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A B S T R A C T   

Snow that accumulates seasonally in mountain headwaters is traditionally a vast and consistent natural reservoir, providing water as the snow melts in the spring and 
summer. This resource is at risk due to declining and more variable snow cover, increasing the need to accurately forecast snowmelt. The timing and magnitude of 
snowmelt, first order controls on downstream water resources, are primarily driven by the amount of absorbed (net) solar radiation controlled by the snow albedo. 
However, solar radiation and snow albedo are not commonly measured at mountain instrumentation sites despite their high degree of spatial variability. With the 
sparsity of observations, physically based snow models often use simplified solar radiation modeling and time-decay albedo functions, leading to errors in snowmelt 
rate and snow depletion timing. Here, this limitation has been addressed by combining two independent gridded solar radiation data products; 1) incoming solar 
radiation output from the High-Resolution Rapid Refresh (HRRR; U.S. National Weather Service) numerical weather prediction model and 2) remotely sensed snow 
albedo derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The hourly HRRR and snow albedo products were used to update net solar 
radiation in a spatially distributed snow energy balance model over two water years (2021, 2022) in the East River Watershed, Colorado, USA. Results were assessed 
through time against two observation sites within watershed boundaries and spatially against snow extent from two airborne lidar flights in 2022. Updating net solar 
radiation improved modeling of melt rates and reduced errors in snow depletion timing from 15 – 33 days later (baseline runs) to 1 – 6 days later relative to the 
observation sites. The updates additionally improved spatial agreement of where snow had already been depleted from 87% to 97% during the melt season relative to 
lidar. These enhancements using open-access gridded products available over the continental US increase the potential for adaptation of process-based models into 
local water supply forecast operations to ultimately improve runoff predictions in snow dominated watersheds.   

1. Introduction 

Observation studies have established that net solar radiation, 
controlled by snow albedo, acts as a large source of energy for melt in 
most snow environments (Marks and Dozier, 1992, DeWalle and Rango, 
2008). Relatedly, from global to local point-scale models, correctly 
representing change in snow albedo over time has been shown to be 
critical for accurately modeling snow energy balance, melt rates, and 
extent during ablation. The traditional approach of representing albedo, 
an empirical ‘time since snowfall’ nonlinear decay function, leads to 
errors in climate models (Qu and Hall, 2014), land surface models (Chen 
et al., 2014; Ryken et al., 2020), hydrological models (Clark et al., 
2015), and snow models (Krinner et al., 2018; Schmucki et al., 2014). 
Alternative snow albedo model representations, such as snow surface 
temperature-based decay or with varying decay rates during snow melt 
have been implemented, but still lack the ability to accurately represent 
snow albedo over time (Pedersen and Winther, 2005). More complex 
snow albedo simulations in radiative transfer models also consider 
controlling factors such as cloud optical thickness or solar zenith angle 

(Gardner and Sharp, 2010), but have yet to be included with large-scale 
spatially distributed models. The basis of the time-based representation 
is that snow albedo is highest for freshly fallen snow, and then declines 
over time as snow grain size increases due to metamorphic processes. 
Grain size, though, only determines snow albedo in near infrared 
wavelengths where ice is absorptive (Wiscombe and Warren, 1980). In 
visible wavelengths, where ice is transparent and snow is highly scat
tering, albedo is related to surface darkening by light absorbing particles 
(LAP). 

The variability in grain growth rates and accumulation of LAPs 
consequently introduces variability in snow albedo and rates of decline 
that cannot be uniformly represented by a time-based approach. For 
example, grain growth is not consistent, exhibiting faster growth in the 
presence of liquid water (Donahue et al., 2021), warmer air tempera
tures (Kaempfer and Schneebeli, 2007), and darkening by LAPs (Skiles 
and Painter, 2017) – all properties of which vary within a watershed 
over space and time. The timing and impact of LAPs is not easily pre
dicted, varying for example with emissions of dust from arid and 
disturbed landscapes, black carbon from anthropogenic sources and 
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wildfire, and algae growth. Even when an area is known to consistently 
receive dust on snow deposition, like the Colorado Rocky Mountains in 
Colorado, USA, there is high interannual variability in the timing and 
amount deposited (Skiles et al., 2012). Furthermore, the albedo of 
freshly fallen snow itself exhibits spatial and temporal variability (Skiles 
et al., 2023) and does not reset to the same value (Abolafia-Rosenzweig 
et al., 2022). The time-based decay functions continue to be applied, 
though, because snow albedo and controlling processes are notoriously 
challenging to observe and parameterize in models (Bair et al., 2019). 

Incorrect albedo values propagate directly to the model results by 
modulating the absorbed solar radiation. If snow albedo is too high, for 
example, absorbed solar radiation will be too low and the snow will melt 
too slowly (Chen et al., 2014). This has direct implications for modeling 
snowmelt timing and forecasting water availability. Absorbed, or net 
solar radiation (RS), in physically based snow models is calculated via 
the following equation: 

RS = (1 − α) × Si (1)  

Where α is the snow albedo, the unitless ratio that indicates the fraction 
of reflected to incoming solar radiation, such that the term (1- α) is the 
co-albedo, or the fraction of incoming sunlight that is absorbed by the 
snowpack. When multiplied by Si, the incoming solar radiation (Wm− 2), 
the result is the total or net amount of solar radiation absorbed by the 
snowpack (Wm− 2). Net solar radiation is a term in the overall snowpack 
energy balance (Q) :

Q = NS+NL+H+ L+G+M (2)  

Where NS is net solar, NL is net longwave, H is sensible heat, L is latent 
heat, G is conductive heat (soil-snow interface), and M is the advected 
heat (precipitation) energy transfer term (all terms are in Wm− 2) (Marks 
and Dozier, 1992). A common approach to solve for net solar in process- 
based models is to calculate incoming solar radiation with a topo
graphically adjusted theoretical model (i.e., two-stream model, Dozier 
and Frew, 1990), adjusted with a cloud factor, and the time-decay 
function for snow albedo. To improve the representation of net solar 
the options are to improve the representation of incoming solar radia
tion, snow albedo, or both. 

In the current literature, different approaches have improved 
snowmelt timing from snow models through advanced snow albedo 
representation. Skiles and Painter (2019) added in situ measured dust 
information to individual layers simulated with the physical based 
SNOWPACK model (Bartelt and Lehning, 2002). The dust data were 
subsequently included in a radiative transfer model to derive snow al
bedo, replacing the default time-decay method of the model. This 
combination allowed snow depletion simulations within two days of the 
observation at a measurement station. Tuzet et al. (2017) extended a 
physical based snow model to use snow albedo from a radiative transfer 
model that used LAP information from an atmospheric model, which 
also brought the modeled snow melt-out dates closer to the observed. 
Niwano et al. (2021) forced the Snow Metamorphism and Albedo Pro
cess (SMAP; Niwano et al., 2014) model with LAP information from a 
meteorology-chemistry model. SMAP uses the physically based snow 
albedo model (PBSAM; Aoki et al., 2011) and also improved the accel
erated snow melt simulation by including the LAP data. Oaida et al. 
(2015) used a radiative transfer model to inform the Simplified Simple 
Biosphere (SSiB-3) land surface model (LSM) coupled with the Weather 
Research and Forecasting/Advanced Research WRF (WRF-ARW), which 
used a built-in radiative transfer model to calculate albedo based on 
aerosol and grain growth rates, at 15 km spatial resolution. The modified 
SSiB-3 LSM setup is one of the few efforts to address the need to account 
for controls on snow albedo on larger spatial scales. They improved the 
difference between the observed and simulated snow disappearance 
from about one month to 13 days. 

Malik et al. (2012) used a notably different approach, where the 
time-decay snow albedo values in the Noah land-surface model (Ek 

et al., 2003) were updated with observed data. The observations were 
from a Moderate Resolution Imaging Spectroradiometer (MODIS) 
product and updated the values while preserving the time-based albedo 
decay. The direct insertion updates mainly improved the simulated al
bedo after a long cycle without freshly fallen snow and had limited 
improvements to the snowmelt timing. While all the presented model 
modifications improved representation of snow processes, none of the 
assessments were designed or executed at the watershed scale with high 
(sub-kilometer) spatial resolution. This leaves an unaddressed need to 
investigate options for snow models aimed at hydrologic forecasting. 

Given the spatial and temporal variability in snow albedo, remote 
sensing is the ideal candidate to provide relevant and timely data. Two 
widely used snow-specific remote sensing products are the outputs from 
the MODIS Snow-Covered Area and Grain size (MODSCAG; Painter 
et al., 2009) and MODIS Dust Radiative Forcing in Snow (MODDRFS; 
Painter et al., 2012) retrieval workflows. MODSCAG retrieves the frac
tional snow cover, snow grain size, and clean snow albedo per 500- 
meter pixel. MODDRFS determines visible albedo reduction, or snow 
darkening, due to the presence of LAP at the snow surface and resultant 
radiative forcing. The two albedo products can be combined, with clean 
snow albedo reduced by the snow darkening, to estimate the observed 
snow albedo. Both products have been widely used to validate snow 
property information of modeled results (Sarangi et al., 2019; Minder 
et al., 2016; Hao et al., 2022; Huang et al., 2022). So far, successful use 
of MODIS-based snow information as a model input has only been shown 
by Miller et al. (2016), who used radiative forcing to perturb net solar 
radiation within the 1-dimensional Snobal model, concluding with a call 
for methods that scale across large areas and extended time periods for 
hydrological forecasting. 

