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A B S T R A C T

It is crucial nowadays to accurately monitor vertical land motion (VLM) near coasts and understand its spatial
and temporal variability to quantify its impact to water-land interactions. This study developed and employed
a double difference (DD) network adjustment method to reconstruct daily VLM time series and estimate their
trends using sea-level observations recorded at 24 tide gauge (TG) stations located on the Texas coastline
between 1993 and 2020. Based on the first difference between TG and the satellite radar altimetry (SRA)
observations, the method calculated DD between correlated TG pairs to mitigate sea-level variations. Then all
potential connections of TG pairs across the 24 stations were combined to form a TG network regarding the
DD values. On a daily basis, the DD values reflected relative elevation difference for a specific connection and
the network could be solved via weighted least squares to reconstruct elevations (i.e., VLM time series) at
different TG stations. Results indicated that at most TG stations, clear VLM patterns were restored and found
to be largely consistent with time series derived from continuously-operating global navigation satellite system
(cGNSS). In addition, greater than 80% of the TG stations used in the work showed a linear VLM trend with
an uncertainty of less than or equal to 1.0 mm/yr. The proposed DD network adjustment method provides
long and continuous VLM time-series results, and has a potential to complement other geodetic techniques,
particularly along the coastal areas where TG stations were densely installed.
1. Introduction

Continuous global sea-level rise, together with storm surge and
heavy rainfall events, spells frequent flood risks and poses growing
threats to the safety of near-shore infrastructures, resilience of coastal
ecosystems, and marine habitats (Douglas et al., 2000). Rising seas
also adversely impact quality of life and economic success of coastal
residents around the world who live in low-lying coastal zones (Mc-
Granahan et al., 2007). It was reported that the frequency of high tide
flooding (HTF), occurring when coastal water levels overshoot 0.5 m
above the mean higher high water (MHHW) level, has doubled since
2000 along the U.S. coastlines (Sweet et al., 2019). Due to this trend
of HTF, it is of crucial importance to keep track of sea level changes,
model its spatial and temporal patterns, and apply pertinent knowledge
in decision-making processes.

Sea-level measurements have long been recorded by tide gauge
(TG) stations, some of which have started to function since the 19th
century in a self-recording manner (Matthäus, 1972). A TG station is
a land-attached device that integrates a set of monitoring sensors to

∗ Correspondence to: 6300 Ocean Drive, Unit 5799, Corpus Christi, TX 78412, USA.
E-mail address: tianxing.chu@tamucc.edu (T. Chu).

observe and record the relative water-land movement. Specifically, it
continuously measures and records the height of sea level relative to
a vertical datum (Adebisi et al., 2021), referred to as relative sea-level
change (RSLC). In coastal areas, RSLC collectively combines the effects
of vertical land motion (VLM) and absolute sea-level change (ASLC).
VLM reflects elevation changes of land surface in the form of either
subsidence or uplift (Wöppelmann and Marcos, 2016). Different from
RSLC, ASLC is not influenced by the local VLM and refers to the height
variations of the ocean surface.

Recent advances in the investigation of coastal land subsidence
disclosed that VLM can be estimated indirectly with sea-level difference
between RSLC and ASLC data, particularly by using TG and satellite
radar altimetry (SRA) observations. For nearly three decades, SRA
technique has provided a wide spectrum of essential parameters such
as ASLC variations calculated by measuring sea surface height (SSH)
changes above a reference ellipsoid (Adebisi et al., 2021). The potential
of estimating land subsidence with the difference between the variables
of ASLC and RSLC has been explored (Cazenave et al., 1999; Qiao et al.,
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2021). However, the VLM results may be contaminated by residuals
of sea-level variations contained in the direct difference method. The
limitation of the direct sea-level difference stems from bias drifts,
intra- and inter-mission biases (Rezvani et al., 2021; Watson et al.,
2015; Leuliette et al., 2004), spatial proximity between a TG and its
corresponding altimeter footprint (Douglas et al., 2000; Nerem and
Mitchum, 2002; Rezvani et al., 2022), complex responses of radar
pulses to coastal zones (Adebisi et al., 2021; Xu et al., 2019), and so
forth.

To improve the performance of VLM trend estimate with TG and
SRA measurements, Kuo et al. developed an effective method that
yielded less uncertainty by connecting a network of contributing TGs
(Kuo et al., 2004). In essence, the method applied double difference
to obtain relative land motion rate, 𝛥 ̇𝑉 𝐿𝑀 , between any paired TGs
(indexed by subscripts 1 and 2) as shown in Eq. (1):

𝛥 ̇𝑉 𝐿𝑀 = ( ̇𝐴𝑆𝐿𝐶1 − ̇𝑅𝑆𝐿𝐶1) − ( ̇𝐴𝑆𝐿𝐶2 − ̇𝑅𝑆𝐿𝐶2) (1)

= ( ̇𝐴𝑆𝐿𝐶1 − ̇𝐴𝑆𝐿𝐶2) − ( ̇𝑅𝑆𝐿𝐶1 − ̇𝑅𝑆𝐿𝐶2) (2)

here the ⋅ superscripts denotes temporal trends of VLM, ASLC, and
SLC. In Eq. (1), the first difference was made between the variables
f RSLC and ASLC at individual TGs, and a further difference was
onducted based on the first difference results between a pair of TGs
ndexed by subscripts 1 and 2. Finally the best VLM estimate at each
G was adjusted in the TG network regarding the 𝛥 ̇𝑉 𝐿𝑀 values with
stochastic model (Kuo et al., 2004).

In recent years, growing attention has been paid to the double
ifference estimator with different techniques for VLM estimate, pri-
arily using TG stations with long observation history (De Biasio et al.,
020; Letetrel et al., 2015; Santamaría-Gómez et al., 2014). Current
tate of the art tends to determine linear RSLC and/or ASLC trends
efore conducting double difference and network adjustment for VLM
rend estimate, therefore sea-level data with long observation history
e.g., > four decades) are favorable for mitigating trend estimation
rrors due to impacts made by low-frequency (e.g., decadal) sea-level
luctuations (Douglas, 1991). Nevertheless, it was reported that only
pproximately 35% of global TGs possess observing length of over
our decades (Wöppelmann and Marcos, 2016) for robust sea-level
hange estimation. In addition, the reconstruction of VLM time series
as been ignored in the past. Qiao et al. proposed a double difference-
ased method to estimate VLM time series for TG stations along the
exas Coast (Qiao et al., 2022). Sea-level variability was mitigated by
oupling with well-correlated TG candidate(s) with record length of
ver 25 years. TG stations with record length of less than 25 years were
gnored regardless of their potential in mitigating sea-level variability.

