Woater Resources Research

METHOD
10.1029/2022WR033808

Key Points:

e We improve the Varlance-based
Sensitivity analysis using COpUlaS
(VISCOUS) global sensitivity analysis
framework in its handling of marginal
densities of the Gaussian mixture
copula model

e We evaluate VISCOUS and
demonstrate how its performance
is affected by function
dimension, input-output size, and
non-identifiability

e We provide a didactic example and
an open-source Python code called
pyVISCOUS to make VISCOUS
easier to understand and apply

Correspondence to:

H. Liu,
hongli.liu@ualberta.ca

Citation:

Liu, H., Clark, M. P., Gharari,

S., Sheikholeslami, R., Freer, J.,
Knoben, W. J. M,, et al. (2024). An
improved copula-based framework
for efficient global sensitivity
analysis. Water Resources Research,
60, €2022WR033808. https://doi.
org/10.1029/2022WR033808

Received 3 OCT 2022
Accepted 22 DEC 2023

© 2024. The Authors.

This is an open access article under

the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

A ’ I l ADVANCING
nu EARTH AND

= SPACE SCIENCES

ok

An Improved Copula-Based Framework for Efficient Global
Sensitivity Analysis
Hongli Liu'? (), Martyn P. Clark? (2, Shervan Gharari® (), Razi Sheikholeslami* (2, Jim Freer?,

Wouter J. M. Knoben? (), Christopher B. Marsh® (2, and Simon Michael Papalexiou®

'Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, >Centre for Hydrology,
University of Saskatchewan, Canmore, AB, Canada, *Centre for Hydrology, University of Saskatchewan, Saskatoon, SK,
Canada, *Department of Civil Engineering, Sharif University of Technology, Tehran, Iran, SDepartment of Civil Engineering,
University of Calgary, Calgary, AB, Canada

Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and
simplifies model parameter estimation. Varlance-based Sensitivity analysis using COpUlaS (VISCOUS) is a
variance-based GSA framework. The advantage of VISCOUS is that it can use existing model input-output data
(e.g., water model parameters-responses) to estimate the first- and total-order Sobol’ sensitivity indices. This
study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model
(GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models.
We observe that its performance depends on function dimension, input-output data size, and non-identifiability.
Function dimension refers to the number of uncertain input factors analyzed in GSA, and non-identifiability
refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first-order
sensitivity with a small amount of input-output data (e.g., 200 in this study), regardless of function dimension.
It always ranks input factors correctly in both first- and total-order terms. For estimating total-order sensitivity,
it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due

to the challenge of producing sufficient input-output data for accurate GMCM inferences (e.g., more than
10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces
non-identifiability issues that impact its performance. We provide a didactic example and an open-source
Python code, py VISCOUS, for broader user adoption.

Plain Language Summary Global sensitivity analysis is a method used to better understand

and estimate parameters in computational models. Varlance-based Sensitivity analysis using COpUlaS
(VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different
uncertain model input factors by using the existing input and output data (e.g., water model parameters

and responses). This study improved VISCOUS and tested it with various functions. We found that its
performance depends on the number of input factors, the amount of input and output data available, and our
ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual
input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input
factor importance, whether individually or collectively. When estimating the importance of input factors
together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is
challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input
factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the
difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and
an open-source Python code, py VISCOUS.

1. Introduction

Sensitivity analysis investigates how the uncertainty of model output can be attributed to the different
uncertain input factors and their interactions (Pianosi et al., 2016). The model output refers to the varia-
ble obtained after the model is executed. The model input factors, also known as input variables, refer to
any aspects of the model that can be changed before model execution, such as model parameters, initial
states, forcing data, model parameterization, and model temporal/spatial resolution in case of dynamic
models (Pianosi et al., 2016). The most common input factor in sensitivity analysis is model parameters
(Norton, 2015).
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Sensitivity analysis is useful in many ways, such as ranking input factors, fixing negligible factors, determining
the region of the input space that has a substantial control on model output, and prioritizing data acquisition
processes to focus on the model inputs that have the largest effect on the desired outcome (Nossent et al., 2011;
Razavi & Gupta, 2015; Saltelli et al., 2008; van Griensven et al., 2006). Sensitivity analysis can also lend insight
into the dominant processes that govern spatiotemporal variability of a system by exploring the full spectrum
of its behavior and the strengths and weaknesses of the water system model (Demaria et al., 2007; Markstrom
et al., 2016; Razavi et al., 2021).

Sensitivity analysis methods can be generally classified into local and global methods. Local sensitivity anal-
ysis methods evaluate the effects of the input variations around a specific point in the input space, and global
sensitivity analysis (GSA) evaluates the effects of the input variations across the entire input space (Pianosi
etal., 2016). In GSA, a well-established and widely used method is the variance-based approach, for example, the
method of Sobol” which decomposes the total variance into contributions from different input factors (Homma
& Saltelli, 1996; Sobol’, 2001).

Variance-based methods are attractive because they are model independent, they measure interaction effects
among input factors, and they handle groups of input factors (Saltelli et al., 2008). The major challenge associated
with application of variance-based methods is their computational cost, because they require model evaluations
for a considerable number of input samples. Running a model for a large number of input samples may be diffi-
cult to achieve if the model is computationally expensive. Therefore, much recent research aims to find efficient
numerical algorithms to compute variance-based sensitivity indices (Hu & Mahadevan, 2019; Sheikholeslami
etal., 2019).

To overcome the aforementioned computational bottleneck, Sheikholeslami et al. (2021) developed a compu-
tationally frugal GSA framework called VISCOUS (Varlance-based Sensitivity analysis using COpulaS).
VISCOUS first uses a Gaussian Mixture Copula Model (GMCM) to approximate the joint probability distribu-
tion between the input (e.g., the perturbations in the model parameters) and output data (e.g., the model responses
given parameter perturbations); and then approximates the first- and total-order Sobol” sensitivity indices based
on the fitted GMCM. VISCOUS belongs to the class of given-data approach, also known as the data-driven
approach. This approach allows GSA to be applied to existing input-output data, regardless of whether the under-
lying relationships or mechanisms are known. It is beneficial for computationally intensive models when the
input-output data exist (Sheikholeslami & Razavi, 2020).

In comparison to other variance-based GSAs, VISCOUS provides an advantage by eliminating the need for
input-output data to follow specific sampling strategies, as required in traditional Monte Carlo methods for
Sobol’ sensitivity indices (e.g., Homma and Saltelli, 1996, Saltelli, 2002). This is because input-output data
in VISCOUS are not used to directly calculate Sobol’ sensitivity indices but are used for training the GMCM.
Therefore, input-output data can be from previous model runs for other modeling purposes, such as calibration
and uncertainty analysis. Moreover, VISCOUS does not impose assumptions on the structure of input-output
data, as required in many emulator-based GSA, especially those employing ANOVA (Analysis of Variance). For
example, assumptions about negligible higher-order interactions, as required in Borgonovo et al. (2012), Plischke
et al. (2013), and Stanfill et al. (2015), are not enforced by VISCOUS. This characteristic enhances VISCOUS's
applicability in diverse models.

The motivation of this research is to improve the VISCOUS of Sheikholeslami et al. (2021). In Sheikholeslami
et al. (2021), the GMCM marginal densities are defined as the standard normal distribution along all variable
dimensions (i.e., zero mean and unit variance). However, these marginal densities are inefficient as they remain
fixed during the GMCM inference process, neglecting the impact of updated GMCM parameters. This may result
in biased GMCM parameter estimates and inaccurate sensitivity indices, especially when insufficient iterations
are allowed in GMCM inference. The objective of this paper is to improve the VISCOUS methodology by refin-
ing the GMCM marginal densities. This methodological advance will lead to a more efficient GMCM inference
and improved sensitivity index estimates.

