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ABSTRACT

Evaluating artificial light as a bycatch reduction device (bycatch reduction light, “BRL") requires
a multidisciplinary approach that applies knowledge of fisheries science, fishing technology,
engineering, physics, optics, vision biology, oceanography, animal behavior, economics, and
social science. To support the continued evaluation of BRL, these guidelines were developed
for conducting standardized and systematic studies. The guidelines highlight how information
from those fields of study contributes to the efficacy of study design and the evaluation of
results. The guidance is focused on four core areas: (i) defining the objective of using a BRL;
(i) understanding the context in which the BRL is applied and considering the base knowledge
that is needed; (i) selecting an appropriate study design (including selection and placement
of the BRL) and analytical methods for measuring both behavioral responses and catch
outcomes from using the BRL; and (iv) interpreting the data through the lens of the base
knowledge, context, and study design, and evaluating the results against an established
definition of success and variables that affect adoption. The purpose of these guidelines is to
increase the ability of researchers and managers to determine if BRL is appropriate for a
fishery and to encourage consistency in data collection among studies to support future
meta-analyses and inter-study comparison. In addition, suggestions are provided on where
more research and technology development are needed to support this rapidly emerging
field of research.

KEYWORDS

Fish behavior; fisheries
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1. Introduction as a BRD (hereafter, bycatch reduction light, “BRL”)
have been used in multiple fisheries. In active fishing

Lights have been used in fisheries for thousands of gears, BRL has been tested and used primarily on

years. While the primary goal of using artificial light
in fisheries has been to increase the target catch rate
(Ben-Yami 1976, 1988; ICES 2012; Nguyen and
Winger 2019a), recent research has focused on
examining its effect on the behavior of marine spe-
cies and its potential application in fisheries as a
bycatch reduction device (BRD). Artificial lights used

trawls, but also in flyshooting fisheries (Table 1).
For these active gear fisheries, illumination has
induced a positive or negative phototactic response
(i.e., movement toward or away from the light source,
respectively) or enhanced the visual perception of
gear components; and BRL has also been used in
conjunction with other BRDs to increase or decrease

CONTACT Noélle Yochum @ nyochum@tridentseafoods.com @ Trident Seafoods, 5303 Shilshole Ave NW, Seattle, WA 98107 USA
*Work was also carried out at the Alaska Fisheries Science Center, NOAA Fisheries, 7600 Sand Point Way NE, Seattle, WA 98115 USA.
$Drs. Noélle Yochum and Junita D. Karlsen should be considered joint first authors.
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6 N.YOCHUM ET AL.

Figure 1. The four core areas to consider when testing a bycatch reduction light (BRL) described in this paper, with an emphasis
on the importance of the feedback loop among these project stages.

movement toward an escapement area (Cuende,
Arregi, Herrmann, Sistiaga, Basterretxea 2020;
Cuende, Arregi, Herrmann, Sistiaga, Onandia 2020;
Grimaldo et al. 2018). In passive fishing gears, BRL
has been tested and used primarily in gillnet fish-
eries, but also with longlines (Afonso et al. 2021)
and pots (Table 1). Artificial lights in these fisheries
have additionally been used to increase catch rates
of the target species (e.g., Hazin et al. 2005;
Humborstad et al. 2018; Nguyen et al. 2020; Poisson
et al. 2010; Sokimi and Beverly 2010).

Previous studies indicate that BRL yields mixed
results (Table 1). For example, in gillnet fisheries,
BRL significantly reduces the capture of sea turtles
(Allman et al. 2021; Bielli et al. 2020; Darquea et al.
2020; Gautama et al. 2022; Kakai 2019; Ortiz et al.
2016; Virgili et al. 2018; Wang et al. 2010, 2013),
small cetaceans (Bielli et al. 2020), seabirds (Bielli
et al. 2020; Mangel et al. 2018), elasmobranchs
(Senko et al. 2022), Humboldt squid (Senko et al.
2022), unwanted finfish (Senko et al. 2022), and
total bycatch biomass (Senko et al. 2022). Other
gillnet studies, in contrast, have shown either incon-
clusive or negative effects of BRL on bycatch (e.g.,
Field et al. 2019; Martinez-Bafios and Maynou
2018). Mixed results have also been shown by
attachment location (e.g., Hannah et al. 2015), spe-
cies (e.g., Geraci et al. 2021; Grimaldo et al. 2018;
Lomeli and Wakefield 2012; Senko et al. 2022), size
of the animal (e.g., Geraci et al. 2021; Karlsen et al.
2021; Lomeli et al. 2018; Melli et al. 2018), and
light properties (e.g., color, light level, and strobe
rate; Yochum et al. 2022). Furthermore, environ-
mental conditions, such as turbidity and ambient
light, can dramatically alter the visual perception of
BRL by target and bycatch animals and therefore
influence BRL efficacy (Cuende et al. 2022). This
variability highlights the need to standardize data
collection on variables that may affect behavioral
responses and the importance of understanding the
influence of study design.

To support the continued evaluation of BRL, guide-
lines were developed for conducting standardized,
systematic BRL studies with information that should
be considered when evaluating study results. These
guidelines focus on four core areas: (i) defining the
objective of using a BRL; (ii) understanding the con-
text in which the BRL is applied and considering the
base knowledge that is needed; (iii) selecting an
appropriate study design (including selection of the
BRL) and analytical method; and (iv) interpreting the
data through the lens of the base knowledge, context,
and study design, and evaluating the results against
an established definition of success and variables that
affect adoption (either through voluntary uptake or
regulation; Figure 1). The intention is for these guide-
lines to increase researchers’ and managers’ ability to
determine if BRL is appropriate for a fishery (or com-
ponent of a fishery). In addition, by encouraging
consistency in data collection among studies, these
guidelines can also support future meta-analyses and
inter-study comparison.

2. Defining the objective of using a BRL

Studies evaluating BRL start by defining the specific
fishery concerned and identifying the non-target ani-
mals to be selected against (hereafter, “bycatch ani-
mal”) with minimal effect on the target catch
(hereafter, “target animal”). Both the bycatch and
target animals should be defined in terms of their
key characteristics relevant to selectivity (e.g., species,
size, sex; Table 2). This includes defining what is
meant by a “successful” outcome of using the BRL.
Success could be measured, for example, by reduction
in bycatch rates (or the ratio of bycatch and target
catches), an increase in harvest efficiency (e.g.,
decreased catch sorting time), feasibility of using the
BRL (including costs and operational considerations),
and/or reliability of a behavioral response. Success
can also be measured by minimizing unintended con-
sequences of the lights (see Section 8), including
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8 N.YOCHUM ET AL.

Table 2. Continued.

Category

Considerations

Description

Variable

Selecting a BRL (Section 5) and BRL Properties (5.1)

Select among types (e.g., LED, fiber optic cable, laser, phosphorescent materials,

chemi-luminescence).

Emitter type

Placement (Section 6)

Consider power supply, housing (size, depth rating, rugged, attachment mechanism), directionality,

programmability, accessibility, and cost.

Select peak wavelength, light level, and strobe rate.

Light properties

Consider placement in relation to the objective of the study (i.e., behavior attempting to elicit).
Consider where/ when the animal will experience the BRL during the fishing process (e.g.,

Location and Attachment

BRL Placement

entering the net, near a BRD) and how that relates to the state/ motivation of the animal (e.g.,

experiencing herding or crowding); water flow/ gear movement at that location (relative to

Consider the orientation of the light (e.g., light directed aft, down, etc.) and duration of exposure.

swimming ability); factors affecting diffusion of light at that location (e.g., sediment/ turbidity);
Consider operational logistics (e.g., ease of attachment) and impact to fishing operations.

and the position relative to any selection devices in the gear.

Consider the effect of a single compared with multiple lights, either in the same area or at
different locations in the fishing process.

Number

Consider distance between lights (when multiples used).

negative impacts on fish vision for those that escape
capture or changes in catch composition (e.g., increas-
ing catch of other non-target animals).

3. Understanding the context in which BRL is
applied

During the fishing process, animals are subject to
stimuli that may affect their behavior in response to
environmental and operational variables (e.g., herding,
olfaction, turbidity). Simplified from Levitis et al.
(2009), behavior can be defined as “the responses
(actions or inactions) of whole living organisms (indi-
viduals or groups) to internal and/or external stimuli”
Understanding the context for behavior is important
for accurate interpretation of BRL study results.

3.1. Environmental variables

Knowledge of the environmental conditions in which
an animal is experiencing a BRL is important for
interpreting results and making inferences on the use
of light for fisheries selectivity while also facilitating
comparability among studies. Environmental proper-
ties (e.g., natural ambient light level - the amount of
light received or measured, turbidity, water current
patterns, tidal cycle patterns, range of current
strengths, lunar and seasonal variations) can influence
the response of the bycatch animal to a BRL by alter-
ing the appearance of the BRL (e.g., change the con-
trast of the light against its background) and by
affecting their vision (e.g., water temperature, Fritsches
et al. 2005), sensory detection range and physiological
performance (Payne et al. 2016), and behavior (e.g.,
Kotwicki et al. 2009; Lomeli et al. 2019; Olla et al.
1997, 2000; Ortiz et al. 2016; Ryer and Barnett 2006).
The light environment is affected by weather condi-
tions (e.g., sea state, cloud cover), turbidity (i.e., loss
of water transparency due to suspended organic or
inorganic particles; Kalle 1966; Kirk 1976, 1994; Figure
2), depth (Dutkiewicz et al. 2019; Jerlov 1976; Johnsen
and Sosik 2004; Krebs 1972; Sheppard 1982), season,
time of day, and geographic region. Temporal and
geographic variation in the biogeochemical composi-
tion (e.g., chlorophyll, dissolved organic matter, inor-
ganic sediment) of the water column causes variation
in water color and turbidity, and, therefore, influences
visibility (Bricaud et al. 2004; Kirk 2011; Loew and
McFarland 1990). For example, ocean shrimp (Pandalus
jordani) catch was, in a study, not affected by artificial
light levels, but increased turbidity did result in the
illuminated trawl catching fewer individuals (Lomeli
et al. 2020). Moreover, temperature can have a strong



impact on physiological processes, including swim-
ming capacity and metabolism (Brett 1971), which
could affect how an animal responds to a BRL. Water
flow can also influence the ability of animals to hold
their position relative to an active gear as well as
orientation to the current (i.e., rheotaxis). Current
can also affect the distance, area, and direction ani-
mals can detect and be attracted to bait plumes
(Lokkeborg 1998; Thomsen et al. 2010).

It is important to use technology that will facil-
itate the collection of environmental data that are
representative of where and when the BRL is expe-
rienced by the animal. For example, when perform-
ing in situ experiments, the turbidity level can vary
dramatically throughout an active gear, and the light
level varies with distance from the BRL source. Some
methods for data collection include the Okta for
cloud cover (Ahmad et al. 2017) and Beaufort scale
for sea state (Southworth et al. 2020). The ambient
light level at the experimental depth can be mea-
sured using a spectroradiometer (Loew and
McFarland 1990; Figure 2) or data loggers (Lomeli
et al. 2018; see Section 5.2 for more detail).
Temperature can be measured using underwater
multi-probes, which can easily be deployed on fish-
ing gear (e.g., CTD loggers that simultaneously mea-
sure conductivity, temperature, and pressure; Geraci
et al. 2021). Water flow can be measured using flow-
meters (Larsen et al. 2017) or acoustic Doppler cur-
rent profilers.

REVIEWS IN FISHERIES SCIENCE & AQUACULTURE e 9

Measuring turbidity is complicated. A simple
method for quantifying small-scale surface turbidity
is to measure the Secchi depth. Secchi disks, how-
ever, are difficult to use in rough seas and cannot
be used for night experiments. The color of the
oceanographic and coastal waters can be determined
according to the classification system of Jerlov
(1951) that is based on in situ attenuation mea-
surements of oceanographic water (Akkaynak et al.
2017). Cameras can also be used to assess condi-
tions qualitatively and supplement turbidity meter
data (e.g., Cuende et al. 2022). Alternatively, sat-
ellites equipped with radiometers and underwater
optical sensors to measure ocean color can give
information on the overall turbidity of a water mass
(e.g., Pitarch et al. 2019). Turbidity can also be
automatically and continuously measured by optical
sensors such as nephelometers and transmissome-
ters. Of those only the transmissometer measures
both light scattering and light absorption, charac-
terizing transmission of light in a way that is rel-
evant to vision (for more information, see
Davies-Colley and Smith 2001; Utne-Palm 2002;
Kitchener et al. 2017).