This study aims at exploring the knowledge of regional VLM esti-
ates with sea-level observations acquired between 1993 and 2020 at
ultiple TG locations along the Texas coastline, a leading subsiding

rea across the U.S. coasts. A method of double difference and network
djustment was proposed and employed to discover VLM knowledge
sing TG and SRA observations, particularly along coastlines where
ther geospatial techniques such as, interferometric synthetic aperture
adar (In-SAR), and light detection and ranging (LiDAR) may experi-
nce large-scale observation outages. Different from prior studies, this
rticle addresses the following aspects:

(a). Calculation of double difference with TG and SRA data for a
common length of observation history without special assump-
tions such as an identical ASLC rate for neighboring TGs.

(b). Constructing a TG network that consists of a series of paired
TG stations, conducting least squares network adjustment on
a daily basis, restoring VLM time series, and estimating VLM
trend at any TG stations that have observation record history of
over ten years between 1993 and 2020. This is a substantively
generalized method to a previously published work (Qiao et al.,
2022).

(c). Considering correlation coefficients between paired TG stations
as weighting factors to control TG network geometry and com-
2

pute VLM time series from daily TG network. t
. Study area and datasets

.1. Study area

The Texas Coastline stretches 591 km from the Lower Rio Grande
alley past Galveston to the Texas-Louisiana border along the Northern
ulf of Mexico coastline, which is composed of the coastal regions
f South Texas, Southeast Texas, and Texas Coastal Bend. This study
ocused on the Texas Gulf Coast region due to its continuously observed
and subsidence at some locations (Fig. 1). For example, the Houston–
alveston area has experienced an excessive amount of VLM due to
roundwater withdrawal, which has been extensively investigated in
rior studies (Kasmarek et al., 2009; Kearns et al., 2015). Activities
elated to oil and/or gas extraction are also significant around the
oastal region in Texas, which were believed to contribute to land
eformation (Khorzad, 1999; Qu et al., 2015; Haley et al., 2022).

.2. Data

.2.1. Tide gauge
TG records along the Texas coastline were accessed from the tides

nd currents website of National Oceanic and Atmospheric Adminis-
ration (NOAA). Specifically, the mean value of 6-minute or 60-minute
bservations (depending on the data availability) in a day was calcu-
ated for daily water level (i.e., RSLC time series), at each station that
ad an observation record history of over ten years between January
993 and March 2020. There was a total of 27 stations that fulfilled
his criterion and, therefore, adopted in the TG dataset. It should be
oted that TG observations of the station 8772440 (numerical identity
t NOAA) were combined with that of TG 8772447, given that the two
tations are located 0.8 km apart off an open channel near Freeport, TX,
isplaying consistent tidal characteristics. These two TG stations had an
bservation overlap between September 28, 2006, and March 19, 2008.
fter the combination of these two TGs, 26 TG stations remained for
ubsequent processing and analysis. Because the study mainly focused
n reconstructing VLM time series and the corresponding trend based
n relative water-level measurements, the mean value of the entire
ater-level record was removed from its daily observations at each TG

tation. Distribution of all TG stations employed in the study is shown
n Fig. 1.

.2.2. Satellite altimetry
The ASLC measurements were obtained from the global sea sur-

ace height product within AVISO+ (https://www.aviso.altimetry.fr/),
hich are currently distributed by the Copernicus Marine Environ-
ent Monitoring Service (CMEMS) (E.U. Copernicus Marine Service

nformation, 2022). The ASLC data are the most frequently used SSH
roduct and have been reported to have better correlation with TG
ata globally compared with other alternatives (Wöppelmann and Mar-
os, 2016). More specifically, the global gridded level-4 SSH prod-
ct (i.e., SEALEVEL_GLO_PHY_L4_MY_008_047) from January 1993 to
arch 2020, along the Texas coastline, was accessed. The product
as interpolated both spatially and temporally with its level-3 along-

rack product, where dynamic atmospheric corrections (DAC) has been
ncluded (E.U. Copernicus Marine Service Information, 2022). Spatial
esolution of the level-4 product reached 0.25 × 0.25-degree, and in
ach grid cell sea-level anomalies were provided at a daily interval
elative to a two-decade mean between 1993 to 2012.

.2.3. GNSS
GNSS measurements from 16 stations along coastal regions of Texas

efore the end of 2020 were used as ground truth to evaluate the
erformance of VLM estimate developed in the study. Fig. 1 illustrates
he distribution of cGNSS stations in close proximity to the correspond-
ng TGs along the Texas coastline. Specifically, positioning results of

he station P036 were accessed from the Harris-Galveston Subsidence

https://www.aviso.altimetry.fr/
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Fig. 1. Distribution of TG stations (marked to the side of red points with seven-digital numbers named by NOAA) and cGNSS stations (marked to the side of blue boxes with
four-letter names) along the Texas coastline in the United states.
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District (HGSD) (H.G.S.D., 2022). P036 was a station from the Port-
A-Measure (PAM) network established by HGSD. GNSS antennas were
routinely mounted on PAM poles attached to the ground 4 to 6 m
below the surface, continuously collected data up to one to two weeks
per month, and then rotated among other PAM sites (Zilkoski et al.,
2003). This study also employed four cGNSS stations (i.e., RKPT,
BHPR, BIRD, and PTMS) that were part of the coastal monitoring
systems maintained by the Conrad Blucher Institute for Surveying and
Science (CBI) at Texas A&M University-Corpus Christi (TAMU-CC). The
Receiver Independent Exchange Format (RINEX) files from these four
stations were accessed and downloaded to achieve cm-level accuracy
with the precise point positioning (PPP) technique. And positioning
solutions for the remaining cGNSS stations could directly be accessed
through the Nevada Geodetic Laboratory (Blewitt et al., 2018). Daily
positioning results can be derived from all cGNSS stations, depending
on the data availability. It is worth noting that some cGNSS stations
with short distance in space and inadequate overlap of observations
over time were merged into one single virtual cGNSS site to form longer
time series for validation purposes.

