

Integrated Coastal Subsidence Analysis Using InSAR, LiDAR, and Land Cover Data

4 Wen Zhong^{1, 2}, Tianxing Chu^{1, 2}, Philippe Tissot¹, Zhenming Wu³, Jie Chen⁴, Hua Zhang^{5, *}

5

¹ Conrad Blucher Institute for Surveying and Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA.

8 ² Department of Computing Sciences, College of Science and Engineering, Texas A&M University-Corpus
9 Christi, Corpus Christi, TX 78412, USA.

¹⁰ ³Department of Meteorology, University of Reading, Reading, Berkshire, RG6 6BB, UK.

11 ⁴ State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese
12 Academy of Sciences, Lanzhou 730000, China.

13 ⁵ Department of Engineering, College of Science and Engineering, Texas A&M University-Corpus Christi,
14 Corpus Christi, TX 78412, USA.

15

16 Abstract

17 Land subsidence is an important cause of relative sea-level rise along the Gulf Coast. There is
18 a lack of effective monitoring of coastal subsidence with high accuracy and high spatial
19 resolution for improving coastal risk assessment and mitigation. This study is the first attempt
20 to integrate satellite interferometric synthetic aperture radar (InSAR) and airborne LiDAR

21 methods to investigate the spatiotemporal pattern of coastal subsidence. The study area is
22 around Eagle Point, Texas, a region known for its fast rate of relative sea-level rise in recent
23 decades. From 2006 to 2011, the line-of-sight velocities were up to -33 mm/year based on
24 ascending ALOS-1 PALSAR-1 images. From 2016 to 2021, the vertical velocities were up to
25 -34 mm/year based on ascending and descending Sentinel-1 images. Additional details of the
26 subsidence pattern were revealed by incorporating the surface difference derived from 1-m
27 airborne LiDAR results. Comparisons of the InSAR-derived velocities from image time series
28 and the LiDAR-derived surface changes from time-lapsed observations were conducted at
29 different spatial levels with linkages to land cover patterns and topography. The results
30 showed that local subsidence rates could vary significantly below the spatial resolution of
31 InSAR results, indicating a valuable role of airborne LiDAR results in extending InSAR
32 results to parcel and building levels and explaining subpixel uncertainties. Also, subsidence
33 appeared stronger in vegetated areas than in developed areas and negatively correlated with
34 surface imperviousness. The magnitude of subsidence was not correlated with elevation along
35 selected transect lines. Overall, this study demonstrated the benefits of combining InSAR
36 results with other geospatial datasets to characterize coastal subsidence. In particular, the high
37 vertical accuracy InSAR results and the high spatial resolution airborne LiDAR results could
38 be complementary, highlighting the necessity of multi-resolution data fusion to support
39 studies on coastal flood vulnerability, infrastructure reliability, and erosion control.

40

41 **Keywords:** Land subsidence, Coastal regions, InSAR, Airborne LiDAR, Land cover

42 **1. Introduction**

43 More than 600 million people, or 10 % of the world's population, live in low-lying coastal
44 areas below 10 m in elevation (Neumann et al. 2015). These coastal areas are unique
45 ecosystems that offer habitats for many species and provide essential services to human
46 society. The market value of marine and coastal resources was estimated at \$3 trillion annually
47 as the year of 2015, accounting for 5% of global gross domestic product (Global Ocean
48 Commission 2014). Over the past decades, relative sea-level rise (RSLR) has been identified
49 as a significant threat to many coastal areas. It is exacerbating a variety of environmental and
50 ecological problems such as coastal flooding (Ezer and Atkinson 2014), wetland loss
51 (Schuerch et al. 2018), and coastal erosion (Leatherman et al. 2000), endangering local
52 ecosystems and communities. RSLR is the combined effect of sea-level rise and land
53 subsidence. Potential causes of sea-level rise include meltwater from glaciers and ice sheets,
54 thermal expansion of seawater, and transfers of water from storage on land to sea (Frederikse
55 et al. 2020; Meredith et al. 2019). Land subsidence is associated with natural and human
56 causes at local or regional scales, such as groundwater withdrawal, oil and gas extraction, soil
57 compaction, fault growth, tectonic activities, and other natural processes (Coplin and
58 Galloway 1999).

59 The contribution of land subsidence to RSLR is particularly significant along the Texas
60 Gulf Coast (Coplin and Galloway 1999). For example, the contribution of land subsidence
61 was estimated to be 76-85% of RSLR from 1909 to 1992 and decreased to 30% in 2018 at
62 tide gauge Galveston Pier 21, Texas (Liu et al. 2020), over an area known for significant

63 subsidence (Miller and Shirzaei 2019; Qu et al. 2015). Driven by growing concerns about the
64 effect of land subsidence on coastal flooding, shoreline erosion, and fault movement (Coplin
65 and Galloway 1999; Miller and Shirzaei 2021), there is an urgent need for effective
66 characterization of land subsidence to improve risk management strategies for Texas coastal
67 areas.

68 Traditional efforts of subsidence analysis rely on ground-based techniques. For example,
69 geodetic surveying methods such as leveling have been used to measure the vertical change of
70 the ground surface at the local scale. Extensometers have also been used to measure aquifer
71 compaction and expansion for estimating subsidence around wells (Huang et al. 2012), but
72 the low spatial coverage of extensometers hinders the understanding of the spatial variations
73 of regional subsidence. Another method for subsidence monitoring is the global navigation
74 satellite system (GNSS) (Wang et al. 2017). In particular, continuous GNSS stations, such as
75 NOAA's continuously operating reference station (CORS) network, can offer positioning
76 observations with high accuracy, but the results are only valid for a limited area around the
77 stations.

78 Geodetic remote sensing techniques can continuously monitor the dynamic displacement
79 of the ground surface and provide a new means to quantify land subsidence. In particular, the
80 interferometric synthetic aperture radar (InSAR) has been proven to be an effective tool to
81 map land subsidence with centimeter-to-millimeter accuracy over a large geospatial extent
82 (Bürgmann et al. 2000). It compares two or more synthetic aperture radar (SAR) images that
83 are collected at different times over the same region to quantify the change of ground surface.

84 Due to the growing availability of high-quality SAR datasets, InSAR has been increasingly
85 used in coastal subsidence studies (Dixon et al. 2006; Wang et al. 2012). For example, Qu et
86 al. (2015) mapped the line of sight (LOS) subsidence in the Galveston-Houston region, Texas,
87 using InSAR based on ERS, Envisat ASAR, and ALOS-1 PALSAR-1 images from 1993 to
88 2011. Miller and Shirzaei (2021) generated the vertical land subsidence rate over this area
89 based on ALOS-1 PALSAR-1 and Sentinel-1 images between 2007 and 2019 and GNSS
90 measurements which provided the horizontal component of the motion for the same period.
91 Results of these InSAR-based subsidence studies typically have a horizontal spatial resolution
92 in tens-of-meters. In comparison, airborne LiDAR (Light Detection and Ranging) could offer
93 insights at a higher spatial resolution (up to 1 m), although with a lower vertical accuracy
94 (10–15 cm). Airborne LiDAR is an aerial mapping technology that integrates LiDAR and
95 aerial platforms (e.g., a drone, plane, or helicopter) to collect the three-dimensional (3D) point
96 cloud of the earth's surface for the generation of digital terrain models (DTM) or digital
97 elevation models (DEM). Recent advances in drone technology have particularly promoted
98 the applications of airborne LiDAR. Integrating InSAR and airborne LiDAR methods can
99 potentially study coastal subsidence with high accuracy and high spatial resolution.