3.2. Operational variables

Operational fishing variables likely affect behavior
and, therefore, the response to a BRL. These include
fishery characteristics (e.g., target catch), fishing fleet

Absorption of light

THIE =W
Lightis scattered . M =Y lﬂ
by all substances == ol BRE i T
in the water / 4 Sy . :
el Phytoplankton Dissolved/ (Re)suspended Water molecules Dissolved inorganic
absorbs thered  suspended organic minerals absorb absorb the red substances, e.g.,
and part matter absorbs the light acrossthe part of the salt, do not absorb
of the spectrum  blue, violet, and whole visible spectrum best light considerably
bestand green UV part of the spectrum and blue least
least spectrum best and
least hd
Downwelling light
Gillnet Light SR taletatel SO i
g S ——— dummm Spectroradiometer
source 9 Clear Turbid
Light signal weakened (attenuated) by absorption and scattering water water

Seabed

Figure 2. Natural and artificial light (illustrated here attached to a gillnet) are attenuated by absorption and scattering when
traveling through water. The different types of substances in the water absorb different parts of the light spectrum to different
extents, and light is attenuated more in highly turbid water. This figure was adapted from Fly Fishing Science (https://
flyfishingscience.co.uk/2018/10/19/light-attenuation-in-water/); Garcia et al. (2017); and Johnsen and Sosik (2004).
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information (e.g., range of and common vessel types,
sizes, horsepower, tow speed), spatio-temporal vari-
ability in fishing operations (e.g., fishing during the
winter season or at night, variation by depth), and
fishing gear design and dynamics (e.g., the codend
size, bait used, soak duration) (Table 2). These vari-
ables can affect catchability and selectivity. For exam-
ple, vessel horsepower and tow speed can influence
gear motion and mesh openings (Bombace and
Lucchetti 2011; Wileman et al. 1996), and bait type
and amount and changes in bait leaching (e.g., due
to temperature changes) can affect which species are
attracted to the gear and their subsequent behavior
(Hazin et al. 2005; Lokkeborg et al. 2010). Moreover,
if a BRL is intended for use with an additional BRD,
it is useful to understand how that BRD affects selec-
tivity in isolation. Because these factors can influence
the effect of the BRL, it is important to collect data
on them and to use the values to limit the scope of
inference. Differences in these variables can also affect
inter-study comparisons.

4, Considering base knowledge

During the fishing process, animals experience numer-
ous stimuli as they encounter and engage with fishing
gears (e.g., the sound of the boat engine, smell of the
bait). Animal behavior results from the combination
of the stimuli experienced (e.g., Kim and Wardle
2003) and their biology and physiology, including
evolutionarily adapted responses to their environment
(e.g., predator avoidance, conspecific cues). Therefore,
it is important to consider how the stimulation of
senses could influence or confound a behavioral
response to the BRL. This includes understanding the
sensitivity of the olfactory organs (Hara 1975;
Lokkeborg et al. 2010; Nguyen and Winger 2019b),
lateral line, echolocation organs (Kratzer et al. 2020),
auditory organs (Hawkins 1973; Ona and Gode 1990;
Sand and Karlsen 1986), magnetoreception, and che-
mosensory and electro-sensory systems. For example,
the bycatch animal may respond to stimulation from
water current (rheotaxis) and vibrations of the fishing
gear, as well as to changes in temperature and depth.
In addition to these, there are potentially other stimuli
of which we are currently unaware because they fall
outside of human detection capabilities (Popper and
Carlson 1998). Several publications have reviewed
sensory capabilities, in the context of sensory-based
bycatch reduction strategies, of aquatic animals,
including: teleost fishes (Atema et al. 2015); sea turtles
(Southwood et al. 2008); elasmobranchs (Jordan et al.
2013); marine mammals (Dawson et al. 2013; Kratzer

et al. 2021; Schakner and Blumstein 2013); birds
(Martin and Crawford 2015); and invertebrates (Senko
et al. 2022).

Given these dynamic interactions, a study evaluat-
ing the influence of artificial light on fisheries selec-
tivity requires knowledge based in many scientific
fields. This includes fisheries science, fishing technol-
ogy, engineering, physics, optics, vision biology,
oceanography, animal behavior, economics, and social
science (human behavioral change) (e.g., Nguyen and
Winger 2019a). It is likely that most researchers con-
ducting BRL studies do not have an in-depth back-
ground in all these subject areas.

Here relevant base knowledge is highlighted with
the aim of helping researchers appropriately design
their study and interpret results (Table 2) by providing
more detailed information about: (i) biology and phys-
iology (Section 4.1), with a focus on vision (Section
4.1.1); and (ii) behavior (Section 4.2). Information
about light and its properties (and measuring light)
can be found in Section 5.

4.1. Biology and physiology

Biological and physiological characteristics of an ani-
mal can influence and limit their ability to respond
to a BRL (Marais 1985; Reis and Pawson 1999;
Table 2). This includes morphological traits such as
size (e.g., the cross-section of the head and body girth
relative to mesh or a BRD panel) (Herrmann et al.
2009; Marais 1985; Reis and Pawson 1999).
Physiological characteristics, such as swimming capac-
ity (Parsons and Foster 2007; Regier and Robson 1966;
Yochum et al. 2021), can determine their ability to
access or avoid specific areas of the fishing gear, espe-
cially in relation to towing speed and duration for
active gears. Swimming speed has been broadly cat-
egorized into “sustained,” “prolonged,” and “burst”
swimming; at each of these speeds, different muscle
types are used to power the swimming gait (Webb
1994). Endurance negatively correlates with swimming
speed (i.e., decrease in endurance with increasing
speed; Coughlin 2002; Videler 1993; Webb 1994), and
swimming capabilities can differ by species, size, sex
(He and Wardle 1988, Videler and Wardle 1991), and
ontogenetic phase (Cronin and Jinks 2001; Nguyen
and Winger 2019a). There can even be significant
differences in endurance at prolonged speeds between
conspecifics of comparable length (Breen et al. 2004;
He and Wardle 1988; Videler and Wardle 1991).
Without direct information about swimming capabil-
ity (e.g., swimming speed limits and endurance),
inferences can be drawn based on biology and



mechanisms for food capture, escape from predators,
and reproduction (Videler and Wardle 1991).

4.1.1. Vision

Vision plays an important role in how an animal will
respond to the presence of a BRL. Vision can vary
greatly within and among species (Arimoto et al. 2010;
Land and Nilsson 2012; Figures 3 and 4), by ontoge-
netic stage, and by the light environment to which the
animal is adapted (Carlisle and Denton 1959; Shand
et al. 1988; Wagner and Kroger 2005). These differences
in the visual systems (both in capabilities and limita-
tions) provide a potential mechanism for differentially
affecting behavior and, therefore, capture of target- and
not bycatch- animals (e.g., selecting a wavelength that
is visible to one and not the other). As such, these
differences should be explored and used to adjust BRL
properties (e.g., flicker rate, light level; see Section 5)
as well as their operational use (e.g., attachment loca-
tion; see Section 6). Relevant aspects of the visual sys-
tem to consider include absolute sensitivity, light/dark
adaptation, color vision, spatial acuity, polarization, and
motion detection.

If no information is available on the vision of the
bycatch animal, inferences can be made based on the
habitat, ecology, and morphology of the species
(Schroer and Holker 2016). For example, many species
living deeper than 200m have limited or no color
sensitivity (Douglas et al. 1998; Munk 1964). Moreover,
the field of view is a result of the placement of eyes
on the head, the viewing direction, eye size and
mobility (for more detail, see Arimoto et al. 2010;
Wardle 1993), and position of the photoreceptors in
the retina (e.g., Bozzano and Catalan 2002; Burnside
and Nagle 1983).

4.1.1.1. The visual system and photoreception. The
eye is a photo-sensitive sensory organ that facilitates
the extraction of information from light (i.e., visible
electromagnetic radiance/packages of energy called
“photons”; see Johnsen 2012; Land and Nilsson 2012;
Palmer 1993 for more details). Eyes of aquatic animals
vary in their morphology and physiology. Here
generalized overview information about the form and
function of the fish eye is provided, which is broadly
similar in structure to that of most other vertebrates
(Wartzok and Ketten 1999) with two main functions:
collection of photons and accommodation of an image
on the light sensitive retina using a lens (Fernald
1990; Kroger 2013a) (Figure 5). In the retina, there
is a matrix of light-sensitive photoreceptor cells (e.g.,
rods and cones) that convert the light into neural
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impulses, which are transmitted via the optic nerve
to the optic lobes of the brain where an image is
perceived (for more details see Bowmaker 1995;
Lythgoe and Partridge 1989; Nakagawa et al. 1999;
see Semmelhack et al. 2014 for processing light
information in the retina).

4.1.1.2 Sensitivity and light-dark adaptation. Absolute
sensitivity is the ability of the eye to detect light and
process visual information in given light levels.
Adaptation to different light levels involves several
physiological, biochemical, and morphological
processes that should be considered when selecting
BRL light level (Ali 1959; Barbur and Stockman 2010).
In brief, most fish have no eyelid, and a fixed pupil
size. For these animals, adjusting the optics of the
eye (i.e., retinomotor movements; Burnside and King-
Smith 2017) to accommodate sudden changes in light
level, for example, by introducing an artificial light
source, is not possible (Douglas et al. 1998). Disrupting
a dark-adapted fish with sudden exposure to a bright
light (Figure 6) in fishing gear or a laboratory setting
(i.e., transitioning from scotopic to photopic vision),
even for a brief pulse (Wagner and Douglas 1983;
Muntz and Richard 1982), can leave them temporarily
visually impaired and therefore less likely to be able
to detect a net or any other visual stimuli (Field et al.
2019). There is a transition at intermediate light levels
where both rods and cones are active, and the fish
will have twilight (“mesopic”) vision. This form of
visual plasticity enables fish to function visually over
the range of light levels found in its natural
environment; however, morphological transition from
photopic to scotopic vision can take up to 20-30 min
(or more) (Burnside and King-Smith 2010; Wagner
and Douglas 1983).

4.1.1.3. Color vision and polarisation. Many fishes,
marine mammals, seabirds, marine turtles, and
invertebrates likely have the capability to recognize
color (Figure 3). Color vision is the perception of
differences in wavelength (or frequency) of photons
striking the retina independent of image brightness.
Each photoreceptor cell in the retina contains a
specific visual pigment, which absorbs photons of
particular wavelengths more efficiently than other
wavelengths (Land and Nilsson 2012; Nakagawa et al.
1999). Spectral sensitivity, or visual pigment
absorbance, indicates wavelengths most likely to be
absorbed (see Figure 5; e.g., Anthony and Hawkins
1983). Rods are sensitive to low light intensities, with
a single photon (amplified in the neural pathway)



12 N.YOCHUM ET AL.

Govardovskii and Lychakov (1977)

A \; 495-497 M\
3
. Thornback ra
Achromatic Fish Elasmobranchs . (-
Raja clavata \
I —
o Y e w a S @ 1%
QS Kalinoski et al (2014)
§ > p 1.00 s
Ro?s | b N Spiny dogfish 52
on ish — —_ — 2075
A\ Fish Elasmobranchs Squalus suckleyi
— Monochromatic
Y i . Common seal P \
2 Marine — Pinnipeds — L ® h—
g mammals Phoca vitulina W a0 @ %o o &0 &0 7%
Vertebrate _| MW 510(Crognaleet:al 1998} Bowmaker (1990)
. T ass, 2 %
photoreceptors Gadiformes Atlantic cod I /
Gadus morhua ]
— Dichromatic Fish —| /)
Cones é A Yellowfin t ﬁ/ O
L e 3% Scrombiformes — Yellowfintuna T T Ao
S ¢ Thunnus albacares
rods) SW MW 426,485 (Loew etal 2002) Hammond (1968)
£ 440-a60, 7NN SO,
. . . . E g, 470-490, §
— Trichromatic Fish ———Pleuronectiformes — EUrop€an _:*" se.s50
plaice
Pleuronectes
platessa oo
Schuyler et al (2014)
- » AN AYANE 2
— Tetrachromatic —Turtles Cheloniidae Greer? turtle_ SRVAY SR}
Chelonia mydas 515,
560-565
0% \
\ \
Wavelength (nm)
B Mithger et al (2006)
Common i
cuttlefish g e M\
Decapodiformes — """~ ——%ox /
Sepia officinalis £
— Ciliary 2o
jﬁa /\/ \
Cephalopod e o w0 e 7w
Common octopus .
Speiser et al (2011)
Invertebrate — Mollusca Octopoda— Octopus vulgaris ol A
photoreceptors 475(Hara etal 1967) o 513 '
Sea scallop
Bivalvia Pectinida Placopecten A\
L Rhabdomeric —] magellanicus € o _ ,k—_
American lobster ___ 2"
L—Crustacea — Decapoda — Nephropidae GC e s

Figure 3. Vertebrate (3A) and invertebrate (3B) examples of spectral photoreceptor sensitivity curves (peak wavelengths given).
While rod-cone interactions can result in color vision, monochromatic (one cone pigment) and achromatic (no cones) species will
not be able to see color as they only possess one wavelength discrimination channel (photopigment type). Species that possess
two or more cone cell types are likely to be able to discriminate colors (Collin and Trezise 2002, 2004). Mono-, di-, and tri- chro-
matic vision is common in the marine world (Marshall et al. 2015), with some species possessing even more (e.g., mantis shrimp;
Marshall et al. 1991). Not all species within an order or family have the same visual capabilities, which is demonstrated within the
elasmobranchs in this figure. For example, some ray species are trichromatic (Marshall et al. 2015), compared to the achromatic
ray shown here. Photoreceptor combinations in 3A are examples; combinations can change with species (e.g., some monochro-

Norway lobster

Nephrops norvegicus
425,515 (Johnson et al 2002)

matic species may possess a SW cone type rather than a MW). Figure by Jasmine Somerville.

