenko et al.  (2011), any model functions can be classified into three types based on their 
dependence on variables.

•	 �Type A function: Variables are not equally important in terms of sensitivity.
•	 �Type B function: Variables are equally important, and no interaction exists between variables. Therefore, 

Si = STi, ∑Si = 1, and Si = 1/n.
•	 �Type C function: Variables are equally important, and interaction exists between variables. Therefore, Si < STi, 

and ∑Si < 1.

Type A functions are the most common type of functions in practice. For instance, in most water system models, 
a large proportion of model output variation is often associated with a small proportion of the input factors 
(Markstrom et al., 2016). In statistics, this is known as the sparsity of effects principle or the Pareto principle (Box 
& Meyer, 1986). In the context of sensitivity analysis, this phenomenon reflects over-parameterization in model 
structure or the need for using a wider range of performance metrics for model evaluation.

Type B and C functions have all equally important variables. Equal importance means that all variables have the 
same sensitivity at all orders (i.e., first-order, second-order, …, and total-order). Type B and C functions differ in 
the interactions between variables. While these functions are uncommon, they provide valuable insights into the 
boundaries and limitations of a theory or methodology, aiding in refinement and improvement. Our study, which 
examines VISCOUS in type B and C functions, allows us to explore the full spectrum of possibilities, validate 
VISCOUS's robustness, and provide directions for future study.

The popular Sobol’ function is adopted to examine the performance of VISCOUS in all three cases (Hu & 
Mahadevan, 2019; Kucherenko et al., 2011):

𝑓𝑓 (𝐗𝐗) =

𝑑𝑑
∏

𝑖𝑖=1

|4𝑋𝑋𝑖𝑖 − 2| + 𝑎𝑎𝑖𝑖

1 + 𝑎𝑎𝑖𝑖
� (20)

Set d = 10, then (X1,…,X10) are the 10 input variables uniformly distributed in [0,1]. We can conveniently get all 
the three types of function by changing ai (Kucherenko et al., 2011).
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Table 1 lists four functions that belong to the above three types of functions. 
Functions A1 and A2 are both Type A functions and are used to distinguish 
whether some (not all) variables are equally important in Type A. In function 
A1, all X variables are differently important. In function A2, X1 and X2 are 
equally important and X3,…,X10 are equally important, but function A2 is 
more sensitive to X1 and X2 than to X3,…,X10. In functions B and C, all X 
variables are equally important, but the interactions between the variables 
are different, as stated above in the definitions of Type B and C functions.

3.2.  Sensitivity Index Results

Figure 2 shows the first-order and total-order sensitivity index results of the 
four functions of Table 1 using the VISCOUS and Sobol’ methods as well as 

the analytical true sensitivity index values. The Sobol’ method is based on Saltelli (2002); the analytical truth is 
calculated based on Saltelli et al. (2004); the calculation of each sensitivity index is repeated 50 times to quan-
tify sampling uncertainty. Each of the 50 experiments uses a different set of input-output sample data with size 
10,000; and the Monte Carlo sample sizes are N1 = N2 = 2,000.

Function type Function name a value

Type A A1 𝐴𝐴 𝐴𝐴𝑖𝑖 = 25| sin(0.5𝑖𝑖) + cos(0.75𝑖𝑖 + 2)| 

Type A A2 a1 = a2 = 0,a3 = ⋯ = ad = 6.52

Type B B ai = 6.52

Type C C ai = 0

Table 1 
Configurations of Four Sobol’ Functions

Figure 2.  First- and total-order sensitivity index results of the Sobol’ method, VISCOUS, and the analytical truth for the four 
functions of Table 1.
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For the first-order sensitivity indices (Figures 2a, 2c, and 2e), VISCOUS generates results matching the truth for 
all variables in all functions, and its uncertainty of sensitivity estimates is smaller than Sobol's. For the total-order 
sensitivity indices (Figures 2b, 2d, and 2f), for functions A1 and A2, VISCOUS provides slightly higher sensitiv-
ity estimates than the truth; for functions B and C, VISCOUS provides quite different sensitivity estimates from 
the truth. For all functions, VISCOUS is correct in ordering the sensitivity of each variable. Therefore, if one is 
interested in first-order sensitivity and input factors ranking, VISCOUS is good at achieving this functionality.

To investigate why VISCOUS behaves differently between Type A functions and Type B and C functions, we 
examined the results of the Sobol’ method. The Sobol’ method produces many negative sensitivity indices when 
the total-order sensitivities approach zero (Figures  2b,  2d, and  2f). Negative sensitivity indices do not make 
theoretical sense and are instead the result of numerical artifacts in the estimation procedure. Moreover, the 
Sobol’ method produces large uncertainties when the total-order sensitivities are the same across all dimensions 
(Figures 2f and 2h). These reveal the difficulty of calculating the total-order sensitivities when they are close to 
zero or the same, in other words, when functions are insensitive or equally sensitive to evaluated variables.