100 The objectives of this study are to 1) quantify the subsidence rates in a Texas coastal area
101 from 2006 to 2021 using the small baseline subset (SBAS) InSAR method, and 2) compare the
102 InSAR results to the high-resolution land surface differences derived from multitemporal
103 airborne LiDAR data, and 3) investigate the relationships between subsidence and the patterns
104 of land cover and topography. This study aims to explore a complementary relationship

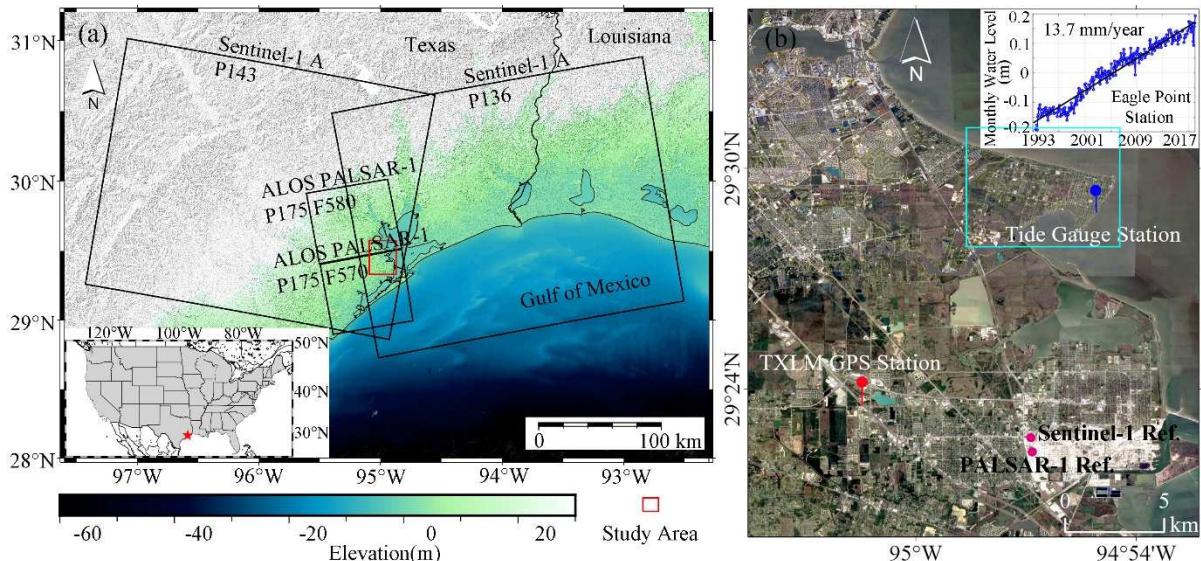
105 between the high accuracy InSAR results and the high spatial resolution airborne LiDAR
106 results in supporting coastal subsidence studies.

107

108 **2. Study Area**

109 The study area is a 520 km² area around Eagle Point in Texas, located between 29°20'N
110 and 29°34'N and between 95°5'W and 94°52'W (Fig. 1). The land cover is dominated by a
111 mixture of coastal prairie, urban areas, and an industrial zone of oil and gas facilities in the
112 southeast area. Elevation ranges from -4.43 m to 17.05 m with an average slope of 0.18°.
113 Records from the Eagle Point Tide Gauge Station show an RSLR rate of 13.7 mm y⁻¹ from 1993
114 to 2017 (Fig. 1b). A possible cause is the withdrawal of groundwater from the Chicot,
115 Evangeline, and Jasper aquifers, all components of a broader Gulf Coast aquifer system, to
116 meet the increasing industrial and municipal water demands from the Galveston area. Oil and
117 gas extraction, and surface fault activities could also contribute to the land subsidence here
118 (Coplin and Galloway 1999; Qu et al. 2015).

119



120 **Figure 1.** Study area: (a) SAR data coverage (black squares) over the elevation map around the
 121 study area (red square); (b) a Google Earth image of the study area and the monthly mean RSLR
 122 observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker
 123 shows the location of the TXLM GPS station, and magenta dots denote the location of the
 124 reference points for Sentinel-1 and ALOS-1 PALSAR-1 image processing.
 125

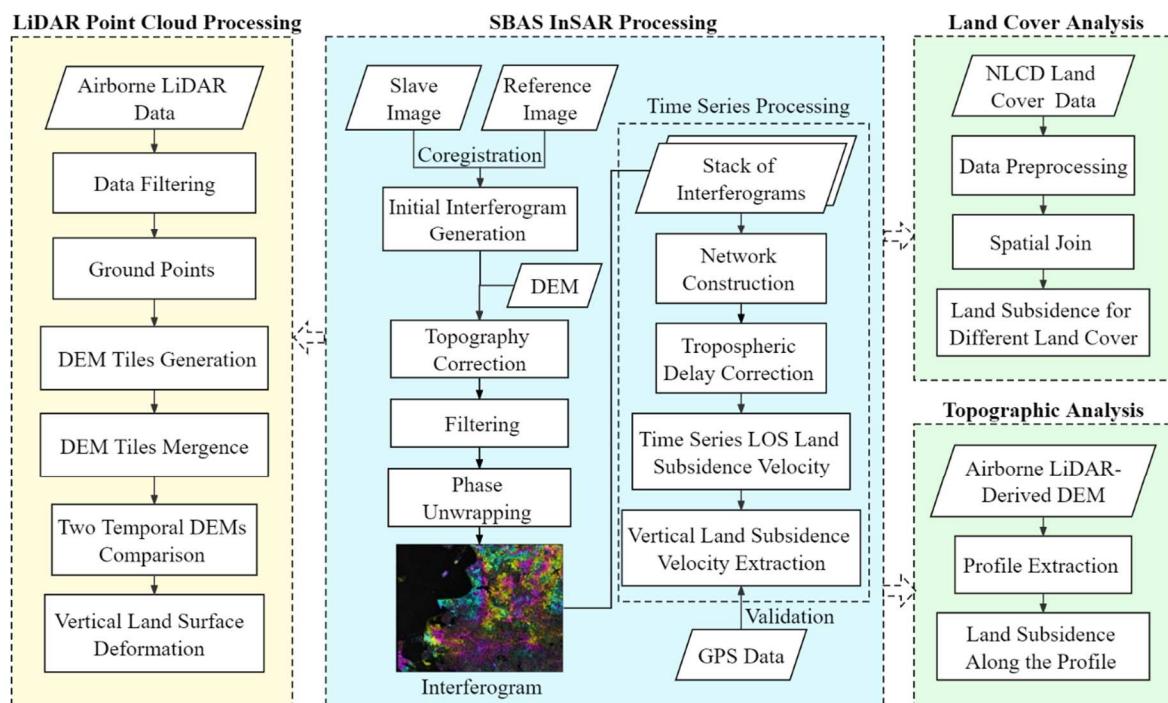
126

127 **3. Methods and Materials**

128 **3.1 Overview**

129 This study combined InSAR, airborne LiDAR, GPS, and land cover data to investigate
 130 the spatiotemporal pattern of coastal land subsidence and its relation to different land cover
 131 and topography, consisting of several steps (Fig. 2). First, three stacks of SAR images were
 132 used to obtain the LOS subsidence velocities, i.e., two orbits from Sentinel-1 and one from
 133 ALOS-1 PALSAR-1. LOS velocities in both ascending and descending geometries of
 134 Sentinel-1 were utilized then to generate the projections onto the vertical and east-west

135 horizontal directions under the assumption of zero north-south motion. Second, this study
 136 generated a 1-m land surface difference map from two temporal airborne LiDAR point cloud
 137 data to compare and complement InSAR results. Third, the InSAR results were overlapped
 138 with land cover data to examine the occurrence of subsidence in different land cover
 139 categories, and its relationship with percent surface imperviousness. Finally, InSAR results
 140 and LiDAR DEM were combined in a profile analysis to investigate the pattern of subsidence
 141 along selected transects and highways across the study area. Highways are often a focus of
 142 mitigation and response studies for flooding risk management, as land subsidence along
 143 low-lying highway sections could exacerbate the inundation risk.



144
 145
 146 **Figure 2.** Research framework.

147 **3.2 InSAR-Based Subsidence Analysis**

148 **3.2.1 SAR Images**

149 This study used two sets of SAR data (Table 1). The L-band ALOS-1 PALSAR-1 data
150 included 26 ascending images taken between December 2006 and January 2011. The
151 descending PALSAR-1 data over the study area was limited and not adopted in this study.

152 Therefore, we analyzed the LOS velocities based on these ascending PALSAR-1 images. The
153 PALSAR-1 raw data were provided by Japan Aerospace Exploration Agency (JAXA). The

154 C-band Sentinel-1 SAR data included 252 ascending and descending images between April
155 2016 and September 2021. Combining ascending and descending Sentinel-1 images allowed
156 for calculating both vertical and east-west horizontal components of LOS velocities under the
157 assumption of zero north-south components (Eq. (1-5)). Most SAR satellites, such as ALOS
158 and Sentinel-1, operate in a sun-synchronous orbit with an inclination of around 98°, resulting
159 in range observations almost in the east-west direction and rarely in the north-south direction.