Here, we present a workflow that directly inserts the MODIS 
observed snow albedo information into the spatially distributed iSnobal 
model (Marks et al., 1999), a pathway to fill the gap identified by Miller 
et al., 2016. Various studies have applied the iSnobal energy balance 
model across a range of spatial resolutions (Kormos et al., 2014; Marks 
et al., 1999; Garen & Marks, 2005) and in various snow environments 
spanning maritime (Hedrick et al., 2018, 2020), arctic (Winstral et al., 
2009), intermountain (Marks and Winstral, 2001; Kiewiet et al., 2022; 
Hale et al., 2023), and continental snowpacks (Meyer et al., 2022, 
Bonnell et al., 2023). Additionally, we test improvements from using 
incoming solar radiation from the High-Resolution-Rapid-Refresh 
(HRRR; Dowell et al., 2022) numerical weather prediction (NWP) 
model. Meyer et al. (2023) showed well-simulated snow depth and mass 
balance during accumulation at the watershed scale when forced with 
meteorological outputs from HRRR. As with other snow models, the 
HRRR-iSnobal combination showed deficiency during the melt season, 
depleting the snow too slowly and too late, indicating a need to improve 
the modeled net solar radiation. This is addressed with the architecture 
presented here and demonstrated over a watershed (1373 km2) in the 
headwaters of the Colorado River Basin. Three different HRRR-iSnobal 
combinations were assessed against in situ point measurements and 
spatial observations. This solution to updating snow albedo and net solar 
radiation is both scalable and accessible given the open-source model 
and open-access spatially gridded inputs. 

2. Study area and years 

The East River Watershed (ERW) is a high alpine environment 
located in the Upper Gunnison Watershed within the upper Colorado 
River Basin (CRB) (Fig. 1). The East River is one of the two primary 
tributaries of the Gunnison River, which itself discharges into the Col
orado River. The ERW has an average elevation of 3266 m and vertical 
elevation relief of 1420 m (Hubbard et al., 2018) and a mixture of 
different vegetation types such as brush and grassland or mixed conifer 
and aspen trees. These characteristics are typically found in the moun
tain headwater watersheds of the CRB, which led to the designation of 
the ERW as a Scientific Focus Area (https://watershed.lbl.gov/) in 2016 
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and is supported by the US-DOE Biological and Environmental Research 
Subsurface Biogeochemistry Program. 

The study period spanned water years 2021 and 2022 (Oct 1st − Sep 
30th), and model inputs and outputs were assessed against in situ ob
servations from three instrumentation sites located inside the ERW study 
domain. Two sites are part of the Snow Telemetry (SNOTEL) network 
operated by the United States Department of Agriculture National 
Resource Conservation Service (USDA-NRCS): Schofield Pass (elevation: 
3261 m) and Butte (elevation: 3097 m). Based on the long-term SNOTEL 
record (30 years) for the sites, water year 2021 had below-average snow 

water equivalent (SWE) and earlier than typical snow melt timing. 
Water year 2022 also had earlier than typical snowmelt timing, despite a 
slightly above average SWE year, due to dust deposition and radiative 
forcing. The third instrumentation site was the Irwin Study Plot (3177 
m), which recently was equipped with incoming and outgoing solar 
radiation observations by the University of Utah Snow Hydrology 
Research to Operations Laboratory. The ERW had additional aerial snow 
depth measurements by Airborne Snow Observatories Inc. (htt 
ps://www.airbornesnowobservatories.com/) in 2022, which were 
used to assess how well snow patterns were modeled spatially. 

Fig. 1. Areal map of the East River Watershed (black outline) showing the model domain, elevation zones, and locations of the instrumentation sites (left). Map on 
the right shows the vegetation types within the model domain based on the LANDFIRE National Vegetation Classification, which are used as metadata in iSnobal 
radiation calculations. 

Fig. 2. Diagram of the iSnobal model snowpack architecture and simulated mass (dashed arrows) and energy (solid arrows) fluxes.  
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3. Model and data 

3.1. Model setup 

The iSnobal model simulates snowpack evolution by resolving en
ergy and mass balance fluxes. The two-layer model calculates the 
snowpack net radiative, sensible, latent, conductive, and advective en
ergy fluxes for a preconfigured time step (Fig. 2). Once the net energy 
fluxes deplete the cold content (the energy required to raise the tem
perature to 0 ◦C) and the snow meltwater amount exceeds the maximum 
liquid water holding capacity of the snowpack, the meltwater outflow is 
calculated. The model stores the simulated state variables of the snow
pack (i.e., snow depth, snow density, meltwater, etc.) as summary sta
tistics after a regular (and configurable) time interval has passed. These 
state variables then serve as initialization values once a simulation 
continues and new energy fluxes change the snowpack. 

A complete setup of the model requires the overarching Automated 
Water Supply Model (AWSM; Havens et al., 2020) software that com
bines the Spatial Modeling for Resource Framework (SMRF; Havens 
et al., 2017) and iSnobal into one framework (Fig. 3a). The external 
Katana module is a wrapper for the WindNinja downscaling approach 
(Forthofer et al., 2014), which assists in refining the supplied HRRR 
wind data (3 km spatial resolution) to a higher resolution (200 m) ac
counting for the modeled topography. The model installation, model 
domain preparation, and daily model execution is described in more 
detail in Meyer et al. (2023). 

For this work, the HRRR-iSnobal combination was set to simulate 
hourly updates at 50 m spatial resolution, storing the state variables at 
the end of each day. The chosen spatial resolution resulted in a modeled 
domain of 837 x 656 grid cells to cover the ERW area of 1373 km2. This 
model configuration was identical to Meyer et al. (2023). 

3.2. Forcing data 

To simulate the snowpack mass and energy fluxes, iSnobal requires 
the meteorological inputs of: air temperature, relative humidity, 

incoming solar radiation, wind speed and direction, and total precipi
tation. These variables, along with additional required forcing infor
mation (e.g. longwave radiation, precipitation phase, etc), are prepared 
for the model domain by SMRF. The meteorological values are available 
from the HRRR NWP model, which produces hourly forecasts up to 18- 
hours at 3 km spatial resolution. The HRRR model became a U. S. Na
tional Weather Service’s (NWS) operational forecast model in late 2014 
and covers the continental United States and Alaska. There have been 
four versions of HRRR since becoming one of the production models for 
the NWS and distribution of the last and final HRRRv4 version started in 
late 2021. HRRRv4 brought advances to cloud physics and modeled 
solar radiation at the surface (James et al., 2022), which guided the 
selection of the simulated water years for this study (2021 and 2022). 
Additionally, using meteorological inputs from one HRRR product 
version reduced the potential of possible error sources comparing the 
different iSnobal input forcing combinations. 

3.3. HRRR solar radiation product 

Using the HRRR forecast products as forcing inputs for iSnobal 
provided the additional opportunity to evaluate the HRRR Downward 
Short-Wave Radiation Flux (DSWRF) variable as an alternative source to 
the current SMRF implementation (Section 3.5.1.2). The DSWRF vari
able in HRRRv4 saw a bias reduction of up to 50 % compared to 
HRRRv3, which was evaluated against local instrumentation sites in the 
lower 48 United States (James et al., 2022). An additional extensive 
HRRRv4 near surface outputs evaluation, that included the DSWRF, by 
Lee et al. (2023) found a seasonally dependent mean bias of around +20 
W m− 2 during the winter, +40 W m− 2 during the summer, and around 
+30 W m− 2 in the spring during peak snow melt. The authors noted in 
the evaluation that these ranges are additionally dependent and vary 
with the amount of cloud cover, geographic region, ground cover type, 
and specific HRRR forecast hour. Keeping this high bias in mind, this 
study used the 6th-hour HRRR output, which showed a lower bias 
among all tested near surface product outputs and forecast hours. The 
use of DSWRF was additionally an opportunity to investigate a NWP 

Fig. 3. Overview of the iSnobal architecture, input data, and execution workflow (a), the current net solar SMRF workflow (b), and the new implementation to 
calculate net solar using MODIS remotely sensed albedo and HRRR solar radiation (c). 
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radiation product, similar to Quéno et al. (2020), where spatially 
varying incoming solar radiation was better represented relative to 
empirical approaches. Adding a meteorological input from HRRR 
increased consistency among iSnobal forcing variables and reduced 
model design complexity of the HRRR-iSnobal combination. We note 
that for consistency in terminology, we use incoming solar radiation in 
place of DSWRF in this paper. 