3. Method

3.1. Single difference

Conceptually, rates of ASLC changes 𝐴̇ and RSLC changes 𝑅̇ sat-
isfy (Kuo et al., 2004):

𝑈̇ = 𝐴̇ − 𝑅̇ (3)

where 𝑈̇ is the VLM rate. The time-series expression of Eq. (3) can be
rewritten as:

𝑈𝑖(𝑡) = 𝐴𝑖(𝑡) − 𝑅𝑖(𝑡) (4)

where 𝑡 stands for the continuous time, 𝑈𝑖(𝑡) and 𝑅𝑖(𝑡) depict VLM and
SLC variables, respectively, at a TG station indexed by 𝑖, and 𝐴 (𝑡)
3

𝑖

epresents the ASLC variable at an SRA observation grid cell that is in
losest proximity to the TG station. Eq. (4) reflects the single difference
SD) between TG and SRA measurements at a specific TG site. In this
tudy, Eq. (5) was adopted to compensate DAC for TG measurements
nd to calculate VLM time series from SD

𝑖(𝑡) = 𝐴𝑖(𝑡) −
[

𝑅𝑖(𝑡) −𝐷𝑖(𝑡)
]

(5)

here 𝐷𝑖(𝑡) represents the daily DAC value to correct sea-level varia-
ions in TG measurement.

.2. Double difference between paired TGs

Moving one step further from the SD operation, double difference
DD) can be made between the observation values of any potential
aired TG stations within a TG network along with corresponding SRA
rid cell values. Let 𝐵𝑖𝑗 (𝑡) be the relative elevation difference between
wo paired TG stations, defined below:

𝑖,𝑗 (𝑡) = 𝑈𝑖(𝑡) − 𝑈𝑗 (𝑡) (6)

=
[

𝐴𝑖(𝑡) − 𝑅𝑖(𝑡) −𝐷𝑖(𝑡)
]

−
[

𝐴𝑗 (𝑡) − 𝑅𝑗 (𝑡) −𝐷𝑗 (𝑡)
]

(7)

here 𝑈𝑖(𝑡) and 𝑈𝑗 (𝑡) are the elevations at paired TG stations indexed
y 𝑖 and 𝑗, which can be computed via Eq. (5). More description of
aired TG stations is introduced in Section 3.3.

.3. TG network

Any two TG stations are considered forming a pair during the entire
tudy period (i.e., between 1993 and 2020), provided that their full
ea-level time series are highly correlated. A poor correlation between
wo TG stations does not warrant a pair. Within a set of TG stations,

network can be constructed by connecting all paired TG stations.
deally, any potential two TG stations within the study area can be
aired in a fully connected network as demonstrated in Fig. 2(a).
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Fig. 2. Illustration of possible TG network examples. Without loss of generality, only six stations are chosen for display to avoid visual clutter. A blue line connecting two TG
stations, marked in red dots, indicates a successful pair in the network. In case any two TG stations are found uncorrelated or there is an observation outage between them
examined on a daily basis, they are not paired by the blue line. Assume there are a total of 𝑘 TG stations within the study area, and the number of active TG stations within the
network per day is 𝑚. (a) Any two TG stations are paired in the fully connected network across all 𝑘 TG stations. In this case 𝑚 = 𝑘 with all 𝑘 stations being active within the
network; (b) All TG stations are connected to the network although one or more stations are considered weakly connected. In this case 𝑚 = 𝑘; (c) In case there are 𝑝 TG stations
not connected to the remaining stations, 𝑚 = 𝑘 − 𝑝; and (d) The TG network is made up with several smaller parts and 𝑚 = 0 for this particular date without further processing.
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However, poor correlations may occur, reducing the number of paired
connections in the network. Moreover, the network is also adaptive
dependent on TG observation availability within a pair on a per day
scale. For instance, although two TG stations (e.g., A and B) are
considered paired, their connection is supposed to be excluded from the
network at a particular time 𝑡 in case of an observation outage at either
station A or B. Fig. 2(b), (c), and (d) demonstrate reduced connections
within a network due to: (1) poor correlation between two TG stations
analyzed with their full lengths of sea-level data during the entire study
period, and/or (2) a lack of available sea-level data examined on a daily
basis. It is important to note that only six TG stations are displayed
in Fig. 2 in order to avoid visual clutter with blue line connections.
Assume there are a total of 𝑘 TG stations within the study area, and the
number of active TG stations within the network per day is 𝑚. In both
Fig. 2(a) and (b), 𝑚 = 𝑘 because all TG stations are connected into the
network despite difference in network connectivity. In case there are 𝑝
TG stations not connected to any other stations (e.g., 𝑝 = 1 in Fig. 2(c)),
these stations are not part of the network and 𝑚 = 𝑘−𝑝. Furthermore, in
case the TG network is made up with several smaller parts (Fig. 2(d)),
subsequent processing is terminated due to lack of constraints between
different parts and, therefore, the number of active TG stations 𝑚 = 0
for this particular time.
4

3.4. VLM time series reconstruction

As opposed to prior studies that primarily adopted one constant
TG network during the entire study period to analyze and model VLM
trends, this study adopted an adaptive TG network on a daily basis
to reconstruct the VLM time series (Fig. 2(a), (b), and (c)). Let 𝐵𝑖𝑗 (𝑡)
be the double difference between any possible combination of two
paired stations in a TG network at a specific time 𝑡. The mathematical
construction of the TG network can be modeled as matrix 𝐁(𝑡) as shown
n Eq. (8):

(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝐵1,2(𝑡) 𝐵1,3(𝑡) ⋯ 𝐵1,𝑚−1(𝑡) 𝐵1,𝑚(𝑡)
0 0 𝐵2,3(𝑡) ⋯ 𝐵2,𝑚−1(𝑡) 𝐵2,𝑚(𝑡)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 𝐵𝑚−1,𝑚(𝑡)
0 0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

here each element above the diagonal in the matrix is computed using
q. (7), the subscripts of each element suggest the indices of paired TG
tations, and 𝑚 is the number of active stations in a TG network at time
.