0 400 450 50 550 60
Wavelength (nm)



REVIEWS IN FISHERIES SCIENCE & AQUACULTURE e 13

Figure 4. The predicted visual scene for six species (A-F) based on their visual acuities, using the R package AcuityView (Caves
and Johnsen 2017; https://eleanorcaves.weebly.com/acuityview-software.html). The scene is viewed from a distance of 3 m from
the closest fish, which is approximately 15cm in length. The visual acuities of the six species (measured in minimum resolvable
angle) are as follows: (A) yellowfin tuna, Thunnus albacares, 0.06 degrees (Nakamura 1979); (B) walleye pollock, Gadus chalcogram-
mus, 0.166 degrees (Zhang and Arimoto 1993); (C) European plaice, Pleuronectes platessa, 0.2 degrees (Neave 1984); (D) common
octopus, Octopus vulgaris, 0.588 degrees (Hanke and Kelber 2019); (E) blue crab, Callinectes sapidus, 1.8 degrees (Baldwin and
Johnsen 2011); and (F) great scallop, Pecten maximus, 3.33 degrees (Land 1981). The scenes do not account for the different spec-

tral sensitivities of each species.

capable of triggering a response, and therefore used
for dim (scotopic) low-resolution vision (black and
white, contrast vision). Rods typically contain the
visual pigment rhodopsin with peak sensitivity (1,,,.)
between 470nm and 510nm (Lythgoe and Partridge
1989). It was previously thought that color vision
could not be mediated by rods, but recent research
indicates that it may be possible through shared
neural pathways between rods and cones (Musilova
et al. 2019). Cones are less sensitive, but provide
(photopic) color vision at higher light levels. Thus,
shallow-water fish have a higher proportion of cones
than deep-water species. Cones usually contain one
of several visual pigments that are only sensitive at
higher light intensities, but with absorption peaks
over a wider spectral range (~300nm to 650nm,
Carleton et al. 2020). In cones, the protein of the
visual pigment is called opsin, of which there are
three types: (i) red, (ii) green, and (iii) blue, also
known as L (long), M (medium), and S (short),

respectively (Land and Nilsson 2012). Cones cannot
detect color by themselves. Rather, color vision
requires a comparison of the relative strength of the
signal across different cone types, thus, one needs at
least two different spectral cone types (dichromat) to
detect color.

Knowledge of color sensitivity of the bycatch ani-
mal, alone and relative to that of the target animal,
can inform the choice of the peak wavelength (ie.,
color) and wavelength range for the BRL (see Section
5). In making this selection, it is important not to
assume the bycatch animal will perceive a BRL the
same way as a human. For example, some animals
can see outside of the electromagnetic spectrum per-
ceived by the human eye (1: 380-780nm; “visible
light”; CIE 1990). Ultraviolet (UVA; 300-400 nm wave-
length) visual cone pigments are present in many
fishes (Douglas et al. 1995), making it possible for
some species (e.g., Mullidae, Scombridae, Labridae)
to detect ultraviolet radiation (Arimoto et al. 2010;
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Figure 5. A simplified cartoon of the structure and function of the teleost eye. Light entering the eye through the cornea (A) and
pupil ultimately leads to the formation of an image on the light sensitive retina. The retina contains an outer section (B) holding
a matrix of light-sensitive photoreceptors (rods and cones) interconnected by inner neurons that connect to the optic nerve, which
sends information to the optic lobes in the brain. Photoreception (C) whereby visual pigment in the outer folded membrane of
the photoreceptor cells is triggered by photons. Each visual pigment molecule consists of a protein (opsin) that holds a chromo-
phore within a pocket-like space. Photons cause the chromophore to change shape inside the pocket and separate from the opsin,
which affects transmitter release (for more details, see Bowmaker 1995; Nakagawa et al. 1999). Photoreceptor cells (D): rods (highly
light sensitive and therefore largely used for dim light, or scotopic, vision) and cones (less light sensitive and largely provide
high-resolution color vision). Spectral absorbance (E) of the visual pigments of a shallow water dwelling goby (Gobiusculus fla-
vescens; redrawn from Utne-Palm and Bowmaker 2006) showing the different photoreceptor wavelength sensitivities (efficiency at
absorbing photons of different frequencies). S, M, and L cones are short, medium, and long wavelength sensitive, also called blue,

green and red cones, respectively. Drawings by Anne Christine Utne-Palm.

Bowmaker and Kunz 1987; Kroger 2013b; Losey et al.
1999; Swimmer and Brill 2006). In coastal gillnet fish-
eries, for example, UV light has been used to reduce
sea turtle bycatch while maintaining target fish catch
(Virgili et al. 2018; Wang et al. 2013). Some fishes
with the ability to detect UV light are also capable
of detecting polarized light (Hawryshyn 2000;
Hawryshyn and McFarland 1987; Losey et al. 1999;
Marshall and Cronin 2011), and some species may
also have near-infrared vision (Matsumoto and
Kawamura 2005; Meuthen et al. 2012; Shcherbakov
et al. 2013).

4.1.1.4. Spatial and temporal resolution. When selecting
light level and flicker rate for the BRL (see Section 5),
which can affect behavioral responses (Yochum et al.
2022), it is helpful to be aware of visual-spatial
resolution (i.e., visual acuity) and temporal resolution
(i.e., time taken to process the image) of the bycatch

animal (Arimoto et al. 2010). Spatial resolution is
related to the angular distance between cones, similar
to the pixel resolution of a picture, and influences
capacity to discriminate detail (for more information,
see Eggers 1977; Utne-Palm 1999, 2002; Ware 1973;
Figures 4 and 5). The higher the visual acuity of the
retina, the less movement is potentially needed for an
object (image) to be detected. The temporal resolution
of this moving image, also referred to as persistence
time, is related to the ability to identify sequential
images as separate. At relatively low frequencies, a
series of images are identifiable as separate, while at
higher frequencies, only one apparently continuous
“fused” image is identifiable. The threshold frequency
at which the images fuze is the “critical flicker
frequency” or “flicker fusion threshold” and it is
dependent on light level and temperature (Arimoto
et al. 2010; Douglas and Hawryshyn 1990). For a more
comprehensive review of motion detection and how it



is measured, see Arimoto et al. (2010) and Douglas
and Hawryshyn (1990).

Visual detection of an object (e.g., netting) is
dependent on visual acuity, along with the ability to
detect a difference in contrast between the object and
background. The relative importance of color and
perceived brightness contrast is determined by visual
pigments, the reflectance characteristics of the object,
the radiance level, and the spectral distribution of the
ambient light, as well as visual sensitivity to these
properties (Douglas and Hawryshyn 1990; Lythgoe
1968; Munz and McFarland 1977). Because water
absorbs long- and short-wavelengths more than
middle-wavelengths (e.g., 530 nm for coastal temperate
water, 480 nm for tropical coastal water; Jerlov 1968;
Figure 2), light tends to be near monochromatic at
moderate depths (Lythgoe 1975). Brightness contrast
is, therefore, most often the determining factor, com-
pared to color contrast, for the visibility of objects
underwater (Hemmings 1965; Lythgoe 1975).

4.2. Behavior

To determine whether behavior of the bycatch animal
was affected by the addition of a BRL, it is necessary
to understand their behavior (i) independent of the
fishing process; (ii) in response to the fishing gear/
process without a BRL; and (iii) in the presence of
artificial light independent of fishing.

Behavioral responses to light can vary among and
within species (e.g., Engas et al. 1998) and are based
on ontogeny and biology (e.g., maturity stage or sex)
(Blaxter and Batty 1987; Nguyen and Winger 2019a).
For example, behavioral responses to towed gears
under different natural light conditions can be
species-specific, as demonstrated by diurnal differ-
ences in catch rates (e.g., Glass and Wardle 1989;
Walsh 1991; Walsh and Hickey 1993). Responses can
also vary based on ecological factors and relative to
the catch phase. In trawl fisheries, for example,
behavior can vary among processes of herding,
fall-back, and encountering a BRD. These phases
reflect the changing combinations of stimuli experi-
enced and changes in swimming performance. For
example, at later stages of the catch process in active
gears, a stressed and fatigued animal may be unable
to maintain pace with the gear (e.g., Larsen et al.
2018). Likewise, behavior during haul-back can be
influenced by changes in water flow (Engaas et al.
1999), changes in the codend netting (e.g., pulsing
or changing shape), and natural ambient light (e.g.,
Grimaldo et al. 2009). Understanding these
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differences in behavior can help inform where to
attach the BRL (see Section 6) and how to interpret
behavior (see Section 7). In passive gears, behavior
may be affected by what is already caught and/or the
ability of the animal to see or be attracted to bait
in the near field (e.g., Anders et al. 2017; Hedgédrde
et al. 2016; Humborstad et al. 2018; Swimmer and
Brill 2006; Utne-Palm et al. 2018). For those reasons,
it can be helpful to collect information on the
response of the animal to light separate from the
fishing process, being mindful of how the process of
collecting these data could affect behavior (e.g., cam-
era lights when collecting behavior information). This
can include responses to light in other gear models
or types, laboratory studies, or with caution from
studies in other fields (e.g., changing light level at
culverts; Jones et al. 2017; Jones and Hale 2020; or
fish deterrents at dams; Johnson et al. 2005).

5. Selecting a BRL

When selecting an appropriate BRL to influence the
behavior of a bycatch animal in a defined way, four
interconnected elements should be considered in
addition to the visual system of the bycatch animal
described in Section 4.1.1: (i) the properties of the
light source; (ii) changes in light properties during
light propagation from the point of illumination to
the bycatch animal; (ii7) background characteristics
that influence the contrast between the BRL and the
ambient environment; and (iv) placement in the gear
and the anticipated time the bycatch animal will
experience the light during the fishing process (see
Section 6).

Modern artificial light sources include light emit-
ting diodes (LEDs), fiber optic cables, lasers, charged
phosphorescent materials (e.g., luminous netting with
strontium aluminate, SrAL,O,), and chemiluminescent
lights (e.g., “glow sticks”). Each BRL type has practical
advantages and disadvantages for implementation in
a fishery, which includes environmental impacts (An
et al. 2017), usability, durability, technical appropri-
ateness, and cost (see also Section 8; Table 2).
Regardless of the BRL type or design, the housing
must be easy to handle during fishing operations,
tolerate saltwater exposure (for marine applications),
and withstand pressure from the maximum fishing
depth. The housing must also sufficiently resist the
abrasion and impact it will experience (e.g., damage
from the gear, seabed, or vessel), not entangle in the
fishing gear, resist biofouling, and require minimal
maintenance (e.g., replacement of o-rings).
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5.1. BRL properties

When selecting a BRL, properties to consider include
light level, spectral characteristics (wavelength com-
position), directionality (beam angle), polarization,
strobing (flicker rate or duty cycle), power consump-
tion, and duration. Compromises might be required
to achieve the desired properties. For example, phos-
phorescent materials (e.g., luminous netting; Karlsen
et al. 2021) are usually produced in green because
strontium aluminate gives the strongest and
longest-lasting glow. For this material, the light level
decreases more rapidly with time, does not allow for
strobing, and is not programmable like some LED
lights. There are, however, advantages to this BRL
type, such as not requiring batteries. Similarly, lighted
gillnet buoys can be solar powered (Senko et al. 2020),
but have reduced operational time. Moreover, strobing
lights with a reduced duty cycle might be considered
to reduce battery costs and ease operational logistics
(e.g., replacing batteries) to influence broad adoption
in a fishery. For example, a BRL with a 20% duty
cycle flashes on for 1s and off for 4s, allowing the
power source to last five times longer than when used
with continuous light.

5.1.1. Light level

There is a wide range of light levels for a BRL, from
chemiluminescence (Wang et al. 2010) to powerful
LEDs (e.g., Lomeli and Wakefield 2012). Typically, the
light level increases with the size, complexity, and
power demand of the light. The light level of a BRL
often decreases over time (e.g., chemical glow sticks:
Wang et al. 2007, 2010; luminous netting: Karlsen
et al. 2021; LEDs: Ing6lfsson et al. 2021). These
decreases can go undetected by a human observer,
which highlights the need to measure the decay pat-
tern of a light source for the temperature range of
application.

A high light level is not necessarily required to
obtain a response in animals (Karlsen et al. 2021;
Lomeli et al. 2018; Wang et al. 2007, 2010; Yochum
et al. 2022) and can have adverse effects. In turbid
water, for example, high light levels can make it diffi-
cult to see gear components due to backscattering
(Benfield and Minello 1996; Utne-Palm 2002; see
Section 3.1). If the objective of using a BRL is to illu-
minate portions of the gear to make it more apparent
to bycatch animals (e.g., to avoid the gear or perceive
an opening; e.g., Bielli et al. 2020; Ortiz et al. 2016;
Senko et al. 2022; Wang et al. 2010, 2013) then it is
relevant to investigate the optical properties of the
water in which the BRL will be applied. Moreover, the

sensitivity and expected adaptive state of the eyes of
the bycatch animal (see Section 4.1.1) should be con-
sidered when selecting the BRL light level. If a BRL is
applied under conditions where the eyes of the bycatch
animal are dark adapted and thus have a higher sen-
sitivity, there is a potential risk of temporary or per-
manent damage to the eyes of the animals (Field et al.
2019; Magel et al. 2017; Meyer-Rochow 2001). This is
especially a concern when animals are forced to pass
closely by a BRL (e.g., as animals move aft in a trawl
where the space becomes constrained).