3.4. Albedo product 

The MODIS snow albedo product used in this work is based on a 
combination of the MODSCAG and MODDRFS model outputs. MOD
SCAG uses a per-pixel spectral unmixing algorithm to detect snow, 
vegetation, rock, water, and shadow percentages. The spectral library 
for snow covers a range of snow grain sizes, which is the foundation for 
simultaneously detecting sub-pixel snow fraction and snow grain size 
(Painter et al., 2009). Using the spectral signature of the modeled clean 
snow grain size in MODSCAG and the information from the observed 
MODIS spectral information enables the MODDRFS algorithm to 
retrieve the reduction in visible albedo and radiative forcing impact of 
LAPs at the snow surface. Deriving broadband snow albedo with the 
information of both MODSCAG and MODDRFS was determined by Bair 
et al. (2019) to have a 4–6 % root means square error compared to a 
long-term in situ measurement record (4+ years). The albedo is gap- 
filled to be spatially and temporally complete (STC) through various 
filtering and smoothing techniques. The STC version of the MODIS snow 
retrievals improves fractional snow cover detection in forested areas, on 
cloudy days, and for varying satellite viewing geometry (Rittger et al., 
2020). The MODIS snow property outputs are produced daily at 500 m 
spatial resolution keeping the MODIS Sinusoidal projection. Access to 
the data is provided upon request by the National Snow and Ice Data 
Center (NSIDC) Snow Today website (https://nsidc.org/reports/s 
now-today). 

3.5. iSnobal net solar model process 

3.5.1. Current implementation 
Within the HRRR-iSnobal architecture, the current sole net solar 

radiation calculation option is available by SMRF and subsequently used 
as input to iSnobal (Fig. 3b). The two fundamental factors to this 
calculation (equation (1)) are the modeled time-decay snow albedo and 
the topographically adjusted incoming solar radiation. This process is 
simulated by SMRF at every user-configured time interval (1 h in this 
work) and stored as an input to iSnobal. The model configuration op
tions and further process details for each factor are explained in the 
following sections. 

3.5.1.1. Time-Decay snow albedo. For each model time step snow albedo 
is modeled using only the HRRR precipitation information with every 
new snowfall, above a user-defined threshold between time steps, 
restarting the decay. Aside from resetting the albedo, SMRF can accel
erate the rate of albedo decay in the visible spectrum to account for LAPs 
using a ‘dirt’ factor parameter, which is applied between a user- 
configured start and end date. A common practice is to apply the 
faster decline during the ablation period, setting the dirt factor start date 
to the day of peak SWE and the end date to the last day with snow on the 
ground. An additional control on the decay rate is the vegetation type of 
a grid cell, where different rates are applied based on the type of cover. 
The vegetation type is retrieved from the metadata file (Fig. 1) created in 
the model domain preparation step. The last user-defined snow albedo 
influence factors are the maximum and minimum snow grain sizes to 
constrain changes in the near-infrared spectrum, which allow custom
izing the albedo decay for different snow environments. A detailed 
description of the time-decay albedo approach can be found in Marks 
and Dozier (1992). 

3.5.1.2. Incoming solar radiation. Calculations for incoming solar radi
ation in SMRF use the algorithms presented in Dozier and Frew (1990). 
This approach starts with assuming a clear sky across the model domain 
and simplifying atmospheric influences. The required inputs are the 
model domain elevation data and the simulated day of year and time of 
day, which enables corrections due to topographic shading. Once the 
theoretical clear sky incoming solar radiation per grid cell is calculated, 
SMRF takes the HRRR solar radiation to determine a cloud reduction 
factor and reduces the clear sky value. The cloud reduction factor is the 
percentage of cloud cover and stored for further use within SMRF. The 
last step before the net solar calculation is the reduction due to vege
tation cover, which is retrieved per grid cell from the modeled domain 
metadata. The motivation behind this approach was to resolve the 
incoming solar radiation at user-defined spatial resolutions, which may 
be finer than available incoming solar radiation data (Dozier and Frew, 
1990). For example, HRRR values are at 3 km, and incoming solar ra
diation can exhibit variability at sub-kilometer scales in mountain 
topography. 

3.5.2. New net solar implementation 
Introducing the new option to the HRRR-iSnobal combination, to 

calculate net solar with the MODIS snow albedo product and HRRR solar 
radiation, was completed as an external set of forcing data preparation 
tools (Fig. 3c). Integrating the preparation tools into the iSnobal model 
workflow only required changes to SMRF. Here, the steps to calculate 
albedo and net solar were wrapped with a feature flag to disable the 
execution via the central model configuration file. The MODIS and 
HRRR product processing was performed in three steps and produced 
daily files with hourly resolution, which is the expected forcing input 
format by iSnobal. 

First, the MODIS snow albedo product was cropped and reprojected 
to match the model domain in spatial projection (EPSG:32613), reso
lution, and extent. The spatial resampling used cubic interpolation to 
reduce observed artifacts within the albedo product, where neighboring 
pixels at times had large differences. These artifacts were deemed un
realistic and categorized as errors. To address the temporal resolution 
difference between set model simulation interval (1-hour) and MODIS 
product data (daily), the values of the daily MODIS overpass (around 
10:30 AM MST) were used as the static snow albedo for the day. This 
approach does not represent albedo decay that happens over the day but 
rather the general daily patterns and magnitude of change over time. 
This approach may miss rapid changes as they happen, for example dust 
storms or new snow fall, but those would be captured with the next 
overpass on a clear cloud free day when impacts to albedo are most 
relevant for energy balance. 

Then, the HRRR solar radiation values were cropped to the model 
domain and spatially resampled with the nearest neighbor algorithm to 
50 m. HRRR data is available at hourly resolution and required no 
interpolation across time. Using the same approach as the current SMRF 
implementation to correct solar radiation values by a shading factor, the 
resampled HRRR values were adjusted by the model topography. The 
final step in creating the net solar input was multiplying the MODIS 
albedo with the topographically adjusted HRRR solar radiation on a 
pixel-by-pixel basis. The pixel-wise multiplication output was stored in 
the expected input format by iSnobal (daily files with hourly values). 

Bypassing SMRF modeled solar also required an update to the cloud 
fraction estimation. In addition to scaling incoming clear sky solar ra
diation for cloud cover, SMRF also used cloud fraction to resolve long
wave radiation fluxes. Consequently, the SMRF implementation was 
updated to use the HRRR cloud cover information to ensure identical 
forcing data across radiation calculations and consistency within the 
model framework. 

4. Comparison 

Assessment of the HRRR-iSnobal net solar radiation forcing updates 
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were performed in three stages. First, a run with the current time-decay 
snow albedo and the incoming solar radiation based on Dozier and Frew 
(1990) set the baseline to which the model modifications were 
compared to. These results are referred to as “Time-Decay”. Next, the 
HRRR-iSnobal combination was updated to use the HRRR solar radia
tion and cloud cover data (label: HRRR-SC), with no updates to the 
treatment of albedo. The last run included the MODIS albedo product 
data along with the HRRR solar radiation and cloud cover data (label: 
HRRR-MODIS). The model outputs were assessed for each year in two 
ways; through time at discrete in situ observation points and across 
space at discrete points in time. The change in SWE over time, integrated 
across elevation bands, was also compared across model runs. These 
three categories are explained in the following sections. 

4.1. Point comparison 

Available observations at Irwin Study Plot (ISP) were compared to 
the energy balance model inputs to evaluate the forcing data quality. In 
addition to the meteorological measurements of air temperature, rela
tive humidity, and wind speed/direction, the site has four separate 
pyranometers. The pyranometers are divided into pairs; two instruments 
measure the incoming and outgoing broadband solar radiation (Hus
keflux SR-11; 0.285–2.800 μm) and the other two measure near-infrared 
solar radiation (Huskeflux SR-11, filtered; 0.695–2.800 μm), the differ
ence of which is visible solar radiation. Broadband albedo was calcu
lated by taking the ratio between outgoing and incoming solar radiation 
and then filtering to the closest time of MODIS overpass, a common 
practice for remote sensing assessments to local point observations 
(Sarangi et al., 2019; Bair et al., 2021). Computing net solar at ISP was 
derived from the difference between the incoming and outgoing 
broadband solar radiation (Wm− 2). 

The HRRR-iSnobal output comparison values at ISP were retrieved 
from the corresponding 50-meter model grid cell containing the site 
when snow was present (snow depth > 0 m). The MODIS snow albedo 
and HRRR solar radiation were compared to ISP values over time and as 
a seasonal mean value. Net solar from the two updates were compared 
using the seasonal mean values and the median difference to the 
measured value. For assessment of HRRR air temperature and wind data, 
the observed values were subtracted from HRRR values, and a 1-day 
rolling mean was applied to reduce measurement spikes and compen
sate for data gaps. 

Assessing the HRRR-iSnobal simulated snow depth values to the 
quality-controlled end-of-day measurements at the SNOTEL stations 
(Schofield Pass and Butte) used the grid cell encompassing the station’s 
point location. This comparison first ensured that the model changes did 
not negatively impact the snow accumulation simulation, which was 
previously modeled well by HRRR-iSnobal (Meyer et al., 2023). Sec
ondly, it evaluated the targeted improvements to snowmelt timing and 
snow disappearance dates through the incremental model changes. 

A final evaluation of impacts to the forcing input changes with the 
snowpack energy balance calculation (equation (2)) compared the dif
ferences in the sum of energy (Q), net solar, net longwave, latent heat, 
and sensible heat at the two SNOTEL stations for each modification. The 
differences were calculated by subtracting the Time-Decay end-of-day 
values from HRRR-SC and HRRR-MODIS end-of-day values. The metrics 
included the seasonal mean, median, and standard deviation over the 
period where snow was present in the model grid cell containing the site. 