We hypothesize that the performance of VISCOUS in estimating sensitivity indices is affected by three factors: 
function dimension, input-output data size, and non-identifiability of GMCM inference. The following sections 
check them one by one.

3.3.  Function Dimension

For all types of functions, high dimensionality (the number of function input variables) has no effect on first-order 
sensitivity estimation, which is a beauty of VISCOUS, but it poses a challenge to total-order sensitivity estima-
tion. This is because the function dimension has different effects on the number of variables involved in GMCM 
(and GMCM inference) in first- and total-order sensitivity estimations.

Suppose the number of variables involved in GMCM inference is denoted as D. When calculating first-order sensi-
tivity, D is always equal to two regardless of the function dimension, including the evaluated variable itself (Xi) 
and the evaluated output variable (Y). When calculating total-order sensitivity, D is equal to the function dimen-
sion, including all the input variables except the evaluated variable 𝐴𝐴 (𝑿𝑿∼𝑖𝑖) plus the evaluated output variable  (Y).

For a GMCM with K components and D variables, the number of GMCM parameters to estimate is equal to 
K × D × D + K × D + K. These include K covariance matrices each of size D × D, K mean vectors of length D, 
plus a component weight vector of length K. These GMCM parameter values are determined through GMCM 
inference. When calculating first-order sensitivity, the GMCM has 7K parameters to estimate because D = 2. 
When calculating the total-order sensitivity, the GMCM has K × d × d + K × d + K parameters to estimate 
because D = d (d is the function dimension). This polynomial growth in the number of GMCM parameters 
can be a problem for high-dimensional functions because it becomes more challenging to produce a sufficient 
amount of sample data for making accurate GMCM inferences. For example, assuming a two-component 
GMM is used in GMCM (i.e., K = 2), when the number of X variables varies between 4, 6, 8, 10, 15, 20, 30, 
and 50, the corresponding number of GMCM parameters becomes 42, 86, 146, 222, 482, 842, 1,862, and 
5,012.

To demonstrate the effect of function dimension on VISCOUS performance, we change the number of function 
variables from 4 to 50 to cover from low-dimensional to high-dimensional cases, and apply VISCOUS to all 
functions in Table 1. The experiment design is the same as in Section 3.2 except changing the number of function 
variables. The input-output data size remains 10,000 in all experiments. Figure 3 shows the VISCOUS sensitivity 
estimate errors. The error is calculated as the mean absolute sensitivity difference between the VISCOUS's result 
and the analytical truth across all X variables of a function.

For first-order sensitivity index, VISCOUS provides accurate estimates regardless of the function dimension, 
with a negligible error less than 0.005. For total-order sensitivity index, VISCOUS provides gradually worse 
estimates as the function dimension increases. Specifically, for Type A functions, when the function dimension 
is lower than 20, the total-order error increases slowly with the function dimension, and the error is acceptably 
small, less than 0.2. When the function dimension is higher than 20 (including 20), the total-order error increases 
rapidly, and the error is large. This difference between total-order errors and first-order errors indicates a potential 
limitation of the GMCM in capturing complex structures in high-dimensional problems.
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Type B and C functions have different total-order error curves from Type A functions. Rapid error increases are 
observed in Type B and C functions even when the function dimension is low (e.g., d from 4 to 6 in Figure 3b). 
This implies that, when estimating total-order sensitivity indices, VISCOUS faces difficulties other than high 
dimensionality, which is particularly influential in Type B and C functions. This will be explained in Section 3.5.

3.4.  Input-Output Data Size

To investigate how many input-output data are needed for VISCOUS to provide accurate sensitivity estimates, we 
changed the input-output data sizes from 200 until 10,000, and applied the VISCOUS framework to functions of 
Table 1. The results are shown in Figure 4. The first-column of Figure 4 shows the effect of input-output data size 
on first-order sensitivity estimates. For all functions, the first-order sensitivity estimate error effectively reduces 
as the input-output data size increases. More importantly, the first-order sensitivity errors are tiny for all functions 
with even only 200 input-output data (i.e., less than 0.003). This is due to the low number of parameters to be 
estimated in the first-order sensitivity related GMCM inference as explained in Section 3.3.

The second column of Figure 4 shows the effect of input-output data size on total-order sensitivity estimates. For 
Type A functions, adding input-output data effectively improves the total-order sensitivity estimates of low- and 
medium-dimensional functions (d < 20). If taking 0.2 as an error threshold, 200 input-output data are needed for 
VISCOUS to produce accurate total-order sensitivity estimates for 4- and 6-dimensional problems. 400, 750, and 
5,000 input-output data are needed for 8-, 10-, and 15-dimensional problems, respectively.