5.1.2. Light spectrum

Spectral characteristics of a BRL (i.e., wavelength peak
and range) should be selected based on the spectral
sensitivity of the bycatch animal, especially relative to
that of the target animal (e.g., if only one can see
UV light, Southwood et al. 2008). Because there is
limited range in the visual spectrum, and species
inhabiting the same visual environment are likely to
have some overlap in spectral sensitivity, spectral seg-
regation of species can be limited. Therefore, visual
capabilities other than spectral sensitivity should also
be explored (see Section 4.1.1).

Researchers have selected BRL that emits light at
wavelengths to which the bycatch animal has maxi-
mum spectral sensitivity (Wang et al. 2010) to max-
imize detection; however, a behavioral response should
not be assumed only based on the ability of an animal
to detect the light. Rather, spectral characteristics of
the animal may be helpful in understanding how the
animal is experiencing the light. When vision infor-
mation is unavailable, researchers have chosen the
BRL color based on the peak wavelength of the inhab-
ited environment (e.g., Lomeli et al. 2020; Melli et al.
2018; Utne-Palm 1999). It should be noted that the
bycatch animal may have visual pigments that do not
match the spectrum of the background downwelling
light to maximize contrast for detection of reflecting
objects (e.g., prey) (Hawryshyn 1998; Loew and
Lythgoe 1978; McFarland and Munz 1975).

5.1.3. Directionality

Because artificial lights can have directionality, BRL
appearance could be greatly affected by small changes
in attachment angle. As a result, the selected lights
may affect the bycatch animal differentially depending
on the direction from which the light source is
approached or the size of the light field created.
Therefore, the directionality of the BRL beam needs
to be considered relative to animal movement when
selecting the type and number of lights and when



determining their placement on the gear (Melli et al.
2018). It should also be considered whether it is more
effective to make gear components more visible or to
use the light to make the component invisible (Kim
and Wardle 1998; Wardle et al. 1991).

5.1.4. Flicker rate

When selecting a BRL that is strobed, the temporal
acuity of the bycatch animal, specifically the flicker
fusion threshold, is relevant (Meyer-Rochow 2001; see
Section 4.1.1.4), as is the presence of naturally flick-
ering light. At near-surface depths (ca. 10m, depend-
ing on the cloud cover and water clarity), shallow-water
fish are adapted to the natural flickering of light
produced as waves on the water surface focus and
defocus sunlight (Darecki et al. 2011; McFarland and
Loew 1983; Meyer-Rochow 2001). Other animals may
live in environments with flickering bioluminescence
that is associated with behaviors for schooling (Gruber
et al. 2019), avoiding predators (Goulet et al. 2020;
Morin 1983), or acquiring prey (Hellinger et al. 2017;
Morin 1983). In contrast, many animals have evolved
under stable light regimes, so strobing BRL could
create a more perceptible contrast with the back-
ground and, therefore, behavioral cue (Inger et al.
2014; Utne-Palm 1999). For example, artificial strobe
lights have been investigated in the laboratory for
their potential use as deterrents to guide migrating
fish past artificial structures (e.g., Kim and Mandrak
2017, Patrick et al. 1985; Sager et al. 1987, 2000).

5.2. Measurement of BRL properties

Properties of BRL should be described to: (i) evaluate
the spectrum relative to the spectral sensitivity of the
bycatch animal and surrounding environment; (if)
investigate how the light level changes over the dura-
tion of use (i.e., as charge decreases); (iii) identify
the relationship between BRL properties and observed
behavioral responses; (iv) compare light properties
with other BRL sources and the associated bycatch
animal responses within or between studies; and (v)
evaluate the influence of a BRL on the light environ-
ment during fishing. Specifications of the BRL are
not always available from the supplier, but can be
measured in the laboratory.

5.2.1. Radiometric and photometric measurement

There are two different forms of light measurements:
radiometry and photometry. Photometric variables
are based on human perception, whereas radiometric
variables span the whole optical radiation spectrum:
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UV, visual, and infrared light (wavelength between
10nm and 1000m). Several radiometric metrics are
available, each with a weighted photometric counter-
part (Figure 7). Photon (quantum) counterparts can
also be derived from each radiometric variable (see
Section 5.2.2). Given that the visual pigments in an
eye are photon counters (Figure 5), photon units
should be reported in BRL studies.

Photometric variables are weighted according to the
spectral sensitivity of the human eye and are, therefore,
restricted to the visible part of the electromagnetic
spectrum (CIE 1990). The values used to weigh the
spectral data can be found in the International
Commission on Illumination table for the photopic
spectral luminous efficiency function (CIE 1990; Hunt
2004). It is important to note that when working with
animal vision where spectral sensitivity differs from
humans, radiometric rather than photometric variables
should always be used (Johnsen 2012). If only photo-
metric measurements are available, these can be related
to radiometric units to enable comparison of light
source color and light level between studies if the
spectral distribution of the light source is known
(Johnsen 2012). If a spectrum of the light is not avail-
able, conversions can be done for single values of
known wavelength (e.g., peak value). Similarly, when
relating the light level of a BRL to the photosensitivity
of a species (which are often given in photometric
units in older literature), a visual sensitivity curve for
the animal is required.

Radiometric variables commonly include irradiance
and radiance. Irradiance is the amount of light incom-
ing to a receptor area (e.g., to a sensor) from all
directions and describes the general light level. This
is easy to measure, but depends on the distance
between the light source and the sensor, which must
be reported. A weak light source may have to be
measured at a short distance to be detected by the
sensor (Karlsen et al. 2021), while, at the same dis-
tance, a strong light source may saturate the sensor.
For directional light sources, irradiance measurements
would change depending on the location of the sensor
relative to the center beam (see also Johnsen 2012).
Radiance, on the other hand, is the amount of light
reaching a point from a small set of directions
(Johnsen 2012). It is independent of the angular size
of and distance to the light source (unless it is a
point source) or the light signal is being absorbed
and scattered (as it is in water) (Johnsen 2012).
Brightness is related to changes in radiance. This
theoretically makes radiance the ideal unit to measure
light; however, radiance is not as straightforward to
measure as irradiance as illustrated in Figure 8.
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Figure 6. A simplified cartoon of two of the many examples of plasticity of the fish eye to changing light levels. Both lens and
retina are plastic and change in structure from light (photopic; top imagine) to dark (scotopic; bottom image) vision (Burnside and
Nagle 1983). The monofocal lens focuses each incoming wavelength at a different distance to the lens (green, blue, and red). With
this lens, only a given wavelength (green light in this example) is focused correctly onto the retina. The multifocal lens corrects
for chromatic blur by focusing each in a specific zone in the lens (concentric dashed lines) so that all wavelengths (red, blue, and
green) are focused onto the retina. The fish lens possesses the flexibility to change from monofocal to a multifocal structure when
going from dark to light conditions. In addition, the retina adapts to dark or light conditions by moving either rods (scotopic) or
cones (photopic) closer to the incoming light. Drawings of the multifocal and monofocal lenses are taken from Gustafsson (2010);

drawings by Anne Christine Utne-Palm.

5.2.2. Light level and spectrum

Light can be regarded both as an electromagnetic
wave and as moving particles (photons). The shorter
the wavelength (toward the purple end of the visible
spectrum), the higher the energy of the photons. The
energy, or power, of a light signal is the integral over
all its spectral components. “Brightness” of a light
source, which relates to the physiological sensation
(i.e., the perceived light level), depends on the ampli-
tude of the electromagnetic wave or the photon den-
sity (i.e., how many photons are received by the eye
per unit area per time unit). The perceived color
relates to the composition of the spectral components.
Thus, the perceived BRL color and light level will be
different for different species.

Most light meters (e.g., radiometers) can display
the measured light in watts or milliwatts per area
(i.e., mW m™), or the corresponding photon units
(mol s7!, umol, pmol m~ s7!). Conversion to a photon

variable can be done from a spectrum showing how
much light energy there is at each wavelength (Johnsen
2012; Taiz et al. 2014). Therefore, it is recommended
to always measure the whole spectrum of the light
source (e.g., by using a spectroradiometer, Johnsen
2012) and avoid sensors that only give integrated val-
ues (i.e., total energy over the wavelength range). It
is impossible to determine the spectrum from an
integrated value; however, the integrated light energy
can be found by adding the light level values for each
wavelength, given that the energy or number of pho-
tons at each wavelength is known (Johnsen 2012).
Due to the limited availability of suitable loggers, PAR
sensors giving integrated values over the wavelength
range 400-700nm may have to be used to evaluate
the influence on the light environment during fishing
when adding the BRL (e.g., Lomeli et al. 2018a;
Lomeli et al. 2018). It is important to note that these
measurements cannot be used for comparison across
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Figure 7. An overview of radiometric and photometric variables following the International System of Units (SI) (partially adapted

from Mobley 1994).

conditions as the spectrum underlying the measure-
ments is unknown.

The light emitted by a BRL is often not monochro-
matic (i.e., having a single wavelength; e.g., Nguyen
et al. 2017; Utne-Palm et al. 2018; Yochum et al. 2022).
The light should therefore be characterized by the
wavelength range in addition to the peak wavelength.
A standard method is to give the range as
Full-Width-at-Half-Max (FWHM, Karlsen et al. 2021).

5.3. Background characteristics

Introducing a BRL to the environment changes the
ambient light field and can influence the visibility of
fishing gear components. Also, the underwater

environment may not be as dark as expected at night
or at depth when bioluminescence is present. Many
marine species create their own light field (Martini
and Haddock 2017; Widder 2010). Bioluminescence
is most often blue (peak ~ 475nm) in open water
and green in coastal, more turbid waters. Violet, yel-
low, orange, and red bioluminescence are emitted by
few organisms (Widder 2010). Bioluminescence can
be an influential factor in the visibility of fishing gear
(Jamieson et al. 2006). This is particularly true for
fish species with well-developed visual systems that
can detect low light-level bioluminescence (Arimoto
et al. 2010).

Keeping in mind the background characteristics,
a BRL should be selected considering how they will
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Figure 8. Radiance measurements (W m=2sr") depend on the angular size of the light source relative to the opening angle of
the radiance meter. Q is the 3D opening angle of the radiance meter (i.e., the solid angle). Radiance meter 1 measures 0.01W
m~2sr~' regardless of distance to the light source and opening angle of radiance meter if the light source (yellow line) covers the
whole opening angle. Radiance meter 2 measures 0.01+1W m=2sr~" * 0.000001 sr/0.01sr = 0.0101W m~2sr~" as long as the small
light source (yellow square) is located in the middle (dotted line) of the beam as the radiance meter is less effective in collecting
light toward the lateral edges of the light beam. Furthermore, since the small light source does not cover the whole opening angle
of the radiance meter, it is a point source. Therefore, measurements of light emitted from it depend on the distance as the field
viewed by the radiance meter increases (corresponding to a decrease of the angular size of the light source) with the square of
the distance. Radiance meter 3 measures TW m~2sr~'. The small light source (yellow square) covers the whole opening angle and
so masks the effect of the wide light source (yellow line). This masking effect is independent of the light level of the small light
source unless the light source is transparent (e.g., bioluminescent transparent organisms). The small opening angle increases the
risk of displacing the light source outside the solid angle of the sensor by any movements in either radiance meter or light source.
In an eye, each cone and rod correspond to a radiance meter. Given that the fish is looking at the light source, the chance is
higher that most can detect the light similar to radiance meter 1 and 3. Drawing by Bo Lundgren, DTU Aqua.

affect the appearance of the fishing gear. The ability
of aquatic animals to visually detect fishing gear
depends on the perceived brightness (i.e., radiance),
as well as the contrast created by differences in color
and brightness of the fishing gear relative to the back-
ground (Kim and Wardle 1998; Wardle 1983).
Contrast sensitivity, the threshold between the per-
ceived visible and invisible, can be used to compare
brightness between the fishing gear and background.
Brightness contrast can be specified as Weber contrast
(commonly used in cases where small features are
present on a large uniform background), Michelson
contrast (used for patterns that have both bright and
dark features), or RMS contrast (for natural stimuli)
(Pelli and Bex 2013). While Weber contrast has been
used to describe some fishing gears (Arimoto et al.

2010), other contrast measures have yet to be
employed. Regarding color contrast, it could be useful
to consider how this has evolved for the bycatch
animal in nature (e.g., for communication; Marshall
2000) or warning signals such as aposematic color-
ation (Arenas et al. 2014; Cortesi and Cheney 2010;
Prudic et al. 2007).

6. Determining BRL placement on the fishing
gear

Placement of the BRL should correspond with the
objective of using the BRL (e.g., to deter passage:
Grimaldo et al. 2018; to attract fish toward an open-
ing: Lomeli and Wakefield 2019; or to guide fish using
the optomotor response: Karlsen et al. 2021).