4.2. Spatial comparison 

A visual assessment across the ERW domain spot-checked the quality 
of the MODIS product and ensured that no widespread artifacts 
occurred, as occasionally seen in the initial evaluation. The selected date 
was April 1st, 2021, and marks the traditional day of peak SWE and the 
beginning of the melt season. Upon checking the Time-Decay results, 
this date also had a large spread for days since the last snowfall, making 

it a representative case where the albedo should vary across the model 
domain. To quantify the snow albedo variability, the mean and standard 
deviation were calculated and compared between the Time-Decay and 
MODIS product. 

Assessing the propagation of net solar changes to model simulated 
snow depth across the ERW basin compared the model outputs against 
two aerial ASO lidar snow depth observations carried out in water year 
2022 (no ASO flights occurred in 2021). The first flight was on the 21st 
of April and the second on the 18th of May. ASO data is publicly 
available via the NSIDC at 50 m spatial resolution. The objective was to 
evaluate how HRRR-MODIS changes impacted the snow depth simula
tions across the watershed while all other HRRR forcing input variables 
were held constant. The Time-Decay configuration previously simulated 
snow accumulation well with HRRR inputs (Meyer et al., 2023) and no 
degraded performance was anticipated. 

In addition to the basin-wide snow depth comparison to ASO, the 
Time-Decay and HRRR-MODIS runs were compared in ASO observed 
snow-free areas (i.e., ASO grid cells with 0 m snow depth) to calculate 
the Snow Cover Extent (SCE) error. If snow melt was simulated too 
slowly, then the areas with snow depth in the model would be high, 
which would produce high SCE in this spatial comparison. Improve
ments to snow melt timing should reduce the SCE error, especially in the 
later flight when snowmelt was further underway. As an extension to 
this comparison the Time-Decay and HRRR-MODIS snow-free areas, not 
included with the previous case, were compared to observed depth by 
ASO (i.e. ASO grid cells with > 0 m snow depth). This inspected the 
model performance in areas where snowmelt occurred too quickly and 
causing SCE error. 

4.3. Snow water equivalent 

The changes to the HRRR-iSnobal net solar calculations were antic
ipated to propagate to SWE simulations and similarly follow the pattern 
of accelerated depletion during the melt season. The SWE inspection 
followed the classification from Meyer et al. (2023), where the elevation 
zones split the ERW watershed into a lower (< 2896 m/9500 ft), middle, 
and upper (> 3353 m/11 000 ft) elevation band (Fig. 1). Comparing the 
three zones summed the daily HRRR-iSnobal SWE outputs by the 
respective area. Similar to the spatial snow depth assessment, this 
comparison helped highlight whether model response to net solar up
dates varied across topography. 

5. Results 

5.1. Point comparison 

5.1.1. Air temperature and wind speeds 
The HRRR-iSnobal simulation assessment for air temperature and 

wind showed almost identical performance across both years at ISP 
(Fig. 4). For air temperature, the model forcing input had a difference 
spread relative to observations between +4 and − 2 ̊C until December, at 
which the differences then started to fluctuate between +4 and − 4 ̊C. 
Late in the melt season and starting around May, the temperatures were 
positively biased between 0 to +4 ̊C. The forcing inputs for wind showed 
no seasonal trends and difference values across both years stayed be
tween +2 and − 1 m/s. The close match between modeled forcing values 
and observed values gave confidence that the HRRR-iSnobal melt timing 
errors were primarily caused by errors in radiation as opposed to sen
sible or latent heat (turbulent fluxes). 

5.1.2. Net solar 
Compared to the measured net solar at ISP, the HRRR-MODIS and 

HRRR-SC configurations showed good agreement, with biases in 
incoming solar radiation and albedo balancing each other out (Fig. 5). 
For incoming solar radiation, the seasonal general trends were well 
represented, but values were consistently too high, especially 
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pronounced in 2022 (Fig. 5 a, b). For albedo, there was more variability 
in the measurements relative to HRRR-SC (using Time-Decay albedo) 
and HRRR-MODIS (Fig. 5 c, d). The Time-Decay albedo was always too 
high, and the range of values too narrow, whereas MODIS better 
captured the general trends. The outcome for the model was a slight 
underestimation of net solar in both model configurations in 2021; − 28 
W m− 2 (HRRR-SC) and − 30 W m− 2 (HRRR-MODIS) (Table 1). In 2022 
HRRR-SC again underestimated (− 28 W m− 2) whereas HRRR-MODIS 
overestimated net solar (+32 W m− 2). The best agreement in both 
water years was in the time period between December and the onset of 
melt (end of March) when the net solar difference between stayed be
tween +/- 50 W m− 2 (Fig. 5 e, f). Starting around the end of March, 
though, both model configurations had higher than observed net solar 
values. Getting the value closer to the observed is an area for future 
forcing product investigations and is discussed in section 6.2. 

5.1.3. Energy balance terms 
The simulated mean HRRR-iSnobal net solar radiation at the SNO

TEL stations increased with each respective model change in both water 
years, showing the highest difference between the Time-Decay and 
HRRR-MODIS configuration (Fig. 6). Among the energy terms from 
equation (2), the net solar term had the largest changes. Here, the sea
sonal mean differences ranged from 11.8 W m− 2 to 19.5 W m− 2 in 2021 
and 13.6 W m− 2 to 32.4 W m− 2 in 2022 at pixels containing the stations. 
This result confirmed the targeted increase of absorbed solar energy to 
improve the melt timings and magnitude. The second largest difference 
was with the net longwave term, where mean values ranged from − 4.1 
W/m− 2 to − 9.6 W m− 2 in 2021 and − 5.2 W m− 2 to − 16.2 W m− 2 in 
2022. This change is due to an increase in the snowpack temperature, 
caused by using a different cloud cover product and increased absorbed 
energy. Previous research analyzing model sensitivity to radiation en
ergy inputs showed similar results, where changes to incoming long
wave and shortwave propagated to snow temperature and therefore 
outgoing longwave energy (Lapo et al., 2015). A detailed overview with 
mean, standard deviation, and median values for net solar, net long
wave, and sum of energy (Q) is given in Table 2. 

5.1.4. Snow depth 
Similar to net solar radiation, with each configuration update, the 

melt dates were simulated closer to observed (Fig. 7). The Time-Decay 
method lagged behind the observed SNOTEL station melt-out dates by 

18 to 25 days at Butte and 15 to 33 days at Schofield Pass. The results 
from the HRRR-SC run reduced the difference to the observed at Butte to 
3 to 8 days and at Schofield Pass from 2 to 12 days. Adding the MODIS 
product brought an additional reduction with the HRRR-MODIS run 
showing a difference of 1 to 6 days at Butte and 5 days at Schofield Pass. 
Schofield Pass was the only station in 2021, where the difference 
increased to 5 days with HRRR-MODIS versus 2 days with HRRR-SC 
(Table 3). For the season, the snow depth at each SNOTEL site was 
slightly reduced during the accumulation phase with HRRR-MODIS, 
especially when shallow snow depths (<0.2 m) were measured at the 
stations. Potential reasons for this are discussed in the “Limitations” 
section. Overall, using HRRR-MODIS as the net solar configuration 
produced the best result for simulated melt-out dates when compared to 
SNOTEL observations in the ERW domain across both years. These 
findings support the arguments of Meyer et al. (2023), where the net 
solar calculation of HRRR-iSnobal was suspected as the main contributor 
for the melt out simulation errors. 

5.2. Spatial comparison 

5.2.1. Albedo 
Visually comparing the April 1st snow albedo between the Time- 

Decay method and the MODIS product showed that MODIS had lower 
values with higher spatial variability when the Time-Decay method 
showed almost no variation (Fig. 8). The mean Time-Decay albedo was 
0.81 (SD of 0.01), while the MODIS product was 0.71 (SD of 0.07). The 
higher MODIS albedo variability and overall lower values were more 
realistic, given the time since snowfall was between 1 and 8 days. Using 
the MODIS product with HRRR-iSnobal also simulated less no snow 
areas at an identical point in time of the snow season between the Time- 
Decay and HRRR-MODIS configurations. As observed in the initial 
product assessment, the MODIS product had a few areas with lower than 
realistic albedo, which did not correspond to areas with no snow. These 
outliers could result from dense vegetation or low snowpack and are 
further discussed in the “Limitation” section. 

5.2.2. Snow depth 
Of the two ASO surveys in 2022, the late melt-season May flight 

showed a more noticeable improvement between HRRR-MODIS and 
ASO retrieved snow depth values at middle to lower elevations (Fig. 9). 
In April, the percentage of values in agreement (0.00 m depth differ
ence) dropped slightly from the Time-Decay run (9.48%) to the HRRR- 
MODIS run (9.20%). The basin-wide difference changed from showing 
more areas with overestimation to having more underestimation, espe
cially in the eastern portion of the ERW watershed boundaries. One 
month later, and further into the melt season, the HRRR-MODIS areas of 
agreement improved from 31.39% (Time-Decay) to 35.07%. The higher 
elevation showed a small change to having more snow with the HRRR- 
MODIS configuration. The general high underestimation for this eleva
tion band and improvements for the HRRR-iSnobal combination are 
further discussed in section 6.4. 

