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ABSTRACT

Snow that accumulates seasonally in mountain headwaters is traditionally a vast and consistent natural reservoir, providing water as the snow melts in the spring and
summer. This resource is at risk due to declining and more variable snow cover, increasing the need to accurately forecast snowmelt. The timing and magnitude of
snowmelt, first order controls on downstream water resources, are primarily driven by the amount of absorbed (net) solar radiation controlled by the snow albedo.
However, solar radiation and snow albedo are not commonly measured at mountain instrumentation sites despite their high degree of spatial variability. With the
sparsity of observations, physically based snow models often use simplified solar radiation modeling and time-decay albedo functions, leading to errors in snowmelt
rate and snow depletion timing. Here, this limitation has been addressed by combining two independent gridded solar radiation data products; 1) incoming solar
radiation output from the High-Resolution Rapid Refresh (HRRR; U.S. National Weather Service) numerical weather prediction model and 2) remotely sensed snow
albedo derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The hourly HRRR and snow albedo products were used to update net solar
radiation in a spatially distributed snow energy balance model over two water years (2021, 2022) in the East River Watershed, Colorado, USA. Results were assessed
through time against two observation sites within watershed boundaries and spatially against snow extent from two airborne lidar flights in 2022. Updating net solar
radiation improved modeling of melt rates and reduced errors in snow depletion timing from 15 — 33 days later (baseline runs) to 1 — 6 days later relative to the
observation sites. The updates additionally improved spatial agreement of where snow had already been depleted from 87% to 97% during the melt season relative to
lidar. These enhancements using open-access gridded products available over the continental US increase the potential for adaptation of process-based models into

local water supply forecast operations to ultimately improve runoff predictions in snow dominated watersheds.

1. Introduction

Observation studies have established that net solar radiation,
controlled by snow albedo, acts as a large source of energy for melt in
most snow environments (Marks and Dozier, 1992, DeWalle and Rango,
2008). Relatedly, from global to local point-scale models, correctly
representing change in snow albedo over time has been shown to be
critical for accurately modeling snow energy balance, melt rates, and
extent during ablation. The traditional approach of representing albedo,
an empirical ‘time since snowfall’ nonlinear decay function, leads to
errors in climate models (Qu and Hall, 2014), land surface models (Chen
et al.,, 2014; Ryken et al., 2020), hydrological models (Clark et al.,
2015), and snow models (Krinner et al., 2018; Schmucki et al., 2014).
Alternative snow albedo model representations, such as snow surface
temperature-based decay or with varying decay rates during snow melt
have been implemented, but still lack the ability to accurately represent
snow albedo over time (Pedersen and Winther, 2005). More complex
snow albedo simulations in radiative transfer models also consider
controlling factors such as cloud optical thickness or solar zenith angle
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(Gardner and Sharp, 2010), but have yet to be included with large-scale
spatially distributed models. The basis of the time-based representation
is that snow albedo is highest for freshly fallen snow, and then declines
over time as snow grain size increases due to metamorphic processes.
Grain size, though, only determines snow albedo in near infrared
wavelengths where ice is absorptive (Wiscombe and Warren, 1980). In
visible wavelengths, where ice is transparent and snow is highly scat-
tering, albedo is related to surface darkening by light absorbing particles
(LAP).

The variability in grain growth rates and accumulation of LAPs
consequently introduces variability in snow albedo and rates of decline
that cannot be uniformly represented by a time-based approach. For
example, grain growth is not consistent, exhibiting faster growth in the
presence of liquid water (Donahue et al., 2021), warmer air tempera-
tures (Kaempfer and Schneebeli, 2007), and darkening by LAPs (Skiles
and Painter, 2017) — all properties of which vary within a watershed
over space and time. The timing and impact of LAPs is not easily pre-
dicted, varying for example with emissions of dust from arid and
disturbed landscapes, black carbon from anthropogenic sources and
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wildfire, and algae growth. Even when an area is known to consistently
receive dust on snow deposition, like the Colorado Rocky Mountains in
Colorado, USA, there is high interannual variability in the timing and
amount deposited (Skiles et al., 2012). Furthermore, the albedo of
freshly fallen snow itself exhibits spatial and temporal variability (Skiles
et al., 2023) and does not reset to the same value (Abolafia-Rosenzweig
et al., 2022). The time-based decay functions continue to be applied,
though, because snow albedo and controlling processes are notoriously
challenging to observe and parameterize in models (Bair et al., 2019).

Incorrect albedo values propagate directly to the model results by
modulating the absorbed solar radiation. If snow albedo is too high, for
example, absorbed solar radiation will be too low and the snow will melt
too slowly (Chen et al., 2014). This has direct implications for modeling
snowmelt timing and forecasting water availability. Absorbed, or net
solar radiation (Rs), in physically based snow models is calculated via
the following equation:

Rs:(l—(l) ><Si (])

Where «a is the snow albedo, the unitless ratio that indicates the fraction
of reflected to incoming solar radiation, such that the term (1- @) is the
co-albedo, or the fraction of incoming sunlight that is absorbed by the
snowpack. When multiplied by S;, the incoming solar radiation (Wm™2),
the result is the total or net amount of solar radiation absorbed by the
snowpack (Wm’z). Net solar radiation is a term in the overall snowpack
energy balance (Q) :

Q=NS+NL+H+L+G+M (2

Where NS is net solar, NL is net longwave, H is sensible heat, L is latent
heat, G is conductive heat (soil-snow interface), and M is the advected
heat (precipitation) energy transfer term (all terms are in Wm~2) (Marks
and Dozier, 1992). A common approach to solve for net solar in process-
based models is to calculate incoming solar radiation with a topo-
graphically adjusted theoretical model (i.e., two-stream model, Dozier
and Frew, 1990), adjusted with a cloud factor, and the time-decay
function for snow albedo. To improve the representation of net solar
the options are to improve the representation of incoming solar radia-
tion, snow albedo, or both.

In the current literature, different approaches have improved
snowmelt timing from snow models through advanced snow albedo
representation. Skiles and Painter (2019) added in situ measured dust
information to individual layers simulated with the physical based
SNOWPACK model (Bartelt and Lehning, 2002). The dust data were
subsequently included in a radiative transfer model to derive snow al-
bedo, replacing the default time-decay method of the model. This
combination allowed snow depletion simulations within two days of the
observation at a measurement station. Tuzet et al. (2017) extended a
physical based snow model to use snow albedo from a radiative transfer
model that used LAP information from an atmospheric model, which
also brought the modeled snow melt-out dates closer to the observed.
Niwano et al. (2021) forced the Snow Metamorphism and Albedo Pro-
cess (SMAP; Niwano et al., 2014) model with LAP information from a
meteorology-chemistry model. SMAP uses the physically based snow
albedo model (PBSAM; Aoki et al., 2011) and also improved the accel-
erated snow melt simulation by including the LAP data. Oaida et al.
(2015) used a radiative transfer model to inform the Simplified Simple
Biosphere (SSiB-3) land surface model (LSM) coupled with the Weather
Research and Forecasting/Advanced Research WRF (WRF-ARW), which
used a built-in radiative transfer model to calculate albedo based on
aerosol and grain growth rates, at 15 km spatial resolution. The modified
SSiB-3 LSM setup is one of the few efforts to address the need to account
for controls on snow albedo on larger spatial scales. They improved the
difference between the observed and simulated snow disappearance
from about one month to 13 days.