The structure of this paper is organized as follows. Section 2 explains the methodology of the improved
VISCOUS framework. Section 3 evaluates VISCOUS using three types of Sobol’ functions and demonstrate
how its performance is affected by function dimension, input-output data size, and GMCM non-identifiability.
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Section 4 introduces the Python code of VISCOUS called pyVISCOUS. The paper concludes with discussion of
future work and potential utility of VISCOUS for different modeling applications.

2. Methodology

This section describes the methodology of the improved VISCOUS framework. The essence of VISCOUS is
to develop and use the Gaussian mixture copula model (GMCM) to calculate the Sobol’ sensitivity indices. To
explain VISCOUS, we first review the Sobol’ variance-based GSA method and then explain the GMCM method
in detail, including the improved handling of the GMCM marginal densities. With both, we provide the deriva-
tions of the first- and total-order Sobol’ sensitivity indices. Finally, we explain the implementation steps of the
VISCOUS framework using Monte Carlo-based approximations.

In the following, random variables are denoted by capital letters, and their values are denoted by lowercase letters.
For example, F,(x) is the cumulative distribution function of the random variable X evaluated at x. Bold face
letters denote vectors or matrices, such as X = [X,,...,X |, where d is the number of variables.

2.1. Overview of the Sobol’ Global Sensitivity Analysis
Assume a water system model is expressed as:

Y = HX, X>,...,Xq) (1)

where a total of d input factors are evaluated in sensitivity analysis. Assume the variance of model outputs is a
good proxy of output uncertainty and input factors are random and independent. The variance of model response

(Y) can be decomposed into partial variances: first-order variance (V,), second-order variance V), ..., until
d-order variance (V, ,) (Saltelli, 2002; Saltelli et al., 2008).
d d d
VO =Y Vit D Y Vit +Via @
i=1 i=1 j=i+1

where V(Y) is the variance of the model response Y.
The first-order sensitivity index (S,) is calculated as:

_ Vi V(EX]|X)) 3
TVEY)  V(Y) &)

i

where V(E(Y1X))) is the variance of mean Y over X; alone. It represents the contribution of the single input X; to the
variance of response Y. The first-order sensitivity index is also called the main effect sensitivity index.

The total-order sensitivity index (S;,) is calculated as:

V(E(Y|X.))

ST,'ZI—SN,‘ZI—
V)

“
where V(E(Y | X ~;)) is the variance of mean Y over all X except X,. It represents the total contribution of non-X,,
denoted as X.;, to the variance of response Y. The total-order sensitivity index is also called the total effect sensi-
tivity index. It includes not only the first-order effects of an input variable but also its higher-order interactions
with other input variables.

Sobol’ sensitivity indices range from zero to one. The closer an index value is to one, the better the associated
input variable explains the model output. Moreover, from Equations 3 and 4, we see that the calculation of
conditional expectations, E(Y1X,) and E(Y|X .;), is the cornerstone of the variance-based sensitivity analysis. In
the following sections, we will explain the GMCM method and the use of it to calculate E(Y1X,) and E(Y | X ;).

2.2. Gaussian Mixture Copula Model (GMCM)

Assume arandom vector [X,Y] =[X,...,X,,Y], and each element has a continuous cumulative distribution function
(CDF). If X is a continuous random variable with CDF F,, then F is uniformly distributed between zero and one
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based on the probability integral transform theorem. Therefore, [F X, (X1)s .oy Fxy(xa), Fr ( y)] = [uxl s Uy, uy],
where each u € [0,1] follows the uniform distribution.

The joint distribution Fy , can be expressed as a function of the marginal distributions based on Sklar's theorem
(Sklar, 1959; Tewari et al., 2011):

FX.Y(Xs J’) = C(ux, uy) (5)

where x = [x;,....x,], w, = [u),....u,l. Fx s the joint CDF of (X.Y). C is the copula function defined as the joint
CDF of (u,.u,). The copula function specifies the distribution of (X,¥) by specifying their marginal distributions
and linking the marginal distributions through the copula function.

The joint PDF of (X.1), fx ;. is obtained by computing the derivative of Equation 5:

1 C(uy, uy) ¢ Ouy, OJu :
y — H Pl d_yy =c(ux,uy)-ll:1[fx,(xf)'fY(Y) (6)

fX,Y(Xsy) = aux] . auXd - : 1]

where c(u,,u,) is the copula density. In GMCM, a Gaussian Mixture Model (GMM) is used to approximate the
copula function as there is no simple analytical formula for the copula function (Tewari et al., 2011).

2.2.1. Gaussian Mixture Model (GMM)

A GMM is a probabilistic model that assumes all the data points are generated from a mixture of a finite number
of Gaussian distributions (Singh, 2019; Xu & Jordan, 1996). The GMM CDF is denoted by:

K
P! @ 2) = 3k (202, i ),
k=1

where z,, = CD;XI,_ (uxl.), zy = CIDQ}V1 (uy),i =1,....d @)

where K is the total number of Gaussian components or clusters. 4, is the weight of the kth Gaussian component.
K

A, >0and Y A = 1. @ is the CDF of a multivariate Gaussian distribution with mean g, and covariance X,. The
k=1

GMM parameter vector combines the weights, mean vectors and covariance matrices of all the Gaussian compo-

nents, notated as O in the rest of the paper.

In the improved VISCOUS, @._ and @, are the GMM marginal CDF for z,, and z,, respectively. @' and & are

the corresponding inverse distribution function. There is no closed form expression for the inverse function, so a
linear interpolation is used to obtain the inverse values based on the GMM parameters © (Tewari et al., 2011). z,,
and z, are the obtained inverse values of uy, and u,, respectively. More details about the GMM are in Appendix A.

2.2.2. Gaussian Mixture Copula Model (GMCM)

The GMCM function is derived from the GMM. When the Gaussian mixture copula function is approximated
by a GMM:

C(uy,uy) = fof’;’)‘f(zx,zy) (8)

the copula density, c(u,,u,), is approximated by:

d

0zy, 0z

GMM y

c(uy, uy) & fzx.zy (Zx, 2y) - I I - i, e =
i=1 Xi ¥

GMM
z.z, (T Zy)

d
_1:11 d’zx,. (Zx,-) . d’z}.(zy)

K
where fZGX'f"Z’;l(zx,zy) = Z A ¢(zx,zy|;lk,2k) 9)
=l

where f7MM(z,, z,) is the GMM PDF. ¢ is the PDF of a multivariate Gaussian distribution with mean g, and
Zy

covariance X,. ¢: and ¢ are the GMM marginal PDF for z, and z,, respectively.
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From Equation 9, we see that the dependence structure of the GMCM is obtained from the GMM. Moreo-
ver, the GMCM function shares the same parameter set as the GMM function. The GMCM parameters @
are estimated by a modified Expectation-Maximization (EM) algorithm of Tewari et al. (2011) (detailed in
Appendix B).