The SCE metric for April and before snowmelt had initiated was 
similar between configurations; 10.1% for Time-Decay and 12.7% for 
HRRR-MODIS (Fig. 10), showing little improvements to agreement in 
snow-free areas with ASO. For the May survey, when melt was pro
gressing, the SCE error decreased from 13.4% (Time-Decay) to 3.2% 
(HRRR-MODIS). The increased snow-free agreement with the May sur
vey confirmed watershed-wide snowmelt timing was improved using 
HRRR-MODIS. The comparison to assess potential drivers of too quickly 
melted out areas indicated tall vegetation as one of the main primary 
causes (Fig. 11). For the May 18th flight, the SCE error increased from 
4.4% (Time-Decay) to 11.7% (HRRR-MODIS), which is further discussed 
in section 6.1. 

Fig. 4. HRRR-iSnobal simulation differences to Irwin Study Plot observations 
using a rolling 1-day moving mean for air temperature (top) and wind speeds 
(bottom). The gaps in the early season were caused by missing observa
tion data. 
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5.3. Snow water equivalent 

Across the three CBRFC elevation zones, the middle zone showed the 
biggest shift in the HRRR-MODIS configuration, with amount of total 
SWE depleting faster after the season peak was reached (Fig. 12). This 
change was observed for both water years and is consistent with the 

earlier HRRR-MODIS melt out dates at the SNOTEL stations, located in 
the middle zone. The SWE depletion also happened faster in the lower 
zone, although the difference was lower magnitude. At the highest el
evations in the upper zone, though, HRRR-MODIS held SWE for longer 
and reduced snow slower than Time-Decay. This simulated SWE result 
matched the comparison with ASO snow depth, where the areas in the 
north higher elevation areas of the ERW watershed showed over
estimation of snow depth in the HRRR-MODIS configuration. As a 
whole, the SWE comparison showed the expected propagation with 
earlier HRRR-MODIS melt dates in the lower and middle zone, depleting 
SWE faster and earlier than Time-Decay. 

6. Discussion 

6.1. Propagation of model changes 

Each incremental change to the net solar calculation had a different 
impact on the observed versus simulated melt out date differences at the 

Fig. 5. Comparison of incoming solar (a, b), snow albedo (c, d), net solar (e, f), and the difference of simulated net solar to measured values (e, f) at the Irwin Study 
Plot for both simulated years. 

Table 1 
Overview of the net solar values for the HRRR-iSnobal configuration compared 
to measured Irwin Study Plot values, including the median differences across the 
two water years.  

Irwin Study Plot Net Solar (W m− 2) 2021 2022 

Mean 
Station 88 99 
HRRR-SC 62 80 
HRRR-MODIS 73 126 

Median Difference 
HRRR-SC − 28 − 28 
HRRR-MODIS − 30 32  
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SNOTEL stations. Using the HRRR downward shortwave radiation 
product led to more available melt energy (Fig. 6) and consequently to 
earlier melt out dates, reducing the difference to the observed by over 
10 days for each water year and station (Table 3). Additionally replacing 

the time-decay with MODIS albedo product lowered this by a couple 
more days, making it seem less of an important factor at first. However, 
the two point comparisons in combination with the basin-wide im
provements to snow free areas late in the melt season agreement (from 

Fig. 6. Comparison of the changed energy fluxes with each model modification across each water year. Shown terms are Sensible Heat (SH), Latent Heat (LH), Net 
Longwave (NL), Net Solar (NS), and Sum of Energy (Q). Note that the Q-term also includes the ground-snow interfaces fluxes and advective energy from rain. These 
terms were excluded from the figure due to their small amount. 

Table 2 
Details of differences between net longwave (NL), net solar (NS), and sum of the energy terms (Q – Equation (2)) between the HRRR-SC and HRRR-MODIS model 
changes to the baseline Time-Decay run. The corresponding distributions are shown in Fig. 6.  

Difference to Time-Decay (W m− 2) 
2021 2022 

Mean SD Median Mean SD Median 

HRRR-SC 

Butte 
NL  − 4.1 8  − 3.8 − 5.2  9.4 − 5 
NS  11.8 12.1  6.4 13.6  13.8 7.8 
Q  3.6 8.8  0.3 4.2  10.5 0.5 

Schofield Pass 
NL  − 4.4 9.3  − 2.4 − 5.8  11.9 − 3 
NS  15.7 18.5  5.7 19.4  22.8 6.3 
Q  4.7 11.1  0.4 6.2  12.8 0.3 

HRRR-MODIS 

Butte 
NL  − 8.7 10.9  − 6.7 − 9  14.9 − 6.4 
NS  18.3 20  11.9 18.5  32.3 10.9 
Q  4.2 10  0.5 4.9  20.2 0.4 

Schofield Pass 
NL  − 9.6 12.2  − 8.5 − 16.2  14.9 − 13.9 
NS  19.5 17.7  15.6 32.4  31.9 20.6 
Q  3.4 10.1  0.5 8.9  18.3 1  
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87 % to 97 %, Fig. 10) make the case that both changes to the net solar 
calculation inputs were needed to get closest to the observed. This need 
is additionally backed up when looking at the differences to the net solar 
energy term with each iteration (Table 2), where the amount increased 
each time and causing more available melt energy. A more basin-wide 
melt date impact analysis, through modifications to either the 
incoming shortwave radiation, the observed albedo, or both, would 
require more in-situ measurement stations or higher frequency areal 

snow depth observations, which were not available at the time of this 
study. Applying this incremental iSnobal net solar calculation update in 
other areas where more in-situ or spatial observations are available can 
further assess if the melt out date improvement hold true across a wider 
range of watersheds. 

6.2. MODIS snow product considerations 

The MODIS product derives snow albedo using a threshold for snow- 
covered area per pixel (>90 %), which limits accurate retrievals under 
certain conditions. For instance, increased gaps in observed snow cover 
can be caused by tall vegetation, where the product is known to have 
lower than observed albedo (Stillinger et al., 2023). This effect was 
found in this study in the spatial comparison, where the eastern side of 
the ERW domain with tall vegetation changed to more areas of model 
underestimated snow depth (Fig. 11). However, this change can also 
stem from a need to further correct the HRRR solar radiation with in
fluences from the terrain or to revise the vegetation representation in 
iSnobal. Similar strong vegetation influences in the ERW was also found 
by Feldman et al. (2022). Ultimately, the newly highlighted under
performed regions in the study domain are the basis for future analysis 
of the MODIS product, HRRR solar radiation, or the energy balance 
calculation in iSnobal. 

Additional conditions where satellite-based products underestimate 
the albedo are shallow or patchy snow cover. Shallow snow depths are 
impacted by the underlying substrate of the snow as the light penetrates 
down to the ground, causing the snow to appear darker. Inconsistent 
snow cover throughout a MODIS scene or within a single pixel result in 
more pixels being excluded from the retrieval algorithm, increasing the 
need to interpolate. The shallow snow depth case was observed in this 
study, especially at the beginning of 2022 at Schofield Pass (Fig. 6), 
where HRRR-MODIS had lower simulated grid-cell snow depth from 
October to December when depths fell below 0.2 m. A similar snow 
depth threshold with a point comparison was observed in Bair et al. 
(2022) and the authors limited their MODIS albedo quality assessment 
to depths above 0.2 m. 

The HRRR-MODIS configuration did not deplete SWE as fast in the 
higher elevations (> 11 000 ft) during the melt season, contrary to ex
pectations and results in the lower and middle elevations (Fig. 12). 
Reasons for holding snow longer could be due to undetected clouds in 
the MODIS product leading to higher albedo values (Rittger et al., 2020) 
and therefore lower net solar values. Additionally, the HRRR-supplied 
solar radiation also contributes to this issue having the average eleva
tion per 3-km grid cell (Dowell et al., 2022), flattening out high peaks, 
and producing lower values. However, this change at higher elevations 
will require further analysis as HRRR-iSnobal underperforms in this 
zone (Meyer et al., 2023) and remains an active research area for model 
advances. 

6.3. Temporal and spatial data resolutions 

Replacing the theoretical snow albedo approach and using a spatially 
and temporally gap-filled remotely sensed product along with a rela
tively coarse spatial (3 km) but high temporal resolution HRRR solar 
radiation product improved the models’ snow energy balance calcula
tion. This input data source combination was tested in this work across a 
large domain (1300 km2) at 50 m spatial resolution and daily outputs 
over two waters years. With these inputs, HRRR-MODIS showed little 
degradation during the accumulation season at lower or middle eleva
tions, as seen with the SNOTEL results (Fig. 7). The objective of this 
effort, to produce a better match between simulated and observed 
snowmelt timing was achieved (Fig. 10), despite the present biases in 
each product compensating the effects of too high albedo and too high 
incoming solar radiation (and combinations thereof). The bias in HRRR 
solar radiation was deemed reasonable, especially when relating to 
similar findings by Hinkelman et al. (2015) and Quéno et al. (2020), 

Fig. 7. Simulated snow depth comparison across the model modifications, 
water years, and against the observed SNOTEL site depth. Note the different y 
scale between the two water years. 