Malik et al. (2012) used a notably different approach, where the
time-decay snow albedo values in the Noah land-surface model (Ek
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et al., 2003) were updated with observed data. The observations were
from a Moderate Resolution Imaging Spectroradiometer (MODIS)
product and updated the values while preserving the time-based albedo
decay. The direct insertion updates mainly improved the simulated al-
bedo after a long cycle without freshly fallen snow and had limited
improvements to the snowmelt timing. While all the presented model
modifications improved representation of snow processes, none of the
assessments were designed or executed at the watershed scale with high
(sub-kilometer) spatial resolution. This leaves an unaddressed need to
investigate options for snow models aimed at hydrologic forecasting.

Given the spatial and temporal variability in snow albedo, remote
sensing is the ideal candidate to provide relevant and timely data. Two
widely used snow-specific remote sensing products are the outputs from
the MODIS Snow-Covered Area and Grain size (MODSCAG; Painter
et al.,, 2009) and MODIS Dust Radiative Forcing in Snow (MODDREFS;
Painter et al., 2012) retrieval workflows. MODSCAG retrieves the frac-
tional snow cover, snow grain size, and clean snow albedo per 500-
meter pixel. MODDRFS determines visible albedo reduction, or snow
darkening, due to the presence of LAP at the snow surface and resultant
radiative forcing. The two albedo products can be combined, with clean
snow albedo reduced by the snow darkening, to estimate the observed
snow albedo. Both products have been widely used to validate snow
property information of modeled results (Sarangi et al., 2019; Minder
et al., 2016; Hao et al., 2022; Huang et al., 2022). So far, successful use
of MODIS-based snow information as a model input has only been shown
by Miller et al. (2016), who used radiative forcing to perturb net solar
radiation within the 1-dimensional Snobal model, concluding with a call
for methods that scale across large areas and extended time periods for
hydrological forecasting.

Here, we present a workflow that directly inserts the MODIS
observed snow albedo information into the spatially distributed iSnobal
model (Marks et al., 1999), a pathway to fill the gap identified by Miller
et al., 2016. Various studies have applied the iSnobal energy balance
model across a range of spatial resolutions (Kormos et al., 2014; Marks
et al., 1999; Garen & Marks, 2005) and in various snow environments
spanning maritime (Hedrick et al., 2018, 2020), arctic (Winstral et al.,
2009), intermountain (Marks and Winstral, 2001; Kiewiet et al., 2022;
Hale et al., 2023), and continental snowpacks (Meyer et al., 2022,
Bonnell et al., 2023). Additionally, we test improvements from using
incoming solar radiation from the High-Resolution-Rapid-Refresh
(HRRR; Dowell et al., 2022) numerical weather prediction (NWP)
model. Meyer et al. (2023) showed well-simulated snow depth and mass
balance during accumulation at the watershed scale when forced with
meteorological outputs from HRRR. As with other snow models, the
HRRR-iSnobal combination showed deficiency during the melt season,
depleting the snow too slowly and too late, indicating a need to improve
the modeled net solar radiation. This is addressed with the architecture
presented here and demonstrated over a watershed (1373 km?) in the
headwaters of the Colorado River Basin. Three different HRRR-iSnobal
combinations were assessed against in situ point measurements and
spatial observations. This solution to updating snow albedo and net solar
radiation is both scalable and accessible given the open-source model
and open-access spatially gridded inputs.

2. Study area and years

The East River Watershed (ERW) is a high alpine environment
located in the Upper Gunnison Watershed within the upper Colorado
River Basin (CRB) (Fig. 1). The East River is one of the two primary
tributaries of the Gunnison River, which itself discharges into the Col-
orado River. The ERW has an average elevation of 3266 m and vertical
elevation relief of 1420 m (Hubbard et al., 2018) and a mixture of
different vegetation types such as brush and grassland or mixed conifer
and aspen trees. These characteristics are typically found in the moun-
tain headwater watersheds of the CRB, which led to the designation of
the ERW as a Scientific Focus Area (https://watershed.lbl.gov/) in 2016
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Fig. 1. Areal map of the East River Watershed (black outline) showing the model domain, elevation zones, and locations of the instrumentation sites (left). Map on
the right shows the vegetation types within the model domain based on the LANDFIRE National Vegetation Classification, which are used as metadata in iSnobal

radiation calculations.

and is supported by the US-DOE Biological and Environmental Research
Subsurface Biogeochemistry Program.

The study period spanned water years 2021 and 2022 (Oct 1st — Sep
30th), and model inputs and outputs were assessed against in situ ob-
servations from three instrumentation sites located inside the ERW study
domain. Two sites are part of the Snow Telemetry (SNOTEL) network
operated by the United States Department of Agriculture National
Resource Conservation Service (USDA-NRCS): Schofield Pass (elevation:
3261 m) and Butte (elevation: 3097 m). Based on the long-term SNOTEL
record (30 years) for the sites, water year 2021 had below-average snow

water equivalent (SWE) and earlier than typical snow melt timing.
Water year 2022 also had earlier than typical snowmelt timing, despite a
slightly above average SWE year, due to dust deposition and radiative
forcing. The third instrumentation site was the Irwin Study Plot (3177
m), which recently was equipped with incoming and outgoing solar
radiation observations by the University of Utah Snow Hydrology
Research to Operations Laboratory. The ERW had additional aerial snow
depth measurements by Airborne Snow Observatories Inc. (htt
ps://www.airbornesnowobservatories.com/) in 2022, which were
used to assess how well snow patterns were modeled spatially.
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Fig. 2. Diagram of the iSnobal model snowpack architecture and simulated mass (dashed arrows) and energy (solid arrows) fluxes.
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3. Model and data
3.1. Model setup

The iSnobal model simulates snowpack evolution by resolving en-
ergy and mass balance fluxes. The two-layer model calculates the
snowpack net radiative, sensible, latent, conductive, and advective en-
ergy fluxes for a preconfigured time step (Fig. 2). Once the net energy
fluxes deplete the cold content (the energy required to raise the tem-
perature to 0 °C) and the snow meltwater amount exceeds the maximum
liquid water holding capacity of the snowpack, the meltwater outflow is
calculated. The model stores the simulated state variables of the snow-
pack (i.e., snow depth, snow density, meltwater, etc.) as summary sta-
tistics after a regular (and configurable) time interval has passed. These
state variables then serve as initialization values once a simulation
continues and new energy fluxes change the snowpack.

