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ABSTRACT

Global sea-level is rising at an unprecedented rate in recent decades largely due to glacier/ice-sheet melting and ocean warming
expansion, which is referred to as the absolute sea-level rise (ASLR). The combination of vertical land motion (VLM) and
ASLR leads to a faster sea-level rise relative to the land, which is referred to as the relative sea-level rise (RSLR). The Texas
Gulf Coast is one of the leading hotspots subject to VLM and/or RSLR issues in the United States. GNSS has long been used
to monitor long-term and accurate VLM with a continuous GNSS (cGNSS) observation network. However, the observation
network density offered by cGNSS stations is often limited. This study investigated the feasibility of estimating VLM using
the sea-level change differences between the ASLR and RSLR data observed by tide gauges and satellite radar altimetry using
5-day, 15-day, and 30-day time windows. The results were validated by comparing against the GNSS measurements processed
by GipsyX software. Independent time-series of VLM processed by using sea-level change differences and GNSS were
obtained at Galveston and Rockport, two areas of the Gulf Coast experiencing substantial subsidence. The trends of the VLM
time-series were estimated with Hector software. At Galveston, Texas, the VLM trend from GNSS (-3.9 + 0.4 mm/yr) matched
well with that from sea-level change difference estimated at the tide gauge (-3.8 £ 0.7 mm/yr with a 15-day mean window). At
Rockport, Texas, an approximately 1.0 mm/yr VLM difference was observed between GNSS (-4.2 £ 0.3 mm/yr) and sea-level
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change difference (-5.2 + 1.1 mm/yr with a 15-day mean window) within the confidence intervals of the two methods. This
preliminary study demonstrated the feasibility of VLM estimates with sea-level change differences in coastal areas where long-
term static cGNSS observations are absent. However, further investigation is needed to model error sources and improve noise
mitigation for reliable VLM trend estimate.

INTRODUCTION

The Texas coast is one of leading subsidence hotspots relative to sea surface in the United States [1], potentially causing
significant impacts to everyday life of coastal residents, the safety of near-shore infrastructures, and the resilience of the coastal
ecosystem. Interferometric synthetic aperture radar (InSAR) and global navigation satellite system (GNSS) are two leading
methods for monitoring land subsidence. InSAR provides large-scale land deformation results, but it usually requires high user
cost and specialization in radar image processing and may cause delayed delivery of products with limited temporal and spatial
resolutions. GNSS, on the contrary, can observe long-term and accurate vertical land motion (VLM) near the Earth’s surface
through continuous GNSS (cGNSS) observation network. However, VLM varies spatially and one obvious weakness of VLM
monitoring with cGNSS network along coastlines is the limited observation density offered by cGNSS providers.

On the other hand, sea-level change studies commonly involve tide gauges (TGs) that usually measure sea-level rise relative
to land-fixed benchmarks, referred to as relative sea-level rise (RSLR). RSLR combines the effects of both VLM and absolute
sea-level rise (ASLR) in response to natural processes such as such as continuous glacier/ice-sheets melting to ocean, ocean
thermal expansion, land water storage, and so forth [2]. Therefore, coastal subsidence and VLM can be estimated with TGs if
ASLR component can be removed from the RSLR observation. Thanks to satellite radar altimetry (SRA) technique, changes
in sea surface height can be measured in the ocean and ASLR relative to a geoid model can be obtained [3].

Prior studies have investigated the use of various types of SRA products coupled with TG measurements to estimate VLM. For
example, Cazenave et al. found that the differences in sea level measurements between Topex/Poseido (T/P) radar altimetry
and TG agreed well with VLM results estimated by Doppler Orbitography and Radio-positioning Integrated by Satellite
(DORIS) [4]. Kuo et al. estimated VLM using T/P SRA and TGs in Fennoscandia, and the results showed that trend difference
was 0.2 £ 0.9 mm/yr compared with collocated GPS sites [5]. A recent study conducted at the Northeastern Adriatic Sea [6]
showed that positioning results from three cGNSS stations agreed well with sea-level change differences for revealing the VLM
trend. Oelsmann et. al. proposed the zone of influence to characterize sea-level variability and maximize the coherency between
SRA and TG observations. They found that the difference between cGNSS and SRA/TG fusion was 1.28 mm/yr using 58 co-
located cGNSS and TG stations globally [7]. The above studies documented the feasibility of using SRA data for VLM
estimation. Over the U.S. Gulf Coast, some studies held the assumption that the amount of ASLR was homogeneous in the
same oceanic basin [8, 9]. However, ASLR may vary in space over the ocean due to differences in natural processes such as
weather, currents, salinity, tides, gravity field and so forth [10]. Fig. 1 shows the trend of ASLR over the Gulf of Mexico
(GOM) region using the SRA sea surface height product provided by NASA’s Jet Propulsion Laboratory (JPL), from which
clear spatial pattern and variability can be observed over the GOM region.
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Fig. 1. ASLR estimate over the GOM region made by radar altimetry data from the Jet Propulsion Laboratory (JPL) sea
surface height product
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This study took ASLR spatial variability over the GOM region into account and combined the radar altimetry and TG
measurements to estimate coastal subsidence rate for nearly 25 years at two Texas Coast city locations. The obtained results
were compared against counterpart results obtained from collocated GNSS stations. The purpose of this study was to investigate
the feasibility of estimating VLM with sea-level change observations, expecting to be an additional method for VLM estimation
over the GOM region.