The next step is to restore elevation estimates at time 𝑡 at all 𝑚
ctive TGs in a network, i.e., 𝑢 =

[

𝑈 (𝑡), 𝑈 (𝑡),… , 𝑈 (𝑡)
]𝑇

containing
1 2 𝑚
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𝑚 unknown elevation variables, from a series of calculated double
difference 𝐵𝑖𝑗 (𝑡) in a TG network. The problem is modeled to solving a
linear system:

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 0 ⋯ 0 0
1 0 −1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −1

⎤

⎥

⎥

⎥

⎥

⎦𝑙×𝑚

⋅

⎡

⎢

⎢

⎢

⎢

⎣

𝑈1(𝑡)
𝑈2(𝑡)
⋮

𝑈𝑚(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝜀1
𝜀2
⋮
𝜀𝑙

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1,2(𝑡)
𝐵1,3(𝑡)

⋮
𝐵𝑚−1,𝑚(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦𝑙×1

(9)

where 𝑙 represents the number of all possible TG pairs corresponding
to 𝐵𝑖,𝑗 (𝑡) elements in matrix 𝐁(𝑡) and 𝜀̃ = [𝜀1, 𝜀2,… , 𝜀𝑙]𝑇 is the white
noise residual error. Eq. (9) can be simplified as:

𝐴̃𝑢 + 𝜀̃ = 𝑏̃ (10)

where 𝐴̃ is design matrix of the linear system and vector
𝑏̃ =

[

𝐵1,2(𝑡), 𝐵1,3(𝑡),… , 𝐵𝑖,𝑗 (𝑡),… , 𝐵𝑚−1,𝑚(𝑡)
]𝑇

stores 𝑙 values of 𝐵𝑖,𝑗 (𝑡)
between any valid TG pairs.

In Eq. (10), 𝑟𝑎𝑛𝑘(𝐴̃) = 𝑚 − 1 holds because not all the matrix 𝐴̃
columns are linearly independent (Meyer, 2000). It needs an exter-
nal constraint to solve the rank-deficient linear least-squares problem.
To make the system uniquely solvable, an initial VLM time series
calculated from a TG station with a long observation history was incor-
porated as a constraint. Specifically, an additional row was appended
to Eq. (10) as defined below:
[

𝐴̃
𝑐

]

⋅ 𝑢 +
[

𝜀̃
𝜀𝑐

]

=
[

𝑏̃
ℎ(𝑡)

]

(11)

where 𝑐 is the appended row vector to the designed matrix 𝐴̃ with 1
placed at the column index corresponding to the TG station serving
as the constraint and remaining elements being 0. For example, 𝑐 =
[1, 0,… , 0] if the first TG station is selected as the constraint. The
variable 𝜀𝑐 is the residual error at the appending row, and ℎ(𝑡) is the
initial VLM value at time 𝑡 for the constraint TG station. Specifically,
ℎ(𝑡) is expressed as (Qiao et al., 2022):

ℎ(𝑡) =

{

𝐴(𝑡) − 1
𝑞

𝑞
∑

𝑖=1

[

𝐴𝑄𝑖
(𝑡) − 𝑓𝑄𝑖

(𝑡)
]

}

−

{

𝑅(𝑡) −𝐷(𝑡) − 1
𝑞

𝑞
∑

𝑖=1

[

𝑅𝑄𝑖
(𝑡) −𝐷𝑄𝑖

(𝑡) − 𝑔𝑄𝑖
(𝑡)
]

}

(12)

where 𝐴(𝑡), 𝑅(𝑡), and 𝐷(𝑡) are the time series of the variables of ASLC,
RSLC, and DAC respectively at the constraint TG station. 𝐴𝑄𝑖

(𝑡) and
𝑅𝑄𝑖

(𝑡) represent the ASLC and RSLC time series at TG stations, 𝑄 =
{𝑄1, 𝑄2,… , 𝑄𝑞}, and 𝑞 is the number of elements contained in the set

. The stations within the set 𝑄 are those correlated with the constraint
G with long observation history. Variables 𝑓𝑄𝑖

(𝑡) and 𝑔𝑄𝑖
(𝑡) represent

the linear regression functions for ASLC and RSLC time series after
DAC removal, respectively, at the TG station 𝑄𝑖 ∈ 𝑄. In essence, to
estimate ℎ(𝑡), Eq. (12) mitigates sea-level variability of the constraint
TG by coupling with well-correlated TG stations in the vicinity. And
Eq. (11) can be simplified as:

𝐴𝑢 + 𝜀 = 𝑏 (13)

Considering elements in vector 𝑏̃ were calculated based on multiple
TG pairs, the correlation coefficient of each TG pair was utilized as
the weight in each row of the linear system when reconstructing daily
VLM time series. Specifically, a (𝑙 + 1) × (𝑙 + 1) diagonal weight matrix,
𝑊 , was used in the linear system. The first 𝑙 diagonal elements in 𝑊
are correlation coefficients calculated with daily RSLC time series after
DAC correction between the paired TGs corresponding to 𝐵𝑖,𝑗 (𝑡), and the
last diagonal element regarding the constraint was set to an empirical
value of 0.5. Finally, with a full rank design matrix 𝐴, the vector 𝑢
in Eq. (13) is solved with unbiased weighted least squares (Kutner et al.,
2004) of an overdetermined system by minimizing the 𝐿2-norm of 𝜀:

̂ = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑊 1∕2(𝑏 − 𝐴𝑢)‖2 = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊 𝑏 (14)

where 𝑢̂ contains estimated elevations at all 𝑚 active TG stations at time
𝑡.
5

s

Table 1
Noise models for trend estimation in Hector.