However, adding input-output data does not necessarily improve the total-order sensitivity estimates of 
high-dimensional functions (d ≥ 20) given limited input-output data. For example, in function A1 (Figure 4b), 
the total-order error increases as the data size rises to 1,000 when d = 30, and to 10,000 when d = 50. This is 
caused by overfitting. When the GMCM being used is overly complex, the GMCM might fit noise in data rather 
than capturing the true underlying patterns. As such, the GMCM performs very well on the input-output data 
but cannot generalize and therefore performs poorly on new data (i.e., GMCM samples in Step 6). This result 
indicates that estimating total-order sensitivity of high-dimensional functions is difficult because a large amount 
of input-output data is needed to make good GMCM inferences (e.g., more than 10,000 data). In this case, we 
recommend applying a screening method (e.g., Elementary Effect Test (Pianosi et al., 2016)) followed by the 
calculation of the Sobol’ total-order sensitivity index on a reduced number of input factors.

Figure 4 also shows that, increasing the input-output data size does not improve the total-order sensitivity esti-
mates for Type B and C functions as effectively as it does for Type A functions. The next section will explain 
the factor that has a greater effect on the total-order sensitivity estimates of Type B and Type C functions than 
function dimension and sample size.

3.5.  Non-Identifiability of GMCM Inference

We hypothesize that the poor performance of VISCOUS in total-order sensitivity estimates for Type B and Type 
C functions stems from the non-identifiability of GMCM inference. Non-identifiability is the inability to infer 
some or all parameters of interest from the available data (Renard et al., 2010; Wagener et al., 2001). There is a 
considerable body of work on non-identifiability in the control-engineering literature, in the context of dynamical 
models, spanning over 40 years (Dobre et al., 2012; Guillaume et al., 2019). The following explains the reason 
behind the non-identifiability of GMCM inference.

Figure 3.  VISCOUS sensitivity estimate errors for different function dimensions. Functions A1, A2, B, and C are defined in 
Table 1. For each function, the number of X variables varies between 4 and 50; the input-output data size is 10,000; and the error is 
calculated as the mean absolute sensitivity difference between VISCOUS and the analytical truth across all X variables per function.
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3.5.1.  Grouped Component Parameters in GMCM Inference

In GMCM, the log-likelihood of all input-output data is expressed by:

log(P(𝐙𝐙|𝚯𝚯)) =
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where Θ = [λ,μ,Σ] is the GMCM parameter vector, N is the total number of input-output data used for GMCM 
inference, and n = (1,…,N). zn = (zn,x,zn,y) is the nth inverse distribution values marginally based on the GMCM 
parameter vector (Θ) and the marginal CDF data (un).

Consider a simple example of GMCM with two Gaussian components. The log-likelihood is:
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Figure 4.  VISCOUS sensitivity estimate errors for different input-output data sizes. Functions A1, A2, B, and C are defined in Table 1. The number of X variables 
varies between 4 and 50.
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Assuming the two Gaussian components are independent, the log-likelihood function can be re-parameterized  as:

log(P(𝐙𝐙|𝚯𝚯)) =
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The re-parameterized log-likelihood function depends on the weighted sum of Θ1 and Θ2, not on the individual 
Θ1 and Θ2. Therefore, μEM and ΣEM are identifiable and their inference problem is well posed, but the individual 
Θ1 and Θ2 are not identifiable.

However, VISCOUS needs well-defined inference on the individual component parameters Θk. This is because to 
compute the conditional expectations in variance-based sensitivity indices, both the joint and the marginal distri-
butions of the GMCM are needed (see Equations 15 and C1). The following explains why the non-identifiability 
has the greatest effect on GMCM inference when the input variables are equally sensitive.

3.5.2.  Non-Exchangeable Priors in GMCM Inference

When facing non-identifiability, the strength of the prior information determines if the GMCM inference problem 
is well-posed (Renard et al., 2010). An inference problem is considered well-posed if it satisfied the following 
three criteria: a solution must exist, should be unique, and should depend continuously on the given data and 
assumptions.

The use of non-exchangeable priors can help yield a well-posed GMCM inference problem. Here the 
non-exchangeable priors mean that the priors for one Gaussian component are distinctly different from the priors 
for all other Gaussian components:
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where k and k′ represent two different Gaussian components of the GMM (k,k′ ∈ [1,..,K], k ≠ k′). Otherwise, if 
𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝜇𝜇𝑘𝑘′ and 𝐴𝐴 𝚺𝚺𝑘𝑘 = 𝚺𝚺𝑘𝑘′ , then the two priors are exchangeable between the kth and 𝐴𝐴 𝐴𝐴′ th components.

The challenge in generating non-exchangeable priors exists in functions that are equally sensitive to input varia-
bles. The equally sensitive variables have the same distribution and same interaction with other variables (includ-
ing y), the prior information on these variable dimensions is very similar or even the same. If the data used for 
GMCM inference induce exchangeable priors and cannot discriminate between components, then the data cannot 
discriminate between the individual component parameters. In this case, it is impossible for any inference algo-
rithm to explicitly discriminate these component parameters.