A complete setup of the model requires the overarching Automated
Water Supply Model (AWSM; Havens et al., 2020) software that com-
bines the Spatial Modeling for Resource Framework (SMRF; Havens
et al., 2017) and iSnobal into one framework (Fig. 3a). The external
Katana module is a wrapper for the WindNinja downscaling approach
(Forthofer et al., 2014), which assists in refining the supplied HRRR
wind data (3 km spatial resolution) to a higher resolution (200 m) ac-
counting for the modeled topography. The model installation, model
domain preparation, and daily model execution is described in more
detail in Meyer et al. (2023).

For this work, the HRRR-iSnobal combination was set to simulate
hourly updates at 50 m spatial resolution, storing the state variables at
the end of each day. The chosen spatial resolution resulted in a modeled
domain of 837 x 656 grid cells to cover the ERW area of 1373 km?. This
model configuration was identical to Meyer et al. (2023).

3.2. Forcing data

To simulate the snowpack mass and energy fluxes, iSnobal requires
the meteorological inputs of: air temperature, relative humidity,
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incoming solar radiation, wind speed and direction, and total precipi-
tation. These variables, along with additional required forcing infor-
mation (e.g. longwave radiation, precipitation phase, etc), are prepared
for the model domain by SMRF. The meteorological values are available
from the HRRR NWP model, which produces hourly forecasts up to 18-
hours at 3 km spatial resolution. The HRRR model became a U. S. Na-
tional Weather Service’s (NWS) operational forecast model in late 2014
and covers the continental United States and Alaska. There have been
four versions of HRRR since becoming one of the production models for
the NWS and distribution of the last and final HRRRv4 version started in
late 2021. HRRRv4 brought advances to cloud physics and modeled
solar radiation at the surface (James et al., 2022), which guided the
selection of the simulated water years for this study (2021 and 2022).
Additionally, using meteorological inputs from one HRRR product
version reduced the potential of possible error sources comparing the
different iSnobal input forcing combinations.

3.3. HRRR solar radiation product

Using the HRRR forecast products as forcing inputs for iSnobal
provided the additional opportunity to evaluate the HRRR Downward
Short-Wave Radiation Flux (DSWRF) variable as an alternative source to
the current SMRF implementation (Section 3.5.1.2). The DSWRF vari-
able in HRRRv4 saw a bias reduction of up to 50 % compared to
HRRRv3, which was evaluated against local instrumentation sites in the
lower 48 United States (James et al., 2022). An additional extensive
HRRRv4 near surface outputs evaluation, that included the DSWRF, by
Lee et al. (2023) found a seasonally dependent mean bias of around +20
W m~2 during the winter, +40 W m~2 during the summer, and around
+30 W m~2 in the spring during peak snow melt. The authors noted in
the evaluation that these ranges are additionally dependent and vary
with the amount of cloud cover, geographic region, ground cover type,
and specific HRRR forecast hour. Keeping this high bias in mind, this
study used the 6th-hour HRRR output, which showed a lower bias
among all tested near surface product outputs and forecast hours. The
use of DSWRF was additionally an opportunity to investigate a NWP

a)
HRRR L Awswml
]
el 1
;(— mn | SMRF iSnobal el
in i utputs
Wind (3km) i !
L __— T emmmimimmm—i— i —————
b)
Albedo
HRRR T Calculate | | Net
Precipitation ~ [***[** Reset Radiation | Solar
Y Albedo Model
»{ Shortwave
c)
HRRR vedpenip ) HRRR-MODIS
Shortwave Shading
— Adjustment | ;
Topography cesfense Pt Ca|cu|ate " Net
.................... > Radiation Solar
MODIS |l
Albedo
\_/—

Fig. 3. Overview of the iSnobal architecture, input data, and execution workflow (a), the current net solar SMRF workflow (b), and the new implementation to
calculate net solar using MODIS remotely sensed albedo and HRRR solar radiation (c).
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radiation product, similar to Quéno et al. (2020), where spatially
varying incoming solar radiation was better represented relative to
empirical approaches. Adding a meteorological input from HRRR
increased consistency among iSnobal forcing variables and reduced
model design complexity of the HRRR-iSnobal combination. We note
that for consistency in terminology, we use incoming solar radiation in
place of DSWREF in this paper.

3.4. Albedo product

The MODIS snow albedo product used in this work is based on a
combination of the MODSCAG and MODDRFS model outputs. MOD-
SCAG uses a per-pixel spectral unmixing algorithm to detect snow,
vegetation, rock, water, and shadow percentages. The spectral library
for snow covers a range of snow grain sizes, which is the foundation for
simultaneously detecting sub-pixel snow fraction and snow grain size
(Painter et al., 2009). Using the spectral signature of the modeled clean
snow grain size in MODSCAG and the information from the observed
MODIS spectral information enables the MODDRFS algorithm to
retrieve the reduction in visible albedo and radiative forcing impact of
LAPs at the snow surface. Deriving broadband snow albedo with the
information of both MODSCAG and MODDRFS was determined by Bair
et al. (2019) to have a 4-6 % root means square error compared to a
long-term in situ measurement record (4+ years). The albedo is gap-
filled to be spatially and temporally complete (STC) through various
filtering and smoothing techniques. The STC version of the MODIS snow
retrievals improves fractional snow cover detection in forested areas, on
cloudy days, and for varying satellite viewing geometry (Rittger et al.,
2020). The MODIS snow property outputs are produced daily at 500 m
spatial resolution keeping the MODIS Sinusoidal projection. Access to
the data is provided upon request by the National Snow and Ice Data
Center (NSIDC) Snow Today website (https://nsidc.org/reports/s
now-today).

3.5. iSnobal net solar model process

3.5.1. Current implementation

Within the HRRR-iSnobal architecture, the current sole net solar
radiation calculation option is available by SMRF and subsequently used
as input to iSnmobal (Fig. 3b). The two fundamental factors to this
calculation (equation (1)) are the modeled time-decay snow albedo and
the topographically adjusted incoming solar radiation. This process is
simulated by SMRF at every user-configured time interval (1 h in this
work) and stored as an input to iSnobal. The model configuration op-
tions and further process details for each factor are explained in the
following sections.