Models Description

1 WN White Noise
2 PLWN Power-Law + White Noise
3 FNWN Flicker Noise + White Noise
4 GGMWN Generalized Gauss–Markov + White Noise
5 RWFNWN Random Walk + FNWN
6 AR(1) ARMA(1, 0) first-order autoregressive

3.5. GNSS processing

The absolute positioning method, such as precise point positioning
(PPP), models GNSS error propagation and estimates positions from
a single receiver. In PPP technique, precise GNSS orbit and clock
data are corrected through a network of regional/global reference
stations (Choy et al., 2017). Among PPP implementations, GNSS-
inferred positioning system and orbit analysis simulation software
(GIPSY-OASIS), developed by the Jet Propulsion Laboratory (JPL), has
become a popular software suite and found to give more coherent and
accurate results compared with the OPUS utility (Wang et al., 2017).
In this study, JPL’s GipsyX-1.7 package (Bertiger et al., 2020), a recent
GIPSY-OASIS replacement, was adopted to process raw pseudorange
and carrier phase data collected at the cGNSS stations maintained
by TAMU-CC’s CBI as stated in Section 2.2.3. During PPP processing,
the ionosphere exchange (IONEX) files were used for the second-
order ionospheric corrections, the global pressure and temperature
(GPT2) model was considered for tropospheric correction, and ocean-
tide loading corrections using the global ocean tide (GOT-4.8) model
were included. PPP solutions were offered in an Earth-Centered-Earth-
Fixed (ECEF) coordinate system with X, Y, and Z coordinates, which
were then transformed to north, east, and up (ENU) directions.

3.6. Trend estimation

Offsets, outliers, missing data, and residual seasonal variations will
inherently exist in VLM time series obtained in both DD-based and
GNSS, which negates linear regression methods for the purpose of
reliable trend estimation. Hector, a scientific tool for estimating robust
linear trends from time series data with temporal correlated noises,
was used to fit the VLM time series with various noise-combination
models (Bos et al., 2013). Table 1 lists six noise models, 𝑁 = {WN,
LWN, FNWN, GGMWN, RWFNWN, AR(1)}, that were used in this
tudy. The optimal noise model that best fits the VLM time series
as decided based on Akaike Information Criterion (AIC) and Bayes

nformation Criterion (BIC) (Bos et al., 2019), defined as:

= 𝑎𝑟𝑔𝑚𝑖𝑛(𝐴𝐼𝐶𝑛 + 𝐵𝐼𝐶𝑛), 𝑛 ∈ 𝑁 (15)

here 𝑂 is the optimal noise, with which the VLM linear trend and
ncertainty can then be determined.

. Results

.1. Sea-level difference analysis

Fig. 3 illustrates an example of TG and SRA observation comparison
t the TG station 8771450 located at Pier 21, Galveston, TX. Five years
f observation data between January 1, 1993, and December 31, 1997
re highlighted to facilitate visualizing the details of seasonal changes.
G and SRA measurements agreed well, in general, in terms of the
easonal variations, and DAC greatly reduced the sea-level fluctuations
n the TG measurements. It can be observed that TG measurements had
tronger high-frequency variations in the sea-level observations than
hat in SRA measurements. This is because TG data were recorded every

ix minutes or hourly by NOAA (Shu et al., 2021; Douglas et al., 2000),
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Fig. 3. TG and SRA time series comparison at TG station 8771450 located at Pier 21, Galveston, TX, between January 1, 1993, and December 31, 1997. It also shows the VLM
esults estimated with the SD and DD methods.
nd then averaged to daily in this study. However, the level-4 SRA
roduct was interpolated to daily values from its level-3 product, where
evisit periods with any available SRA platforms were no sooner than
en days (Douglas et al., 2000).

In addition, the amplitude of semi-annual/annual cycles of TG
bservations tended to stay periodically greater than that of the SRA
easurements. These low-frequency differences between TG and SRA
easurements were also documented in other studies (Vinogradov

nd Ponte, 2010; Etcheverry et al., 2015). Several major factors may
e held responsible for this phenomenon. First, maximum water-level
mplitude may not be captured in a timely fashion due to the limited
emporal resolution of SRA. Second, the SRA product used in the study
as generated by interpolating its level-3 along-track SSH observations

rom different altimter platforms, which smoothed water levels over
ime and space (Pujol et al., 2016). Third, tidal corrections have been
pplied in the level-3 SRA product (E.U. Copernicus Marine Service
nformation, 2022), while daily tidal variability was removed only by
veraging daily TG measurements.

Due to the aforementioned high-frequency and low-frequency dif-
erences between TG and SRA data in observing water-level changes,
he SD method left the VLM time series prone to noises when calculat-
ng differential values between the TG and SRA measurements. On the
ther hand, the DD method outperformed the SD method because the
ormer could further reduce noises by differentiating the SD results with
hat of its pair. In Fig. 3, both SD and DD time series were vertically
hifted with an arbitrary amount to clearly highlight VLM results,
nd this did not alter the nature of the main focus on VLM estimate.
ig. 4 displays the periodicity in the VLM results obtained from the SD
ethod at TG station 8771450 (Pier 21, Galveston, TX) and DD method

etween TG stations 8771450 and 8775870 (Bob Hall Pier, Corpus
hristi, TX). In the SD periodogram, differences between TG and SRA
bservations are clearly characterized by half-month cycles due to the
nfrequent revisit period of SRA and the semi-annual pattern due to the
eriodical amplitude offsets. However, the periodicity at frequencies
f half and six months were not identified in the DD periodogram.
eanwhile, the signal power of the DD results was suppressed for

requencies less than half month, meaning that the DD method tends to
e less prone to high-frequency sea-level variations after differentiating
6

he TG and SRA measurements.
4.2. Initial VLM time series of h(t) at the constraint TG station

TG station of 8771450 (Pier 21, Galveston, TX) was employed as
the constraint TG station to calculate the ℎ(𝑡) time series because:
(1) no missing TG observation outage was found during the entire
investigation period between 1993 and 2020; and (2) the combined
daily observations of its near-located cGNSS stations (i.e., GAL7 and
TXGA) make up around 80% coverage of the entire investigation period
from 1993 to 2020, facilitating validation between ℎ(𝑡) and cGNSS time
series results.