The higher the function dimension is, the more difficult it is to generate non-exchangeable priors for the equally 
sensitive input variables. This explains why the total-order sensitivities of VISCOUS deteriorate much faster in 
Type B and C functions than in Type A functions as the function dimension increases (see Figure 3). VISCOUS 
currently uses the k-means method to generate priors for GMCM parameters. Appendix E lists approaches to 
generating non-exchangeable prior information, though applying these approaches is out of scope of this study.

4.  pyVISCOUS
pyVISCOUS is the open-source Python implementation of VISCOUS, available at https://github.com/CH-Earth/
pyviscous.git (Liu et al., 2023). It is developed to streamline the application of VISCOUS. pyVISCOUS offers 
straightforward installation options - available both as a Python package via pip or directly from the source. We 
also provide example notebooks demonstrating the utilization of pyVISCOUS across the Rosenbrock function, 
four Sobol’ functions of Table 1, and a real case study of the Bow at Banff basin, Alberta, Canada. Each example 
notebook includes well-documented code, guiding users on generating input-output data, setting up and running 
VISCOUS, and evaluating sensitivity index results.

https://github.com/CH-Earth/pyviscous.git
https://github.com/CH-Earth/pyviscous.git
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5.  Conclusions
VISCOUS is a variance-based global sensitivity analysis (GSA) framework developed by Sheikholeslami 
et al. (2021). As a “given-data” method, VISCOUS leverages existing model input and output data (e.g., parame-
ters and responses of water system models) to provide useful approximations of the first- and total- order Sobol’ 
sensitivity indices. The input-output data do not need to follow any specific sampling strategies and thus can be 
from the previous model runs generated for other modeling purposes, such as calibration and uncertainty anal-
ysis. Also, there are no enforced structure assumptions on the input-output data, which enhances VISCOUS's 
flexibility and applicability to models with complex interactions.

This research has three innovative contributions. First, we improve the VISCOUS methodology by refining the 
GMCM marginal densities based on the GMCM formula. Second, we conduct comprehensive evaluations of 
VISCOUS using three types of generic functions and highlight general problems with the application of GSA 
methods to water system models (e.g., dimensionality challenges associated with computing total-order sensi-
tivity index). Last, we provide a didactic example (Appendix D) and an open-source Python code, pyVISCOUS, 
to help people understand and apply VISCOUS. pyVISCOUS is model-independent and can be applied with 
user-provided input-output data.

Our evaluation shows that the performance of VISCOUS is affected by three factors: function dimension, 
input-output data size, and non-identifiability. VISCOUS is powerful in estimating the first-order sensitivity 
using a small input-output data set, such as 200 in this study. This holds true across various function dimensions, 
as VISCOUS is inherently not affected by the function dimension in first-order sensitivity estimation. Moreover, 
VISCOUS is always correct in ranking input variables in both first- and total-order sensitivity terms regardless of 
function dimension and input-output data size.

For functions that are differently sensitive to input variables (Type A function, which are common in water 
system models), VISCOUS can provide good total-order sensitivity estimates for low- and medium-dimensional 
functions using limited input-output data (e.g., 10,000 or fewer). For instance, in this study, VISCOUS needs 
only 200 input-output data for 4- and 6-dimensional problems, and 400, 750, and 5,000 input-output data for 8-, 
10-, and 15-dimensional problems, respectively. However, like other GSA methods, VISCOUS has difficulties 
in estimating total-order sensitivities for high-dimensional functions or models. This is because the number of 
GMCM parameters grows in a polynomial manner with the function dimension, and it is difficult to produce 
sufficient input-output data to make good GMCM inferences. Therefore, it is advisable to use VISCOUS when 
the function dimension is not very high (e.g., less than 20). When the function dimension is high, we recommend 
applying a screening method followed by the calculation of the Sobol’ total-order sensitivity index on a reduced 
number of input factors.

For functions that are equally sensitive to input variables (Type B and C functions, which are rare in water system 
models), VISCOUS faces a greater challenge than function dimension and data size in total-order sensitivity 
estimation, that is, the non-identifiability of GMCM inference. The GMCM parameters are grouped in inference, 
so the individual component parameters are not identifiable. In this context, if a function is equally sensitive to its 
input variables, the prior information on these variable dimensions is highly exchangeable and cannot be discrim-
inated between the GMCM components. This adds complexity and subjectivity to the GMCM inference. While 
well-posedness is still achievable, careful consideration and justification of the exchangeable priors are necessary 
to ensure the validity and robustness of the inference results. VISCOUS currently uses the k-means method to 
generate priors, and our evaluation confirms that k-means does not perform well for Type B and C functions. 
Future work is needed to incorporate the method of creating non-exchangeable priors into GMCM inference, so 
it can handle functions with equally important variables.