Here it is worth noting the algorithmic advancement relative to the VISCOUS of Sheikholeslami et al. (2021).
In Sheikholeslami et al. (2021), the marginal densities <I>Zx, and (Dzy are defined as the standard normal distri-
bution along all variable dimensions (i.e., zero mean and unit variance). As such, the marginal densities are
independent of the formula of GMCM. This has a subsequent impact on the GMCM inference as the marginal
densities ignore the updated GMCM parameters and remain fixed in the inference process. This may lead
to optimizing GMCM parameters taking longer than necessary, and introducing biases in these parameter
estimates and inaccurate sensitivity index estimates. The presented methodology in this paper overcomes this
shortcoming by defining the GMCM marginal densities based on the formula of GMCM and adopting itera-
tively updated marginal densities based on the GMCM parameters in the inference process. This methodolog-
ical advance helps to obtain a GMCM function that fits the input-output data more efficiently and provides
better sensitivity index estimates.

2.3. GMCM-Based Sobol’ Sensitivity Index Estimation

As explained in Session 2.1, the variance-based sensitivity index estimation relies on the conditional expecta-
tions, E(Y1X,) and E(Y'| X ;). The following explains the general use of GMCM to compute the conditional PDF,
Jux- With f,,«, it then explains the computation of E(YIX)) and the first-order sensitivity index. The computation
of E(Y|X.;) and the total-order sensitivity index follows a similar logic.

2.3.1. Model Conditional PDF of Y

To compute the conditional PDF of Y, f,,y, we need the joint PDF of (X,Y) and the marginal PDF of X. In GMCM,
the joint PDF of (X,Y), fx y» is estimated based on Equations 6 and 9:

G
I @ zy)

Sy m ———— [ /) (10)
[11¢(zx,,) Pz

The marginal PDF of X, fy, is estimated as:

@)
fx(x) & = H Fx,(x1) an
l:ll ¢ (le ) N
where 7M™ (z,) is the GMM marginal PDF of Z, obtained with Equation A5 of Appendix A.
The conditional PDF of Y, fy, is obtained by dividing fy , by fy:
GMM
frrxy) Tzz, BB
Frix(ylx) = R : “fr(y) (12)
B fxE T Gy (2
2.3.2. First-Order Sensitivity Index
When the input variable X; is fixed to a value x;, the resulting conditional expectation of Y is:
B 1X = x)= [ 3+ frxtrlndy (13)
Qv
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where QY is a region of Y over which integration is conducted. Equation 13 is approximated using Equation 12:

| feMM @)
E(Y|Xi =x) %/ Ve : - fr(y)dy (14)
QY ZC';MM Zx) ¢zy(zy)
Since (:L;’ = fy(y), the above equation becomes:
PG

1
EXY|X; =x,-)z/ y (15)
0

. d
FOM ) b

To drop the dependence upon the specific value x,, the variance of E(Y1X)) is estimated by integrating E(Y1X, = x,)
over the probability density function of X, expressed as:

2

V(E(YlX,-)):/ EXY|X; = x))dx; — [/ E(Y|X; = x;)dx; (16)
Qx;

Qx;

E(Y1X)) and V(E(YIX,)) can be estimated using Monte Carlo approximations, which is the content of the next
section. With V(E(Y1X))), the first-order sensitivity index is computed based on Equation 3. Similar approach can
be used to calculate E(Y'|X.;), V(E(Y|X.;)), and the total-order sensitivity index by replacing the X; with X.;
and is detailed in Appendix C. The above also shows that two loops are needed in the computation of V(E(Y1X))).
The inner loop is to compute E(Y1X,) by integrating over u,. The outer loop is to compute the variance of E(YIX))
by integrating over x;.

2.4. Steps for Performing VISCOUS

This section explains the implementation steps of the VISCOUS framework using Monte Carlo-based approx-
imations. Six steps are involved (Figure 1). Same as in Section 2.3, we take the first-order sensitivity index
of X; as an example. The procedure is the same for the total-order sensitivity index except replacing X, with
X .; and is detailed in Appendix C. Additionally, Appendix D demonstrates the implementation steps using the
two-parameter Rosenbrock function. This didactic example aims to help users to better understand the details
within the VISCOUS method and apply it for their own applications.

( onm A A \
(" Part A: Data preparation "\ [ Ppart B: GMCM inference ) Part C: Sensitivity index
_ _ estimation
Select Input-output Loop m.ultlple candidate
data, (x;, ) Gaussian components
P (eg,K=1,2,..,9)
l Generate Monte Carlo
- samples from the best
For each K, estimate fitted GMCM
Normalize selected GMCM parameters via EM
[ data, (x{,y") l
Calculate AIC score for the Calculate Sobol’
estimated GMCM sensitivity index
CalFul?'ccte stupliiee| Identify the best fitted
TR EPL (220 GMCM with the min AIC
\_ J L / U J

Figure 1. Flowchart of performing the VISCOUS framework. CDF denotes the cumulative distribution function. GMCM
denotes the Gaussian mixture copula model. EM denotes the Expectation-Maximization algorithm. AIC denotes the Akaike
information criterion.
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2.4.1. Part A. Data Preparation

Step 1. Select the evaluated input and output data based on the goal of sensitivity analysis. For example, when
calculating the first-order sensitivity index of variable X, the selected input-output data are (x,,y).

Step 2. Normalize the selected input-output data using the min-max normalization method. Normalization
transforms data into a common scale without changing the relationships among data. This improves the
performance and training stability of the GMCM. The produced normalized data (xl’,, y ) will be used in the
calculation of Sobol’ sensitivity indices.

Step 3. Calculate the rank-based empirical CDF for each variable of the normalized data, getting the marginal
CDF data (u,,u,). Rank transformation is a common procedure to get marginal CDFs when the data distri-
bution is unknown or complex (Saltelli and Sobol’, 1995). The marginal CDFs are used to derive the
inverse CDF values (z,,z,) in the following GMCM inference.

2.4.2. Part B. GMCM Inference

Finding the best fitted GMCM involves solving two problems. The first problem is to determine the optimal
number of Gaussian components (K). The second problem is to determine the optimal GMCM parameters ().
Therefore, the following two steps are conducted interactively.

Step 4. To find the optimal value of K, we use a statistic known as Akaike information criterion (AIC). AIC estimates

the quality of a model by balancing its goodness of fit (log-likelihood) and complexity (penalty to the number of
model parameters) (Akaike, 1974). Readers can explore alternative model selection criteria based on their data
characteristics and analysis goals. For instance, Bayesian information criterion (BIC) is another popular model
selection criterion (Vrieze, 2012) and has been added as an alternative in py VISCOUS.
Step 4 compares the AICs of multiple GMCMs with different Gaussian component (K) values (e.g.,
K =1, 2,...,9 in this study). For each candidate K value, use a modified EM algorithm to estimate its
corresponding GMCM parameters (Step 5), and then compute the AIC score for the estimated GMCM.
The GMCM that achieves the lowest AIC value is identified as the best fitted GMCM, and its corre-
sponding K value is the optimal K value.

Step 5. Given a Gaussian component value K, estimate the GMCM parameters using a modified EM algorithm.
The EM algorithm is explained in Appendix B. In the EM, the marginal densities of GMCM change with
every GMCM parameter update. The corresponding inverse distribution values (z,.z,) vary based on the
form of the GMCM. A Python library called Copulas is used to perform the modified EM.

2.4.3. Part C. Sensitivity Index Estimation

Step 6. Once the best fited GMCM is determined, generate the Monte Carlo samples (z’;{ €,z C) from the

GMCM, and calculate the variance-based first-order sensitivity index based on the samples. Step 6 is
detailed in the following.

Based on the inferred GMCM, two rounds of sampling are performed to generate Monte Carlo samples.
The first round of sampling generates N, samples, namely zf"’ € in Equation 17. zf” € provides samples for
integration over x; to obtain V(E(Y1X))) in the outer loop.