160 Consequently, the north-south components cannot be extracted adequately from these SAR
161 data-derived LOS velocities (Wright et al. 2004). Using Sentinel-1 images till 2021 other than
162 till 2018 (the same end year with airborne LiDAR data) would provide a more comprehensive
163 understanding of the subsidence pattern for our study area. The Sentinel-1 single look
164 complex (SLC) data were provided by the Copernicus program of the European Space
165 Agency. Full details of the InSAR data are presented in Supplementary Information.

166

167 **Table 1.** Characteristics of SAR data.

Characteristics \ Sensor	ALOS-1 PALSAR-1	Sentinel-1
Band (Wavelength)	L (23.6 cm)	C (5.6 cm)
Beam mode	FBS, FBD	IW
Revisit time	46 days	12 days
Orbital geometry	Ascending	Ascending/Descending
Path	175	136/143
Frame	570, 580	90-93/491-494
Temporal span	12/2006-1/2011	4/2016-9/2021

168

169 **3.2.2 SBAS InSAR Analysis**

170 We used the SBAS method to retrieve historical subsidence from SAR images. The
 171 SBAS method utilizes interferograms from small temporal and spatial baseline subsets,
 172 reducing both spatial and temporal decorrelation and improving phase estimates' performance
 173 (Berardino et al. 2002). Persistent Scatterer Interferometry (PSI) uses persistent scatterers (PS)
 174 to obtain the land surface displacements (Ferretti et al. 2001). The persistent scatterers are
 175 always substantial in developed urban areas, which renders PSI to be applied more in the
 176 urban area. In this study, the study area covers developed urban areas, grassland areas, and
 177 wetlands. One of our objectives is investigating the relationship between land subsidence and
 178 land cover. SBAS method can overcome the rapid loss of coherence in long-term
 179 interferograms in PSI over nonurban areas. So, although PSI can achieve full-resolution
 180 (single-look), this study finally applied the SBAS method to map the land subsidence.

181 For the ALOS-1 PALSAR-1 data, we selected the image collected on 28 March 2008 as
182 the reference image. All other images were coregistered to this reference image. The temporal
183 and perpendicular baseline thresholds for PALSAR-1 data were set as 1,200 days and 1,500 m,
184 respectively (Fig. 3a). For the Sentinel-1 data, the image collected on 10 January 2019 was
185 chosen as the reference image. Interferograms were generated between each epoch and the
186 adjacent four epochs for Sentinel-1 data (Fig. 3b and 3c). This study used the InSAR Scientific
187 Computing Environment (ISCE) (Rosen et al. 2012) to obtain 49 and 1012 interferograms for
188 PALSAR-1 and Sentinel-1 stacks, respectively. The multilooking approach was leveraged to
189 alleviate the phase noise, which was 9×2 (azimuth by range) and 2×10 for the PALSAR-1 and
190 Sentinel-1 data, respectively, leading to approximately 30-m pixels. The topographic phase was
191 removed from interferograms based on a 30-m Shuttle Radar Topography Mission DEM. In
192 addition, orbit parameters were incorporated to correct orbital errors in the generation of
193 Sentinel-1 interferograms. All interferograms were unwrapped by adopting the SNAPHU
194 (Statistical-Cost Network-Flow Algorithm for Phase Unwrapping) (Chen and Zebker 2002).

195 The Miami InSAR time-series software in Python (MintPy) (Yunjun et al. 2019) was
196 applied to perform the SBAS approach. This study selected the interferogram network by
197 utilizing minimum spanning tree (MST) and spatial coherence threshold, i.e., accomplished the
198 MST first by using the inverse of average spatial coherence of all interferograms as weight,
199 then excluded the interferograms (except for MST's interferograms) with spatial coherence
200 lower than the threshold. Average spatial coherence thresholds of 0.6 for the Sentinel-1
201 interferograms and 0.65 for PALSAR-1 interferograms were applied in this study (Fig. 3). For

202 the Sentinel-1 interferogram network, the temporal baseline threshold of not exceeding 100
 203 days was applied then (Fig. 3b and 3c). Water bodies were masked out by applying a
 204 DEM-based water mask in radar coordinates. We selected two buildings as reference points
 205 for PALSAR-1 and Sentinel-1 datasets (magenta dots, denoted as Ref. in Fig. 1b). All
 206 interferograms were referenced to the reference point so that the relative LOS velocities can
 207 be calculated later. The components of tropospheric delay were removed by ERA5 reanalysis
 208 using PyAPS (Python-based Atmospheric Phase Screen estimation) module (Jolivet et al. 2011).
 209 This study estimated the LOS velocity as the slope of the best fitting line to the range change
 210 time series and the uncertainty of the velocity as the goodness of fit, i.e., standard deviation
 211 (Fattah and Amelung 2015).

212 The LOS velocity v_{los} can be decomposed into three velocity components in the
 213 east-west direction (v_E), the north-south direction (v_N), and the vertical direction (v_V) (Fialko
 214 and Simons 2001; Wright et al. 2004):

$$215 \quad v_{los} = -\sin \theta \cos \alpha \quad \sin \theta \sin \alpha \quad \cos \theta \begin{pmatrix} v_E \\ v_N \\ v_V \end{pmatrix} \quad (1)$$

216 where θ is the radar incidence angle and α is the satellite heading angle (i.e., the direction
 217 of the satellite motion). The incidence angle and heading angle are known. In this study, for
 218 Sentinel-1 ascending and descending geometries, the mean values for the incidence angles are
 219 32.55° and 32.50° , and the heading angles are 349.22° and 190.79° , respectively. Based on
 220 estimated Sentinel-1 ascending LOS velocities v_{los}^{AS} and descending LOS velocities v_{los}^{DS} , Eq.
 221 (2) and Eq. (3) can be developed with three unknown velocity components v_E , v_N , and v_V :

222 $v_{los}^{AS} = -\sin_{\theta}^{AS} \cos_{\alpha}^{AS} v_E + \sin_{\theta}^{AS} \sin_{\alpha}^{AS} v_N + \cos_{\theta}^{AS} v_V$ (2)

223 $v_{los}^{DS} = -\sin_{\theta}^{DS} \cos_{\alpha}^{DS} v_E + \sin_{\theta}^{DS} \sin_{\alpha}^{DS} v_N + \cos_{\theta}^{DS} v_V$ (3)

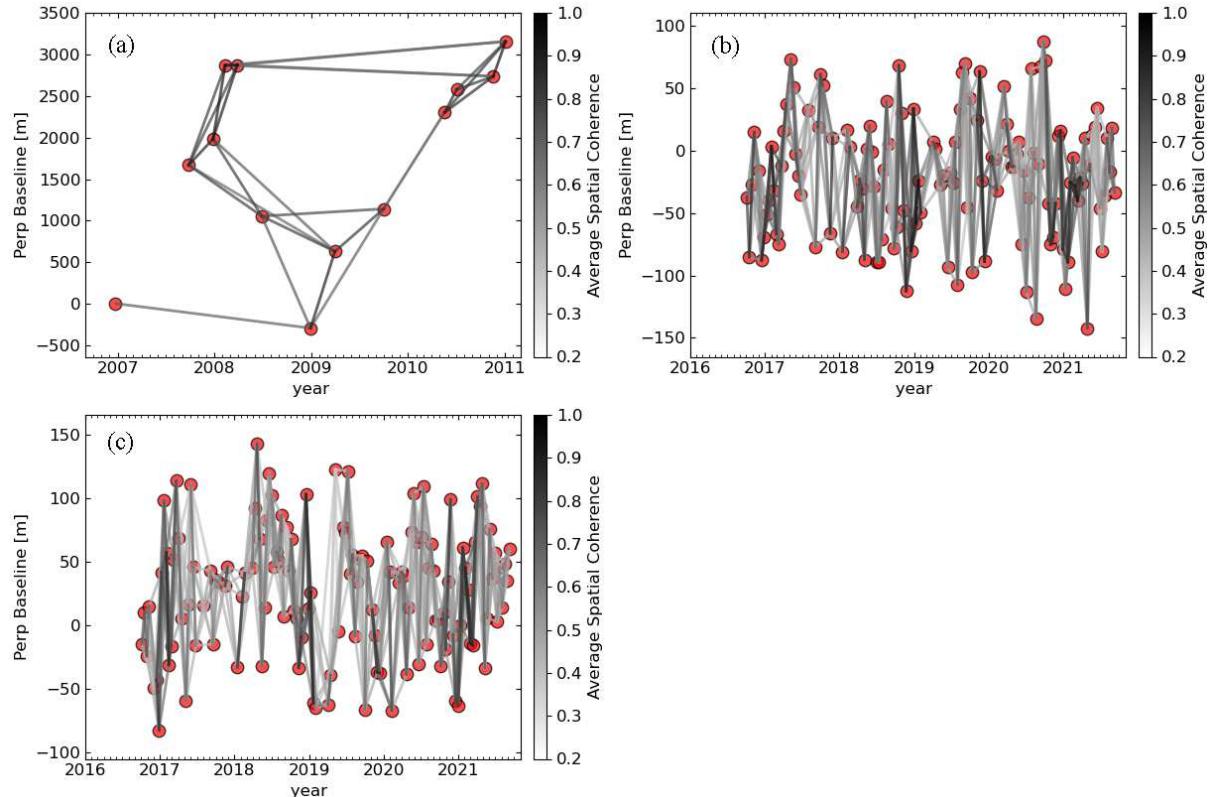
224 Assuming that the motion in the north-south direction (v_N) is negligible, Eq. (2) and Eq. (3)
 225 could be solved to yield the LOS velocity projections onto the vertical (v_V , Eq. (4)) and
 226 east-west horizontal direction (v_E , Eq. (5)):