3.5.1.1. Time-Decay snow albedo. For each model time step snow albedo
is modeled using only the HRRR precipitation information with every
new snowfall, above a user-defined threshold between time steps,
restarting the decay. Aside from resetting the albedo, SMRF can accel-
erate the rate of albedo decay in the visible spectrum to account for LAPs
using a ‘dirt’ factor parameter, which is applied between a user-
configured start and end date. A common practice is to apply the
faster decline during the ablation period, setting the dirt factor start date
to the day of peak SWE and the end date to the last day with snow on the
ground. An additional control on the decay rate is the vegetation type of
a grid cell, where different rates are applied based on the type of cover.
The vegetation type is retrieved from the metadata file (Fig. 1) created in
the model domain preparation step. The last user-defined snow albedo
influence factors are the maximum and minimum snow grain sizes to
constrain changes in the near-infrared spectrum, which allow custom-
izing the albedo decay for different snow environments. A detailed
description of the time-decay albedo approach can be found in Marks
and Dozier (1992).
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3.5.1.2. Incoming solar radiation. Calculations for incoming solar radi-
ation in SMRF use the algorithms presented in Dozier and Frew (1990).
This approach starts with assuming a clear sky across the model domain
and simplifying atmospheric influences. The required inputs are the
model domain elevation data and the simulated day of year and time of
day, which enables corrections due to topographic shading. Once the
theoretical clear sky incoming solar radiation per grid cell is calculated,
SMRF takes the HRRR solar radiation to determine a cloud reduction
factor and reduces the clear sky value. The cloud reduction factor is the
percentage of cloud cover and stored for further use within SMRF. The
last step before the net solar calculation is the reduction due to vege-
tation cover, which is retrieved per grid cell from the modeled domain
metadata. The motivation behind this approach was to resolve the
incoming solar radiation at user-defined spatial resolutions, which may
be finer than available incoming solar radiation data (Dozier and Frew,
1990). For example, HRRR values are at 3 km, and incoming solar ra-
diation can exhibit variability at sub-kilometer scales in mountain
topography.

3.5.2. New net solar implementation

Introducing the new option to the HRRR-iSnobal combination, to
calculate net solar with the MODIS snow albedo product and HRRR solar
radiation, was completed as an external set of forcing data preparation
tools (Fig. 3c). Integrating the preparation tools into the iSnobal model
workflow only required changes to SMRF. Here, the steps to calculate
albedo and net solar were wrapped with a feature flag to disable the
execution via the central model configuration file. The MODIS and
HRRR product processing was performed in three steps and produced
daily files with hourly resolution, which is the expected forcing input
format by iSnobal.

First, the MODIS snow albedo product was cropped and reprojected
to match the model domain in spatial projection (EPSG:32613), reso-
lution, and extent. The spatial resampling used cubic interpolation to
reduce observed artifacts within the albedo product, where neighboring
pixels at times had large differences. These artifacts were deemed un-
realistic and categorized as errors. To address the temporal resolution
difference between set model simulation interval (1-hour) and MODIS
product data (daily), the values of the daily MODIS overpass (around
10:30 AM MST) were used as the static snow albedo for the day. This
approach does not represent albedo decay that happens over the day but
rather the general daily patterns and magnitude of change over time.
This approach may miss rapid changes as they happen, for example dust
storms or new snow fall, but those would be captured with the next
overpass on a clear cloud free day when impacts to albedo are most
relevant for energy balance.

Then, the HRRR solar radiation values were cropped to the model
domain and spatially resampled with the nearest neighbor algorithm to
50 m. HRRR data is available at hourly resolution and required no
interpolation across time. Using the same approach as the current SMRF
implementation to correct solar radiation values by a shading factor, the
resampled HRRR values were adjusted by the model topography. The
final step in creating the net solar input was multiplying the MODIS
albedo with the topographically adjusted HRRR solar radiation on a
pixel-by-pixel basis. The pixel-wise multiplication output was stored in
the expected input format by iSnobal (daily files with hourly values).

Bypassing SMRF modeled solar also required an update to the cloud
fraction estimation. In addition to scaling incoming clear sky solar ra-
diation for cloud cover, SMRF also used cloud fraction to resolve long-
wave radiation fluxes. Consequently, the SMRF implementation was
updated to use the HRRR cloud cover information to ensure identical
forcing data across radiation calculations and consistency within the
model framework.

4. Comparison

Assessment of the HRRR-iSnobal net solar radiation forcing updates
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were performed in three stages. First, a run with the current time-decay
snow albedo and the incoming solar radiation based on Dozier and Frew
(1990) set the baseline to which the model modifications were
compared to. These results are referred to as “Time-Decay”. Next, the
HRRR-iSnobal combination was updated to use the HRRR solar radia-
tion and cloud cover data (label: HRRR-SC), with no updates to the
treatment of albedo. The last run included the MODIS albedo product
data along with the HRRR solar radiation and cloud cover data (label:
HRRR-MODIS). The model outputs were assessed for each year in two
ways; through time at discrete in situ observation points and across
space at discrete points in time. The change in SWE over time, integrated
across elevation bands, was also compared across model runs. These
three categories are explained in the following sections.

4.1. Point comparison

Available observations at Irwin Study Plot (ISP) were compared to
the energy balance model inputs to evaluate the forcing data quality. In
addition to the meteorological measurements of air temperature, rela-
tive humidity, and wind speed/direction, the site has four separate
pyranometers. The pyranometers are divided into pairs; two instruments
measure the incoming and outgoing broadband solar radiation (Hus-
keflux SR-11; 0.285-2.800 pm) and the other two measure near-infrared
solar radiation (Huskeflux SR-11, filtered; 0.695-2.800 pm), the differ-
ence of which is visible solar radiation. Broadband albedo was calcu-
lated by taking the ratio between outgoing and incoming solar radiation
and then filtering to the closest time of MODIS overpass, a common
practice for remote sensing assessments to local point observations
(Sarangi et al., 2019; Bair et al., 2021). Computing net solar at ISP was
derived from the difference between the incoming and outgoing
broadband solar radiation (Wm™2).

The HRRR-iSnobal output comparison values at ISP were retrieved
from the corresponding 50-meter model grid cell containing the site
when snow was present (snow depth > 0 m). The MODIS snow albedo
and HRRR solar radiation were compared to ISP values over time and as
a seasonal mean value. Net solar from the two updates were compared
using the seasonal mean values and the median difference to the
measured value. For assessment of HRRR air temperature and wind data,
the observed values were subtracted from HRRR values, and a 1-day
rolling mean was applied to reduce measurement spikes and compen-
sate for data gaps.

Assessing the HRRR-iSnobal simulated snow depth values to the
quality-controlled end-of-day measurements at the SNOTEL stations
(Schofield Pass and Butte) used the grid cell encompassing the station’s
point location. This comparison first ensured that the model changes did
not negatively impact the snow accumulation simulation, which was
previously modeled well by HRRR-iSnobal (Meyer et al., 2023). Sec-
ondly, it evaluated the targeted improvements to snowmelt timing and
snow disappearance dates through the incremental model changes.