MC MC MC IMC
Zl.x,- Zl,y Zrlei Zl,y
MC MC MC IMC
Z Z Z Z
MC _ 2,x; 2,y McC _ | TN 2,y _
V¢ = i ,z2)'¢ = ,ri=[1,...,Ni]. am
MC MC MC IMC
Nyp.x; ZNI Y Zrlv"i ZNz,y

The second round of sampling generates N, samples, for example, z}“ in Equation 17. 2}/ provides
samples for integration over u, to get E(YX; = x,) in the inner loop. The second round of sampling needs
repeating N, times by looping through each sample of z{” C. Per iteration, N, Monte Carlo samples are
generated from the inferred GMCM, and then all the values of z,, are replaced by a sample of 2. See z}/“
in Equation 17 as an example, the entire first column of z/ is replaced by the r*" sample of 2, z}< . N,
and N, can be but do not have to be the same (N, = N, = 2,000 in our study).
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With the two rounds of Monte Carlo samples, we can approximate E(Y1X,) and V(E(Y1X))) in Equations 15
and 16. The conditional expectation E(Y1X,) in Equation 15 is approximated by:

GMM( MC ZMC)

1 N, Zy Zy \ X2 2y 1
E(Y|X;i=x)¢) ~ — Fyl(uM§) - — (18)
7 2o W) ey )
where xMCis the r'* sample of 2, r, = [1,...,N]. (zM$ , z)< ) is the r! sample of z)! =[1L...N].u)§

and ¢, ( Zmy ) are the marginal CDF and the marginal PDF of the GMM at zM

the inverse CDF of u,, , in the normalized space of ¥, F/ ( Upy ) = y’fZC.

respectlvely F; (u,z,y)ls

1.y
The variance of E(Y1X)) in Equation 16 is approximated by:

2
V(E(Y|X)) ~ Nil ZNI EX(Y|X; = xMC) - [Nl N‘ E(Y|X; =xM€) (19)

r=l1 ’1' =1 rsi

With Equations 18 and 19, and Equation 3, the first-order sensitivity index can be computed. The proce-
dure for calculating the total-order sensitivity index is similar and detailed in Appendix C.

3. Evaluation of the VISCOUS Framework

This section evaluates the improved VISCOUS framework using three types of Sobol’ functions. We will first
introduce the three types of functions, followed by comparative performance evaluation. We will also inves-
tigate three factors that affect the performance of VISCOUS: function dimension, input-output data size, and
non-identifiability. Function dimension means the number of uncertain input factors analyzed in GSA, and
non-identifiability refers to the inability to estimate the GMCM parameters.

3.1. Sobol’ Function

According to Kucherenko et al. (2011), any model functions can be classified into three types based on their
dependence on variables.

e Type A function: Variables are not equally important in terms of sensitivity.

e Type B function: Variables are equally important, and no interaction exists between variables. Therefore,
S,=8p 28, =1,and S, = l/n.

» Type C function: Variables are equally important, and interaction exists between variables. Therefore, S, < S,
and )5, < 1.

Type A functions are the most common type of functions in practice. For instance, in most water system models,
a large proportion of model output variation is often associated with a small proportion of the input factors
(Markstrom et al., 2016). In statistics, this is known as the sparsity of effects principle or the Pareto principle (Box
& Meyer, 1986). In the context of sensitivity analysis, this phenomenon reflects over-parameterization in model
structure or the need for using a wider range of performance metrics for model evaluation.

Type B and C functions have all equally important variables. Equal importance means that all variables have the
same sensitivity at all orders (i.e., first-order, second-order, ..., and total-order). Type B and C functions differ in
the interactions between variables. While these functions are uncommon, they provide valuable insights into the
boundaries and limitations of a theory or methodology, aiding in refinement and improvement. Our study, which
examines VISCOUS in type B and C functions, allows us to explore the full spectrum of possibilities, validate
VISCOUS's robustness, and provide directions for future study.

The popular Sobol’ function is adopted to examine the performance of VISCOUS in all three cases (Hu &
Mahadevan, 2019; Kucherenko et al., 2011):

4X; -2 ;
fX)= H B 0)

Set d = 10, then (X|,...,X|) are the 10 input variables uniformly distributed in [0,1]. We can conveniently get all
the three types of function by changing a, (Kucherenko et al., 2011).
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Table 1
Configurations of Four Sobol’ Functions

Table 1 lists four functions that belong to the above three types of functions.
Functions Al and A2 are both Type A functions and are used to distinguish
whether some (not all) variables are equally important in Type A. In function

Function type Function name a value ” A ~ .
Al, all X variables are differently important. In function A2, X, and X, are
Type A Al ai = 25[sin(0.51) +cos(0.751 + 2)|  equally important and X;,...,X,, are equally important, but function A2 is
Type A A2 a=a,=0,a;,=-=a,=652 more sensitive to X; and X, than to X;,....X,,. In functions B and C, all X
Type B B a;,=6.52 variables are equally important, but the interactions between the variables
Type C C =0 are different, as stated above in the definitions of Type B and C functions.
3.2. Sensitivity Index Results
Figure 2 shows the first-order and total-order sensitivity index results of the
four functions of Table 1 using the VISCOUS and Sobol” methods as well as
the analytical true sensitivity index values. The Sobol’ method is based on Saltelli (2002); the analytical truth is
calculated based on Saltelli et al. (2004); the calculation of each sensitivity index is repeated 50 times to quan-
tify sampling uncertainty. Each of the 50 experiments uses a different set of input-output sample data with size
10,000; and the Monte Carlo sample sizes are N, = N, = 2,000.
(a) Function A1l: First-order (b) Function Al: Total-order
0.8 1.0 A
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0.6 4 é‘l‘ — VIscous 087 [
— True 0.6 1 -g_
©n 0.4 1 & 0.4 7
0.2 4 éi
0.2 4 B 2 % g
. 0.0 5 %—e 1%:
0.0 - o g 26 =6 2o 56 =0 —02 1
T T T T T T T T T T : T T T T T T T T T T
(c) Function A2: First-order (d) Function A2: Total-order
0.8 A 1.0 4
06 0.8 1
' 0.6 L8 g%
n 0.4 8% -84. & 044 o o
SO L BUAC I K.
001 gt i *g to ¥
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(e) Function B: First-order (f) Function B: Total-order
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. 0_6_9-;-1--1--1--1--1--}-3-1-
»n 0.4 4 & 0.4 5
J )
o el DEREEEERERE
0.0 1
00_3—0--%4--@4--%4--?3-%4-%4 -é-i--g-b 02_0 T 3 s b
(g) Function C: First-order (h) Function C: Total-order
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8 T
Wit t g a8t
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0-6 1 ) o ¢ o °
» 0.4 & 04 1%_ )%_ %_
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X1 X2 X3 Xa Xs Xe X7 Xg Xo Xio X1 X2 X3 Xa Xs Xe X7 Xsg Xo Xio
Figure 2. First- and total-order sensitivity index results of the Sobol’ method, VISCOUS, and the analytical truth for the four
functions of Table 1.
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For the first-order sensitivity indices (Figures 2a, 2c, and 2e), VISCOUS generates results matching the truth for
all variables in all functions, and its uncertainty of sensitivity estimates is smaller than Sobol's. For the total-order
sensitivity indices (Figures 2b, 2d, and 2f), for functions A1 and A2, VISCOUS provides slightly higher sensitiv-
ity estimates than the truth; for functions B and C, VISCOUS provides quite different sensitivity estimates from
the truth. For all functions, VISCOUS is correct in ordering the sensitivity of each variable. Therefore, if one is
interested in first-order sensitivity and input factors ranking, VISCOUS is good at achieving this functionality.