We also invite discussion and collaboration with others interested in related issues of sensitivity and uncer-
tainty analysis for computationally expensive models. We seek collaborations to assess pyVISCOUS's 
effectiveness in large samples of model types and study locations across a variety of hydroclimatic and 
environmental regimes. This will further help us test, improve, and modify the proposed sensitivity analysis 
framework.
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Appendix A:  More Details About the Gaussian Mixture Model (GMM)
This appendix is to show more details about the Gaussian component, GMM conditional and marginal functions. 
As in Equation 9, the GMM PDF is expressed as:
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where ϕ is the PDF of a multivariate Gaussian distribution with mean μk and covariance Σk.

The Gaussian mean and covariance of a Gaussian component are expressed as:
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where 𝐴𝐴 𝚺𝚺𝑘𝑘𝑘𝐳𝐳𝑥𝑥𝐳𝐳𝑥𝑥
 is the covariance between zx, 𝐴𝐴 𝚺𝚺𝑘𝑘𝑘𝐳𝐳𝑥𝑥𝑧𝑧𝑦𝑦

 is the covariance between zx and zy, and 𝐴𝐴 𝚺𝚺𝑘𝑘𝑘𝐳𝐳𝑥𝑥𝑧𝑧𝑦𝑦
= 𝚺𝚺𝑘𝑘𝑘𝑘𝑘𝑦𝑦𝐳𝐳𝑥𝑥

 . 𝐴𝐴 𝐴𝐴2

𝑘𝑘𝑘𝑘𝑘𝑦𝑦
 is 

the variance of zy.

The GMM conditional PDF of Zy given Zx, 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑦𝑦|𝐙𝐙𝑥𝑥
 , is derived by:

𝑓𝑓
𝐺𝐺𝐺𝐺𝐺𝐺

𝑍𝑍𝑦𝑦|𝐙𝐙𝑥𝑥
(𝑧𝑧𝑦𝑦|𝐳𝐳𝑥𝑥) = 𝑓𝑓𝑿𝑿,𝑌𝑌 (𝐳𝐳x, 𝑧𝑧𝑦𝑦)∕𝑓𝑓𝐗𝐗(𝐳𝐳𝑥𝑥)� (A4)

where 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
 is the GMM marginal PDF of Zx expressed as:

𝑓𝑓
𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙𝑥𝑥
=

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙
(

𝒛𝒛𝑥𝑥|𝝁𝝁𝑘𝑘𝑘𝐳𝐳𝑥𝑥
,𝚺𝚺𝑘𝑘𝑘𝑘𝑘𝑥𝑥𝐳𝐳𝑥𝑥

)

� (A5)

Appendix B:  Modified Expectation-Maximization (EM) Algorithm
The modified EM algorithm is to maximize the log-likelihood in GMCM inference. The GMCM log-likelihood 
is expressed as:

log(P(𝐙𝐙|Θ)) =
𝑁𝑁
∑

𝑛𝑛=1

log

⎛

⎜

⎜

⎜

⎜

⎝

𝐾𝐾
∑

𝑘𝑘=1
𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙(𝐳𝐳𝑛𝑛|𝜇𝜇𝑘𝑘,𝚺𝚺𝑘𝑘)

𝑑𝑑
∏

𝑖𝑖=1
𝜙𝜙𝑧𝑧𝑥𝑥𝑖𝑖

(

𝑧𝑧𝑥𝑥𝑖𝑖
)

⋅ 𝜙𝜙𝑧𝑧𝑦𝑦 (𝑧𝑧𝑦𝑦)

⎞

⎟

⎟

⎟

⎟

⎠

=
𝑁𝑁
∑

𝑛𝑛=1

{

log

(

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙(𝐳𝐳𝑛𝑛|𝜇𝜇𝑘𝑘,𝚺𝚺𝑘𝑘)

)

−
𝑑𝑑
∑

𝑖𝑖=1

log
(

𝜙𝜙𝑧𝑧𝑥𝑥𝑖𝑖

(

𝑧𝑧𝑥𝑥𝑖𝑖
))

− log
(

𝜙𝜙𝑧𝑧𝑦𝑦 (𝑧𝑧𝑦𝑦)
)

}

� (B1)

where N is the total number of samples, n =  (1,…,N). The parameter vector Θ combines the weights, mean 
vectors and covariance matrices of all the Gaussian components.

Here we use a Python library called Copulas to perform the modified EM algorithm. The algorithm proceeds as 
follows (Tewari et al., 2011):

1.	 �Initialize the parameter vector Θ to a set of random values using the k-means method.
2.	 �Calculate the inverse distribution values marginally (zn) given the parameter vector (Θ) and the marginal CDF 

data (un). In the absence of a closed form expression of the inverse function, a linear interpolation is used to 
obtain the inverse values empirically.

3.	 �Expectation (E) step: Compute the posterior probability of sample zn belonging to each component. It is equal 
to the ratio of the Gaussian component probability to the sum of all Gaussian component probabilities:

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛) =
𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙(𝐳𝐳𝑛𝑛|𝜇𝜇𝑘𝑘,𝚺𝚺𝑘𝑘)

𝐾𝐾
∑

𝑘𝑘=1

𝜆𝜆𝑘𝑘 ⋅ 𝜙𝜙(𝐳𝐳𝑛𝑛|𝜇𝜇𝑘𝑘,𝚺𝚺𝑘𝑘)
� (B2)
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�where Ln denotes the component label. Moreover, compute the log-likelihood log(P(Z|Θ)) based on 
Equation B1.