227 $v_V = \frac{\sin_{\theta}^{DS} \cos_{\alpha}^{DS} v_{los}^{AS} - \sin_{\theta}^{AS} \cos_{\alpha}^{AS} v_{los}^{DS}}{\cos_{\theta}^{AS} \sin_{\theta}^{DS} \cos_{\alpha}^{DS} - \sin_{\theta}^{AS} \cos_{\alpha}^{AS} \cos_{\theta}^{DS}}$ (4)

228 $v_E = \frac{\cos_{\theta}^{AS} v_{los}^{DS} - \cos_{\theta}^{DS} v_{los}^{AS}}{\sin_{\theta}^{AS} \cos_{\alpha}^{AS} \cos_{\theta}^{DS} - \cos_{\theta}^{AS} \sin_{\theta}^{DS} \cos_{\alpha}^{DS}}$ (5)

229 During the data processing, by inputting Sentinel-1 ascending and descending geometries
 230 LOS velocities in the decomposition operation of MintPy, the Sentinel-1 vertical components
 231 under the assumption of zero north-south motion will be generated. For the PALSAR-1
 232 ascending geometry used in this study, only Eq. (2) could be developed. With three unknown
 233 velocity components, the study estimated the vertical components of PALSAR-1 LOS
 234 velocities using Eq. (6). This equation was derived from Eq. (2) by assuming that the
 235 east-west and north-south motion were negligible. The mean incidence angle for PALSAR-1
 236 data is 39.7° . This decomposition was executed in the calculation operation of MintPy.

237 $v_V = \frac{v_{los}^{AS}}{\cos_{\theta}^{AS}}$ (6)



238

239 **Figure 3.** Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with
 240 perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b) Sentinel-1
 241 ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images.

242

243 **3.2.3 Validation Based on GPS Data**

244 A CORS GPS station (TXLM) is located in a highly developed area of the study site (Fig.
 245 1b). The GPS data for 2006–2021 were provided by the National Geodetic Survey (NGS) and
 246 processed by the Nevada Geodetic Laboratory with respect to the IGS14 reference frame
 247 (Blewitt et al. 2018). We used the GPS vertical land surface displacement measurements to
 248 validate our InSAR-based subsidence results over an approximately 30 m × 30 m area
 249 centered on the GPS station.

250

251 **3.3 Airborne LiDAR-Based Land Surface Difference**

252 We used two airborne LiDAR point cloud datasets of 2006 and 2018, provided by the 3D
253 Elevation Program (3DEP) of the United States Geological Survey (USGS). These datasets'
254 vertical and horizontal datums were NAVD88 and NAD83, respectively. The point density of
255 the 2006 data was below 2 points/m² and was deemed adequate to generate a 1-m DEM. 14
256 categories were classified for the LAS airborne LiDAR point cloud data according to the
257 ASPRS classification standard. This study leveraged the ground class of the point cloud and
258 applied a standard filtering procedure to extract the bare earth point cloud data (Fig. 2). DEM
259 tiles were generated based on those ground points using the LAStools and were merged then
260 to produce a seamless 1-m DEM. For the 2018 DEM, raw 1-m DEM tiles (1.65 km × 1.85 km)
261 were downloaded from 3DEP and merged into a DEM using QGIS. The airborne LiDAR data
262 in 2018 was offered at level 2 (QL2), which had a minimum nominal pulse spacing (NPS) of
263 0.7 m and a vertical error of 0.1 m, measured as root mean square error (RMSE). Finally, the
264 land surface differences in the vertical direction between 2006 and 2018 were calculated
265 based on two temporal DEMs using subtraction analysis in QGIS (Fig. 2). The uncertainties
266 of surface differences were unlikely to be spatially homogeneous, caused by factors such as
267 uncertainties of original DEMs and the error propagation during the change detection. The
268 uncertainties of airborne LiDAR-derived DEM were also heterogeneous but always offered as
269 a single value. In this study, the absolute vertical accuracy for QL2 airborne LiDAR data was

270 provided in the USGS report as 0.1 m, but the relative vertical accuracy would be smaller than
271 0.06 m for smooth surfaces. Quantifying uncertainty in change detection results of airborne
272 LiDAR is not a trivial work and is still very limited (Okyay et al. 2019). Land surface
273 difference from airborne LiDAR includes the accumulation of gradual land subsidence and
274 land displacements induced by human activities and other surface processes. The periods of
275 airborne LiDAR measurements (2006-2018) had overlaps with that of ALOS-1
276 PALSAR-1(2006-2011) and Sentinel-1(2016-2021) SAR data. This study compared airborne
277 LiDAR-derived land surface differences to the InSAR-derived velocities. The 1-m map of
278 land surface differences would complement the PALSAR-1 and Sentinel-1 results by
279 revealing more details of the spatial variations of gradual subsidence below the scale of the
280 30-m InSAR pixels and identifying the significant land surface change which InSAR cannot
281 capture.

282

283 **3.4 Subsidence Analysis over Different Coastal Land Cover and Topographic Patterns**

284 We obtained the 30-m 2019 land cover from the National Land Cover Database (NLCD).
285 USGS generated the NLCD products through integrating multi-source geospatial datasets and
286 classification using machine learning methods (Jin et al. 2019), and their accuracies were
287 validated at the national level (Wickham et al. 2021).

288 The land cover analysis was conducted in ArcGIS Pro. First, the NLCD data was
289 extracted and clipped to the same extent as the study area. Then, the NLCD categories were

290 modified to address the land cover pattern of the study area. Deciduous forest, evergreen
291 forest, and mixed forest categories were merged into a forest category. Shrub/scrub,
292 grassland/herbaceous, pasture/hay, and cultivated crops categories were merged into a
293 grassland category. Woody wetlands and emergent herbaceous wetlands categories were
294 merged into a wetlands category. The resulted land cover raster was converted into
295 multi-feature polygons. These polygons were linked to the subsidence estimates using the
296 Spatial Join Tool in ArcGIS Pro. Based on attribute tables of the Spatial Join-derived feature
297 classes, mean subsidence velocities, standard error, and interquartile ranges were calculated
298 for different land cover categories. In addition, linear regression was performed to analyze the
299 relationship between subsidence velocities and surface imperviousness at the pixel level and
300 between mean subsidence velocities and surface imperviousness at the class level.

301 We further examined the relationship between subsidence and topography using the
302 2018 airborne LiDAR DEM. The floating-type DEM was first converted into an integer-type
303 DEM and then into polygon features. Next, we established two transect lines (Fig. 15a) to
304 represent the dominant elevation gradients over the study area, e.g., transect QI across the
305 northeast-southwest gradient from the shoreline to a river mouth and transect ST located
306 along the northwest-southeast shoreline. Then, this study applied the Stack Profile Tool in
307 ArcGIS Pro to extract elevation and subsidence velocities along these transect lines for profile
308 analysis.