To investigate why VISCOUS behaves differently between Type A functions and Type B and C functions, we
examined the results of the Sobol” method. The Sobol’ method produces many negative sensitivity indices when
the total-order sensitivities approach zero (Figures 2b, 2d, and 2f). Negative sensitivity indices do not make
theoretical sense and are instead the result of numerical artifacts in the estimation procedure. Moreover, the
Sobol’ method produces large uncertainties when the total-order sensitivities are the same across all dimensions
(Figures 2f and 2h). These reveal the difficulty of calculating the total-order sensitivities when they are close to
zero or the same, in other words, when functions are insensitive or equally sensitive to evaluated variables.

We hypothesize that the performance of VISCOUS in estimating sensitivity indices is affected by three factors:
function dimension, input-output data size, and non-identifiability of GMCM inference. The following sections
check them one by one.

3.3. Function Dimension

For all types of functions, high dimensionality (the number of function input variables) has no effect on first-order
sensitivity estimation, which is a beauty of VISCOUS, but it poses a challenge to total-order sensitivity estima-
tion. This is because the function dimension has different effects on the number of variables involved in GMCM
(and GMCM inference) in first- and total-order sensitivity estimations.

Suppose the number of variables involved in GMCM inference is denoted as D. When calculating first-order sensi-
tivity, D is always equal to two regardless of the function dimension, including the evaluated variable itself (X))
and the evaluated output variable (Y). When calculating total-order sensitivity, D is equal to the function dimen-
sion, including all the input variables except the evaluated variable (X .;) plus the evaluated output variable (Y).

For a GMCM with K components and D variables, the number of GMCM parameters to estimate is equal to
KX D XD+ KxD + K. These include K covariance matrices each of size D X D, K mean vectors of length D,
plus a component weight vector of length K. These GMCM parameter values are determined through GMCM
inference. When calculating first-order sensitivity, the GMCM has 7K parameters to estimate because D = 2.
When calculating the total-order sensitivity, the GMCM has K X d X d + K X d + K parameters to estimate
because D = d (d is the function dimension). This polynomial growth in the number of GMCM parameters
can be a problem for high-dimensional functions because it becomes more challenging to produce a sufficient
amount of sample data for making accurate GMCM inferences. For example, assuming a two-component
GMM is used in GMCM (i.e., K = 2), when the number of X variables varies between 4, 6, 8, 10, 15, 20, 30,
and 50, the corresponding number of GMCM parameters becomes 42, 86, 146, 222, 482, 842, 1,862, and
5,012.

To demonstrate the effect of function dimension on VISCOUS performance, we change the number of function
variables from 4 to 50 to cover from low-dimensional to high-dimensional cases, and apply VISCOUS to all
functions in Table 1. The experiment design is the same as in Section 3.2 except changing the number of function
variables. The input-output data size remains 10,000 in all experiments. Figure 3 shows the VISCOUS sensitivity
estimate errors. The error is calculated as the mean absolute sensitivity difference between the VISCOUS's result
and the analytical truth across all X variables of a function.

For first-order sensitivity index, VISCOUS provides accurate estimates regardless of the function dimension,
with a negligible error less than 0.005. For total-order sensitivity index, VISCOUS provides gradually worse
estimates as the function dimension increases. Specifically, for Type A functions, when the function dimension
is lower than 20, the total-order error increases slowly with the function dimension, and the error is acceptably
small, less than 0.2. When the function dimension is higher than 20 (including 20), the total-order error increases
rapidly, and the error is large. This difference between total-order errors and first-order errors indicates a potential
limitation of the GMCM in capturing complex structures in high-dimensional problems.
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(b) Total-order
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Figure 3. VISCOUS sensitivity estimate errors for different function dimensions. Functions A1, A2, B, and C are defined in
Table 1. For each function, the number of X variables varies between 4 and 50; the input-output data size is 10,000; and the error is
calculated as the mean absolute sensitivity difference between VISCOUS and the analytical truth across all X variables per function.

Type B and C functions have different total-order error curves from Type A functions. Rapid error increases are
observed in Type B and C functions even when the function dimension is low (e.g., d from 4 to 6 in Figure 3b).
This implies that, when estimating total-order sensitivity indices, VISCOUS faces difficulties other than high
dimensionality, which is particularly influential in Type B and C functions. This will be explained in Section 3.5.

3.4. Input-Output Data Size

To investigate how many input-output data are needed for VISCOUS to provide accurate sensitivity estimates, we
changed the input-output data sizes from 200 until 10,000, and applied the VISCOUS framework to functions of
Table 1. The results are shown in Figure 4. The first-column of Figure 4 shows the effect of input-output data size
on first-order sensitivity estimates. For all functions, the first-order sensitivity estimate error effectively reduces
as the input-output data size increases. More importantly, the first-order sensitivity errors are tiny for all functions
with even only 200 input-output data (i.e., less than 0.003). This is due to the low number of parameters to be
estimated in the first-order sensitivity related GMCM inference as explained in Section 3.3.

The second column of Figure 4 shows the effect of input-output data size on total-order sensitivity estimates. For
Type A functions, adding input-output data effectively improves the total-order sensitivity estimates of low- and
medium-dimensional functions (d < 20). If taking 0.2 as an error threshold, 200 input-output data are needed for
VISCOUS to produce accurate total-order sensitivity estimates for 4- and 6-dimensional problems. 400, 750, and
5,000 input-output data are needed for 8-, 10-, and 15-dimensional problems, respectively.

However, adding input-output data does not necessarily improve the total-order sensitivity estimates of
high-dimensional functions (d > 20) given limited input-output data. For example, in function Al (Figure 4b),
the total-order error increases as the data size rises to 1,000 when d = 30, and to 10,000 when d = 50. This is
caused by overfitting. When the GMCM being used is overly complex, the GMCM might fit noise in data rather
than capturing the true underlying patterns. As such, the GMCM performs very well on the input-output data
but cannot generalize and therefore performs poorly on new data (i.e., GMCM samples in Step 6). This result
indicates that estimating total-order sensitivity of high-dimensional functions is difficult because a large amount
of input-output data is needed to make good GMCM inferences (e.g., more than 10,000 data). In this case, we
recommend applying a screening method (e.g., Elementary Effect Test (Pianosi et al., 2016)) followed by the
calculation of the Sobol’ total-order sensitivity index on a reduced number of input factors.

Figure 4 also shows that, increasing the input-output data size does not improve the total-order sensitivity esti-
mates for Type B and C functions as effectively as it does for Type A functions. The next section will explain
the factor that has a greater effect on the total-order sensitivity estimates of Type B and Type C functions than
function dimension and sample size.

3.5. Non-Identifiability of GMCM Inference

We hypothesize that the poor performance of VISCOUS in total-order sensitivity estimates for Type B and Type
C functions stems from the non-identifiability of GMCM inference. Non-identifiability is the inability to infer
some or all parameters of interest from the available data (Renard et al., 2010; Wagener et al., 2001). There is a
considerable body of work on non-identifiability in the control-engineering literature, in the context of dynamical
models, spanning over 40 years (Dobre et al., 2012; Guillaume et al., 2019). The following explains the reason
behind the non-identifiability of GMCM inference.
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Figure 4. VISCOUS sensitivity estimate errors for different input-output data sizes. Functions A1, A2, B, and C are defined in Table 1. The number of X variables
varies between 4 and 50.