A final evaluation of impacts to the forcing input changes with the
snowpack energy balance calculation (equation (2)) compared the dif-
ferences in the sum of energy (Q), net solar, net longwave, latent heat,
and sensible heat at the two SNOTEL stations for each modification. The
differences were calculated by subtracting the Time-Decay end-of-day
values from HRRR-SC and HRRR-MODIS end-of-day values. The metrics
included the seasonal mean, median, and standard deviation over the
period where snow was present in the model grid cell containing the site.

4.2. Spatial comparison

A visual assessment across the ERW domain spot-checked the quality
of the MODIS product and ensured that no widespread artifacts
occurred, as occasionally seen in the initial evaluation. The selected date
was April 1st, 2021, and marks the traditional day of peak SWE and the
beginning of the melt season. Upon checking the Time-Decay results,
this date also had a large spread for days since the last snowfall, making
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it a representative case where the albedo should vary across the model
domain. To quantify the snow albedo variability, the mean and standard
deviation were calculated and compared between the Time-Decay and
MODIS product.

Assessing the propagation of net solar changes to model simulated
snow depth across the ERW basin compared the model outputs against
two aerial ASO lidar snow depth observations carried out in water year
2022 (no ASO flights occurred in 2021). The first flight was on the 21st
of April and the second on the 18th of May. ASO data is publicly
available via the NSIDC at 50 m spatial resolution. The objective was to
evaluate how HRRR-MODIS changes impacted the snow depth simula-
tions across the watershed while all other HRRR forcing input variables
were held constant. The Time-Decay configuration previously simulated
snow accumulation well with HRRR inputs (Meyer et al., 2023) and no
degraded performance was anticipated.

In addition to the basin-wide snow depth comparison to ASO, the
Time-Decay and HRRR-MODIS runs were compared in ASO observed
snow-free areas (i.e., ASO grid cells with 0 m snow depth) to calculate
the Snow Cover Extent (SCE) error. If snow melt was simulated too
slowly, then the areas with snow depth in the model would be high,
which would produce high SCE in this spatial comparison. Improve-
ments to snow melt timing should reduce the SCE error, especially in the
later flight when snowmelt was further underway. As an extension to
this comparison the Time-Decay and HRRR-MODIS snow-free areas, not
included with the previous case, were compared to observed depth by
ASO (i.e. ASO grid cells with > 0 m snow depth). This inspected the
model performance in areas where snowmelt occurred too quickly and
causing SCE error.

4.3. Snow water equivalent

The changes to the HRRR-iSnobal net solar calculations were antic-
ipated to propagate to SWE simulations and similarly follow the pattern
of accelerated depletion during the melt season. The SWE inspection
followed the classification from Meyer et al. (2023), where the elevation
zones split the ERW watershed into a lower (< 2896 m/9500 ft), middle,
and upper (> 3353 m/11 000 ft) elevation band (Fig. 1). Comparing the
three zones summed the daily HRRR-iSnobal SWE outputs by the
respective area. Similar to the spatial snow depth assessment, this
comparison helped highlight whether model response to net solar up-
dates varied across topography.

5. Results
5.1. Point comparison

5.1.1. Air temperature and wind speeds

The HRRR-iSnobal simulation assessment for air temperature and
wind showed almost identical performance across both years at ISP
(Fig. 4). For air temperature, the model forcing input had a difference
spread relative to observations between +4 and —2 C until December, at
which the differences then started to fluctuate between +4 and —4 C.
Late in the melt season and starting around May, the temperatures were
positively biased between 0 to +4 C. The forcing inputs for wind showed
no seasonal trends and difference values across both years stayed be-
tween +2 and —1 m/s. The close match between modeled forcing values
and observed values gave confidence that the HRRR-iSnobal melt timing
errors were primarily caused by errors in radiation as opposed to sen-
sible or latent heat (turbulent fluxes).

5.1.2. Net solar

Compared to the measured net solar at ISP, the HRRR-MODIS and
HRRR-SC configurations showed good agreement, with biases in
incoming solar radiation and albedo balancing each other out (Fig. 5).
For incoming solar radiation, the seasonal general trends were well
represented, but values were -consistently too high, especially
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Fig. 4. HRRR-iSnobal simulation differences to Irwin Study Plot observations
using a rolling 1-day moving mean for air temperature (top) and wind speeds
(bottom). The gaps in the early season were caused by missing observa-
tion data.

pronounced in 2022 (Fig. 5 a, b). For albedo, there was more variability
in the measurements relative to HRRR-SC (using Time-Decay albedo)
and HRRR-MODIS (Fig. 5 ¢, d). The Time-Decay albedo was always too
high, and the range of values too narrow, whereas MODIS better
captured the general trends. The outcome for the model was a slight
underestimation of net solar in both model configurations in 2021; —28
W m~2 (HRRR-SC) and —30 W m~2 (HRRR-MODIS) (Table 1). In 2022
HRRR-SC again underestimated (—28 W m’z) whereas HRRR-MODIS
overestimated net solar (+32 W m~2). The best agreement in both
water years was in the time period between December and the onset of
melt (end of March) when the net solar difference between stayed be-
tween +/- 50 W m ™2 (Fig. 5 e, f). Starting around the end of March,
though, both model configurations had higher than observed net solar
values. Getting the value closer to the observed is an area for future
forcing product investigations and is discussed in section 6.2.

5.1.3. Energy balance terms

The simulated mean HRRR-iSnobal net solar radiation at the SNO-
TEL stations increased with each respective model change in both water
years, showing the highest difference between the Time-Decay and
HRRR-MODIS configuration (Fig. 6). Among the energy terms from
equation (2), the net solar term had the largest changes. Here, the sea-
sonal mean differences ranged from 11.8 Wm ™2 to 19.5 W m 2 in 2021
and 13.6 W m™2 to 32.4 W m ™2 in 2022 at pixels containing the stations.
This result confirmed the targeted increase of absorbed solar energy to
improve the melt timings and magnitude. The second largest difference
was with the net longwave term, where mean values ranged from —4.1
W/m 2 to —9.6 Wm 2 in 2021 and -5.2 Wm 2 to —16.2 W m 2 in
2022. This change is due to an increase in the snowpack temperature,
caused by using a different cloud cover product and increased absorbed
energy. Previous research analyzing model sensitivity to radiation en-
ergy inputs showed similar results, where changes to incoming long-
wave and shortwave propagated to snow temperature and therefore
outgoing longwave energy (Lapo et al., 2015). A detailed overview with
mean, standard deviation, and median values for net solar, net long-
wave, and sum of energy (Q) is given in Table 2.