309

310 **4. Results**

311 **4.1 InSAR-Derived Subsidence Velocity**

312 **4.1.1 Spatiotemporal Pattern of Land Subsidence**

313 The LOS velocities from ALOS-1 PALSAR-1 and Sentinel-1 images are shown in Fig.

314 4. Positive values indicate ground motions toward the satellite (i.e., uplift) and negative

315 values indicate ground motions away from the satellite (i.e., subsidence). For PALSAR-1

316 analysis between 2006 and 2011, the LOS velocities varied from -33 to 20 mm/year (Fig. 4a)

317 with the standard deviations of 0 to 12 mm/year (Fig. 4b). Results show that the significant

318 subsidence in 2006-2011 tended to continue in the next time window analyzed and with a

319 similar magnitude. From 2016 to 2021, the LOS velocities ranged from -31 to 19 mm/year

320 for Sentinel-1 ascending geometries analysis (Fig. 4c) and ranged from -31 to 17 mm/year for

321 descending geometries analysis (Fig. 4e). The standard deviations of LOS velocities for

322 Sentinel-1 ascending and descending geometries were smaller than 2 mm/year (Fig. 4d and

323 4f).

324 The velocities in the vertical direction under the assumption of zero north-south motion

325 in 2016-2021 based on both ascending and descending Sentinel-1 images are shown in Fig. 5.

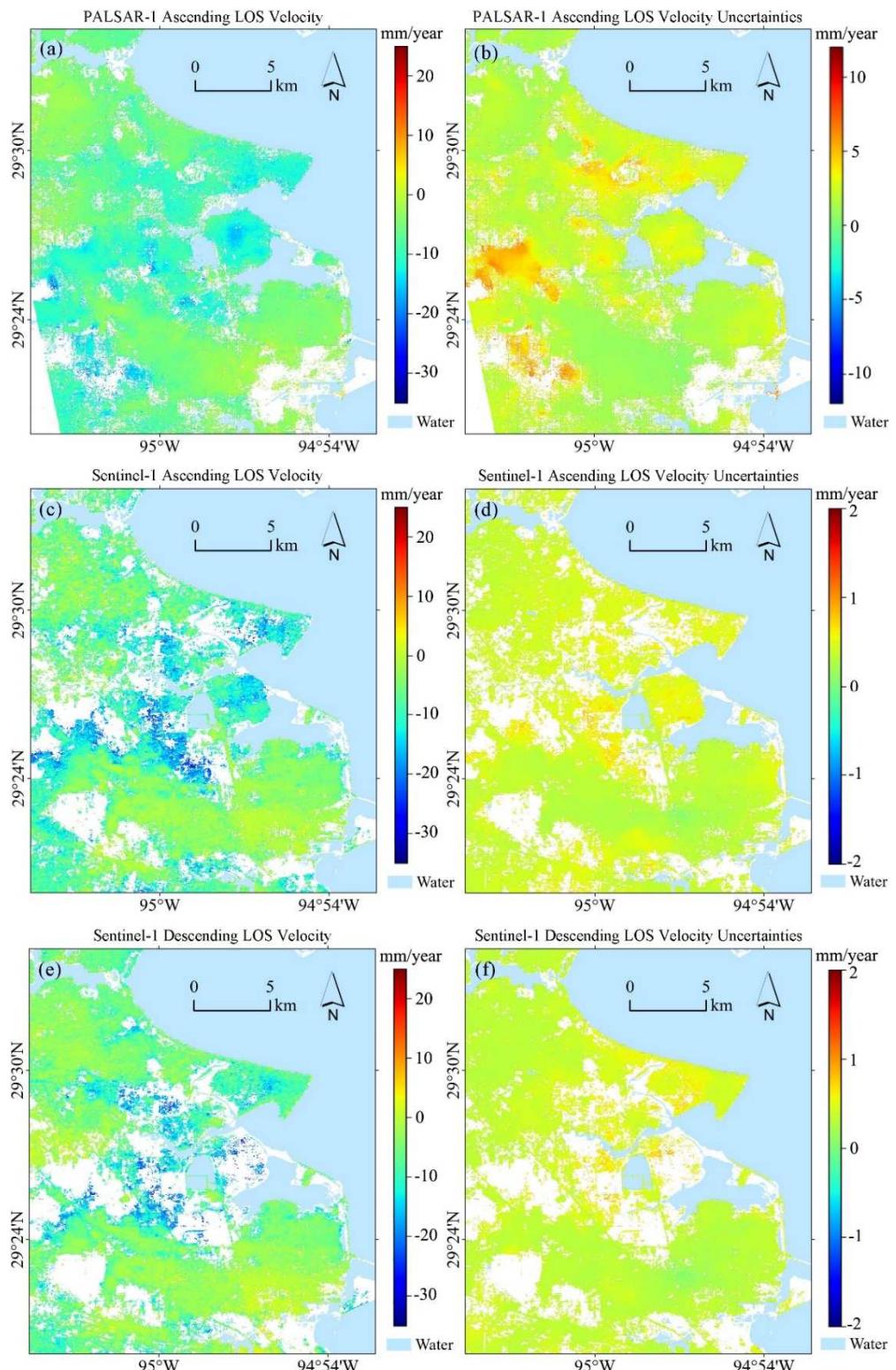
326 For velocities in the vertical direction, positive and negative values indicate ground uplift and

327 subsidence, respectively. This study found that the vertical velocities were up to -34

328 mm/year, with a spatial pattern similar to that of the LOS velocities (Fig. 4c and 4e). Our

329 findings agreed with the results from a previous InSAR study in this region (Miller and Shirzaei

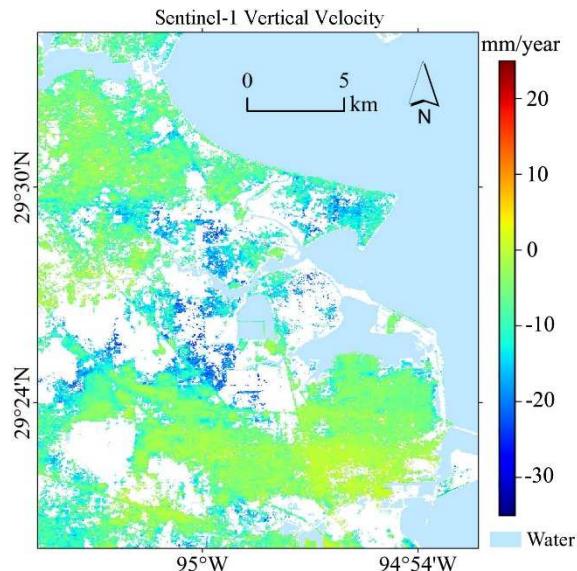
330 2021).



331

332 **Figure 4.** LOS velocities and standard deviations derived from (a and b) PALSAR-1

333 ascending images (2006-2011), (c and d) Sentinel-1 Path 136 ascending images (2016-2021),
334 and (e and f) Sentinel-1 Path 143 descending images (2016-2021).

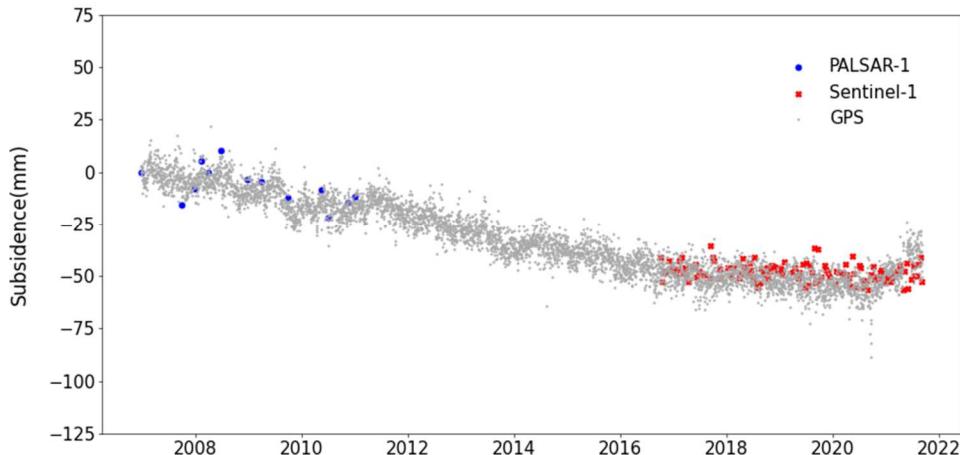


335
336 **Figure 5.** The vertical components under the assumption of zero north-south motion in
337 2016-2021 based on Sentinel-1 ascending and descending LOS results (Fig. 4c and 4e).
338

339 **4.1.2 Validation**

340 Fig. 6 shows the validation of subsidence velocities in the vertical direction against the
341 vertical GPS measurements, all presented in the form of accumulative depth. For the ALOS-1
342 PALSAR-1 results, only ascending data were available over the study area. Therefore, the
343 vertical velocities transformed from LOS velocities using the local incidence angle were used
344 for validation, assuming that the vertical component dominated the subsidence. For the
345 Sentinel-1 results, the derived vertical velocities under the assumption of zero north-south
346 motion (Wright et al. 2004) were directly compared to vertical GPS measurements. The GPS

347 measurements agreed well with both PALSAR-1 results from 2006 to 2011 (RMSE = 7.5 mm)
348 and Sentinel-1 results from 2016 to 2021 (RMSE = 11.6 mm).