3.5.1. Grouped Component Parameters in GMCM Inference

In GMCM, the log-likelihood of all input-output data is expressed by:

log(P(Z|©)) = ) log

N

K
Y Ak (2l g i)

k=1
d

'ljl ¥z, (ZX') "z, (2)

n=1

@n

where @ = [Au,X] is the GMCM parameter vector, N is the total number of input-output data used for GMCM
inference, and n = (1,...,N). z, = (zn,x,zn,),) is the nth inverse distribution values marginally based on the GMCM

parameter vector (@) and the marginal CDF data (u,).

Consider a simple example of GMCM with two Gaussian components. The log-likelihood is:

N
log(P(Z|©)) = ' log

At d(Za s 1) + Ao - (2| iy, Zo)
d

H ¢in (Zx,») : ¢zy(zy)

i=1

n=1

(22)
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Assuming the two Gaussian components are independent, the log-likelihood function can be re-parameterized as:
N d
togP(ZI®) = Y. {loa(@(@l iy Zew) = Yo 10g (#(zns e, o, ))

—log(d)(zn,yIﬂEM,z,,,GéM,zy)>}
where pgy, = Ay + oy, Zem = AT + A2, (23)

The re-parameterized log-likelihood function depends on the weighted sum of ®, and ®,, not on the individual
0, and O,. Therefore, p,,, and X, are identifiable and their inference problem is well posed, but the individual
0, and O, are not identifiable.

However, VISCOUS needs well-defined inference on the individual component parameters ©,. This is because to
compute the conditional expectations in variance-based sensitivity indices, both the joint and the marginal distri-
butions of the GMCM are needed (see Equations 15 and C1). The following explains why the non-identifiability
has the greatest effect on GMCM inference when the input variables are equally sensitive.

3.5.2. Non-Exchangeable Priors in GMCM Inference

When facing non-identifiability, the strength of the prior information determines if the GMCM inference problem
is well-posed (Renard et al., 2010). An inference problem is considered well-posed if it satisfied the following
three criteria: a solution must exist, should be unique, and should depend continuously on the given data and
assumptions.

The use of non-exchangeable priors can help yield a well-posed GMCM inference problem. Here the
non-exchangeable priors mean that the priors for one Gaussian component are distinctly different from the priors
for all other Gaussian components:

Hic # i OF, [icces Hicy| # [prr o iy
2:k # 2:k’ . Or, [Ek.xx Ekvxy 2:k,yx O-iy] 56 [Zk’,xx Ek’,xy Zk’,yx O-:/_y :| (24)

where k and k' represent two different Gaussian components of the GMM (k.k" € [1,..,K], k # k). Otherwise, if
ux = up and X, = Xy, then the two priors are exchangeable between the kth and k’th components.

The challenge in generating non-exchangeable priors exists in functions that are equally sensitive to input varia-
bles. The equally sensitive variables have the same distribution and same interaction with other variables (includ-
ing y), the prior information on these variable dimensions is very similar or even the same. If the data used for
GMCM inference induce exchangeable priors and cannot discriminate between components, then the data cannot
discriminate between the individual component parameters. In this case, it is impossible for any inference algo-
rithm to explicitly discriminate these component parameters.

The higher the function dimension is, the more difficult it is to generate non-exchangeable priors for the equally
sensitive input variables. This explains why the total-order sensitivities of VISCOUS deteriorate much faster in
Type B and C functions than in Type A functions as the function dimension increases (see Figure 3). VISCOUS
currently uses the k-means method to generate priors for GMCM parameters. Appendix E lists approaches to
generating non-exchangeable prior information, though applying these approaches is out of scope of this study.

4. pyVISCOUS

pyVISCOUS is the open-source Python implementation of VISCOUS, available at https://github.com/CH-Earth/
pyviscous.git (Liu et al., 2023). It is developed to streamline the application of VISCOUS. pyVISCOUS offers
straightforward installation options - available both as a Python package via pip or directly from the source. We
also provide example notebooks demonstrating the utilization of py VISCOUS across the Rosenbrock function,
four Sobol’ functions of Table 1, and a real case study of the Bow at Banff basin, Alberta, Canada. Each example
notebook includes well-documented code, guiding users on generating input-output data, setting up and running
VISCOUS, and evaluating sensitivity index results.
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5. Conclusions

VISCOUS is a variance-based global sensitivity analysis (GSA) framework developed by Sheikholeslami
etal. (2021). As a “given-data” method, VISCOUS leverages existing model input and output data (e.g., parame-
ters and responses of water system models) to provide useful approximations of the first- and total- order Sobol’
sensitivity indices. The input-output data do not need to follow any specific sampling strategies and thus can be
from the previous model runs generated for other modeling purposes, such as calibration and uncertainty anal-
ysis. Also, there are no enforced structure assumptions on the input-output data, which enhances VISCOUS's
flexibility and applicability to models with complex interactions.

This research has three innovative contributions. First, we improve the VISCOUS methodology by refining the
GMCM marginal densities based on the GMCM formula. Second, we conduct comprehensive evaluations of
VISCOUS using three types of generic functions and highlight general problems with the application of GSA
methods to water system models (e.g., dimensionality challenges associated with computing total-order sensi-
tivity index). Last, we provide a didactic example (Appendix D) and an open-source Python code, py VISCOUS,
to help people understand and apply VISCOUS. pyVISCOUS is model-independent and can be applied with
user-provided input-output data.

Our evaluation shows that the performance of VISCOUS is affected by three factors: function dimension,
input-output data size, and non-identifiability. VISCOUS is powerful in estimating the first-order sensitivity
using a small input-output data set, such as 200 in this study. This holds true across various function dimensions,
as VISCOUS is inherently not affected by the function dimension in first-order sensitivity estimation. Moreover,
VISCOUS is always correct in ranking input variables in both first- and total-order sensitivity terms regardless of
function dimension and input-output data size.

For functions that are differently sensitive to input variables (Type A function, which are common in water
system models), VISCOUS can provide good total-order sensitivity estimates for low- and medium-dimensional
functions using limited input-output data (e.g., 10,000 or fewer). For instance, in this study, VISCOUS needs
only 200 input-output data for 4- and 6-dimensional problems, and 400, 750, and 5,000 input-output data for 8-,
10-, and 15-dimensional problems, respectively. However, like other GSA methods, VISCOUS has difficulties
in estimating total-order sensitivities for high-dimensional functions or models. This is because the number of
GMCM parameters grows in a polynomial manner with the function dimension, and it is difficult to produce
sufficient input-output data to make good GMCM inferences. Therefore, it is advisable to use VISCOUS when
the function dimension is not very high (e.g., less than 20). When the function dimension is high, we recommend
applying a screening method followed by the calculation of the Sobol’ total-order sensitivity index on a reduced
number of input factors.

For functions that are equally sensitive to input variables (Type B and C functions, which are rare in water system
models), VISCOUS faces a greater challenge than function dimension and data size in total-order sensitivity
estimation, that is, the non-identifiability of GMCM inference. The GMCM parameters are grouped in inference,
so the individual component parameters are not identifiable. In this context, if a function is equally sensitive to its
input variables, the prior information on these variable dimensions is highly exchangeable and cannot be discrim-
inated between the GMCM components. This adds complexity and subjectivity to the GMCM inference. While
well-posedness is still achievable, careful consideration and justification of the exchangeable priors are necessary
to ensure the validity and robustness of the inference results. VISCOUS currently uses the k-means method to
generate priors, and our evaluation confirms that k-means does not perform well for Type B and C functions.
Future work is needed to incorporate the method of creating non-exchangeable priors into GMCM inference, so
it can handle functions with equally important variables.