5.1.4. Snow depth

Similar to net solar radiation, with each configuration update, the
melt dates were simulated closer to observed (Fig. 7). The Time-Decay
method lagged behind the observed SNOTEL station melt-out dates by
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18 to 25 days at Butte and 15 to 33 days at Schofield Pass. The results
from the HRRR-SC run reduced the difference to the observed at Butte to
3 to 8 days and at Schofield Pass from 2 to 12 days. Adding the MODIS
product brought an additional reduction with the HRRR-MODIS run
showing a difference of 1 to 6 days at Butte and 5 days at Schofield Pass.
Schofield Pass was the only station in 2021, where the difference
increased to 5 days with HRRR-MODIS versus 2 days with HRRR-SC
(Table 3). For the season, the snow depth at each SNOTEL site was
slightly reduced during the accumulation phase with HRRR-MODIS,
especially when shallow snow depths (<0.2 m) were measured at the
stations. Potential reasons for this are discussed in the “Limitations”
section. Overall, using HRRR-MODIS as the net solar configuration
produced the best result for simulated melt-out dates when compared to
SNOTEL observations in the ERW domain across both years. These
findings support the arguments of Meyer et al. (2023), where the net
solar calculation of HRRR-iSnobal was suspected as the main contributor
for the melt out simulation errors.

5.2. Spatial comparison

5.2.1. Albedo

Visually comparing the April 1st snow albedo between the Time-
Decay method and the MODIS product showed that MODIS had lower
values with higher spatial variability when the Time-Decay method
showed almost no variation (Fig. 8). The mean Time-Decay albedo was
0.81 (SD of 0.01), while the MODIS product was 0.71 (SD of 0.07). The
higher MODIS albedo variability and overall lower values were more
realistic, given the time since snowfall was between 1 and 8 days. Using
the MODIS product with HRRR-iSnobal also simulated less no snow
areas at an identical point in time of the snow season between the Time-
Decay and HRRR-MODIS configurations. As observed in the initial
product assessment, the MODIS product had a few areas with lower than
realistic albedo, which did not correspond to areas with no snow. These
outliers could result from dense vegetation or low snowpack and are
further discussed in the “Limitation” section.

5.2.2. Snow depth

Of the two ASO surveys in 2022, the late melt-season May flight
showed a more noticeable improvement between HRRR-MODIS and
ASO retrieved snow depth values at middle to lower elevations (Fig. 9).
In April, the percentage of values in agreement (0.00 m depth differ-
ence) dropped slightly from the Time-Decay run (9.48%) to the HRRR-
MODIS run (9.20%). The basin-wide difference changed from showing
more areas with overestimation to having more underestimation, espe-
cially in the eastern portion of the ERW watershed boundaries. One
month later, and further into the melt season, the HRRR-MODIS areas of
agreement improved from 31.39% (Time-Decay) to 35.07%. The higher
elevation showed a small change to having more snow with the HRRR-
MODIS configuration. The general high underestimation for this eleva-
tion band and improvements for the HRRR-iSnobal combination are
further discussed in section 6.4.

The SCE metric for April and before snowmelt had initiated was
similar between configurations; 10.1% for Time-Decay and 12.7% for
HRRR-MODIS (Fig. 10), showing little improvements to agreement in
snow-free areas with ASO. For the May survey, when melt was pro-
gressing, the SCE error decreased from 13.4% (Time-Decay) to 3.2%
(HRRR-MODIS). The increased snow-free agreement with the May sur-
vey confirmed watershed-wide snowmelt timing was improved using
HRRR-MODIS. The comparison to assess potential drivers of too quickly
melted out areas indicated tall vegetation as one of the main primary
causes (Fig. 11). For the May 18th flight, the SCE error increased from
4.4% (Time-Decay) to 11.7% (HRRR-MODIS), which is further discussed
in section 6.1.
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Fig. 5. Comparison of incoming solar (a, b), snow albedo (c, d), net solar (e, f), and the difference of simulated net solar to measured values (e, f) at the Irwin Study

Plot for both simulated years.

Table 1

Overview of the net solar values for the HRRR-iSnobal configuration compared
to measured Irwin Study Plot values, including the median differences across the
two water years.

Irwin Study Plot Net Solar (W m~?) 2021 2022
Station 88 99
Mean HRRR-SC 62 80
HRRR-MODIS 73 126
A HRRR-SC —28 28
Median Difference HRRR-MODIS _30 39

5.3. Snow water equivalent

Across the three CBRFC elevation zones, the middle zone showed the
biggest shift in the HRRR-MODIS configuration, with amount of total
SWE depleting faster after the season peak was reached (Fig. 12). This
change was observed for both water years and is consistent with the

earlier HRRR-MODIS melt out dates at the SNOTEL stations, located in
the middle zone. The SWE depletion also happened faster in the lower
zone, although the difference was lower magnitude. At the highest el-
evations in the upper zone, though, HRRR-MODIS held SWE for longer
and reduced snow slower than Time-Decay. This simulated SWE result
matched the comparison with ASO snow depth, where the areas in the
north higher elevation areas of the ERW watershed showed over-
estimation of snow depth in the HRRR-MODIS configuration. As a
whole, the SWE comparison showed the expected propagation with
earlier HRRR-MODIS melt dates in the lower and middle zone, depleting
SWE faster and earlier than Time-Decay.

6. Discussion
6.1. Propagation of model changes

Each incremental change to the net solar calculation had a different
impact on the observed versus simulated melt out date differences at the



J. Meyer et al. Journal of Hydrology 638 (2024) 131490

Water Year 2021

HRRR-SC HRRR-MODIS
Butte Schofield Pass Butte Schofield Pass
125 125
= Quantiles (95%, 5%)
100 - R 100 A E
75 A 1 75 A b
50 - 1 50 - - E _
g - -+
S 2519 T 1 25 A 1 =+
<
0=V = ——= R T e e I T T e S
=251 8 I —25 - -+ ] =
—50 - g —50 - E
=75 T T T T T T T T T T =75 T T T T T T T T T T
SH LH NL NS Q SH LH NL NS Q SH LH NL NS Q SH LH NL NS Q
Water Year 2022
Butte Schofield Pass Butte Schofield Pass
125 125
— Quantiles (95%, 5%)
100 A R 100 A B
75 A 1 75 A k
50 R 50 - E
g -+
S 2519 1 25 A k
<
O T == Sy N e T <o =
—25 4 1 mus —25 A min E
-50 1 . -50 4 1 =
-75 T T T T T T T T T T -75 T T T T T T T T T T
SH LH NL NS Q SH LH NL NS Q SH LH NL NS Q SH LH NL NS Q

Fig. 6. Comparison of the changed energy fluxes with each model modification across each water year. Shown terms are Sensible Heat (SH), Latent Heat (LH), Net
Longwave (NL), Net Solar (NS), and Sum of Energy (Q). Note that the Q-term also includes the ground-snow interfaces fluxes and advective energy from rain. These
terms were excluded from the figure due to their small amount.

Table 2
Details of differences between net longwave (NL), net solar (NS), and sum of the energy terms (Q — Equation (2)) between the HRRR-SC and HRRR-MODIS model
changes to the baseline Time-Decay run. The corresponding distributions are shown in Fig. 6.