349
350 **Figure 6.** Comparison of InSAR-derived cumulative subsidence to GPS measurements in the
351 vertical direction. The location of the TXLM GPS station is shown in Figure 1.

352
353 **4.2 Airborne LiDAR-Derived Land Surface Difference**
354 Here we compare the results of InSAR and airborne LiDAR over a subset of the study
355 area that experienced substantial subsidence (Fig. 7, also marked as a blue rectangle in Fig.
356 1b). InSAR results (Fig. 7c and 7d) included some empty pixels because of the temporal
357 coherence thresholds setting used to ensure reliable estimates. In contrast, the 1-m ground
358 differences between 2006 and 2018 based on two temporal airborne LiDAR data covered the
359 entire area (Fig. 7b). As the airborne LiDAR measurements were in the vertical direction,
360 LOS PALSAR-1 results-derived vertical components based on Eq. (6) (Fig. 7c) and
361 Sentinel-1 vertical results (Fig. 7d) were used here. The PALSAR-1 results indicated a strong

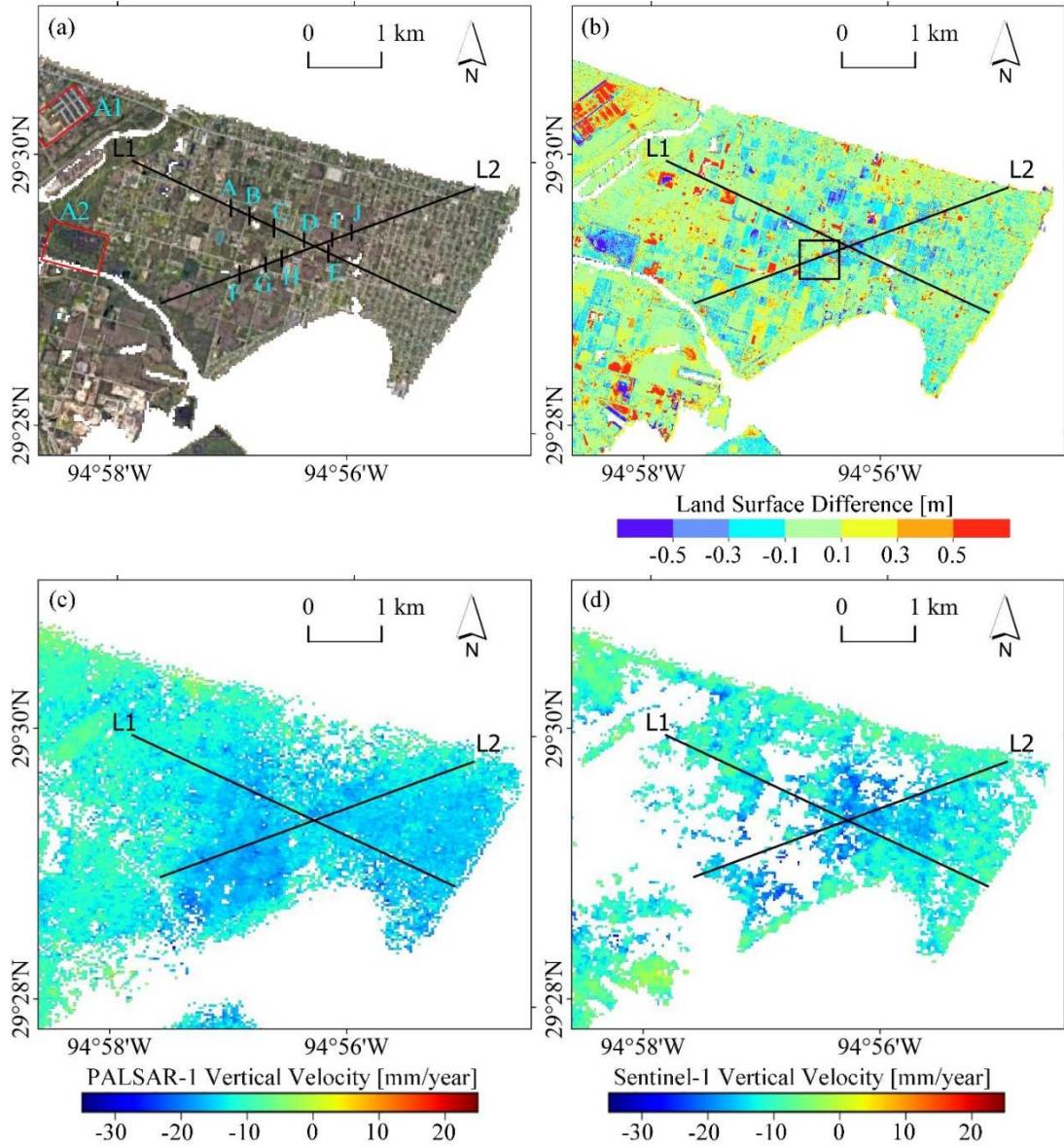
362 subsidence process (up to -22 mm/year) in 2006-2011 (Fig. 7c). The subsidence process
363 appeared to be continuing at several locations in 2016-2021 from Sentinel-1 results (Fig. 7d),
364 and the subsidence velocities in the vertical direction were up to -25 mm/year. In the
365 upper-right part, the vertical velocities derived from PALSAR-1 images under the assumption
366 of no east-west and north-south motion (Fig. 7c) were larger than that from Sentinel-1 images
367 under the assumption of no north-south motion (Fig. 7d). Groundwater use, human activities
368 such as building construction, etc. might lead to quicker subsidence in 2006-2011 than in
369 2016-2021. In the selected area, airborne LiDAR results revealed plenty of areas with a
370 surface change between -0.3 to 0.1 m (Fig. 7b). Limited and scattered areas were with large
371 surface changes (negative or positive), which were likely induced by human activities and
372 other surface processes (for example, areas A1 and A2 highlighted in Fig. 7a). Overall, both
373 InSAR-based analysis and airborne LiDAR measurements indicated substantial subsidence in
374 this area. Most highly subsided areas based on InSAR analysis also showed relatively large
375 surface changes based on airborne LiDAR measurements, between -0.1 to -0.3 m during
376 2006-2018 (Fig. 7). The 1-m airborne LiDAR results offered more details of the surface
377 differences and could capture some large changes that InSAR cannot monitor.

378 We further conducted profile analysis along two transect lines (Fig. 7a) to evaluate the
379 agreement and disagreement between InSAR and airborne LiDAR estimates. The transect line
380 L1 represented the northwest-southeast direction, with the land use dominated by developed
381 and vegetated areas. PALSAR-1 and Sentinel-1 results presented a trend similar to that of the
382 accumulative land surface differences in 2006-2018 from the airborne LiDAR results (Fig. 8a

383 and 8b). The lower subsidence velocities tended to be associated with smaller accumulative
384 surface differences, and higher velocities aligned with greater accumulative surface
385 differences. In particular, the airborne LiDAR results of sections BC and DE exhibited large
386 land surface differences. The PALSAR-1 and Sentinel-1 velocities showed high values in
387 these sections, especially velocities from Sentinel-1 analysis (up to about -20 mm/year). The
388 high velocities would contribute to the large subsidence, which had a good agreement with
389 the airborne LiDAR results (Fig. 8b). Based on Google historical images, section BC was on a
390 piece of land with some grass and almost had no change from 2006 to 2011 (Fig. 9a). This
391 area was influenced by a pool and other activities then, confirming the great variations of
392 Sentinel-1 subsidence velocities (Fig. 8b). Section AB subsided from both PALSAR-1 and
393 Sentinel-1 results, whereas airborne LiDAR results presented some uplift. Based on this
394 multi-period information, we could infer that this segment had an uplift in 2011- 2016.