Placement determines the period in the fishing pro-
cess when the animal will experience the BRL (e.g.,
fishing, gear retrieval), the duration of time the ani-
mal will experience the BRL, and how the light will
be distributed through the gear (Table 2). The num-
ber and spacing of the lights affect the size of the
light field and can create areas of reduced light levels
between lights (Hazin et al. 2005; Wang et al. 2010).
Placement considerations also include how attachment
of the BRL onto the fishing gear may affect animal
behavior (e.g., due to effects on water flow that the
bycatch animal might detect) or fishing operations
(e.g., time to attach, weight) and how buoyancy may
affect light direction (Cerbule et al. in press).
Depending on the type of fishing gear and section
of the gear (e.g., trawl mouth compared with codend)
(Table 1), factors such as fatigue, stress, animal den-
sity, sediment clouds, size of the escape area, towing
speed, and contrast between the gear and the sur-
rounding environment need to be considered. For
example, in large-body trawls, a BRL can be placed
aft of the net in the extension sections where the
circumference of the trawl is smallest to increase the
likelihood that the animal will perceive the light. The
angle of approach should also be considered, espe-
cially for more directional lights (see Section 5.1.3).

7. Selecting an appropriate method to
evaluate the effect of the BRL

To better understand and evaluate to what extent a
BRL reduces bycatch while maintaining catch rates
of target animals, three key research approaches can
be used (Figure 9): characterizing and cataloguing
behavioral responses to a BRL (i) during the fishing
process and (ii) in a laboratory setting; and (4ii) quan-
tifying changes in catch and catch rate when using a
BRL relative to baseline or commercial fishing oper-
ation. While the research approach should be selected
based on the objectives and circumstances (Figure 9),
they complement each other when studied collectively.
Combining methods increases the understanding of
how a BRL affects behavior and, therefore, fisheries
selectivity.

7.1. Characterization of behaviors during fishing

A key step in understanding how a bycatch animal
responds to a BRL is to observe its behavior during
the fishing process and around fishing gear. Behavioral
data collected with standardized methodology can be
used to improve the predictability of catch changes,
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inform BRL selection, and interpret results from BRL
deployment.

7.1.1. Methods of observation

Behavior can be observed and characterized using: (i)
video cameras (e.g., Grimaldo et al. 2018; Olla et al.
2000; Santos et al. 2020; Simon et al. 2020; Yochum
et al. 2021); (ii) acoustic imaging systems (e.g.,
split-beam: Handegard and Tjestheim 2005; imaging
sonar: Rose et al. 2005); and (iii) tagging (e.g., acous-
tic transmitters: Engas et al. 1998; Lokkeborg et al.
2000). Selection of an observation method is often
dictated by visibility at the study site, visual distance
between the equipment and animals, species identi-
fication abilities, handling, and cost of equipment and
labor to process the data (Figure 9).

Video cameras can be used to observe behaviors
and gear interactions at high resolution and allow for
length measurement and 3D representation when using
stereo-cameras (e.g., Neuswanger et al. 2016; Shafait
et al. 2017). Video camera observation range, though,
is often limited by field of view, water clarity, obstruc-
tions, animal density, and ambient light levels. In low
ambient light environments, additional illumination
can be used, but the lights could affect the response
of the bycatch animal (Lomeli and Wakefield 2019;
Olla et al. 2000). The influence of camera lighting can
be reduced by taking snapshots instead of continuous
video (Glass and Wardle 1989); however, this limits
observations of behavioral event chains and may itself
be a cue for the bycatch animal (i.e., the effect of the
flashing light). Another solution is to use illumination
with wavelengths outside of the spectral sensitivity of
the bycatch species, such as red (Favaro et al. 2012;
Grimaldo et al. 2018; Olla et al. 1997; Yochum et al.
2022) or near-infrared (NIR) (Chladek et al. 2021;
Olla et al. 2000; Wang et al. 2007). In comparison to
visible light, NIR light rapidly attenuates in water and
can only be used for observations up to ca. 2m dis-
tance (Hermann et al. 2020). In addition, spectral
sensitivity is species-specific and a fish may respond
to red light (Yochum et al. 2022). This might be the
case if it possesses only blue and green cones and
there is a spectral overlap between the red light and
the sensitivity range of the green cones (Widder et al.
2005), with the fish perceiving the red light as weak
green. Likewise, some species may sense NIR light
(Matsumoto and Kawamura 2005; Meuthen et al. 2012;
Shcherbakov et al. 2013) using long-wavelength sen-
sitive cones. Potential damage to the eyes of the ani-
mals needs to be considered when using NIR lights
(Icnirp 2013). Beyond direct reactions to light, the
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behavior of a bycatch animal could be influenced by
other species reacting to the illumination (Hedgirde
et al. 2016; Humborstad et al. 2018; Utne-Palm et al.
2018) and, depending on the configuration of the cam-
eras and how they are deployed, the cameras could
affect drag and water flow and, therefore, animal
behavior (Bryan et al. in review).

Acoustic imaging systems (“acoustic cameras”) can
be used to observe behavior in and around fishing
gear. Unlike video cameras, these systems can record
data in both turbid and dark water without illumina-
tion (Moursund et al. 2003; O’Connell et al. 2014).
This multi-beam sonar technology, which uses a
higher frequency (2-3MHz) for high-resolution
images and a lower frequency (around 1MHz) to
detect fish at further ranges, has successfully observed
species interactions with trawl gear (Handegard and
Williams 2008; Rakowitz et al. 2012) as well as pots
and hooks (Rose et al. 2005). Current development
of this technology allows recording in 3D and includes
semi-automated approaches to detect, count, and mea-
sure the size of fish and record their speed (e.g.,
Boswell et al. 2008; Schmidt et al. 2018). The reso-
lution of acoustic camera systems, however, is low,
and the cost high, as compared to optical cameras.
Moreover, body coloring patterns are not visible in
the acoustic camera images, and, depending on the
frequency used, different species of similar morphol-
ogy may not be distinguishable. Like the optical cam-
eras, consequences of drag and water flow by the
acoustic camera systems on fish behavior should be
considered.

Acoustic camera imaging quality depends on ani-
mal density and orientation of the animal relative to
the beam axes, which can make it difficult to observe
individual species in a multispecies fishery and/or
fisheries involving high fish densities. In addition,
acoustic cameras are less effective in habitats with
high physical relief, which will obstruct the acoustic
signal through shadowing and backscatter (Rose et al.
2005). Similarly, interference from the fishing gear
(e.g., groundgear, netting, and floats) must be
addressed (Graham et al. 2004), and it is necessary
to have a substantial distance between the acoustic
camera and the desired area of observation due to
near-field dead zones (Rose et al. 2005). To address
this, acoustic observations close to the seabed (e.g.,
of demersal species) may reduce the near-bottom
acoustic dead zone (@vredal and Huse 1999). With
acoustic cameras, a considerable volume of data is
produced, which requires additional processing power
and expertise, as well as efficient techniques for data
display and analysis (Graham et al. 2004).
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An echosounder system with a single or split-beam,
narrow or broadband acoustic transducer can also be
used to observe fish and crustacean behavior, for
example, in the pre-trawl zone or between the sweeps
of pelagic and demersal trawls (e.g., Michalsen et al.
1996, 1999; Rosen et al. 2012; Underwood et al. 2021,
2020). Collected acoustic data have been used to com-
pare the distribution of fish under the vessel and over
the net (Michalsen et al. 1999). Transducers can be
mounted on vessels pointing downwards (e.g.,
Underwood et al. 2021), at the trawl mouth pointing
forwards (Underwood et al. 2020) or upwards
(OQvredal and Huse 1999), and in the trawl body
pointing downwards (Rosen et al. 2012) or upwards
(Krafft et al. 2023). On a submersible frame, these
can be lowered from a vessel (Underwood et al. 2020)
or used on remotely operated vehicles (ROVs; @vredal
and Huse 1999), autonomous underwater vehicles
(AUVs; Fernandes et al. 2000), remotely operated cat-
amarans (ROC; Dawson et al. 2022; Kotwicki et al.
2020), a rosette (Pefia 2019), or (for passive fisheries)
on moored (Ona and Gode 1990) or drifting buoys
(Handegard et al. 2003; Handegard and Tjestheim
2005).

Acoustic and radio telemetry are other options for
recording data independent of turbidity and natural
ambient light levels. Radio telemetry can be used in
shallow, freshwater fisheries in distances up to a few
meters, but the signal range is close to zero (< 1m)
in brackish and marine waters (Benelli and Pozzebon
2013; Thorstad et al. 2014) as radio signals are
strongly attenuated in conducting media. Telemetry
also requires applying tags internally or externally on
the bycatch animal and having a receiving mechanism.
The latter includes retrievable acoustic receivers
(Engas et al. 1998; Lokkeborg 1998) or radio antennas
(passive monitoring), or having to follow the indi-
viduals with hydrophones or radio antennas (active
monitoring). These systems can give presence-absence
data or positions of the animal over time in a small
area, and have been utilized in both passive (Lokkeborg
1998) and active (Engas et al. 1998) gears. With this
method, it is important to consider the impact of
applying the tag on fish behavior and condition, and
that multiple tags can result in colliding signals that
block tag reception.

7.1.2. Behavioral units and ethograms

To enable a comparison of animal behavior in gear
with and without a BRL, and between studies, behav-
ioral units should be identified and described objec-
tively from an analysis of recorded observations
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(Lehner 1996). An ethogram is a catalogue of com-
prehensive, precise, and objective descriptions of
observed and mutually exclusive behavioral units used
to quantify behavior (Lehner 1996). Gear-specific
ethograms are needed due to fundamental differences
in the capture processes (e.g., active compared to
passive gears). The behavioral units should be related
to specific locations in or around the gear, the context
in which they occur, and their consequences (Anders
et al. 2017; Chladek et al. 2021; Ljungberg et al. 2016;
Meintzer et al. 2017; Santos et al. 2020). Examples of
ethograms for trawls, gillnets, pots, and longlines are
provided in Table 3(a-d).

To evaluate behavior in response to a BRL, the
ethogram should be made a priori and should inform
the selection of BRL characteristics (see Section 5)
and placement in the gear (see Section 6). Relevant
behavioral mechanisms that might lead to changes in
catch metrics include phototaxis (e.g., Larsen et al.
2017), photokinesis (e.g., Bielli et al. 2020; Grimaldo
et al. 2018; Wang et al. 2010), and anti-predator
response (Melli et al. 2018) (Table 4). Studies have
also investigated if the optomotor response (Karlsen
et al. 2021) and dorsal light response (Takayama 2019)
may be used.

Behavioral accumulation curves (BAC), an asymp-
totic accumulation model of observed behavior units
over the observation period, can be used to identify
the completeness of the ethogram (Dias et al. 2009).
Similar to studies on biodiversity (Soberén and
Llorente 1993), the probability of observing a new
behavioral unit can be estimated under the expecta-
tion that it decreases with increasing observational
effort (i.e., the number of observation bins reviewed;
Bolgan et al. 2016; Dias et al. 2009). When the BAC
reaches an asymptote, the probability of observing a
new behavioral unit approaches zero (Soberén and
Llorente 1993), thus indicating a high degree of com-
pleteness of the ethogram. More details about the
methodology, including models and software and an
application for fish, can be found in Bolgan et al.
(2016), Dias et al. (2009), and Sober6n and
Llorente (1993).

One of the more difficult aspects of describing
behavioral units is distinguishing between the observed
behavior and interpreting its potential function or
consequences (i.e., its adaptive function).
Anthropomorphizing (i.e., attributing human behavior
to the animal) may predispose researchers to bias as
human characteristics may not apply to fundamentally
different animals. For example, “panic” in humans
can be defined as sudden, uncontrollable fear or anx-
iety that produces irrational behavior, which often

spreads quickly through a group. In fish, irregular
changes in swimming behavior (e.g., sudden changes
in swimming speed and direction) can be more
appropriately labeled “erratic swimming” Similarly,
“calm” has been used to describe behavior of captured
fish in pots once activity has decreased (Thomsen
et al. 2010), or their behavior described as “aimless”
swimming. These terms can be misleading, however,
and ignore the underlying physiological state of the
fish. For these behaviors, “inactive” or “cruising”
would be more appropriate terms, respectively.

Capture by fishing gear is related to morphology
(e.g., animal size and body shape), how the animal
perceives the gear, and, consequently, their behavioral
response to it (Winger et al. 2010). Observed behav-
iors are also often related to underlying physiological
processes (see section 4.1) and may be important
when interpreting responses to a BRL. For example,
as fish increase swimming speed (observed as changes
in tail beat frequency or gait changes; Winger et al.
2004), they switch from aerobic to anaerobic meta-
bolic processes (e.g., at the trawl mouth). Higher
swimming speed can aid escape, but also lead to
fatigue (Beamish 1978; Hollins et al. 2019; Winger
et al. 2000). Being “exhausted” or “fatigued” can be
defined in less anthropomorphized terms as being
depleted of glycogen resources (Beamish 1966; Winger
et al. 2010; Xu et al. 1993).