Table 3 
Overview of simulated HRRR-iSnobal melt out dates across the different net 
solar methods compared to the SNOTEL station observed date.  

SNOTEL site Melt out dates 2021 2022 

Butte Station 12-May 2-Jun 
Time-Decay +18 days +25 days 
HRRR-SC +3 days +8 days 
HRRR-MODIS +1 day +6 days 

Schofield Pass Station 2-Jun 4-Jun 
Time-Decay +15 days +33 days 
HRRR-SC +2 days +12 days 
HRRR-MODIS +5 days +5 days  
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Fig. 8. Areal comparison of simulated Time-Decay snow albedo values (left) to MODIS product values (center), and map with elapsed days since last snowfall (right) 
on April 1st, 2021. The map with elapsed days since snowfall is an input product to the Time-Decay method in SMRF. Note the identical color scale for the albedo 
values (left and center). 

Fig. 9. Areal maps of the snow depths differences between Time-Decay and HRRR-MODIS simulated to ASO measured values in 2022. The differences were 
calculated by subtracting the ASO depths from the model depths. The “Relative Differences” were calculated by subtracting the Time-Decay from the HRRR-MODIS 
differences. 
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where snow models performed favorably when forced by NWP radiation 
or satellite-based products. Providing accurate simulated or retrieved 
solar radiation products across space and time in the mountains remains 
a challenge due to the large uncertainties caused by rapidly changing 
topography and weather conditions across seasons (Lapo et al., 2017). 

6.4. Revised snow albedo representation 

With the two-layer snowpack architecture, the iSnobal model uses 
the top layer to interact with the atmosphere. Therefore, the best option 
to advance the model’s inclusion of spatially varying LAP deposition and 
albedo decay from the current basin-wide identical time decay was to 
use remotely sensed snow surface albedo as confirmed with the April 1st 
comparison (Fig. 8). The observed albedo additionally integrated the 

Fig. 10. Comparison of snow depth from the Time-Decay and HRRR-MODIS configurations within the snow free area measured by ASO. For comparison, the 
distribution plots on the right counted the number of grid cells with simulated snow depth along the ERW latitude from South to North. 

Fig. 11. Model performance on May 18th showing pixels with measured snow depth (snow > 0 m) by ASO, but simulated snow-free areas (snow = 0 m) in Time- 
Decay (b) and HRRR-MODIS (c) runs. The vegetation height distribution of the corresponding pixels in (b) and (c) is shown in (d), with the ERW vegetation height 
map for reference in (a). 
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accumulative effects of multiple LAP depositions in the snowpack as 
they propagated to the surface during melt (Skiles et al., 2012). The 
resulting reduction is considered the direct effect (Skiles and Painter, 
2019; Tuzet et al., 2017) and has been shown to change the radiative 
energy of snow energy balance calculations between 80 % (Skiles and 
Painter, 2019) and 85 % (Tuzet et al., 2017). The observed albedo also 
combined the different effects of the LAP mixing state (Liou et al., 2014; 
He et al., 2014), indirectly including other LAP snow-darkening aspects. 

This presented direct insertion of snow albedo can replace the 
various time-based surface aging approach with any spatially distrib
uted or point model architecture that accounts for albedo changes. For 
instance, all the investigated physical based snow models (e.g. Crocus, 
SNOWPACK, or SMAP) in Krinner et al. (2018) would benefit from using 
this snow albedo replacement, addressing the identified model melt 
timing shortcomings. Care must be taken however on how a change in 
surface energy will affect the snowpack dynamics. Depending on the 
number of layers represented in each model, the resulting difference in 
energy will propagate differently to the other energy terms such as the 
net longwave (Lapo et al., 2015). 

6.5. Further HRRR-iSnobal work 

This first iteration of using remote sensing values with the HRRR- 
iSnobal combination improved the simulated melt processes, and 
there are several options to increase the accuracy further. For instance, 
the HRRR solar radiation could be refined by applying sub-grid vari
ability corrections, as shown by He et al. (2019). Improving pixel-wise 
algorithms through other means than increasing the spatial resolution 
has been successfully applied to snow processes in large-scale models 
(Smirnova et al., 2016) and kept the added computational overhead low. 
Other topographic-related enhancement options include ray tracing- 
based models for shading and clear-sky corrections that can include 
influences of reflected solar radiation by surrounding terrain (Steger 
et al., 2022). Additional possible follow-up efforts to this work are an in- 
depth model performance and sensitivity analysis to the snow energy 
balance calculations based on the in situ records from the Surface At
mosphere Integrated Field Laboratory (SAIL; Feldman et al., 2023) and 
Study of Precipitation, the Lower Atmosphere and Surface for Hydro
meteorology (SPLASH; https://gml.noaa.gov/grad/splash.html) cam
paigns. Both efforts (SAIL and SPLASH) include extensive observations 
of surface energy balance components including wind, cloud cover, and 
radiation observations at strategic point locations in the ERW basin over 
a two year period. This data source did not overlap with the available 
MODIS product time record at the time of conducting this study. 

A remaining continued investigation for the HRRR-iSnobal combi
nation is the large depth underestimation at higher elevations in the 
north and north-western ERW region (Fig. 9). This model under
performance was identified in Meyer et al. (2023) as a HRRR precipi
tation forcing input issue, flattening out tall peaks from the topography 
and having sparse data observations for HRRR model initialization. 

From an operational forecasting application perspective, the presented 
option for HRRR-iSnobal needs further refinement to adapt other sour
ces than the MODIS product and increased automation of the direct 
insertion method. Creating a more robust and flexible workflow will 
increase the future application of this method and help transition as the 
default snow albedo model representation. 

7. Conclusion 

A new option to determine the net solar radiation in the HRRR- 
iSnobal combination was presented and advanced the snow albedo 
representation by using observations from a remote sensing product. 
The combination of MODIS-derived albedo plus NWP-modeled 
incoming solar radiation improved the HRRR-iSnobal simulated melt- 
out dates within one to six days compared to in situ point observa
tions. There was a seasonal net solar median difference of 25 W m− 2 and 
27 W m− 2 relative to in situ observations, an improvement over Time- 
Decay differences of 109 W m− 2 and 110 W m− 2. Higher net solar ra
diation accelerated modeled snowmelt, bringing snow depth depletion 
rates and timing closer in line with observations. Additionally, this 
improved modeled snow extent; the agreement between the model and 
observations in the late melt-season showed an improvement in snow 
depleted areas from 86.6 % (Time-Decay) to 96.8 % (HRRR-MODIS). 
The advanced melt timings were also reflected in the SWE outputs, 
releasing snow melt water earlier. 

Alongside the improvements, though, the results also highlighted 
areas for further research. For the MODIS product, snow melt timing 
results suggest albedo values were underestimated in areas of tall 
vegetation and overestimated at higher elevations. The HRRR supplied 
incoming solar radiation compared high against an in situ point obser
vation. Outcomes of the spatial and point comparison also suggested 
revisiting the representation of vegetation and an investigation into 
higher elevation performance for the HRRR-iSnobal combination. Based 
on the overall results and significant improvement in snowmelt timing, 
though, we propose replacing the time-decay snow albedo in iSnobal 
with the remote sensing data and NWP incoming solar radiation as the 
default method going forward. Although there is risk associated with 
this approach given that MODIS is near end of life, it is likely gaps will be 
filled by the snow products currently undergoing assessment from VIIRS 
(Rittger et al., 2021, Stillinger et al., 2023). Additionally, future imaging 
spectroscopy missions, such as Surface Biology and Geology by the 
National Aeronautics and Space Administration agency (NASA SBG; 
Cawse-Nicholson et al., 2021), will support the incorporation of snow 
albedo into models as it is one of the designated observables. Other 
satellite missions, such as the Copernicus Hyperspectral Imaging Mission 
for the Environment by the European Space Agency (ESA CHIME; Rast 
et al., 2021) or Planet Tanager may also assist in providing the required 
remote sensing observations. 

Code availability. 
The software components used to run the model and analyze the 

Fig. 12. Time-Decay and HRRR-MODIS SWE comparison for the two simulated water years. The lower, middle, and upper zone categorization is by elevation and 
taken from the Colorado Basin River Forecast Center operational division. 
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results are publicly available. iSnobal model components are available 
via the USDA ARS NWRC GitHub page: https://github.com/USDA 
-ARS-NWRC. Additions to model setup and result analysis code are 
stored on the University of Utah GitHub organization repository: htt 
ps://github.com/UofU-Cryosphere/isnoda (https://doi.org/10.5281/ze 
nodo.11245701). 