Four other TG stations, 𝑄 = {8770570, 8771013, 8774770,
8775870}, were selected as correlated TG stations per Eq. (12). These
four stations were selected because a correlation coefficient of greater
than 0.90 was achieved between each of them and the TG station
8771450. In Fig. 5, results of ℎ(𝑡) were compared against the combined
vertical time series processed from cGNSS stations GAL7 and TXGA.
The distances from the TG station 8771450 to the cGNSS stations
TXGA and GAL7 are approximately 2.9 and 5.9 km, respectively. It
should be noted that the TXGA results (marked in orange color) were
vertically shifted relative to the GAL7 results (marked in yellow color)
for visualization purposes. This could be justified by the fact that: (1)
cGNSS time series of GAL7 and TXGA stations were based on different
origins of local ENU coordinate systems, and (2) the nature of VLM
trend prior to and after the cGNSS gap was not impacted. Some abrupt
vertical offsets from the cGNSS station TXGA can be noticed (enlarged
in Fig. 6), which was due to reported human intervention such as
changes related to the elevation cut-off angle or antenna (Blewitt
et al., 2018). Nevertheless, Fig. 5 demonstrates overall consistent trends
between ℎ(𝑡) and cGNSS time series.

To further examine the validity of the initial VLM time series, Hector
software utility was used to estimate monthly mean ℎ(𝑡) trend vs.
that obtained from the cGNSS vertical time series. Hector is adept at
processing time series with offsets as shown in the combined GAL7
and TXGA data (Fig. 5). Fig. 6 shows the model that was fitted to the
cGNSS vertical time series, and the estimated linear cGNSS trend was
−4.3±0.3 mm/yr. On the contrary, ℎ(𝑡) yielded a −4.9±0.5 mm/yr linear
trend. Therefore, well within the precision range, a trend difference of

approximately 0.6 mm/yr was achieved in terms of VLM trend estimate.
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C

Fig. 4. Periodogram of using SD method at a TG station 8771450 (Pier 21, Galveston, TX) and DD method between TG stations 8771450 and 8775870 (Bob Hall Pier, Corpus

hristi, TX). The green dashed lines correspond to the half month and semi-annual periodicity.
Fig. 5. Results of ℎ(𝑡) compared against cGNSS vertical time series at the near-located GAL7 and TXGA cGNSS stations, with cGNSS time-series shifted vertically for visual purposes.
The distances from the TG station 8771450 to the cGNSS stations TXGA and GAL7 are approximately 2.9 and 5.9 km, respectively. A short GNSS observation gap occurred between
the TXGA and GAL7 stations. The TXGA results (marked in orange color) were vertically shifted relative to the GAL7 results (marked in yellow color) for visualization purposes.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.3. Reconstruction of VLM time series

Correlation coefficients were calculated for all possible combina-
tions among the 26 TG stations using their entire lengths of RSLC
time series (Fig. 7) to acquire valid TG pairs in the daily network.
Considering the overall good correlation among the TG stations along
the Texas coastline, a correlation coefficient threshold of 0.80 was
adopted to form the daily network within which paired TG stations
were strongly correlated. In other words, this threshold was used to
7

shape the daily network by dropping connections between any two TG
stations within which correlation coefficient fell below 0.80. The value
of the correlation coefficient threshold (i.e., 0.80) is a compromised
choice in achieving the goal of pairing highly correlated TG stations
while avoiding an ill-posed network as shown in Fig. 2(d). TGs 8770971
and 8777812 were further excluded in the study given their overall
low correlation. Thus, 24 TG stations remained and were used for the
reconstruction of VLM time series and trend estimation via the DD
network adjustment method.
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Fig. 6. Hector fitted model and trend estimation for the combined cGNSS vertical time series (i.e., the GAL7 and TXGA cGNSS stations) near the TG station 8771450.
Fig. 7. Correlation coefficients for all combinations among the 26 TG stations involved in the study using their entire lengths of RSLC time series.
On a daily basis, 𝐵𝑖,𝑗 (𝑡) was calculated for each TG pair using
Eq. (7) when the TG observations were available and the corresponding
correlation coefficient was greater than 0.80. The matrix 𝐁(𝑡) was then
converted to a linear system as shown in Eq. (9). It should be noted that
8

all-zero columns in matrix 𝐴̃, corresponding to the scenario shown in
Fig. 2(c), as well as the corresponding unknown parameter 𝑈𝑖(𝑡) in 𝑢,
were removed from the network due to unavailable TG observations
or low correlation to any other TG stations at 𝑡. The linear system
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n Eq. (13) after appending constraint ℎ(𝑡) can be solved via weighted
east squares per Eq. (14). By solving the linear system repeatedly over
ime, VLM time-series can be reconstructed from double-differenced
ea-level measurements.

Fig. 8 illustrates the reconstructed monthly mean VLM time series
t highlighted 24 TG stations as well as vertical positioning time series
t the corresponding near-located cGNSS stations. Note monthly mean
esults were displayed as opposed to daily results in Fig. 8 to highlight
ong-term trends at those TG stations with better visual clarity. Clear
LM patterns with limited uncertainty can be observed at some TG
tations such as 8770570, 8771013, and 8774770 in Fig. 8(c), (f), and
o), respectively. Some TG stations that had relatively shorter lengths
f observation period could still reveal distinct VLM processes such as
773259, 8773701, and 8774513 in Fig. 8(l), (m), and (n). In addition,
9

c

esults show that DD network adjustment method-based VLM time
eries were found consistent with that of the vertical GNSS positioning
ime series at most near-located cGNSS stations. GNSS, SD- and DD-
ased VLM time series were passed to Hector software utility, and
heir corresponding trend and uncertainty estimates are summarized
n Table 2.

. Discussion

To evaluate the overall performance of the VLM trend estimated
ith sea-level measurements at TG stations under investigation, the

tudy compared the trend estimates made by the DD network adjust-
ent method and the SD methods against that made at near-located

GNSS stations (Fig. 9). SD and DD-based trends exhibit consistent
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Table 2
VLM results estimated at TG stations with the DD network adjustment and SD methods and at the corresponding near-located cGNSS stations. The units of SD,
DD, and GNSS trends are mm/yr.