395 The transect line L2 represented the southwest-northeast direction. Sentinel-1 velocities
396 trend almost fits well with the land surface difference trend as shown in airborne LiDAR
397 results (Fig. 8d). PALSAR-1 velocities trend of the sections starting around H fits relatively
398 well with the land surface difference trend (Fig. 8c). Sentinel-1 analysis showed high
399 velocities in the vertical direction over the area where airborne LiDAR obtained large surface
400 differences. In particular, sections GH and IJ underwent larger subsidence in 2016-2021 than
401 in 2006-2011, leading to some large subsidence in agreement with airborne LiDAR results
402 (Fig. 8c and 8d). The airborne LiDAR results show a heterogeneous pattern of surface change
403 along section HI, agreed better with Sentinel-1 results than PALSAR-1 results. As shown in

404 Fig. 9b, the area along the HI was mainly dominated by grassland in 2006-2011 and had a
405 relatively homogeneous subsidence pattern accordingly (Fig. 8c). Within the period of
406 Sentinel-1 results (2016-2019), the area along the HI was disturbed and/or changed by some
407 land reclamation and construction activities (Fig. 9b), leading to a heterogeneous subsidence
408 trend as well as some substantial surface changes that could only be captured by airborne
409 LiDAR (Fig. 8d). Sections FG subsided much faster in 2006-2011 than in 2016-2021, and the
410 land surface change was relatively small. Overall, the land surface difference pattern derived
411 from airborne LiDAR data between 2006 and 2018 generally agreed with InSAR-derived
412 velocities along the selected transect lines and provided a more effective means to
413 characterize large surface changes in areas with human activities.

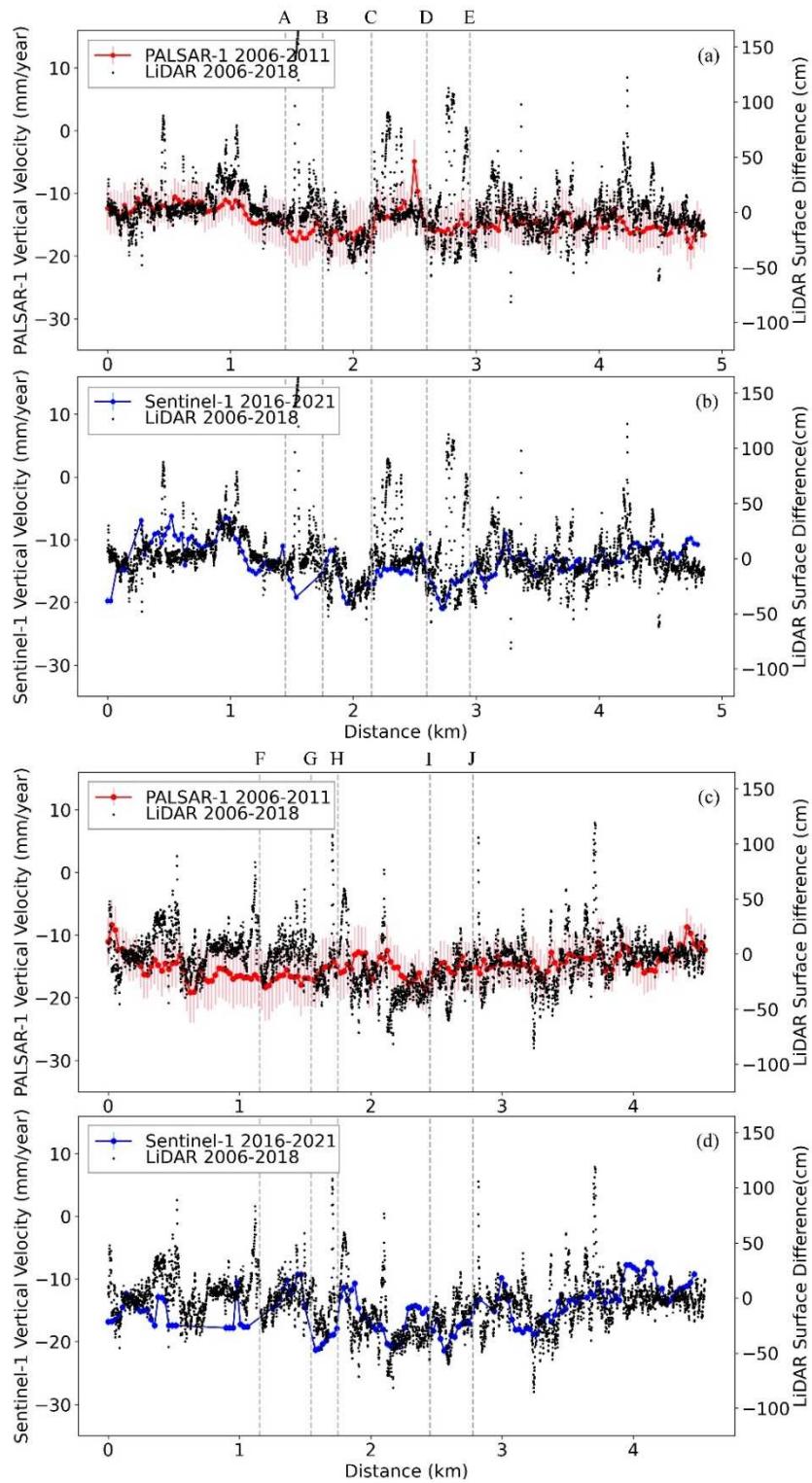


414

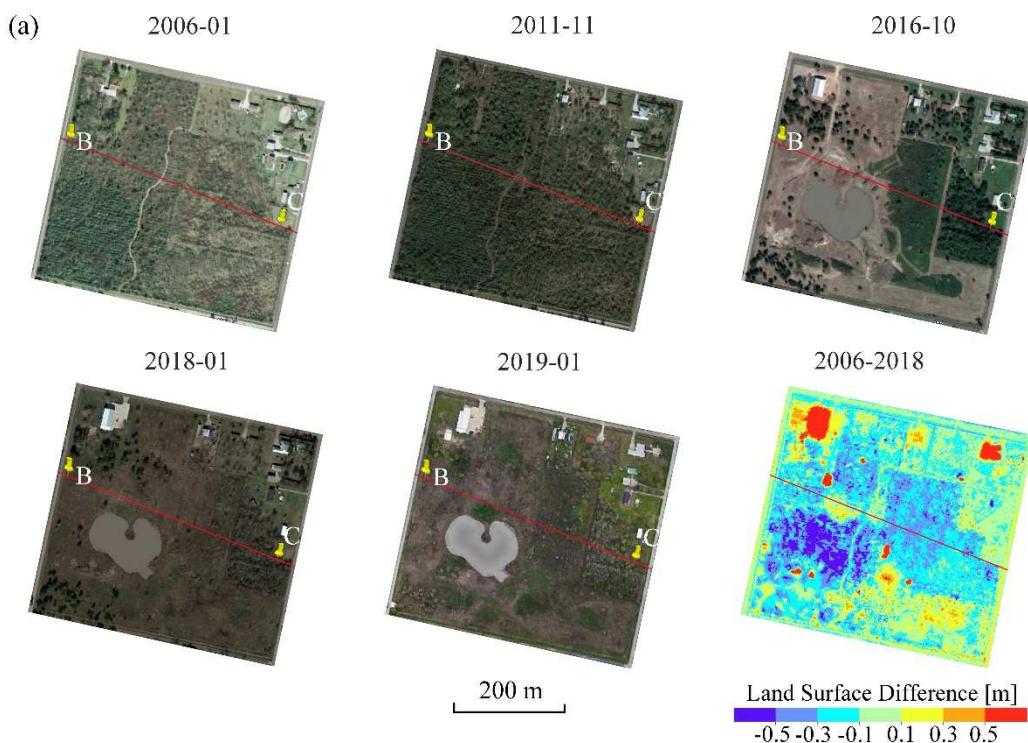
415 **Figure 7.** Detailed subsidence pattern of a selected area: (a) Google Earth image, (b) airborne
 416 LiDAR-derived vertical surface differences, (c) vertical component based on PALSAR-1
 417 results (assuming no east-west and north-south motions), and (d) vertical component based on
 418 Sentinel-1 results (assuming no north-south motion). Figure 1b shows the location of this
 419 area.