DATA AND METHOD

The data used in this study were composed of three components:

1) SRA: JPL’s radar altimetry product, MEaSURESs, was used to extract the time-series of sea surface height anomalies
for estimating the ASLR. This dataset provides sea surface height information at every 1/6-degree grid per each five
days between 1992 and 2019 [11]. Grided time-series of sea surface height anomalies over the GOM region were
extracted from the original global data.

2) TG: Galveston Pier 21 and Rockport TG stations in Texas were chosen due to relatively high subsidence rates in
Galveston and Rockport [1]. Daily water level above the station datum for these two stations were averaged using 6-
minute or hourly observations after 1992 from the NOAA’s Center for Operational Oceanographic Products and Service
(CO-OPS) Data application programming interface (API).

3) GNSS: At Galveston, Texas, a National Geodetic Survey (NGS) continuous operating reference station (CORS), TXGA
was used, and its GNSS ephemeris and observation data were recorded in the receiver independent exchange format
(RINEX). The distance between Galveston Pier 21 TG and TXGA is approximately 2.9 km. At Rockport, Texas, two
different cGNSS stations were considered co-located to the TG station and therefore included, namely TXRP in the
NGS CORS network and RKPT operated by Conrad Blucher Institute (CBI) at TAMU-CC. The TXRP station was
damaged in August 2017 due to Hurricane Harvey, therefore its GNSS observation data was interrupted afterwards.
However, the RKPT station remained unaffected by the storm and its observation data were continuously used in this
study. TXRP and RKPT stations had 25 days of observation overlap in 2017, and their distances to the TS station are
4.5 km and 0.5 km, respectively.

For each of Galveston Pier 21 and Rockport TG stations, two different methods were used to acquire the VLM time-series: 1)
VLM estimated with sea-level difference (SLD), and 2) VLM estimated with cGNSS.

1) VLM estimated with SLD: Since RSLR is a combined effect of ASLR and VLM as mentioned above, the following
relationship holds:

VLMSLP = ASLR — RSLR (1)
where the left side of the equation means VLM estimated with SLD, and the right side was the difference between
ASLR and RSLR values. The nearest grid to Galveston Pier 21 or Rockport TG station from the SRA dataset was
selected to represent the local ASLR value. The ASLR data were observed per five days, and two more frequency
windows (i.e., 15-day and 30-day) were also include in this study given the large temporal scale (i.e., nearly 25 years)
of observations. It is worth noting that the TG data were offered in a per 6-minute or 1-hour basis, therefore the TG
measurements needed to be averaged to line up with the SRA data before the subtraction operation as indicated in
Equation (1). The resultant VLM values were offered with 5-day, 15-day, or 30-day windows.

2) VLM estimated with cGNSS: Daily RINEX files for the cGNSS stations of TXGA, TXRP, and RKPT were processed
using JPL’s GipsyX software [12]. GipsyX adopts precise point positioning (PPP) strategy to process GNSS data and
provide millimeter-accuracy static positioning solution without needing to access nearby reference stations [13]. Based
on the default tree provided by the software, various types of correction models were incorporated in the processing,
including second-order ionospheric correction through IONEX map and the international reference ionospheric (IRI)
model, tropospheric correction through the global pressure and temperature (GPT2) model, ocean-tide loading with the
global ocean tide (GOT-4.8) model and so forth. PPP solutions were provided in the international terrestrial reference
frame 2014 (ITRF2014) and were projected to the north (N), east (E), and up (U) directions by GipsyX utility. Time-
series of daily position in the up direction were retained for VLM estimation. In this study, only GPS constellation was
adopted.

For VLM time-series estimated with either SLD or GNSS, Hector software [14] was utilized for trend estimation. Hector can
estimate linear trend by considering offsets, outliers, and season signals contained in the time-series. In addition, the software
is able to tackle different noise models as well as their combinations based on Akaike Information Criterion (AIC) or Bayes
Information Criterion (BIC) during trend estimation [15]. A total of six noise model combinations were examined and compared
in the work as shown in Table 1 in order to select the optimal noise model that best estimated the VLM linear trend and
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uncertainty. Hector can return a series of parameters, among which AIC and BIC were leveraged to decide the optimal noise
model.