Movement in trawls is often put in context with
the swimming capacity of the individual (i.e., physi-
ological responses such as fatigued); however, the
response can be attributed to behavior (Breen et al.
2004; Peake and Farrell 2006). Thus, the falling back
behavior of fish swimming in front of the trawl
mouth, which is species-specific, could be described
as “raising” or “turning,” for example. For passive gear,
fish can approach the gear as individuals, pairs, or
schools (High and Beardsley 1970). This can be sus-
tained for a limited time while potentially enabling
escape responses (Hollins et al. 2019). Cruising speed
is synonymous with sustained swimming speeds
(Beamish 1978) during which aerobic processes allow
fish to maintain the observed speed for longer times
without fatigue. Thus, observed changes in behavior
at cruising speeds (e.g., entering the trawl) could be
considered behavioral changes and not fatigue (e.g.,
density-dependent response; Gode et al. 1999). At
higher swimming speeds, like “emphasised swimming”
(which is synonymous with prolonged and critical
swimming, Beamish 1978), a combination of aerobic
and anaerobic processes is used. In contrast, purely
anaerobic processes are used in burst swimming
(Beamish 1978).
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Table 3. An example of an ethogram for fish behaviors in relation to (a) trawls developed from Bolgan et al. 2016 unless oth-
erwise noted; (b) gillnets (developed from He and Pol 2010); (c) pots; and (d) longlines (developed from Lokkeborg et al. 2010).

Behavior Definition

(a) Trawls

Locomotion

Cruising Rhythmic undulations of the body accompanied by rhythmic beats of the tail fin.

Emphasized swimming
Burst swimming (sprint)

Gliding
Erratic swimming
Swimming backwards

Flipping

Turning

Ascending
Descending
Stationary positions
Swimming in place

Inactive with tail movements
Inactive
Interactions

Avoiding

Escaping

(b) Gillnets

Locomotion in the vicinity of the net

Swim speed

Turning

Orientation toward
Orientation parallel
Orientation away
Stopping/hold position
Capture interactions with the net
Gilling

Wedging

Snagging

Entangling

Other behaviors

Feeding behavior

(c) Pots

Attraction

Foraging behavior: Long range

Foraging behavior: Short range
Approach

Netting bump

Slow approach

Zigzag swimming

Guarding

Ingress

Ingress and egress

Inside pot
Inactive

Active
Aggressive

(d) Longlines
Contact
Incomplete bite

Complete bite
Jerk/Jerk series
Chewing
Pulling

Rush

Expel
Escapement

Similar to cruising, but the body and tail movements are more conspicuous and faster (i.e., increase in tail
beat frequency or change in gait).

An instantaneous and brief increase in swimming speed as a result of a further increase in tail beat
frequency.

Motionless movement through the water.

Sudden irregular changes in swimming speed and direction (Kim and Jang 2005).

Rhythmically beats of the tail fin while moving backwards, e.g., with the water flow (falling back) (Bublitz
1996).

Turn upside-down or to a sideways orientation (Bublitz 1996).

While swimming, the fish changes direction in the plane with a vigorous tail beat.

Lift head up, swimming upwards (Bublitz 1996; Main and Sangster 1981).

Lower head, swimming downwards (Sistiaga et al. 2018).

Rhythmic beats of the tail fin without any horizontal or vertical change of position (holding) (Krag et al.
2009).

Similar to swimming in place, but, in this case, the tailbeats are less vigorous and occur with a really low
repetition rate, usually at the bottom.

The fish is in a stationary position, usually on the bottom. Movement is not detectable.

Movements away from an approaching obstacle (active) or maintaining a distance to an approaching
obstacle (passive) (Colwill and Creton 2011).

Rapid movements away from an approaching obstacle to evade an imminent collision (Colwill and Creton
2011), or successful mesh penetration (Grimaldo et al. 2018) or swimming out of an exit hole (Krag et al.
2009).

Speed of animal approaching the net (see different swimming modes in Table 3(a)).

The animal changes its movement in relation to the position of the net.

The animal approaches the net (this could be measured in degrees relative to the net).

The animal swims alongside the net (this could be measured in degrees relative to the net).
The animal moves away from the net (this could be measured in degrees relative to the net).
The animal is not moving in relation to the net.

Caught with the mesh behind the operculum.

Caught by the largest point of girth of the body.

Caught by small parts of the body (mouth, teeth, fins/flippers, etc.).
Caught by partial or entire body intertwined with net, results in struggling.

The animal is actively feeding in the vicinity of the net, or on animals captured in the net.

Fish can be attracted from long distances, but may swim toward the gear and against the current following
the bait plume, often in large, winding tracks to remain in contact with the bait plume (Lgkkeborg et al.
2010).

Similar to long range, however, gear is within visual range (Thomsen et al. 2010).

Fish bump against netting (Furevik 1994).

Fish approach pot with a slow swimming speed (Furevik 1994).
Swimming back-and-forth to aid in bait location (Thomsen et al. 2010).
Fish guard the entrance of the pot from others (Thomsen et al. 2010).

Large numbers of fish can be attracted and remain within a close proximity of a pot, with typically few
contacting the gear, and entering, or exiting (Thomsen et al. 2010).

After pot entrance fish reduce their movements and mill around (Thomsen et al. 2010).
Fish are very active upon first entering pot (Furevik 1994).
Larger individuals have been observed to chase, etc. smaller individuals (Cole et al. 2001).

Fish comes into contact with the bait with their mouth or barbel.

Fish only takes part of the bait into the mouth or does not close its mouth (i.e., Atlantic cod); swordfish hits
bait with sword, but does not take bait into the mouth.

Fish takes the entire bait into its mouth.

Rapid, sideways movement with head while bait is in the mouth. Several jerks in a row.

With the bait inside of the mouth, the fish opens and closes its mouth repeatedly.

Fish pulls bait and against the attached snood.

Rapid, swimming burst with the bait in the mouth.

Fish spits out or regurgitates bait after having it in its mouth.

Fish swims away, unhooked, after having the bait in its mouth.
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7.1.3. Data analysis

Several automated tools have been used for identifying
and analyzing behavior from video recordings (e.g.,
Albert et al. 2003; Simon et al. 2020), acoustic record-
ings (Handegard and Williams 2008), and tagging data
(Hobson et al. 2007). For example, target tracking is
a powerful method for quantifying behavior from
echosounder data for which Multiple-Target Tracking
algorithms are the standard tools (Blackman and
Popoli 1999). Specialized software can conveniently
log behavioral events from video recordings (e.g.,
Friard and Gamba 2016), even from a group of indi-
viduals (Delcourt et al. 2009, 2013). Some software
can also include the possibility of extracting object
lengths from stereo-synchronised video recordings
(e.g., Neuswanger et al. 2016). Advancements in arti-
ficial intelligence (AI), especially the ability of deep
learning models to handle large amounts of observa-
tions from images, will reduce the time burden and
tedious work load to process voluminous data, includ-
ing tracking of individuals from in situ video record-
ings (Abangan et al. 2023).

For statistical analysis, the occurrence of behaviors
can be analyzed with multivariate techniques similar
to those adopted to investigate differences in species
composition (Gordon et al. 2002; Figure 9). These
could be related to pertinent independent variables,
such as operational, environmental, and biological
factors (see Section 3). A flow chart matrix, where

the start and end of the behavioral units are linked
into sequences (e.g., “before pot funnel” can only
end with “inside pot funnel” or “swimming away”),
allows researchers to reveal interdependencies between
the different units (Chladek et al. 2021; Ljungberg
et al. 2016; Santos et al. 2020). Results can be pre-
sented in behavioral trees, with probability statistics
and uncertainties estimated for each branch of the
trees (Araya-Schmidt et al. 2022; Chladek et al. 2021;
Santos et al. 2020).

7.1.4. Data interpretation

When studying animal behavior in relation to fishing
gear there are considerations associated with the fun-
damentally different catching processes of different
gear types, and it is important to disentangle a behav-
ioral response to the BRL itself as compared with a
response to the gear being illuminated (e.g., illumi-
nating a pot entrance). Moreover, animals may
respond in one way to a BRL in isolation, but another
when the BRL is combined with other stimuli (with
an additive or multiplicative effect). A systematic and
quantitative approach to understanding how animals
respond to multiple stimuli is provided by Hale et al.
(2017). This approach involves classifying responses
to the presence of a single stimulus (e.g., light) and
multiple stimuli (e.g., light and water current) accord-
ing to their direction and size. For passive gears using
bait, for example, it is important to understand how

Table 4. Behaviors useful to study different aspects of visual capability in bycatch animals.

Behavior Definition Method Visual capability studied
Phototaxis The tendency to move toward Observe directional movement of fish in the  Visual thresholds and spectral sensitivity
(positive phototaxis) or away presence of a light source. (Kawamoto and Konishi 1952; Harden-Jones
(negative phototaxis) from a light 1956; Blaxter 1964, 1968, 1969)
source (Pascoe 1990). Color discrimination (Bauer 1910)
Optomotor Stabilize an image of the Observe the tendency of the bycatch animal  Spectral sensitivity (Grundfest 1932a,b;
response environment on the retina to to follow a series of stripes rotating Cronly-Dillon and Miintz 1965;
remain stationary (Lyon 1904). around a circular aquarium (Arimoto et al. Cronly-Dillon and Sharma 1968; Bell 1982)
2010; Douglas and Hawryshyn 1990; Acuity (Carvalho et al. 2002; Douglas and
Harden-Jones 1963). Hawryshyn 1990)
Temporal resolution (Carvalho et al. 2002;
Douglas and Hawryshyn 1990)
Photosensitivity (Carvalho et al. 2002)
Light adaptation (Takahashi et al. 1968;
Teyssedre and Moller 2010)
Dorsal light Maintain an appropriate orientation Artificially illuminate fish from the side and  Sensitivity to a particular stimulus (Thibault

reflex using input from eyes and
vestibular system (Pfeiffer 1964).
Normally, both gravity and the
direction of highest light level
indicate the vertical.

observe their degree of tilting around
their longitudinal axis in comparison to
the light source as they will take up a
position somewhere between those
specified by vestibular and ocular cues
(von Holst 1935).

Record the position and orientation of each
fish and calculate the nearest neighbor
distance and differences in compass

1949; Braemer 1957; Lang 1967; Silver
1974; Powers 1978)

Visual threshold, light level (Hunter 1968;
Glass et al. 1986)

headings (Hunter 1968; Glass et al. 1986).

Schooling Group of fish swimming in the
same direction in a coordinated
manner.

Feeding Response to the presence of prey.

Polarotaxis The tendency to orient toward

polarized light (Waterman and

Forward 1972). sun at 0°)

Record reactive distance (Meager et al. 2010) Visual threshold (Meager et al. 2010)
Observe orientation of fish to e-vector
directions relative to the bearing of the

Ability to see polarized light (Waterman and
Forward 1972)




the combination of light, bait, and current affects how
animals are attracted to and captured by the gear. In
this scenario, the addition of light may change the
attraction range of the gear, the efficiency of capture,
or predator-prey dynamics. Therefore, a study looking
at the effect of a BRL in a baited pot should include
replicates without bait to aid in understanding how
light and bait affect animals individually. In doing
this, it is important to consider the influence of baited
pots on unbaited pots that are in close proximity.

7.2. Characterization of behaviors from
laboratory experiments

Laboratory studies can increase understanding of the
response of an animal to a given BRL variable (e.g.,
wavelength and strobe; Yochum et al. 2022) in the
absence of a priori base knowledge of the bycatch
animal. It is important, however, to design the study
under tightly controlled conditions. In doing this,
particular aspects of the BRL can be isolated from
potential confounding factors (e.g., conflicting stimuli
from the capture process) and can allow a better
understanding of the behavioral mechanisms that
influence response to the BRL, such as orientation
(Wang et al. 2007), phototaxis (Marchesan et al. 2005;
Parsons and Foster 2007), photokinesis, optomotor
response, dorsal light response (Takayama 2019),
increased behavioral state, or a specific activity such
as schooling (Glass et al. 1986; Yochum et al. 2022)
(Table 4). Subsequently, variables that could affect
the behavioral response during the capture process
(e.g., temperature, water flow, turbidity) could be
added one-by-one to understand their relationship to
specific behaviors (Hale et al. 2017) and aid in inter-
preting observations from field experiments. While
insights derived from these laboratory studies can
inform and shape field trials, laboratory studies have
limitations. Behaviors exhibited in a laboratory setting
might not translate to the multi-stimulus setting of
field-based studies or actual fishing operations.

A second use of laboratory experiments is to
explore the visual capabilities of an animal (e.g., sen-
sitivity to different wavelengths and spatial acuity)
using behavior (Douglas and Hawryshyn 1990)
(Table 4) as an alternative to retinal sampling using
electroretinography and microspectrophotometry (Ali
and Muntz 1975; Lythgoe 1984). Understanding the
visual system is often a prerequisite for selecting the
BRL characteristics and interpreting the responses to
the BRL. Natural behaviors are relatively easy to use
for this application, but data analysis often involves
some degree of subjectivity, and the range of visual
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functions that can be studied could be limited by the
small number of stimuli that elicit responses (Douglas
and Hawryshyn 1990). Furthermore, natural behaviors
are not present to the same degree in all species (e.g.,
the optomotor response; Jones 1963).