2021 2022
Difference to Time-Decay (W m~2)
Mean SD Median Mean SD Median
NL —4.1 8 -3.8 —-5.2 9.4 -5
Butte NS 11.8 12.1 6.4 13.6 13.8 7.8
Q 3.6 8.8 0.3 4.2 10.5 0.5
HRRR-SC NL —4.4 9.3 —-2.4 -5.8 11.9 -3
Schofield Pass NS 15.7 185 5.7 19.4 22.8 6.3
Q 4.7 11.1 0.4 6.2 12.8 0.3
NL -8.7 10.9 —-6.7 -9 14.9 —6.4
Butte NS 18.3 20 119 18.5 32.3 10.9
Q 4.2 10 0.5 4.9 20.2 0.4
HRRR-MODIS NL -9.6 12.2 —-8.5 -16.2 14.9 —-13.9
Schofield Pass NS 19.5 17.7 15.6 32.4 31.9 20.6
Q 3.4 10.1 0.5 8.9 18.3 1

SNOTEL stations. Using the HRRR downward shortwave radiation the time-decay with MODIS albedo product lowered this by a couple

product led to more available melt energy (Fig. 6) and consequently to more days, making it seem less of an important factor at first. However,
earlier melt out dates, reducing the difference to the observed by over the two point comparisons in combination with the basin-wide im-
10 days for each water year and station (Table 3). Additionally replacing provements to snow free areas late in the melt season agreement (from
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Table 3
Overview of simulated HRRR-iSnobal melt out dates across the different net
solar methods compared to the SNOTEL station observed date.

SNOTEL site Melt out dates 2021 2022

Butte Station 12-May 2-Jun
Time-Decay +18 days +25 days
HRRR-SC +3 days +8 days
HRRR-MODIS +1 day +6 days

Schofield Pass Station 2-Jun 4-Jun
Time-Decay +15 days +33 days
HRRR-SC +2 days +12 days
HRRR-MODIS +5 days +5 days

87 % to 97 %, Fig. 10) make the case that both changes to the net solar
calculation inputs were needed to get closest to the observed. This need
is additionally backed up when looking at the differences to the net solar
energy term with each iteration (Table 2), where the amount increased
each time and causing more available melt energy. A more basin-wide
melt date impact analysis, through modifications to either the
incoming shortwave radiation, the observed albedo, or both, would
require more in-situ measurement stations or higher frequency areal

10
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snow depth observations, which were not available at the time of this
study. Applying this incremental iSnobal net solar calculation update in
other areas where more in-situ or spatial observations are available can
further assess if the melt out date improvement hold true across a wider
range of watersheds.

6.2. MODIS snow product considerations

The MODIS product derives snow albedo using a threshold for snow-
covered area per pixel (>90 %), which limits accurate retrievals under
certain conditions. For instance, increased gaps in observed snow cover
can be caused by tall vegetation, where the product is known to have
lower than observed albedo (Stillinger et al., 2023). This effect was
found in this study in the spatial comparison, where the eastern side of
the ERW domain with tall vegetation changed to more areas of model
underestimated snow depth (Fig. 11). However, this change can also
stem from a need to further correct the HRRR solar radiation with in-
fluences from the terrain or to revise the vegetation representation in
iSnobal. Similar strong vegetation influences in the ERW was also found
by Feldman et al. (2022). Ultimately, the newly highlighted under-
performed regions in the study domain are the basis for future analysis
of the MODIS product, HRRR solar radiation, or the energy balance
calculation in iSnobal.

Additional conditions where satellite-based products underestimate
the albedo are shallow or patchy snow cover. Shallow snow depths are
impacted by the underlying substrate of the snow as the light penetrates
down to the ground, causing the snow to appear darker. Inconsistent
snow cover throughout a MODIS scene or within a single pixel result in
more pixels being excluded from the retrieval algorithm, increasing the
need to interpolate. The shallow snow depth case was observed in this
study, especially at the beginning of 2022 at Schofield Pass (Fig. 6),
where HRRR-MODIS had lower simulated grid-cell snow depth from
October to December when depths fell below 0.2 m. A similar snow
depth threshold with a point comparison was observed in Bair et al.
(2022) and the authors limited their MODIS albedo quality assessment
to depths above 0.2 m.

The HRRR-MODIS configuration did not deplete SWE as fast in the
higher elevations (> 11 000 ft) during the melt season, contrary to ex-
pectations and results in the lower and middle elevations (Fig. 12).
Reasons for holding snow longer could be due to undetected clouds in
the MODIS product leading to higher albedo values (Rittger et al., 2020)
and therefore lower net solar values. Additionally, the HRRR-supplied
solar radiation also contributes to this issue having the average eleva-
tion per 3-km grid cell (Dowell et al., 2022), flattening out high peaks,
and producing lower values. However, this change at higher elevations
will require further analysis as HRRR-iSnobal underperforms in this
zone (Meyer et al., 2023) and remains an active research area for model
advances.

6.3. Temporal and spatial data resolutions

Replacing the theoretical snow albedo approach and using a spatially
and temporally gap-filled remotely sensed product along with a rela-
tively coarse spatial (3 km) but high temporal resolution HRRR solar
radiation product improved the models’ snow energy balance calcula-
tion. This input data source combination was tested in this work across a
large domain (1300 km?) at 50 m spatial resolution and daily outputs
over two waters years. With these inputs, HRRR-MODIS showed little
degradation during the accumulation season at lower or middle eleva-
tions, as seen with the SNOTEL results (Fig. 7). The objective of this
effort, to produce a better match between simulated and observed
snowmelt timing was achieved (Fig. 10), despite the present biases in
each product compensating the effects of too high albedo and too high
incoming solar radiation (and combinations thereof). The bias in HRRR
solar radiation was deemed reasonable, especially when relating to
similar findings by Hinkelman et al. (2015) and Quéno et al. (2020),
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where snow models performed favorably when forced by NWP radiation
or satellite-based products. Providing accurate simulated or retrieved
solar radiation products across space and time in the mountains remains
a challenge due to the large uncertainties caused by rapidly changing
topography and weather conditions across seasons (Lapo et al., 2017).

12

6.4. Revised snow albedo representation

With the two-layer snowpack architecture, the iSnobal model uses
the top layer to interact with the atmosphere. Therefore, the best option
to advance the model’s inclusion of spatially varying LAP deposition and
albedo decay from the current basin-wide identical time decay was to
use remotely sensed snow surface albedo as confirmed with the April 1st
comparison (Fig. 8). The observed albedo additionally integrated the
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accumulative effects of multiple LAP depositions in the snowpack as
they propagated to the surface during melt (Skiles et al., 2012). The
resulting reduction is considered the direct effect (Skiles and Painter,
2019; Tuzet et al., 2017) and has been shown to change the radiative
energy of snow energy balance calculations between 80 % (Skiles and
Painter, 2019) and 85 % (Tuzet et al., 2017). The observed albedo also
combined the different effects of the LAP mixing state (Liou et al., 2014;
He et al., 2014), indirectly including other LAP snow-darkening aspects.