We also invite discussion and collaboration with others interested in related issues of sensitivity and uncer-
tainty analysis for computationally expensive models. We seek collaborations to assess pyVISCOUS's
effectiveness in large samples of model types and study locations across a variety of hydroclimatic and
environmental regimes. This will further help us test, improve, and modify the proposed sensitivity analysis
framework.
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Appendix A: More Details About the Gaussian Mixture Model (GMM)

This appendix is to show more details about the Gaussian component, GMM conditional and marginal functions.
As in Equation 9, the GMM PDF is expressed as:

K
D ED YW IR CREN7 0 (AD)
k=1
where ¢ is the PDF of a multivariate Gaussian distribution with mean g, and covariance X,.

The Gaussian mean and covariance of a Gaussian component are expressed as:

Hi = [”k,zxs ﬂk,zy] (A2)

Zk,zxzx Ek,zv‘.zy
X = (A3)
Ek.zyzx 0'2

k.zy,
where X, , is the covariance between z,, Xy ,, 2 is the covariance between z, and zZ, and X, z = Ek.z},zx~ o-f is
g 12y
the variance of z,.
The GMM conditional PDF of Z, given Z,, f gy"(z’f , is derived by:
fg)ﬁlzf(zyllx) = [xy(2x, 2y)/ [x(2s) (A4)
where MM is the GMM marginal PDF of Z, expressed as:
K
MM =N A (2l Mg Zhn,) (AS)
k=1

Appendix B: Modified Expectation-Maximization (EM) Algorithm

The modified EM algorithm is to maximize the log-likelihood in GMCM inference. The GMCM log-likelihood
is expressed as:

K
N Z, Ak - d(2n| i, i)
log(P(Z©)) = Y log =
= T, (2x) - 02,(20) (B1)

N - K d
=y {log<2 A '¢<zn|uk,2k>> - Y log (¢, (2)) - log(¢z,.(zy>)}
n=1 k=1 i=1

where N is the total number of samples, n = (1,...,N). The parameter vector @ combines the weights, mean
vectors and covariance matrices of all the Gaussian components.

Here we use a Python library called Copulas to perform the modified EM algorithm. The algorithm proceeds as
follows (Tewari et al., 2011):

1. Initialize the parameter vector ® to a set of random values using the k-means method.

2. Calculate the inverse distribution values marginally (z,) given the parameter vector (®) and the marginal CDF
data (u,). In the absence of a closed form expression of the inverse function, a linear interpolation is used to
obtain the inverse values empirically.

3. Expectation (E) step: Compute the posterior probability of sample z, belonging to each component. It is equal
to the ratio of the Gaussian component probability to the sum of all Gaussian component probabilities:

P(L, = klz,) = 2 Pl 20

B2
2 Ak - (@ | pic, Zi) B2
k=1
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where L, denotes the component label. Moreover, compute the log-likelihood log(P(ZI®)) based on
Equation B1.

4. Maximization (M) step: Update the parameter vector @ using the just computed posterior probability

P(L, = klz,) so that the log-likelihood can be maximized:

N
L= Kz A (B3)
A =
N
N
P(Ln = k|Z,,) *Zy
o= "= (B4)

N
Z P(L, = k|Z,,)
n=1

N
Y P(Ly = kl|z,) - (20 — f1)" - (20 — fix)
2'\: n=1 (BS)

k = N
Z P(L, = k|Z,,)

n=1

5. TIterate steps 2—4 until the log-likelihood converges.

Appendix C: Total-Order Sensitivity Index

Computing the total-order sensitivity index of X, needs the input-output data (X~;, ) = (X1, .., Xi=1, Xi+1s - - -, Xd» ¥)-
The conditional expectation of Y given the specific value x.; is expressed as:

MY (1)

~xi Ly

! Z
EY XN,‘ =X.i)~ . . d Cl1
(Y[Xs = %) /0 PR 1)

To drop the dependence upon the specific value x.;, the variance of E(Y1X,) is estimated by integrating
E(Y|X.; = x.;) over the probability density function of X.;, expressed as:
2

V(E(Y[X.) = / EX(Y X = x)dx; — [/ E(Y|X. = x.)dx; (€2)
Qx;

Qx;

The total-order sensitivity index is computed based on V' (E(Y|X.;)) and Equation 4.

In Monte Carlo-based approximations, the above two equations are estimated as follows. First, use the
inferred GMCM to perform two rounds of sampling and generate the Monte Carlo samples (for example, see

Equation C3.
zMC ZMC
I~x; Ly
MC McC
Z
MC _ 2,~X; Z2,y
Z1 =
MC MC
Nip~x; Niy
mc ZMC ZMC ZMC ZMC
1,x 1,xi_1 Lxigg Lxy Ly
McC zMC MC MC ZMC
—_| 72x 2.xi-1 2.Xi41 2.xq 2y
= ,
MmcC McC MmcC MmcC McC
V4 Z Z V4
Np.x NioXiog NisXig Ni.xq Niy
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Z2 =
MC IMC
Zri g Z N,y
MC MC MC MC IMC
Zrix Zryxicy Zr| Xisl Zryxq Zl.y
MC MC MC MC IMC
_ Z’]v"l zr]'xl—l T Xit] Z’Md Z2.y
MC MC MC MC IMC
Z’w‘l Zr]'xl—l Z’lvxm Z’]vxd ZNz.y
ri=1[1,...,Ni] (C3)

The conditional expectation, E(Y|X.; = X.;), is approximated by:

GMM (( McC ZMC))

1 Ny _ Z oy Zy \\Trioxio ray 1
(VX =x6) = o 30 B () - ~ c
R L ) ey ()
The conditional variance, V' (E(Y|X.;)), is approximated by:
1 N 1 N, 2
~ — I g2 _yMcy _ | L 1 _ oMcC
VEYIX)~ 5= X, L B (YK = xS [ N 2o E(YIX =x)) (C5)

The total-order sensitivity index can be computed based on Equations C4, C5, and 4.

Appendix D: A Didactic Example of Implementing the VISCOUS Framework

This section uses the two-parameter Rosenbrock function to demonstrate the implementation of the improved
VISCOUS framework. This example is intended to help users to understand the details of the VISCOUS meth-
odology, such as the Gaussian components and GMM, and hence help users to utilize the VISCOUS framework
for their own applications.

The Rosenbrock function, also referred to as the Valley or Banana function, is a popular test problem for uncer-
tainty analysis, sensitivity analysis, and optimization algorithms (Rosenbrock, 1960). In the two-dimensional
form, the Rosenbrock function is defined as:

Y = 100(X> — X2)* + (1 - X))%, X1, Xz € [-2,2] (D1)

where (X,X,) are the two input variables in range of [—2,2]. The global minimum is at (x,,x,) = (1,1), where
y=0.

The Rosenbrock function over the domain [—2,2]? is shown in Figure D1. It involves a long steep valley and a
gradually sloping floor. The Rosenbrock function in its two-dimensional form enables us to visualize the function
itself and the implementation steps of VISCOUS.
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Figure D1. Rosenbrock function in its two-dimensional form.