Table 1. Noise model combinations used in this study through Hector

software
Name Description

1 WN White Noise

2 PLWN Power-Law + White Noise

3 FNWN Flicker Noise + White Noise

4 GGMWN  Generalized Gauss-Markov + White Noise

5 RWFNWN Random Walk + FNWN

6 AR(1) ARMA(0, 1) first-order autoregressive
RESULTS
GipsyX Processing

To ensure the accuracy and reliability of GipsyX processing, time series of X-Y-Z coordinates at TXGA cGNSS station
processed by GipsyX were compared against the results obtained through NOAA’s Online Positioning User Service (OPUS)
interface (Fig. 2). OPUS computes coordinates using NOAA CORS network, and daily RINEX files were repeatedly uploaded
to OPUS to acquire X-Y-Z coordinates on a per day basis. In general, results processed through GipsyX matched well with that
through OPUS in terms of X, Y, and Z coordinates except for occasional outliers from GipsyX. It is also obvious that two
abrupt shifts occurred along Y-coordinate, and the reason behind is the antenna change as suggested by the NGS station log
file [16]. Both outliers and offsets contained in the time-series were successfully handled by Hector software for VLM trend

estimation.
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Fig. 2. X-Y-Z coordinates comparison between GipsyX and OPUS at TXGA cGNSS station

VLM Estimation at TXGA c¢GNSS Station and Galveston Pier 21 TG Station

In close vicinity to the Galveston Pier 21 TG station (i.e., 2.9 km), the GNSS time-series at TXGA station in up direction is
shown in Fig. 3 (a), where two abrupt shifts were identified, and outliers were removed by Hector. At Galveston, FNWN,
GGMWN, and ARI outperformed the other noise model combinations (Table 1) for VLM estimation with GNSS, 5-day and
15-day SLD, and 30-day SLD, respectively. The GNSS estimated VLM trend was -3.9 £ 0.4 mm/yr. The SLD estimated VLM
trends were -3.9 + 0.4 mm/yr, -3.8 £ 0.7 mm/yr, and -3.9 £ 0.7 mm/yr for 5-day, 15-day, and 30-day mean windows, respectively
(Fig. 3). The results suggested that SLD estimated VLM trend agreed well with GNSS estimated trend, and the difference was
0.1 mm/yr by using the 15-day mean window.
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VLM Estimation at TXGA/RKPT c¢GNSS Stations and Rockport TG Station

RINEX files of TXRP and RKPT stations were separately processed in GipsyX, and time-series in the up direction are shown
in the upper left corner in Fig. 4. RKPT data were merged with TXRP by shifting RKPT with the mean of differences among
25 overlapping days of the two stations. This enlarged the entire GNSS data availability. However, it is worth noting that these
two stations are 4.0 km apart. At Rockport, PLWN outperformed the other noise model combinations (Table 1) for VLM
estimation with GNSS and SLD except 30-day mean window. The GNSS estimated VLM trend was -4.2 + 0.3 mm/yr. The
SLD estimated VLM trends were -5.3 £ 1.0 mm/yr, -5.2 = 1.1 mm/yr, and -5.1 + 0.6 mm/yr for 5-day, 15-day, and 30-day
mean windows, respectively (Fig. 4). At Rockport, there was an approximately 1.0 mm/yr difference between the two methods
(i.e., GNSS vs. SLD) for VLM estimation well within the precision range of the methods.
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CONCLUSION AND DISCUSSION

GNSS can be generally considered as a common method in estimating VLM, however, a ¢cGNSS network often fails to
accurately map VLM along coastlines because VLM demonstrates high spatial variability while cGNSS stations are usually
sparsely distributed. This study estimated coastal VLM at two tide gauge locations within general land subsiding environments
(i.e., Galveston Pier 21 and Rockport) in Texas with GNSS and SLD. At Galveston Pier 21, the VLM trend obtained through
GNSS (-3.9 + 0.4 mm/yr) agreed well with that obtained through SLD (-3.8 £ 0.7 mm/yr in a 15-day mean window). At
Rockport, VLM rate of GNSS was -4.2 + 0.3 mm/yr while sea-level change difference yielded -5.2 + 1.1 mm/yr (in a 15-day
mean window), leading to an approximately 1.0 mm/yr difference between the two methods, within the combined confidence
intervals of the methods. The preliminary results in this study suggested that fusing measurements recorded from SRA and TGs
have great potential to complement long-term static GNSS observations in an effort to estimate VLM along coastlines.

Additional refinements would yield improved results. First, the differences in reference systems among GNSS, TG, and SRA
have not been fully investigated nor compensated. Secondly, the impacts of the atmospheric pressure and wind on TGs have
not been compensated before subtracting SRA measurements [6, 7]. Thirdly, outlier removal in GipsyX and noise mitigation
in SRA and TG measurements by applying elaborate filtering or machine learning methods should yield a better VLM trend
estimate. Some other factors may contribute to the VLM estimate discrepancy between using SLD and GNSS. For example, a
pixel near the coastline may mix land and water in the SRA data and does not favorably reflect sea surface height. In addition,
due to the nature of high spatial variability associated with VLM estimate, differences in the estimations from both methods
may result from the distance between the TG and GNSS stations (e.g., the distance between Galveston Pier 21 TG and TXGA
GNSS station is 2.9 km).
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