Data availability. 
The following datasets were used for the model runs and 

comparisons: 

• The National Elevation Dataset (NED), U.S. Department of the Inte
rior, Geological Survey https://apps.nationalmap.gov/viewer/  

• LANDFIRE, 2014, Existing Vegetation Type and Height Layer, 
LANDFIRE 1.4.0, U.S. Department of the Interior, Geological Survey, 
and U.S. Department of AgricultureData Product Mosaic Downloads: 
https://landfire.gov/getdata.php  

• NOAA The High-Resolution Rapid Refresh (HRRR): https://rapidref 
resh.noaa.gov/hrrr/  

• NRCS National Water and Climate Center | SNOTEL | SWE Data: http 
s://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html  

• The National Map | U.S. Geological Survey: https://www.usgs.gov/p 
rograms/national-geospatial-program/national-map 

• USGS Surface Water data for USA: USGS Surface-Water Daily Sta
tistics: https://waterdata.usgs.gov/nwis/dvstat/?site_no = 09112 
500&referred_module = sw&format = sites_selection_links  

• Painter, T. H.: ASO L4 Lidar Snow Depth 50 m UTM Grid, Version 1. 
[USCOGE]. Boulder, Colorado USA. NASA National Snow and Ice 
Data Center Distributed Active Archive Center, NSIDC, https://doi. 
org/10.5067/STOT5I0U1WVI, 2018  

• STC MODIS product from the National Snow and Ice Data Center: 
https://nsidc.org/snow-today 

Author contributions. 
JM and MS conceptualized the overall study, with helpful contri

butions from all authors. JM performed the model runs and analysis. JM 
wrote the first draft of the manuscript, which was then contributed to by 
all authors. 

CRediT authorship contribution statement 

Joachim Meyer: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Andrew Hedrick: Writing – review & editing, Methodology, 
Conceptualization. S. McKenzie Skiles: Writing – review & editing, 
Project administration, Methodology, Funding acquisition, 
Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All data access is listed under “Data availability” 

Acknowledgements 

The authors would like to thank Karl Rittger and the team at 
SnowToday for providing support and early access to the STC MODIS 
product. The support and resources from the Center for High Perfor
mance Computing (CHPC) at the University of Utah are gratefully 
acknowledged. 

This work was funded by the NASA ESD Applied Sciences - Water 
Resources (grant number 80NSSC19K1243) and by NOAA via the 

Cooperative Institute for Research on Hydrology (CIROH) (grant num
ber NA22NWS4320003). 

References 

Abolafia-Rosenzweig, R., He, C., McKenzie Skiles, S., Chen, F., Gochis, D., 2022. 
Evaluation and Optimization of Snow Albedo Scheme in Noah-MP Land Surface 
Model Using In Situ Spectral Observations in the Colorado Rockies. J Adv Model 
Earth Syst 14. https://doi.org/10.1029/2022MS003141. 

Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., Tanaka, T., 2011. Physically 
based snow albedo model for calculating broadband albedos and the solar heating 
profile in snowpack for general circulation models. J. Geophys. Res. 116, D11114. 
https://doi.org/10.1029/2010JD015507. 

Bair, E.H., Rittger, K., Skiles, S.M., Dozier, J., 2019. An Examination of Snow Albedo 
Estimates From MODIS and Their Impact on Snow Water Equivalent Reconstruction. 
Water Resources Research 55, 7826–7842. https://doi.org/10.1029/ 
2019WR024810. 

Bair, E.H., Stillinger, T., Dozier, J., 2021. Snow Property Inversion From Remote Sensing 
(SPIReS): A Generalized Multispectral Unmixing Approach With Examples From 
MODIS and Landsat 8 OLI. IEEE Trans. Geosci. Remote Sensing 59, 7270–7284. 
https://doi.org/10.1109/TGRS.2020.3040328. 

Bair, E.H., Dozier, J., Stern, C., LeWinter, A., Rittger, K., Savagian, A., Stillinger, T., 
Davis, R.E., 2022. Divergence of apparent and intrinsic snow albedo over a season at 
a sub-alpine site with implications for remote sensing. The Cryosphere 16, 
1765–1778. https://doi.org/10.5194/tc-16-1765-2022. 

Bartelt, P., Lehning, M., 2002. A physical SNOWPACK model for the Swiss avalanche 
warning: Part I: numerical model. Cold Regions Science and Technology 35, 
123–145. https://doi.org/10.1016/S0165-232X(02)00074-5. 

Bonnell, R., McGrath, D., Hedrick, A.R., Trujillo, E., Meehan, T.G., Williams, K., 
Marshall, H.P., Sexstone, G., Fulton, J., Ronayne, M.J., Fassnacht, S.R., Webb, R.W., 
Hale, K.E., 2023. Snowpack relative permittivity and density derived from near- 
coincident lidar and ground-penetrating radar. Hydrological Processes 37 (10), 
1–17. https://doi.org/10.1002/hyp.14996. 

Cawse-Nicholson, K., Townsend, P.A., Schimel, D., Assiri, A.M., Blake, P.L., 
Buongiorno, M.F., Campbell, P., Carmon, N., Casey, K.A., Correa-Pabón, R.E., 
Dahlin, K.M., Dashti, H., Dennison, P.E., Dierssen, H., Erickson, A., Fisher, J.B., 
Frouin, R., Gatebe, C.K., Gholizadeh, H., Gierach, M., Glenn, N.F., Goodman, J.A., 
Griffith, D.M., Guild, L., Hakkenberg, C.R., Hochberg, E.J., Holmes, T.R.H., Hu, C., 
Hulley, G., Huemmrich, K.F., Kudela, R.M., Kokaly, R.F., Lee, C.M., Martin, R., 
Miller, C.E., Moses, W.J., Muller-Karger, F.E., Ortiz, J.D., Otis, D.B., Pahlevan, N., 
Painter, T.H., Pavlick, R., Poulter, B., Qi, Y., Realmuto, V.J., Roberts, D., 
Schaepman, M.E., Schneider, F.D., Schwandner, F.M., Serbin, S.P., Shiklomanov, A. 
N., Stavros, E.N., Thompson, D.R., Torres-Perez, J.L., Turpie, K.R., Tzortziou, M., 
Ustin, S., Yu, Q., Yusup, Y., Zhang, Q., 2021. NASA’s surface biology and geology 
designated observable: A perspective on surface imaging algorithms. Remote Sensing 
of Environment 257, 112349. https://doi.org/10.1016/j.rse.2021.112349. 

Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., Livneh, B., 
Lin, C., Miguez-Macho, G., Niu, G.-Y., Wen, L., Yang, Z.-L., 2014. Modeling seasonal 
snowpack evolution in the complex terrain and forested Colorado Headwaters 
region: A model intercomparison study. J. Geophys. Res. Atmos. 119, 13795–13819. 
https://doi.org/10.1002/2014JD022167. 

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J. 
E., Gutmann, E.D., Wood, A.W., Gochis, D.J., Rasmussen, R.M., Tarboton, D.G., 
Mahat, V., Flerchinger, G.N., Marks, D.G., 2015. A unified approach for process- 
based hydrologic modeling: 2. Model implementation and case studies. Water 
Resources Research 51, 2515–2542. https://doi.org/10.1002/2015WR017200. 

DeWalle, D.R., Rango, A., 2008. Principles of Snow Hydrology. Cambridge University 
Press, Cambridge. https://doi.org/10.1017/CBO9780511535673. 

Donahue, C., Skiles, S.M., Hammonds, K., 2021. In situ effective snow grain size mapping 
using a compact hyperspectral imager. Journal of Glaciology 67, 49–57. https://doi. 
org/10.1017/jog.2020.68. 

Dowell, D.C., Alexander, C.R., James, E.P., Weygandt, S.S., Benjamin, S.G., Manikin, G. 
S., Blake, B.T., Brown, J.M., Olson, J.B., Hu, M., Smirnova, T.G., Ladwig, T., 
Kenyon, J.S., Ahmadov, R., Turner, D.D., Duda, J.D., Alcott, T.I., 2022. The High- 
Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing 
Forecast Model. Part I: Motivation and System Description. Weather and Forecasting 
37, 1371–1395. https://doi.org/10.1175/WAF-D-21-0151.1. 

Dozier, J., Frew, J., 1990. Rapid calculation of terrain parameters for radiation modeling 
from digital elevation data. IEEE Transactions on Geoscience and Remote Sensing 
28, 963–969. https://doi.org/10.1109/36.58986. 

Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., 
Tarpley, J.D., 2003. Implementation of Noah land surface model advances in the 
National Centers for Environmental Prediction operational mesoscale Eta model. 
Journal of Geophysical Research: Atmospheres 108. https://doi.org/10.1029/ 
2002JD003296. 

Feldman, D.R., Worden, M., Falco, N., Dennedy-Frank, P.J., Chen, J., Dafflon, B., 
Wainwright, H., 2022. Three-Dimensional Surface Downwelling Longwave 
Radiation Clear-Sky Effects in the Upper Colorado River Basin. Geophysical Research 
Letters 49, e2021G–L094605. https://doi.org/10.1029/2021GL094605. 