TG cGNSS

Name Longitude Latitude SD trenda DD trenda Name Longitude Latitude GNSS trendb

8770475 −93.931◦ 29.867◦ −6.5 ± 1.7 −5.6 ± 1.3 TXPH −93.945◦ 29.915◦ −3.1 ± 0.3
8770520 −93.882◦ 29.980◦ −4.6 ± 1.5 −3.8 ± 1.0 TXPT −93.953◦ 29.947◦ −5.3 ± 0.4
8770570 −93.870◦ 29.728◦ −4.0 ± 0.8 −4.8 ± 0.9 TXSP −93.897◦ 29.731◦ −2.2 ± 0.2
8770613 −94.985◦ 29.682◦ 0.2 ± 0.4 0.1 ± 0.2 TXP5 −95.042◦ 29.668◦ −0.1 ± 1.3
8770777 −95.266◦ 29.726◦ 0.0 ± 0.6 0.9 ± 1.1 WEPD −95.229◦ 29.688◦ −0.3 ± 0.4
8771013 −94.918◦ 29.480◦ −10.0 ± 1.5 −10.1 ± 0.6 P036 −94.920◦ 29.494◦ −2.6 ± 0.3
8771341 −94.725◦ 29.357◦ −4.0 ± 1.6 −4.3 ± 0.8 TXGAd −94.773◦ 29.328◦ −4.3 ± 0.3
8771450 −94.793◦ 29.310◦ −4.3 ± 1.3 −4.9 ± 0.5 TXGAd −94.773◦ 29.328◦ −4.3 ± 0.3
8771510 −94.789◦ 29.285◦ −2.0 ± 0.5 −3.1 ± 0.5 TXGAd −94.773◦ 29.328◦ −4.3 ± 0.3
8772440c −95.308◦ 28.948◦ −1.6 ± 0.5 −1.9 ± 0.2 ∼ ∼ ∼ ∼
8773037 −96.712◦ 28.407◦ −0.7 ± 2.8 −0.4 ± 1.5 ∼ ∼ ∼ ∼
8773259 −96.610◦ 28.641◦ −1.8 ± 2.0 −1.7 ± 0.6 TXPV −96.619◦ 28.638◦ −1.2 ± 0.3
8773701 −96.396◦ 28.446◦ −3.3 ± 1.0 −2.4 ± 0.4 ∼ ∼ ∼ ∼
8774513 −97.024◦ 28.114◦ −4.8 ± 1.3 −4.3 ± 0.8 ∼ ∼ ∼ ∼
8774770 −97.047◦ 28.022◦ −5.8 ± 0.5 −6.5 ± 1.0 TXRPe −97.049◦ 28.062◦ −4.2 ± 0.3
8775237 −97.073◦ 27.840◦ −2.8 ± 0.8 −2.0 ± 0.5 TXPO −97.070◦ 27.840◦ −3.1 ± 0.2
8775296 −97.389◦ 27.815◦ −3.2 ± 1.5 −2.4 ± 0.7 ∼ ∼ ∼ ∼
8775792 −97.237◦ 27.633◦ −3.9 ± 0.8 −3.0 ± 0.5 ∼ ∼ ∼ ∼
8775870 −97.217◦ 27.580◦ −2.2 ± 1.2 −3.0 ± 0.2 BHPR −97.220◦ 27.583◦ −1.1 ± 1.0
8776139 −97.318◦ 27.485◦ −0.2 ± 1.1 0.5 ± 0.6 BIRD −97.318◦ 27.484◦ −2.7 ± 0.6
8776604 −97.405◦ 27.297◦ 0.2 ± 3.1 0.3 ± 0.7 ∼ ∼ ∼ ∼
8778490 −97.425◦ 26.558◦ −1.3 ± 0.6 −0.8 ± 0.6 PTMS −97.429◦ 26.557◦ 0.1 ± 0.2
8779748 −97.168◦ 26.073◦ −0.8 ± 0.5 0.2 ± 0.8 ∼ ∼ ∼ ∼
8779770 −97.216◦ 26.061◦ −1.3 ± 1.0 −1.7 ± 1.0 TXLN −97.301◦ 26.095◦ −2.3 ± 0.3

The ∼ symbol represents unavailability of GNSS measurements.
aTrend was calculated with monthly mean VLM data.
bTrend was calculated with daily VLM time series.
cTG data of the station 8772447 was appended to that of the station 8772440.
dObservation data from The cGNSS station GAL7, located at (−94.737◦, 29.330◦), was combined with that of the station TXGA.
eObservation data from CBI cGNSS station RKPT, located, located at (−97.047◦, 28.026◦), was combined with that of the station TXRP.
Fig. 9. VLM trend validation of SD and DD results by comparing with GNSS VLM estimate assumed to be ground truth.
10
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performance with each other, reaching a correlation coefficient of
0.97. In the scatter plot, the diagonal 1:1 relationship line suggests
complete agreement between two trend estimate methods. Most dots
that represent SD vs. GNSS trend estimate and DD vs. GNSS trend
achieved an overall agreement around the 1:1 relationship line. The
correlation coefficients of SD vs. GNSS and DD vs. GNSS are 0.59
and 0.51, respectively. However, it is also documented that the VLM
trend at one TG station with either SD or DD method was noticeably
overestimated relative to the GNSS result (i.e., both the blue and red
dots to the left of Fig. 9). This bias refers to the cGNSS station P036
and the TG named station 8771013, both located within San Leon, TX,
city limits with an approximate distance of 2.8 km. Possible reasons for
some points of deviation from the 1:1 line are:

(1) Short observation length of a cGNSS station may bias the GNSS-
based trend estimate compared with that from a long and con-
tinuous history of TG measurements such as shown in Fig. 8(s),
especially when the cGNSS stations fail to observe a non-linear
subsiding period such as shown in Fig. 8(f) and (o). Besides,
during data collection at GNSS P036, different antennas may be
rotated and used for observation, which resulted in vertical shifts
in the P036 time series as shown Fig. 8(f).

(2) Different trends may come at a TG and its near located cGNSS
station as a result of the highly variable nature of the VLM
pattern in space (e.g., the TG station 8779770 is approximately 9
km apart from the cGNSS station TXLN). The result comparison
between DD and other space-geodetic techniques such as InSAR
should be considered because the TG station may be found in
close proximity with a corresponding InSAR pixel (e.g., within
10 m).

(3) In the DD network adjustment method, a TG station that paired
with fewer stations indicates less observability and is, therefore,
prone to higher variability in VLM estimate. For example, TG
station 8776604 was paired to only a few stations, as shown in
Fig. 7, and thus using it produced relatively noisy VLM results
as released in Fig. 8(u).

(4) Some TG stations with relatively short-term observation (i.e.,
around ten years) were included in the study, which caused
difficulties in accurate VLM trend estimate relative to the GNSS
results. In addition, some TG stations experienced long periods
of data outage, which exacerbated the accuracy of the VLM
regression (Fig. 8(l), (t) and (v)).