7.2.1. Experimental design considerations
Laboratory tests generally compare behavior in the
presence and absence of light (Gless et al. 2008), in
a light gradient (Krafft and Krag 2021), or to different
light characteristics (wavelength: Sardo et al. 2020;
Wang et al. 2007; light level: Parsons et al. 2012;
multiple characteristics: Marchesan et al. 2005;
Utne-Palm et al. 2018; Yochum et al. 2022). In a
simulated fishery context, in contrast, it is often more
appropriate to understand how an animal reacts to
light in coordination with a section of fishing gear
(or a proxy) (Gabr et al. 2007; Olla et al. 1997;
Parsons et al. 2012; Ryer and Barnett 2006). Animals
can alternatively be presented with a choice between
alternatives (e.g., Y-maze: Ford et al. 2018).

When conducting laboratory studies, decisions
must be made regarding the experimental design (e.g.,
conditioned or unconditioned responses), the type of
conditioning (for conditioned studies; e.g., classical
or operant; Douglas and Hawryshyn 1990), and the
minimum sample size needed to be able to determine
significance with the included covariates. It is also
important to consider how to create conditions that
are representative of the fishing environment (if
appropriate), how reactions could vary by biological
variable (e.g., size, sex), and whether an animal could
become habituated to a light if exposed multiple times
or over a long duration. Moreover, if multiple animals
are used for a trial, it is important to consider how
a response could be affected by the reaction of the
other individuals.

Several replicate tanks could be included to account
for any tank effects or response to the BRL housing
(Hurlbert 1984) along with data on behavior in the
tank without the BRL activated (e.g., Yochum et al.
2022). Single tanks are often used when adding fishing
gear to the experiment, including netting (Gabr et al.
2007; Nambiar et al. 1970) or proxies that simulate
the fishing gear (Parsons et al. 2012). Furthermore,
the size and color of the tank should be considered,
as well as if substrate is added to the tank, which can
affect light reflection. The size of the tank and volume
of water will determine the space available to respond
to the BRL. Other variables related to animal hus-
bandry should be noted and considered for influence
on behavior (e.g., time of the trial relative to feeding
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and circadian rhythm, location fed in the tank, noise
level in the laboratory, ambient or artificial light
sources present other than the BRL, and how the
light emitted is distributed). A mesocosm experiment
may be considered if it is desirable to investigate the
response to light in the natural environment.

7.2.2. Experimental animals

The use of captive-reared versus wild animals can
be a key decision in laboratory-based experiments as
there may be both subtle and distinct behavioral and
visual adaptive differences, which should be consid-
ered when interpreting results and extrapolating to
field conditions. Studies have tried to account for
this issue by either using recently captured animals
or animals grown to a similar size/age class to that
typical in a natural setting. Regardless of origin, some
consideration of the physiology of the animal should
be made in terms of sensory organs, performance
capacity, and circadian rhythms (Fry 1958; Yochum
et al. 2022). Particularly, the functional state of their
visual system should be regarded with respect to
potential damage and the adaptive stage of their eyes.
Moreover, the light condition under which the ani-
mals are reared should be considered as it could
affect their photoreceptors and behavior (Kroger et al.
2003). Other factors to consider are endogenous
rhythms (Biinning 1956), such as circadian or tidal
(Gibson 2003) or lunar (Naylor 2001), that may influ-
ence the responsiveness of the experimental animal.

7.2.3. Data analysis
Similar to field observations (Section 7.1), automated
software tools can be used to process footage and tag
data in a laboratory setting (e.g., Yochum et al. 2022).
Data from “choice” studies (e.g., Y-maze, Ford et al.
2018) can be analyzed with variables such as time until
choice is made. Analysis of covariance (ANCOVA), a
generalized linear model (GLM) that blends analysis
of variance (ANOVA) and regression, has been used
for statistical analysis of continuous variables (Ford
et al. 2018; Gabr et al. 2007) and of binary data (Ford
et al. 2018). These data can also be analyzed in the
same way as for catch data (see Section 7.3).
Preferred techniques for data analysis are quanti-
tative methods that lead to the determination of sig-
nificance and enable the inclusion of covariate effects
and interactions. The selection of the analytical
approach depends on the type of data collected and
what is chosen as the dependent variable. A depen-
dent variable could be the “fate” of the animal (e.g.,
entrapped or escaped) after exposure to the fishing

gear or a fishing gear section/device (Gabr et al.
2007), leaving the light treatment as an independent
variable (Sardo et al. 2020). Animal response to light
can also be evaluated as negative or positive photo-
taxis, demonstration of a behavior of interest, change
in orientation or position relative to the light source,
residence time, swimming speed, distance traveled
from the light source (e.g., Yochum et al. 2022), or
distance to conspecifics when near the light (i.e,
schooling: Ryer et al. 2009). Data for analyzing
changes in distance would consist of counts of pre-
determined distances, which can be considered pro-
portions. Counts and proportions can be quantified
using regression models such as a GLM (Utne-Palm
et al. 2018). Distance could also be considered a con-
tinuous variable (Ryer et al. 2009), enabling linear
modeling. Analytical techniques that quantify animal
position or orientation include circular statistics
(Batschelet 1981), a branch of statistics where data
are measured on a circle in degrees or radians. This
has been used, for example, to understand sea turtle
orientation to light used in fisheries (Gless et al. 2008;
Wang et al. 2007). Time-to-event analysis (e.g., para-
metric Weibull mixture model; Robert et al. 2020)
can be used to evaluate residence time or time until
a behavior (e.g., Hunter 1972; Parsons et al. 2012;
Utne-Palm et al. 2018). Often called survival analysis,
time-to-event analysis quantifies the time until an end
point (e.g., Allison 1995).

7.2.4. Data interpretation

When interpreting laboratory results, it is important
to evaluate consistency in observations and to keep
in mind the context in which the animals experienced
the light (see Section 3). Context should be used to
limit the scope of inference. It is important to be
aware that behaviors in situ will likely be different
from those in the laboratory given different circum-
stances (e.g., motivation, stress) and given the influ-
ence of other variables/stimuli (e.g., turbidity, tow
speed, crowding in the gear, ambient light levels,
water current). It is also important to consider the
biological information (e.g., age, sex, size) of the
study animals relative to animals captured in the
fishery. Researchers should focus their interpretation
on what can be learned from a laboratory study to
support experiments in the field. Laboratory studies
can provide the necessary impetus to move the devel-
opment process of BRL into field and fishery-based
trials where catch comparisons will ultimately deter-
mine their efficacy (Nguyen et al. 2017; Parsons
et al. 2012).



7.3. Quantification of BRL effects using catch data

Gear-based in situ experiments often have the primary
goal of examining the efficacy of a BRL in conditions
that are representative of the fishery by comparing the
gear with a BRL (i.e,, experimental gear) and without
(i.e,, control or baseline gear). Two different types of
data can be collected to quantify the effect of the BRL
(Figure 9): length-based count data (i.e., number of indi-
viduals per length class) and catch per unit effort
(CPUE) (in either number of individuals or weight) for
the bycatch and target animals. Additionally, escapes by
way of a BRD with and without a BRL can be enumer-
ated with a video or acoustic camera (e.g., Lomeli and
Wakefield 2019; Yochum et al. 2021; see Section 7.1.1);
however, results can be biased by the introduction of
artificial light for camera illumination or by missing
individuals that were either not recorded or undetected
when reviewing the data (Krag et al. 2009). A recapture
net can also be used for this application. The type of
data collected should address the study objective (Section
2) and the context in which the BRL is applied
(Section 3).

7.3.1. Length-based count data

Length-based counts are usually collected in
size-selectivity experiments with both active and
passive gears when the bycatch animal is abundant
in the catch and when there is the capacity for
onboard length measurements (e.g., Grimaldo et al.
2018; Karlsen et al. 2021; Melli et al. 2018). A
length-based analysis allows for the detection of
length-dependent differences in the effect of the
BRL, which could be expected given differences in
visual and swimming capacities by size and species
(Arimoto et al. 2010; Videler and He 2010; Winger
et al. 2004).

As retention probability is estimated for each length
class, the analysis is population-independent for the
length range represented in the data. Thus, the results
are not influenced by proportional changes between
length classes that may occur for different trials. If
subsampling of the catch is necessary (e.g., due to
limited time or excessive catch size), a subsampling
fraction based on total catch weight can be calculated
and included in the analysis as an offset in the model
(e.g., Fryer et al. 2003; O’'Neill and Summerbell 2019),
or used to inform bootstrapping (e.g., Lomeli et al.
2020). Nonetheless, it is important to note that sub-
sampling increases the uncertainty of selectivity esti-
mates, which, in the case of subtle effects of the BRL,
may result in inconclusive results (Veiga-Malta
et al. 2018).
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Two main statistical approaches can be used to
determine if the BRL has a significant effect on the
selectivity of a baseline gear: absolute- and relative-
selectivity. The former is used when comparing the
experimental gear to a nonselective gear, and the latter
is used when comparing to a commercial gear that
is also selective (e.g., a baseline gear) (Figure 9). Some
study designs allow both analyses (e.g., Krag
et al. 2016).

7.3.1.1 Absolute selectivity. Absolute selectivity is an
approach to measure the selectivity of a gear in terms
of catch probability at length (see Wileman et al. 1996
for more detail). It is used in cases where the
population encountered by the gear can be sampled
by a nonselective gear (i.e., by using small meshes or
some mechanism to allow for full retention of catch
in the relevant size range, e.g., Yochum and DuPaul
2008). The effect of a BRL is quantified in two steps:
(i) estimating the mean absolute selectivity of the gear
with and without a BRL and the associated uncertainty
of both in terms of confidence intervals (Section 7.3.2);
and (i) inferring the BRL effect by superimposing the
two selectivity curves. When the confidence intervals
of the two selectivity curves do not overlap, there is
a significant difference in selectivity from the BRL
(e.g., Cuende et al. 2020). Compared to a direct
experimental comparison between the gear with and
without a BRL (i.e., relative selectivity; see Section
7.3.1), this approach has the advantage of allowing
future comparisons of catch probability with other gear
configurations (e.g., BRL applied in different positions,
different light intensities, etc.).

Depending on the location of the BRL on the gear,
some considerations are required regarding the appro-
priate experimental design to collect absolute selec-
tivity data. For example, the covered-codend method
used for active gears requires the presence of a small
mesh cover capturing all escapees from the codend
(or other opening) (e.g., Cuende et al. 2020). When
using artificial lights inside a test codend, the cover
on the outside could be illuminated by the BRL and
thus influence the escape behavior of the bycatch
animal and target catch. When this is a risk, a paired
gears approach could be preferable (for a description
of the two methods, see Herrmann et al. 2007).

For passive gears, an analysis of absolute selectivity
is also possible. Gillnets are highly size-selective and
can be set in pairs with less selective control gears
like trammel nets (e.g., Kurkilahti and Rask 1996).
Alternatively, nets with different mesh sizes can be
deployed concurrently or with short sections of dif-
ferent mesh sizes tied together. One can also use tie
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downs or “suspenders” that connect the float line to
the sink line and thus result in loose bags of mono-
filament net that increase entanglement (e.g., Senko
et al. 2022). In the case of longlines, knowledge of
the true population fished can be obtained using other
gear that is nonselective in the size range of interest
(e.g., a trawl) (Dickson et al. 1995; Hovgard and Riget
1992). In using that approach, it is important to con-
sider spatio-temporal variability in catch
composition.

7.3.1.2. Relative selectivity. In estimating relative
selectivity both the baseline (no BRL) and experimental
(with BRL) gears are selective. This analysis tests
whether the experimental gear catches more or less
than the baseline gear at a given body length. It
expresses the probability of catching an individual of
a given length class in the experimental gear, given
that it was caught in either gear (e.g., Lomeli et al.
2020). Similar analysis can be done for trawl gears
with more than one compartment (e.g., O'Neill and
Summerbell 2019). Relative selectivity analysis allows
the effect of the BRL to be directly quantified if it is
the only difference between the two gears tested (e.g.,
Geraci et al. 2021; Lomeli et al. 2020; Wang et al.
2010). Estimated confidence intervals are used to
determine if there is a significant difference in
selectivity between the gears (Section 7.3.2). When
bycatch rates are low (e.g., endangered animals), it is
especially important to conduct a power analysis prior
to initiating the study to ensure that there can be
sufficient data to determine significance (e.g., Methven
and Schneider 1998).

Relative selectivity/catch-comparison analysis can
be conducted with paired or unpaired data. Paired
data are typically collected by fishing the experimental
and baseline gears simultaneously and in similar envi-
ronmental conditions and habitat. Alternate deploy-
ments can also be treated as paired (e.g., Field et al.
2019; Lomeli et al. 2018). When using a paired set-up,
light contamination to the baseline gear must be
avoided. For example, with passive gears, the paired
data can be collected by alternating experimental and
baseline gear (e.g., alternating pots in a string,
Humborstad et al. 2018; using two gillnets, Bielli et al.
2020; Ortiz et al. 2016; or alternating hooks on a
longline, Hazin et al. 2005). When testing a BRL, the
distance between gear (e.g., strings, pots) should be
a tradeoff between avoiding light contamination to
the baseline gear and minimizing environmental and
operational differences between the two gears. A buf-
fer section can be included between the experimental
and baseline sections (Bielli et al. 2020). Care should

also be taken when determining placement of the BRL
to avoid bias (e.g., due to consistent differences in
catch rates for the end pots of a string). Also, the
baseline gear should include deactivated lights to con-
trol for the effect of the added weight and interrup-
tion of water flow by the BRL (e.g., Wang et al. 2010).