This presented direct insertion of snow albedo can replace the
various time-based surface aging approach with any spatially distrib-
uted or point model architecture that accounts for albedo changes. For
instance, all the investigated physical based snow models (e.g. Crocus,
SNOWPACK, or SMAP) in Krinner et al. (2018) would benefit from using
this snow albedo replacement, addressing the identified model melt
timing shortcomings. Care must be taken however on how a change in
surface energy will affect the snowpack dynamics. Depending on the
number of layers represented in each model, the resulting difference in
energy will propagate differently to the other energy terms such as the
net longwave (Lapo et al., 2015).

6.5. Further HRRR-iSnobal work

This first iteration of using remote sensing values with the HRRR-
iSnobal combination improved the simulated melt processes, and
there are several options to increase the accuracy further. For instance,
the HRRR solar radiation could be refined by applying sub-grid vari-
ability corrections, as shown by He et al. (2019). Improving pixel-wise
algorithms through other means than increasing the spatial resolution
has been successfully applied to snow processes in large-scale models
(Smirnova et al., 2016) and kept the added computational overhead low.
Other topographic-related enhancement options include ray tracing-
based models for shading and clear-sky corrections that can include
influences of reflected solar radiation by surrounding terrain (Steger
et al., 2022). Additional possible follow-up efforts to this work are an in-
depth model performance and sensitivity analysis to the snow energy
balance calculations based on the in situ records from the Surface At-
mosphere Integrated Field Laboratory (SAIL; Feldman et al., 2023) and
Study of Precipitation, the Lower Atmosphere and Surface for Hydro-
meteorology (SPLASH; https://gml.noaa.gov/grad/splash.html) cam-
paigns. Both efforts (SAIL and SPLASH) include extensive observations
of surface energy balance components including wind, cloud cover, and
radiation observations at strategic point locations in the ERW basin over
a two year period. This data source did not overlap with the available
MODIS product time record at the time of conducting this study.

A remaining continued investigation for the HRRR-iSnobal combi-
nation is the large depth underestimation at higher elevations in the
north and north-western ERW region (Fig. 9). This model under-
performance was identified in Meyer et al. (2023) as a HRRR precipi-
tation forcing input issue, flattening out tall peaks from the topography
and having sparse data observations for HRRR model initialization.
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From an operational forecasting application perspective, the presented
option for HRRR-iSnobal needs further refinement to adapt other sour-
ces than the MODIS product and increased automation of the direct
insertion method. Creating a more robust and flexible workflow will
increase the future application of this method and help transition as the
default snow albedo model representation.

7. Conclusion

A new option to determine the net solar radiation in the HRRR-
iSnobal combination was presented and advanced the snow albedo
representation by using observations from a remote sensing product.
The combination of MODIS-derived albedo plus NWP-modeled
incoming solar radiation improved the HRRR-iSnobal simulated melt-
out dates within one to six days compared to in situ point observa-
tions. There was a seasonal net solar median difference of 25 W m~2 and
27 W m™2 relative to in situ observations, an improvement over Time-
Decay differences of 109 W m™2 and 110 W m~2. Higher net solar ra-
diation accelerated modeled snowmelt, bringing snow depth depletion
rates and timing closer in line with observations. Additionally, this
improved modeled snow extent; the agreement between the model and
observations in the late melt-season showed an improvement in snow
depleted areas from 86.6 % (Time-Decay) to 96.8 % (HRRR-MODIS).
The advanced melt timings were also reflected in the SWE outputs,
releasing snow melt water earlier.

Alongside the improvements, though, the results also highlighted
areas for further research. For the MODIS product, snow melt timing
results suggest albedo values were underestimated in areas of tall
vegetation and overestimated at higher elevations. The HRRR supplied
incoming solar radiation compared high against an in situ point obser-
vation. Outcomes of the spatial and point comparison also suggested
revisiting the representation of vegetation and an investigation into
higher elevation performance for the HRRR-iSnobal combination. Based
on the overall results and significant improvement in snowmelt timing,
though, we propose replacing the time-decay snow albedo in iSnobal
with the remote sensing data and NWP incoming solar radiation as the
default method going forward. Although there is risk associated with
this approach given that MODIS is near end of life, it is likely gaps will be
filled by the snow products currently undergoing assessment from VIIRS
(Rittger et al., 2021, Stillinger et al., 2023). Additionally, future imaging
spectroscopy missions, such as Surface Biology and Geology by the
National Aeronautics and Space Administration agency (NASA SBG;
Cawse-Nicholson et al., 2021), will support the incorporation of snow
albedo into models as it is one of the designated observables. Other
satellite missions, such as the Copernicus Hyperspectral Imaging Mission
for the Environment by the European Space Agency (ESA CHIME; Rast
et al., 2021) or Planet Tanager may also assist in providing the required
remote sensing observations.

Code availability.

The software components used to run the model and analyze the
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results are publicly available. iSnobal model components are available
via the USDA ARS NWRC GitHub page: https://github.com/USDA
-ARS-NWRC. Additions to model setup and result analysis code are
stored on the University of Utah GitHub organization repository: htt
ps://github.com/UofU-Cryosphere/isnoda (https://doi.org/10.5281/ze
nodo.11245701).

Data availability.

The following datasets were used for the model runs and
comparisons:

e The National Elevation Dataset (NED), U.S. Department of the Inte-

rior, Geological Survey https://apps.nationalmap.gov/viewer/

LANDFIRE, 2014, Existing Vegetation Type and Height Layer,

LANDFIRE 1.4.0, U.S. Department of the Interior, Geological Survey,

and U.S. Department of AgricultureData Product Mosaic Downloads:

https://landfire.gov/getdata.php

e NOAA The High-Resolution Rapid Refresh (HRRR): https://rapidref
resh.noaa.gov/hrrr/

e NRCS National Water and Climate Center | SNOTEL | SWE Data: http
s://www.wcc.nres.usda.gov/snow/SNOTEL-wedata.html

e The National Map | U.S. Geological Survey: https://www.usgs.gov/p
rograms/national-geospatial-program/national-map

e USGS Surface Water data for USA: USGS Surface-Water Daily Sta-

tistics: https://waterdata.usgs.gov/nwis/dvstat/?site_no 09112

500&referred_module = sw&format = sites_selection_links

Painter, T. H.: ASO L4 Lidar Snow Depth 50 m UTM Grid, Version 1.

[USCOGE]. Boulder, Colorado USA. NASA National Snow and Ice

Data Center Distributed Active Archive Center, NSIDC, https://doi.

org/10.5067/STOT5I0U1WVI, 2018

STC MODIS product from the National Snow and Ice Data Center:

https://nsidc.org/snow-today
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