Feldman, D. R., Aiken, A. C., Boos, W. R., Carroll, R. W. H., Chandrasekar, V., Collis, S., 
Creamean, J. M., Boer, G. de, Deems, J., DeMott, P. J., Fan, J., Flores, A. N., Gochis, 
D., Grover, M., Hill, T. C. J., Hodshire, A., Hulm, E., Hume, C. C., Jackson, R., 
Junyent, F., Kennedy, A., Kumjian, M., Levin, E. J. T., Lundquist, J. D., O’Brien, J., 
Raleigh, M. S., Reithel, J., Rhoades, A., Rittger, K., Rudisill, W., Sherman, Z., Siirila- 
Woodburn, E., Skiles, S. M., Smith, J. N., Sullivan, R. C., Theisen, A., Tuftedal, M., 

J. Meyer et al.                                                                                                                                                                                                                                   

https://github.com/USDA-ARS-NWRC
https://github.com/USDA-ARS-NWRC
https://github.com/UofU-Cryosphere/isnoda
https://github.com/UofU-Cryosphere/isnoda
https://doi.org/10.5281/zenodo.11245701)
https://doi.org/10.5281/zenodo.11245701)
https://apps.nationalmap.gov/viewer/
https://landfire.gov/getdata.php
https://rapidrefresh.noaa.gov/hrrr/
https://rapidrefresh.noaa.gov/hrrr/
https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html
https://www.wcc.nrcs.usda.gov/snow/SNOTEL-wedata.html
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://www.usgs.gov/programs/national-geospatial-program/national-map
https://waterdata.usgs.gov/nwis/dvstat/?site_no
https://doi.org/10.5067/STOT5I0U1WVI
https://doi.org/10.5067/STOT5I0U1WVI
https://nsidc.org/snow-today
https://doi.org/10.1029/2022MS003141
https://doi.org/10.1029/2010JD015507
https://doi.org/10.1029/2019WR024810
https://doi.org/10.1029/2019WR024810
https://doi.org/10.1109/TGRS.2020.3040328
https://doi.org/10.5194/tc-16-1765-2022
https://doi.org/10.1016/S0165-232X(02)00074-5
https://doi.org/10.1002/hyp.14996
https://doi.org/10.1016/j.rse.2021.112349
https://doi.org/10.1002/2014JD022167
https://doi.org/10.1002/2015WR017200
https://doi.org/10.1017/CBO9780511535673
https://doi.org/10.1017/jog.2020.68
https://doi.org/10.1017/jog.2020.68
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1109/36.58986
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1029/2021GL094605


Journal of Hydrology 638 (2024) 131490

15

Varble, A. C., Wiedlea, A., Wielandt, S., Williams, K., and Xu, Z.: The Surface 
Atmosphere Integrated Field Laboratory (SAIL) Campaign, Bulletin of the American 
Meteorological Society, 104, E2192–E2222, https://doi.org/10.1175/BAMS-D-22- 
0049.1, 2023. 

Forthofer, J.M., Butler, B.W., Wagenbrenner, N.S., Forthofer, J.M., Butler, B.W., 
Wagenbrenner, N.S., 2014. A comparison of three approaches for simulating fine- 
scale surface winds in support of wildland fire management. Part I. Model 
formulation and comparison against measurements. Int. J. Wildland Fire 23, 
969–981. https://doi.org/10.1071/WF12089. 

Gardner, A.S., Sharp, M.J., 2010. A review of snow and ice albedo and the development 
of a new physically based broadband albedo parameterization. J. Geophys. Res. 115, 
F01009. https://doi.org/10.1029/2009JF001444. 

Garen, D.C., Marks, D., 2005. Spatially distributed energy balance snowmelt modelling 
in a mountainous river basin: estimation of meteorological inputs and verification of 
model results. Journal of Hydrology 315 (1–4), 126–153. https://doi.org/10.1016/j. 
jhydrol.2005.03.026. 

Hale, K., Kiewiet, L., Trujillo, E., Krohe, C., Hedrick, A.R., Marks, D., Kormos, P.R., 
Havens, S., McNamara, J., Link, T., Godsey, S.E., 2023. Drivers of spatiotemporal 
patterns of surface water inputs in a catchment at the rain-snow transition zone of 
the water-limited western United States. Journal of Hydrology 616 (October 2022). 
https://doi.org/10.1016/j.jhydrol.2022.128699. 

Hao, D., Bisht, G., Rittger, K., Stillinger, T., Bair, E., Gu, Y., Leung, L.R., 2022. Evaluation 
of snow processes over the Western United States in E3SM land model. Egusphere 
1–38. https://doi.org/10.5194/egusphere-2022-1097. 

Havens, S., Marks, D., Kormos, P., Hedrick, A., 2017. Spatial Modeling for Resources 
Framework (SMRF): A modular framework for developing spatial forcing data for 
snow modeling in mountain basins. Computers & Geosciences 109, 295–304. 
https://doi.org/10.1016/j.cageo.2017.08.016. 

Havens, S., Marks, D., Sandusky, M., Hedrick, A., Johnson, M., Robertson, M., 
Trujillo, E., 2020. Automated Water Supply Model (AWSM): Streamlining and 
standardizing application of a physically based snow model for water resources and 
reproducible science. Computers & Geosciences 144, 104571. https://doi.org/ 
10.1016/j.cageo.2020.104571. 

He, C., Li, Q., Liou, K.-N., Takano, Y., Gu, Y., Qi, L., Mao, Y., Leung, L.R., 2014. Black 
carbon radiative forcing over the Tibetan Plateau. Geophysical Research Letters 41, 
7806–7813. https://doi.org/10.1002/2014GL062191. 

He, S., Smirnova, T.G., Benjamin, S.G., 2019. A Scale-Aware Parameterization for 
Estimating Subgrid Variability of Downward Solar Radiation Using High-Resolution 
Digital Elevation Model Data. Journal of Geophysical Research: Atmospheres 124, 
13680–13692. https://doi.org/10.1029/2019JD031563. 

Hedrick, A.R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., 
Marshall, H.P., Kormos, P.R., Bormann, K.J., Painter, T.H., 2018. Direct Insertion of 
NASA Airborne Snow Observatory-Derived Snow Depth Time Series Into the iSnobal 
Energy Balance Snow Model. Water Resources Research 54 (10), 8045–8063. 
https://doi.org/10.1029/2018WR023190. 

Hedrick, A.R., Marks, D., Marshall, H.P., McNamara, J., Havens, S., Trujillo, E., 
Sandusky, M., Robertson, M., Johnson, M., Bormann, K.J., Painter, T.H., 2020. From 
Drought to Flood: A Water Balance Analysis of the Tuolumne River Basin during 
Extreme Conditions (2015–2017). Hydrological Processes 11 (34). https://doi.org/ 
10.1002/hyp.13749. 

Hinkelman, L.M., Lapo, K.E., Cristea, N.C., Lundquist, J.D., 2015. Using CERES SYN 
Surface Irradiance Data as Forcing for Snowmelt Simulation in Complex Terrain*. 
Journal of Hydrometeorology 16, 2133–2152. https://doi.org/10.1175/JHM-D-14- 
0179.1. 

Huang, H., Qian, Y., He, C., Bair, E.H., Rittger, K., 2022. Snow Albedo Feedbacks 
Enhance Snow Impurity-Induced Radiative Forcing in the Sierra Nevada. 
Geophysical Research Letters 49, e2022G–L098102. https://doi.org/10.1029/ 
2022GL098102. 

Hubbard, S.S., Williams, K.H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., 
Brodie, E., Carroll, R., Dafflon, B., Dwivedi, D., Falco, N., Faybishenko, B., 
Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga, T., Tran, P.A., 
Wainwright, H., Varadharajan, C., 2018. The East River, Colorado, Watershed: A 
Mountainous Community Testbed for Improving Predictive Understanding of 
Multiscale Hydrological-Biogeochemical Dynamics. Vadose Zone Journal 17. 
https://doi.org/10.2136/vzj2018.03.0061. 

James, E.P., Alexander, C.R., Dowell, D.C., Weygandt, S.S., Benjamin, S.G., Manikin, G. 
S., Brown, J.M., Olson, J.B., Hu, M., Smirnova, T.G., Ladwig, T., Kenyon, J.S., 
Turner, D.D., 2022. The High-Resolution Rapid Refresh (HRRR): An Hourly 
Updating Convection-Allowing Forecast Model. Part II: Forecast Performance. 
Weather and Forecasting 37, 1397–1417. https://doi.org/10.1175/WAF-D-21- 
0130.1. 

Kaempfer, T.U., Schneebeli, M., 2007. Observation of isothermal metamorphism of new 
snow and interpretation as a sintering process. Journal of Geophysical Research: 
Atmospheres 112. https://doi.org/10.1029/2007JD009047. 

Kiewiet, L., Trujillo, E., Hedrick, A.R., Havens, S., Hale, K., Seyfried, M., Kampf, S., 
Godsey, S.E., 2022. Effects of spatial and temporal variability in surface water inputs 
on streamflow generation and cessation in the rain–snow transition zone. Hydrology 
and Earth System Sciences 26 (10), 2779–2796. https://doi.org/10.5194/hess-26- 
2779-2022. 

Kormos, P.R., Marks, D., McNamara, J.P., Marshall, H.P., Winstral, A., Flores, A.N., 2014. 
Snow distribution, melt and surface water inputs to the soil in the mountain 
rain–snow transition zone. Journal of Hydrology 519, 190–204. https://doi.org/ 
10.1016/j.jhydrol.2014.06.051. 

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., 
Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C.B., Mudryk, L., Thackeray, C., 
Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., 
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