4.	 �Maximization (M) step: Update the parameter vector Θ using the just computed posterior probability 
P(Ln = k|zn) so that the log-likelihood can be maximized:

𝜆̂𝜆𝑘𝑘 =

𝑁𝑁
∑

𝑛𝑛=1

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛) ⋅ 𝜆𝜆𝑘𝑘

𝑁𝑁

� (B3)

𝜇̂𝜇𝑘𝑘 =

𝑁𝑁
∑

𝑛𝑛=1

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛) ⋅ 𝐳𝐳𝑛𝑛

𝑁𝑁
∑

𝑛𝑛=1

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛)

� (B4)

𝚺̂𝚺𝑘𝑘 =

𝑁𝑁
∑

𝑛𝑛=1

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛) ⋅ (𝐳𝐳𝑛𝑛 − 𝜇̂𝜇𝑘𝑘)
𝑇𝑇
⋅ (𝐳𝐳𝑛𝑛 − 𝜇̂𝜇𝑘𝑘)

𝑁𝑁
∑

𝑛𝑛=1

P(𝐿𝐿𝑛𝑛 = 𝑘𝑘|𝐳𝐳𝑛𝑛)

� (B5)

5.	 �Iterate steps 2–4 until the log-likelihood converges.

Appendix C:  Total-Order Sensitivity Index
Computing the total-order sensitivity index of Xi needs the input-output data 𝐴𝐴 (𝐱𝐱∼𝑖𝑖, 𝑦𝑦) = (𝑥𝑥1, .., 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, . . . , 𝑥𝑥𝑑𝑑 , 𝑦𝑦) . 
The conditional expectation of Y given the specific value 𝐴𝐴 𝐱𝐱∼𝑖𝑖 is expressed as:

𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱∼𝑖𝑖) ≈ ∫
1

0

𝑦𝑦 ⋅

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙∼𝑥𝑥𝑖𝑖
,𝑍𝑍𝑦𝑦

(

𝐳𝐳∼𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑦𝑦
)

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙∼𝑥𝑥𝑖𝑖

(

𝐳𝐳∼𝑥𝑥𝑖𝑖

) ⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

d𝑢𝑢𝑦𝑦� (C1)

To drop the dependence upon the specific value 𝐴𝐴 𝐱𝐱∼𝑖𝑖 , the variance of E(Y|Xi) is estimated by integrating 
𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱∼𝑖𝑖) over the probability density function of 𝐴𝐴 𝐗𝐗∼𝑖𝑖 , expressed as:

𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖)) = ∫
Ω𝑥𝑥𝑖𝑖

𝐸𝐸
2(𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱∼𝑖𝑖)d𝑥𝑥𝑖𝑖 −

[

∫
Ω𝑥𝑥𝑖𝑖

𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱∼𝑖𝑖)d𝑥𝑥𝑖𝑖

]2

� (C2)

The total-order sensitivity index is computed based on 𝐴𝐴 𝐴𝐴 (𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖)) and Equation 4.

In Monte Carlo-based approximations, the above two equations are estimated as follows. First, use the 
inferred GMCM to perform two rounds of sampling and generate the Monte Carlo samples (for example, see 
Equation C3.

���
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⎟
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�

𝑟𝑟1 = [1, . . . , 𝑁𝑁1]� (C3)

The conditional expectation, 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱∼𝑖𝑖) , is approximated by:

𝐸𝐸
(

𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,∼𝑖𝑖

)

≈
1

𝑁𝑁2

∑𝑁𝑁2

𝑟𝑟2=1
𝐹𝐹

−1
𝑦𝑦

(

𝑢𝑢
𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)

⋅

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙∼𝑥𝑥𝑖𝑖
,𝑍𝑍𝑦𝑦

((

𝐳𝐳
𝑀𝑀𝑀𝑀
𝑟𝑟1 ,∼𝑥𝑥𝑖𝑖

, 𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

))

𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

𝐙𝐙∼𝑥𝑥𝑖𝑖

(

𝐳𝐳
𝑀𝑀𝑀𝑀
𝑟𝑟1 ,∼𝑥𝑥𝑖𝑖

) ⋅

1

𝜙𝜙𝑧𝑧𝑦𝑦

(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑟𝑟2 ,𝑦𝑦

)� (C4)

The conditional variance, 𝐴𝐴 𝐴𝐴 (𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖)) , is approximated by:

𝑉𝑉 (𝐸𝐸(𝑌𝑌 |𝐗𝐗∼𝑖𝑖)) ≈
1

𝑁𝑁1

∑𝑁𝑁1

𝑟𝑟1=1
𝐸𝐸

2
(

𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,∼𝑖𝑖

)

−

[

1

𝑁𝑁1

∑𝑁𝑁1

𝑟𝑟1=1
𝐸𝐸
(

𝑌𝑌 |𝐗𝐗∼𝑖𝑖 = 𝐱𝐱
𝑀𝑀𝑀𝑀

𝑟𝑟1 ,∼𝑖𝑖

)

]2

� (C5)

The total-order sensitivity index can be computed based on Equations C4, C5, and 4.