D1. Part A. Data Preparation

Assume both variables (X,X,) follow a uniform distribution between their lower and upper bounds. When we
compute the first-order sensitivity index of X, for the Rosenbrock function, (X,,Y) are included in the VISCOUS
framework. We first generate 10,000 sets of (x,,x,) by randomly sampling from each variable's uniform distribu-
tion, and then calculate the corresponding y based on Equation D1. Following steps 1-3 in Section 2.4, we get
three sets of data: input-output data (x,,y), normalized data (x’l y’), and empirical marginal CDF data (uy,, u,).
Figure D2 shows the scatter plot of the two-dimensional data among the three data sets.

(a) Input-output data (x1, y) (b) Normalized data (x'1, y’) (c) Marginal CDF data (uy,, uy)

3000 - &
2000 - B3
> :
1000 -
0 .
T T T T T T
-2 0 2 0.0 0.5 1.0
Xl X’l

Figure D2. Scatter plot of the two-dimensional input-output data, normalized data, and empirical marginal CDF data. The histograms on the sides represent the
marginal distribution.

D2. Part B. GMCM Inference

For ease of visualization, we first used two Gaussian components to estimate the GMCM (K = 2). The resulting

visualization can help to understand what the Gaussian components are and how they are grouped together to
form the GMM.

Based on two Gaussian components, the GMCM density function is expressed as:

fGMM(ZXl’Zy)

¢le (le) . ¢zy(zy)

c(u,(1 s uy) =
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where fOMM (2, z,) = i (zx,. 2yl 1y, Bt ) + Aap (24,0 2y | 2. B2

o-l%.z Zk,le z,
= ey pe, | Ba = | k=[1,2] (D)
S, ol

¢ is the PDF of a bivariate Gaussian distribution with mean g, and covariance X,. Figure D3 shows the contour of
each Gaussian component and the GMM. The weighted sum of the two bivariate Gaussian distributions (compo-
nents) makes up the GMM. The two components are well separated and of different weights, and the mixture
contour resembles the component contours.

Gaussian component 1 Gaussian component 2 Gaussian mixture model

(weight = 0.54) PDF (weight = 0.46) PDF (GMM) PDF

53 43
0.50 A 5.1 0.50 '
45 33
0.25 - 38 0.25 1 ig
N 32 .
0.00 A 2.6 0.00 A 2.0
1.9 15
-0.25 1.3 —0.25 1.0
0.6 0.5
—-0.50 T T T 0.0 —0.50 T T T T 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Zyx, Zx, Zx,
Figure D3. PDFs of two bivariate Gaussian components and the GMM.
The inferred parameter values of the two components are also provided:
A1 =054,4 =046
= [ s | =1033,0.010 1y = [, 1, | = 1069,0.151
o coviz, =, 0.04 —0.03 o, covaz, =, 0.05 0.02
21 = 1 = ,22 = 1 —
2 _ 2
COViz,z, O, 0.03 0.03 COVazz, o)., 0.02 0.02

Figure D4 shows how the two-component GMM aligns with the input-output data. Recall that (uxl,uy)
are the marginal CDF for the input-output data (see Figure D2c). We compute the inverse CDF of (uxl,uy)
within the GMM, getting (zy,, z,). Figure D4a shows the distribution of (z,,,z,) data in the GMM. Next,
we compute the corresponding joint probability density for each data point ( Zy,, zy) based on the PDF of the
GMM (Figure D4b). These probability density values play a crucial role in GMCM inference, specifically
serving as key inputs for calculating the log-likelihood in the utilized EM algorithm (see Equation B1). The
log-likelihood of this two-components GMCM is 2,697.90. Lastly, to see the appearance of different Gaussian
components, we label each ( Zx,s zy) data point with the Gaussian component to which it exhibits the highest

(a) (2zx,, 2zy) data in GMM  Count (b) (2x,, z,) PDF in GMM PDF (c) (2x,, zy) cluster in GMM
061 v 06 - " 061 ik
. 15 e .
0.4 0.4 0.4 4
3
- 0.2 4 10 . 0.2 1 & 0.2 1
0.0 0.0 2 0.0 -
—0.2 i 5 —0.2 1 —0.2 4 Cluster
e 1
—0.44 = —0.4+ -041 @ 2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Zy, Zx, Zx,

Figure D4. When using two Gaussian components, the histogram (panel a), joint PDF (panel b), and clustering (panel c) results for (zx] , zy).
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probability. Figure D4c implicitly reveals each Gaussian component within the GMM, providing insights into
their characteristics.

To get a better GMCM, we then repeated the process with different numbers of components up to K = 9, and
used the AIC criterion and selected the optimal Gaussian component number of eight. Like Figure D4, Figure D5
shows the input-output data in the eight-component GMM. The GMCM log-likelihood increases to 3,814.87. The
higher likelihood value represents the better inference result in the EM algorithm. Therefore, the eight-component
based GMM better represents (le , 2 y) than the two-component based GMM. This result highlights the effects of
the number of Gaussian components on GMM performance.

(a) (zx,, zy) data in GMM  count (b) (zx,, zy) PDF in GMM PDF (c) (2x,, 2y) cluster in GMM  cluster
: 05{ ;¢ 05{ ;¢ 8
30 Sderen 30 A K2
Y 5
0.4 4 0.4 4 - ’;‘. -, 7
25 . 25 3 v
0.3 0.3 6
20 20 5
> 0.2 > 0.2
15 N 15 N 4
0.1 0.1
10 10 3
0.0 0.0 1
5 5 .
-0.1 A g —0.1 A A 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0
sz ZXL

Figure D5. When using eight Gaussian components, the histogram (panel a), joint PDF (panel b), and clustering (panel c) results for (z,l s zy).

D3. Part C. Sensitivity Index Computation

Following the VISCOUS framework, we generated Monte Carlo samples (z% €, z)/“) based on the inferred

GMCM. Then we calculated the first-order sensitivity based on Equations 3, 18 and 19, and calculated the
total-order sensitivity using Equations C2, C3, and 4. To quantify the sampling uncertainty in VISCOUS, we
repeated the entire processes 50 times to obtain 50 sets of sensitivity index results. Each experiment uses a differ-
ent set of input-output sample data with size 10,000; and in sensitivity index estimation, the Monte Carlo sample
sizes are N, = N, = 2,000.

For comparison, the Sobol” method of Saltelli (2002) was applied to the same 50 sets of sample data, getting 50
sets of Sobol’ sensitivity index results. Figure D6 compares the results of VISCOUS and the Sobol’ method. For
both the first-order and total-order sensitivity indices, VISCOUS produces similar median sensitivity indices as
the Sobol’ method does.

(a) First-order sensitivity index (b) Total-effect sensitivity index

0.6 0.8
—— Sobol
— VISCOUS

S == | & &

" 0.4 4 & 0.6 1
0.3 % % 0.5 %
0.2 T T 0.4 T T
X1 X2 X1 X2

Figure D6. First- and total-order sensitivity index results of the Sobol” method and VISCOUS.

Appendix E: Approaches of Generating Non-Exchangeable Priors

In the literature, there are two main approaches for the GMCM inference to generating non-exchangeable priors.
The first solution is to create strong constraints on the prior component means and covariances. Univariate
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problems can follow Bartolucci (2005), multivariate problems can follow Di Zio et al. (2007), or use a hierarchi-
cal prior (Malsiner-Walli et al., 2017; Teh et al., 2006).

The second approach is ad hoc and includes two steps. It first estimates multiple Gaussian components, and
then merges these components according to some criteria. Example criteria include the closeness of the means
(Li, 2005), the modality of the obtained mixture density, the degree of overlapping measured by misclassification
probabilities, and the entropy of the resulting partition (Malsiner-Walli et al., 2017).
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