Unpaired data can result from broad-scale testing
of BRL in commercial fisheries (e.g., Nguyen et al.
2019). In these cases, deployments of the baseline and
experimental gears are often not equal or cannot be
paired on the basis of geographic and/or temporal
overlap. With unpaired data, a double bootstrap pro-
cedure is conducted independently for the test and
baseline gears (e.g., Herrmann et al. 2017), which
increases the data required (relative to absolute selec-
tivity analysis) to determine significance.

7.3.2. CPUE data

CPUE data are frequently used when there are low
capture rates of the bycatch animal or when
length-based counts are impractical. The unit of effort
can be related to gear deployment in terms of haul,
gillnet set, pot, or number of hooks (e.g., Diaz 2008;
ICES 2021; Woll et al. 2001) or to area and time (e.g.,
net length and soak time, Bielli et al. 2020; Ortiz
et al. 2016; Wang et al. 2010, 2013). An approach is
to use twin-rig data collection methods with the
experimental and baseline gears towed in parallel by
the same vessel (which can also be used for
length-based analysis).

One important caveat of using CPUE is that it
does not take into account possible size-dependent
responses. This could make interpreting results more
difficult if a bycatch animal has different responses
to the BRL based on size, and the results cannot be
compared across fishing situations (e.g., areas, seasons)
where the size distribution of the fished population
may be different. If, however, the BRL successfully
reduces bycatch (based on changes in CPUE), and
similar population structures or size-independent
responses can be assumed, a comparison of CPUEs
provides an average percentage reduction in bycatch,
which may be informative and intuitive for manage-
ment purposes.

Three statistical approaches have been used to deter-
mine the effect of a BRL based on CPUE data
(Figure 9). The first approach is similar to catch com-
parison, but uses an average catch ratio based on the
number of individuals in each gear (Lomeli et al. 2020).
The second approach is to use a generalized linear
mixed-effects model (GLMM) on CPUE data of the
target and bycatch animals (Bayse et al. 2016; Bielli
et al. 2020; Nguyen et al. 2019; Underwood et al. 2018).



The choice of model distribution is determined by the
dispersion of the data. If equidispersed, a Poisson dis-
tribution is used (e.g., Nguyen and Winger 2019b; Ortiz
et al. 2016); if overdispersed a negative binomial is
used (e.g., Nguyen et al. 2019); and a quasi-poisson
can be used for either over- or under-dispersion (e.g.,
Bayse and Grant 2020). The GLMM approach can
include several predictor variables as fixed (e.g., treat-
ment and effort) and random effects (e.g., season, ves-
sel, fishing trip). Notably, the GLMM approach allows
comparison of multiple treatments (e.g., different colors
of BRL; Martinez-Bafios and Maynou 2018). A third
approach is to use the Wilcoxon signed-ranks test, a
non-parametric equivalent of the paired t-test, to test
for a difference between paired observations of CPUE
from the experimental and baseline gears (Senko et al.
2022; Wang et al. 2010, 2013).

7.3.3. Independent variables

Any variable likely to influence the strength or type
of observed response to the BRL can also affect catch
data. Therefore, collecting such data during the exper-
iment and including them in the analysis as indepen-
dent variables is relevant if the number of gear
deployments provides sufficient analytical power
(Ortiz et al. 2016; Southworth et al. 2020; see Section
3). Operational, environmental, and biological vari-
ables may influence the ability of the animal to react
to the BRL (e.g., temperature influence on swimming
performance) or may affect the perception of the BRL
or the background (e.g., the netting). Some variables
can be kept consistent between the experimental and
baseline gears (e.g., towing the two gears in parallel)
so that differences in the response of the bycatch
animal can be attributed to the presence of the BRL.

7.3.4. Data interpretation

Selectivity studies can help formulate hypotheses on
how BRL changes behaviors (e.g., Cuende et al. 2020);
however, it is ultimately behavioral studies, either in
the laboratory or in the field, that give direct infor-
mation about how behavior is affected by the intro-
duction of a BRL and how that introduction of light
might lead to changes in catch rate (Santos et al. 2020).
Over-extrapolation of selectivity studies might lead to
incorrect conclusions, highlighting the importance of
considering the scope of the study (e.g., spatio-temporal
aspects, vessel characteristics; see Section 3.2) and hav-
ing a sufficient sample size. One should also consider
the potential for habituation of animals to light, and
if external factors influence catch rates (e.g., animals
seeking out the gear as shelter; Nguyen et al. 2017).
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Regardless of the experimental approach used to
estimate the effect of the BRL (e.g., absolute or relative
selectivity), uncertainty in the data could arise from
confounding effects such as changes in operational
and environmental variables. Uncertainty in terms of
confidence intervals can be estimated using
double-bootstrapping that takes between- and
within-gear deployment (i.e., haul or gear line) vari-
ation into account (methodology: Millar 1993; trawl:
Cuende et al. 2020; gillnet: Savina et al. 2022). If
uncertainty in the data is too large (e.g., due to few
individuals in the catch or large inter-specific differ-
ences in the response) it could prevent drawing con-
clusions regarding the effect of the BRL on the bycatch
and target animals. Moreover, operational and envi-
ronmental variables should be kept as consistent as
possible throughout the experiment unless the aim of
the study is to investigate the consistency in the effect
of the BRL under different conditions. In the latter
case, modeling of size selectivity can include covariates
of interest (e.g., depth, catch size, towing speed;
Brooks et al. 2022), but this requires a larger number
of gear deployments. Compared with active gears,
passive gear studies may be prone to wider confidence
intervals due to the patchy distribution of animals.

7.4. Combined methods

When testing hypotheses about behavioral responses
to BRLs, the methods previously described should be
considered as complementary rather than alternatives.
In field experiments testing a BRL, when a difference
in selectivity is detected the behavioral mechanisms
leading to the change in catch are usually inferred. If
selectivity data are combined with direct observations
of behaviors (e.g., using video and/or acoustic cam-
eras; see Section 7.1.1) in the field or the laboratory,
the effect of the artificial lights can be quantified in
terms of selectivity (Parsons et al. 2012; Santos et al.
2020) and qualified based on behavioral mechanisms
(Nguyen et al. 2017; Takayama 2019). For example,
Utne-Palm et al. (2018) suggested that increased catch
of Atlantic cod in illuminated pots was due to pred-
atory behavior by cod on prey attracted to the arti-
ficial lights. In the laboratory, they demonstrated that
krill (Meganyctiphanes norvegica) was positively pho-
totactic to artificial light, while cod was generally
indifferent. A related study confirmed the increased
catch rates of cod in illuminated pots and demon-
strated, using cameras and stomach content analysis,
that the increase in cod presence was due to feeding
on krill and other light-attracted prey rather than
exhibiting positive phototaxis (Humborstad et al. 2018).
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8. Evaluating BRL practicability

At the completion of data collection and analysis for
a BRL study, evaluation of study results will inform
whether the BRL was successful based on the metrics
defined at the start of the study (see Section 2) (e.g.,
change in gear selectivity or consistency in BRL per-
formance) and the scope (e.g., spatio-temporal, vessel
characteristics) will inform the extent to which the
findings can be extrapolated (see Section 3).

If the objective of testing the BRL is to lead to
fishery-wide adoption (either through voluntary uptake
or regulatory action) it is important to consider the
feasibility and potential unintended social consequences
of using the lights (see Jenkins et al. 2022). Moreover,
voluntary BRL adoption will likely be determined by
exposure of the fishermen to the technology (Kakai
2019), their engagement in BRL selection and testing
(Jenkins et al. 2022), reliability of the BRL effect (or
a clear understanding of the uncertainty), changes in
catch (e.g., decrease of the bycatch and target propor-
tion of the catch), and relative change in the ex-vessel
value of the catch (Bielli et al. 2020; Ortiz et al. 2016;
Wang et al. 2010, 2013). These considerations will likely
be weighed against the benefits of applying the BRL
(Gilman et al. 2005, 2006, 2007). Adoption will also
be influenced by logistic considerations and operational
efficiency (Kakai 2019; Senko et al. 2022), such as cost
of integrating the lights into operations (including
interruptions to fishing operations), handling time (e.g.,
attaching the BRL or replacing batteries), availability
of the lights, and their power requirements (e.g., cable
linked, or rechargeable or disposable batteries) relative
to the capability and resources of the fleet, and dura-
bility of the lights.

For regulated adoption, BRL use will likely be
influenced by its efficacy as well as enforcement capa-
bility and industry engagement. The likelihood that
the BRL will accomplish defined management goals
will be tied to the ability of the researchers to describe
how the BRL should be used (e.g., light properties,
placement, number) as well as efforts to socialize
fishery managers to BRL technology (Gautama
et al. 2022).

In considering fishery-wide BRL use, it is also
important to evaluate the unintended biological and
environmental consequences of the lights. This
includes potential damage to animals’ visual systems
and interference with communication or natural
behaviors (e.g., fish foraging and schooling, spatial
distribution, migration, reproduction; Nguyen et al.
2019), especially when animals can be expected to
respond to subtle changes in light levels (Berge et al.

2020). The lights could also alter predator-prey rela-
tionships, affect catch composition (e.g., increase catch
of other non-target animals), or artificially select for
individuals in a population that are more reactive to
the light (i.e., fishery-driven evolution). The design,
production processes, material selection, and power
supply of the lights will determine the level of green-
house gas emissions emitted in the fabrication of the
BRL (e.g., Mills et al. 2014; Nguyen et al. 2019; Senko
et al. 2020). The lights and their components (e.g.,
power source) that fall into the water (either inten-
tionally or accidentally) also contribute to marine/
plastic pollution (Nguyen et al. 2019; Oliveira et al.
2014). Lights using renewable energy, such as
solar-powered lights (e.g., Senko et al. 2020) and pho-
toluminescent twine (Karlsen et al. 2021; Nguyen
et al. 2019), are rechargeable options that may reduce
the environmental footprint of the BRL.

Measurements of efficacy using predefined met-
ric(s) for success (see Section 2) will inform subse-
quent action. This could include conducting laboratory
experiments to evaluate the vision of the bycatch ani-
mal or the effect of light properties on behavior (e.g.,
Yochum et al. 2022; see section 7.2), repeating field
trials, broadening the scope of the research, or moving
toward uptake or terminating investigation of BRL for
that fishery. It would also be appropriate to investigate
alternative light types from those used in the trials
based on the needs and constraints of the fishery (e.g.,
availability, integration into the gear). At the end of
a study, it is important to provide feedback to the
base knowledge (Figure 1), including using the results
to make inferences about behavior and vision, as well
as fishermen perspective on BRL use.

9. Conclusions and future directions

The goal for writing this paper was to provide guide-
lines to support researchers, fishermen, and managers
aiming to mitigate bycatch by modifying animal
behavior using artificial light. Needed base knowledge
was highlighted; the importance of understanding the
context in which the BRL is applied was emphasized;
and considerations for designing a BRL study, ana-
lyzing the data, and interpreting results were described.
Regarding data interpretation, it is important to look
not only at the study results, but to be aware of the
mechanisms driving a change in behavior with the
introduction of a BRL. There are many stimuli that
aquatic animals experience when interacting with fish-
ing gear, and these can confound or prevent a response
to the BRL. Along these lines, it is important to be
aware of the influence of the study design on behavior



(e.g., introduction of camera lights; e.g., Weinberg
and Munro 1999). Caution is advised against anthro-
pocentric driven interpretations of behavior, recogniz-
ing that the bycatch animal will not perceive light as
a human would. Both data interpretation and study
design can be improved by employing a multidisci-
plinary and collaborative approach given the diverse
expertise required to effectively assess BRL efficacy
at appropriate ecological, socioeconomic, and techno-
logical scales and the importance of industry engage-
ment (Geraci et al. 2021).

Additional research is needed on the efficacy of
BRL, on the visual systems of commercially significant
and common bycatch species, and on the factors that
drive uptake of BRL in a fishery. For the former, one
aim of this paper is to provide a mechanism for stan-
dardizing data collection that will support meta-analyses
in the future. With studies following the described
guidelines, opportunities will arise for a broader exam-
ination of the influence of BRL on animal behavior
and fisheries selectivity, and it will lead to a better
understanding of potential community and even
ecosystem-scale effects of BRL (Senko et al. 2022).

While there is an increasing body of literature on
the use of BRL to affect fisheries selectivity and an
increase in producers of artificial lights and luminous
netting, there remain gaps in research and technology.
For the latter, BRL research would benefit from in
situ light sensors that are more affordable, light sen-
sitive, robust, and readily accessible (Ortiz et al. 2016;
Senko et al. 2020, 2022; Wang et al. 2010). There is
also a need for the development of lights that both
incentivize the prevention of disposal at sea (e.g.,
rechargeable, renewable-powered devices) and inte-
grate more easily into existing gear (e.g., lighted gill-
net buoys; Senko et al. 2020).

With the improvement and increased affordability
and availability of BRL technology, coupled with
research increasing our understanding of the effects
of light on animal behavior in and around fishing
gear, BRL will likely be a more effective and
better-understood tool in our fisheries research and
management toolbox.
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