Appendix D:  A Didactic Example of Implementing the VISCOUS Framework
This section uses the two-parameter Rosenbrock function to demonstrate the implementation of the improved 
VISCOUS framework. This example is intended to help users to understand the details of the VISCOUS meth-
odology, such as the Gaussian components and GMM, and hence help users to utilize the VISCOUS framework 
for their own applications.

The Rosenbrock function, also referred to as the Valley or Banana function, is a popular test problem for uncer-
tainty analysis, sensitivity analysis, and optimization algorithms (Rosenbrock, 1960). In the two-dimensional 
form, the Rosenbrock function is defined as:

𝑌𝑌 = 100
(

𝑋𝑋2 −𝑋𝑋
2

1

)2
+ (1 −𝑋𝑋1)

2
, 𝑋𝑋1, 𝑋𝑋2 ∈ [−2, 2]� (D1)

where (X1,X2) are the two input variables in range of [−2,2]. The global minimum is at (x1,x2) = (1,1), where 
y = 0.

The Rosenbrock function over the domain [−2,2] 2 is shown in Figure D1. It involves a long steep valley and a 
gradually sloping floor. The Rosenbrock function in its two-dimensional form enables us to visualize the function 
itself and the implementation steps of VISCOUS.
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D1.  Part A. Data Preparation

Assume both variables (X1,X2) follow a uniform distribution between their lower and upper bounds. When we 
compute the first-order sensitivity index of X1 for the Rosenbrock function, (X1,Y) are included in the VISCOUS 
framework. We first generate 10,000 sets of (x1,x2) by randomly sampling from each variable's uniform distribu-
tion, and then calculate the corresponding y based on Equation D1. Following steps 1–3 in Section 2.4, we get 
three sets of data: input-output data (x1,y), normalized data 𝐴𝐴

(

𝑥𝑥′

1
, 𝑦𝑦′

)

, and empirical marginal CDF data (𝐴𝐴 𝐴𝐴𝑥𝑥1 , 𝑢𝑢𝑦𝑦) . 
Figure D2 shows the scatter plot of the two-dimensional data among the three data sets.

D2.  Part B. GMCM Inference

For ease of visualization, we first used two Gaussian components to estimate the GMCM (K = 2). The resulting 
visualization can help to understand what the Gaussian components are and how they are grouped together to 
form the GMM.

Based on two Gaussian components, the GMCM density function is expressed as:

𝑐𝑐
(

𝑢𝑢𝑥𝑥1 , 𝑢𝑢𝑦𝑦
)

=
𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

𝜙𝜙𝑧𝑧𝑥𝑥1

(

𝑧𝑧𝑥𝑥1

)

⋅ 𝜙𝜙𝑧𝑧𝑦𝑦
(𝑧𝑧𝑦𝑦)

�

Figure D1.  Rosenbrock function in its two-dimensional form.

Figure D2.  Scatter plot of the two-dimensional input-output data, normalized data, and empirical marginal CDF data. The histograms on the sides represent the 
marginal distribution.
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where 𝑓𝑓
𝐺𝐺𝐺𝐺𝐺𝐺

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

= 𝜆𝜆1𝜙𝜙
(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦|𝝁𝝁1,𝚺𝚺1

)

+ 𝜆𝜆2𝜙𝜙
(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦|𝝁𝝁2,𝚺𝚺2

)

�

𝝁𝝁𝑘𝑘 =

[

𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑥𝑥1
, 𝜇𝜇𝑘𝑘𝑘𝑘𝑘𝑦𝑦

]

,𝚺𝚺𝑘𝑘 =

⎡

⎢

⎢

⎣

𝜎𝜎2

𝑘𝑘𝑘𝑘𝑘𝑥𝑥1

𝚺𝚺𝑘𝑘𝑘𝑘𝑘𝑥𝑥1
𝑧𝑧𝑦𝑦

𝚺𝚺𝑘𝑘𝑘𝑘𝑘𝑦𝑦𝑧𝑧𝑥𝑥1
𝜎𝜎2

𝑘𝑘𝑘𝑘𝑘𝑦𝑦

⎤

⎥

⎥

⎦

, 𝑘𝑘 = [1, 2]� (D2)

ϕ is the PDF of a bivariate Gaussian distribution with mean μk and covariance Σk. Figure D3 shows the contour of 
each Gaussian component and the GMM. The weighted sum of the two bivariate Gaussian distributions (compo-
nents) makes up the GMM. The two components are well separated and of different weights, and the mixture 
contour resembles the component contours.