Fig. 10 shows the comparison of yearly standard deviation (STD)
ased on the VLM results estimated with the SD and DD methods.
early data was calculated to illustrate the STD significance between
sing SD and DD methods within the time span in the study. It is
bvious that the DD method significantly mitigated resultant VLM
ariations at most TG stations except 8776139, 8776604, and 8778490.
n addition, it can be noticed that from the TG station 8776139 and
ubsequent subplots in Fig. 10, VLM variations were not well mitigated
y the DD method as for other TG stations. One possible reason is
hat these TG stations stay relatively isolated along the South Texas
oastline, which may have caused amplified temporal sea-level varia-
ions among these and other stations, resulting in comparatively poor
bservability obtained from a limited number of paired TG stations as
ndicated in Fig. 7. Moreover, compared with the SD method, the DD
etwork adjustment method was also proved to be effective in reducing
he VLM trend uncertainty (Fig. 11). From the bar plot, the number
f TG stations whose trend uncertainty was greater than 1.0 mm/yr
educed from 13 in SD method to 4 in DD network adjustment method.
round 83% (20 out of 24) TG stations were reported to achieve a

rend uncertainty of less than or equal to 1.0 mm/yr. The VLM trend
ncertainty of the DD network adjustment method appears greater than
hat of the SD method at TG stations 8770570, 8770777, 8774770, and
779748 (Fig. 11). Meantime, the DD method shows smaller STD than
11
that obtained from the SD method at those stations (Fig. 10). This is
potentially related to the significant difference in the VLM time series
resulted from SD and DD methods, which led to different degrees of
non-linearity before trend estimate. On the other hand, because the STD
time series were calculated on a per-year basis, it mitigated, to some
extent, the impact of the non-linearity of the VLM trend.

The selection of the weight value in the last element of matrix 𝑊
should largely be dependent on the way the ℎ(𝑡) time series is evaluated.
For instance, if ℎ(𝑡) is estimated with reliable cGNSS results, a higher
alue close to one is suggested. On the other hand, a lower value should
e selected if there is a lack of confidence in ℎ(𝑡) estimate. However, a
alue close to zero should be avoided because this would result in an
ll-conditioned linear system. In this article, an empirical value of 0.5
as selected as the weight value for ℎ(𝑡) and the selection of this value
eeds further investigation. However, it should be noted that this value
s supposed to have limited impact on solving the linear system, given
hat the length of the vector 𝑏̃ is generally much greater than that of
(𝑡) (i.e., 𝑙 vs. 1).

The reliability of the SRA data depends on the determination of
ixed and time variable systematic errors, such as mission-specific bias
rifts and intra/inter-mission biases, within and between each of avail-
ble satellite altimeter missions (Watson et al., 2015; Rezvani et al.,
021). The fixed systematic error in SRA could largely be mitigated
hrough daily DD calculation. Whereas the remainder of the systematic
rrors contained in the altimetry data were not particularly modeled in
ata processing. Therefore, the residual systematic errors that cannot
e filtered by DD could still contaminate the results and need future
nvestigation.

Last but not least, in the SD and DD network adjustment methods,
he great-circle distance (i.e., the shortest distance between two points
n the surface of the Earth) was adopted to pair a TG station and the
enter of its associated SRA grid cell. Land may be covered within the
ltimeter footprint and in the returned echo, which may degrade the
alidity of the sea surface height estimate due to the complex water-
and interactions in coastal zones. For the level-4 SRA product used
n the study, the influence of coastal land contamination has been
artially taken care of by using waveform retracking technique (Vi-
nudelli et al., 2011) and favorable data editing and tuning routines
o guarantee the data quality during processing made from its L2p
tage (Pujol and Mertz, 2019; CNES, 2017). However, noises related to
and contamination may still be contained in the SRA product, which
ay cause uncertainty during the DD and/or SD VLM estimate. The

ccuracy and uncertainty impact of the SRA product contributed from
oastal land contamination has been understudied in the past, and thus
eeds further investigation.

. Conclusion

The study developed the method of double difference in network
djustment to reconstruct daily VLM time series and estimate the
LM trend with sea-level observations from 24 TG stations together
ith SRA data along the Texas coastline from 1993 to 2020. At most
G stations, the reconstructed VLM time series demonstrated clear
emporal patterns and were found consistent with vertical coordinate
ime series obtained from corresponding near-located cGNSS stations.
egarding the VLM trend estimate, the DD network adjustment method
greed well with SD method with a high correlation of 0.97. While
o significant difference in correlation was found when comparing
he GNSS results with SD and DD trends (i.e., 𝑅 = 0.59 and 𝑅 =
.51, respectively), the DD method effectively managed to reduce VLM
ariations using double differenced sea-level data within a TG network.
oth yearly standard deviation and VLM trend uncertainty statistics
t most TG stations with DD results were notably lower than that of
he SD method. Processed with the DD network adjustment method,
he trend uncertainty of VLM time series for greater than 80% of TG
tations was found less than or equal to 1.0 mm/yr. Results of this
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Fig. 10. Comparison of yearly standard deviation (STD) based on VLM results estimated with the SD and DD network adjustment methods.
Fig. 11. Bar plot of the VLM trend uncertainties with the SD and DD network adjustment methods.
study manifested the feasibility of reconstructing VLM time series from
the DD network adjustment method, which is significant to reveal the
temporal processes of coastal land subsidence, even at TG stations with
short record length of observation period (e.g., ten years). Being able to
provide long and continuous results (up to nearly 30 years since 1993),
this study demonstrates potential of sea-level observations of TG and
SRA to complement popular geodetic techniques such as cGNSS and
InSAR for revealing VLM knowledge, particularly along coastal areas
where a dense network of TG stations were installed. The intended
future work includes: (1) characterizing both spatial and temporal
variability of VLM to further examine its patterns along the Texas
coastline, (2) evaluating the developed method at other locations where
12
VLM knowledge should be explored such as along semi-enclosed seas
and large lakes, and (3) evaluating the impact of temporal resolution
in the VLM time series results on the ability to restore linear and
non-linear subsidence trends.
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