The inferred parameter values of the two components are also provided:

𝜆𝜆1 = 0.54, 𝜆𝜆2 = 0.46�

𝝁𝝁1 =

[

𝜇𝜇1,𝑧𝑧𝑥𝑥1
, 𝜇𝜇1,𝑧𝑧𝑦𝑦

]

= [0.33, 0.11],𝝁𝝁2 =

[

𝜇𝜇2,𝑧𝑧𝑥𝑥1
, 𝜇𝜇2,𝑧𝑧𝑦𝑦

]

= [0.69, 0.15]�

𝚺𝚺1 =

⎡

⎢

⎢
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Figure  D4 shows how the two-component GMM aligns with the input-output data. Recall that 𝐴𝐴
(

𝑢𝑢𝑥𝑥1 , 𝑢𝑢𝑦𝑦
)

 
are the marginal CDF for the input-output data (see Figure D2c). We compute the inverse CDF of 𝐴𝐴

(

𝑢𝑢𝑥𝑥1 , 𝑢𝑢𝑦𝑦
)

 
within the GMM, getting 𝐴𝐴

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 . Figure  D4a shows the distribution of 𝐴𝐴
(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 data in the GMM. Next, 
we compute the  corresponding joint probability density for each data point 𝐴𝐴

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 based on the PDF of the 
GMM (Figure  D4b). These probability density values play a crucial role in GMCM inference, specifically 
serving as key inputs for calculating the log-likelihood in the utilized EM algorithm (see Equation B1). The 
log-likelihood of this two-components GMCM is 2,697.90. Lastly, to see the appearance of different Gaussian 
components, we label each 𝐴𝐴

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 data point with the Gaussian component to which it exhibits the highest 

Figure D3.  PDFs of two bivariate Gaussian components and the GMM.

Figure D4.  When using two Gaussian components, the histogram (panel a), joint PDF (panel b), and clustering (panel c) results for 𝐴𝐴
(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 .
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probability. Figure D4c implicitly reveals each Gaussian component within the GMM, providing insights into 
their characteristics.

To get a better GMCM, we then repeated the process with different numbers of components up to K = 9, and 
used the AIC criterion and selected the optimal Gaussian component number of eight. Like Figure D4, Figure D5 
shows the input-output data in the eight-component GMM. The GMCM log-likelihood increases to 3,814.87. The 
higher likelihood value represents the better inference result in the EM algorithm. Therefore, the eight-component 
based GMM better represents 𝐴𝐴

(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 than the two-component based GMM. This result highlights the effects of 
the number of Gaussian components on GMM performance.

D3.  Part C. Sensitivity Index Computation

Following the VISCOUS framework, we generated Monte Carlo samples 𝐴𝐴
(

𝑧𝑧𝑀𝑀𝑀𝑀
𝑥𝑥1

, 𝑧𝑧𝑀𝑀𝑀𝑀
𝑦𝑦

)

 based on the inferred 
GMCM. Then we calculated the first-order sensitivity based on Equations  3, 18 and  19, and calculated the 
total-order sensitivity using Equations C2, C3, and 4. To quantify the sampling uncertainty in VISCOUS, we 
repeated the entire processes 50 times to obtain 50 sets of sensitivity index results. Each experiment uses a differ-
ent set of input-output sample data with size 10,000; and in sensitivity index estimation, the Monte Carlo sample 
sizes are N1 = N2 = 2,000.

For comparison, the Sobol’ method of Saltelli (2002) was applied to the same 50 sets of sample data, getting 50 
sets of Sobol’ sensitivity index results. Figure D6 compares the results of VISCOUS and the Sobol’ method. For 
both the first-order and total-order sensitivity indices, VISCOUS produces similar median sensitivity indices as 
the Sobol’ method does.

Appendix E:  Approaches of Generating Non-Exchangeable Priors
In the literature, there are two main approaches for the GMCM inference to generating non-exchangeable priors. 
The first solution is to create strong constraints on the prior component means and covariances. Univariate 

Figure D5.  When using eight Gaussian components, the histogram (panel a), joint PDF (panel b), and clustering (panel c) results for 𝐴𝐴
(

𝑧𝑧𝑥𝑥1 , 𝑧𝑧𝑦𝑦
)

 .

Figure D6.  First- and total-order sensitivity index results of the Sobol’ method and VISCOUS.
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problems can follow Bartolucci (2005), multivariate problems can follow Di Zio et al. (2007), or use a hierarchi-
cal prior (Malsiner-Walli et al., 2017; Teh et al., 2006).

The second approach is ad hoc and includes two steps. It first estimates multiple Gaussian components, and 
then merges these components according to some criteria. Example criteria include the closeness of the means 
(Li, 2005), the modality of the obtained mixture density, the degree of overlapping measured by misclassification 
probabilities, and the entropy of the resulting partition (Malsiner-Walli et al., 2017).
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