420

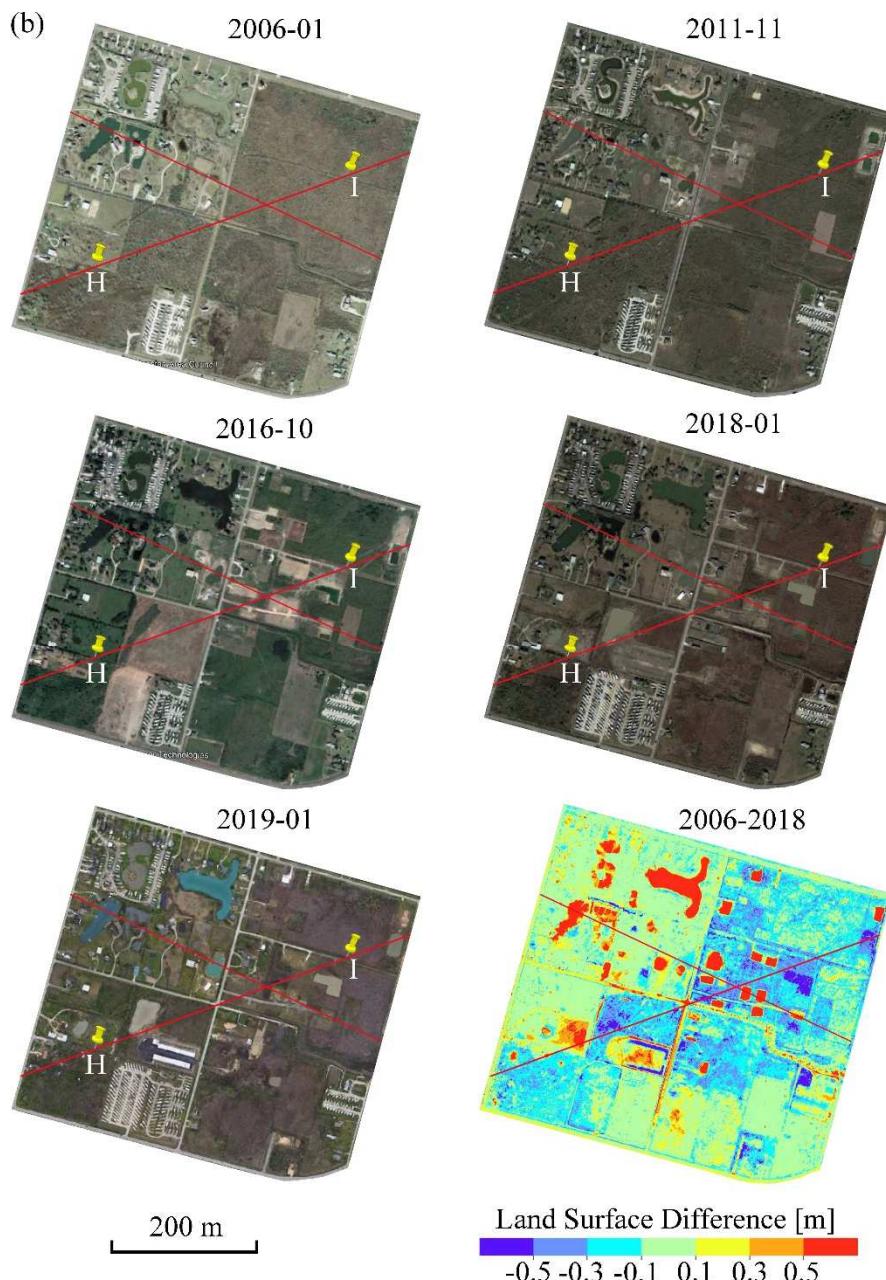
421



424 **Figure 8.** Comparison of InSAR and airborne LiDAR results along transect lines L1 (a and b)
425 and L2 (c and d). Error bars indicate standard deviations. The locations of the transect lines
426 are shown in Figure 7a.



427



428

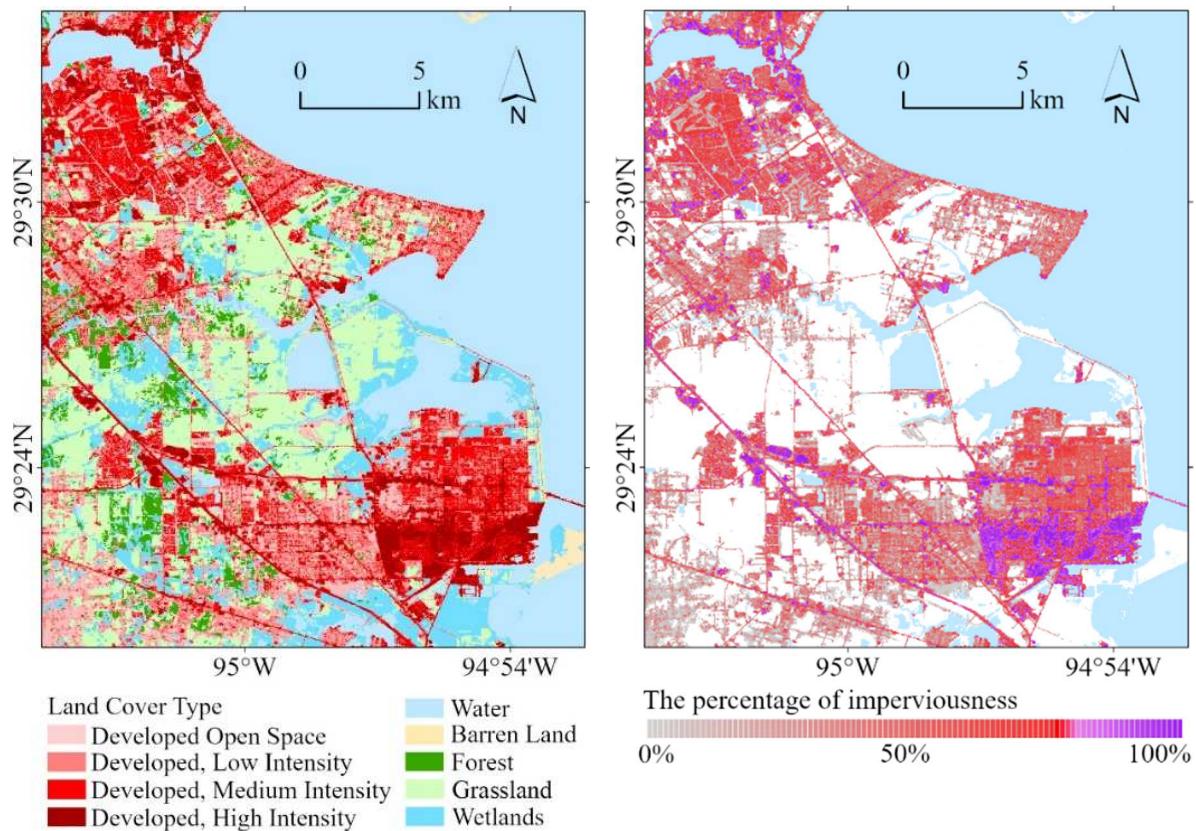
429 **Figure 9.** Historical Google Earth images and airborne LiDAR-derived land surface
 430 differences over the selected profiles BC (a) and HI (b). The locations of BC and HI are
 431 shown in Fig. 7a.

432 Checkpoints B, C, H, and I are denoted by yellow placemarks.

433 **4.3 Relationships between Subsidence and Land Cover**

434 Based on the land cover pattern of the study area, the standard NLCD land cover
435 categories were re-classified as developed building area, barren land, forest area, grassland
436 area, wetland area, and open water (Fig. 10). Developed areas included four classes based on
437 percent impervious surface coverage: open space area (1%-20%), low-intensity area
438 (20%-49%), medium intensity area (50-79%), and high-intensity area (80%-100%). This
439 study analyzed the subsidence (Fig.4a and Fig.5) distribution for different land cover types
440 (Fig. 10) over the entire study area. Results showed relatively high subsidence velocities in
441 grassland, forest, wetlands, and barren land (Fig. 11). By contrast, the classes of developed
442 areas had relatively low subsidence velocities. In particular, the developed high-intensity area
443 was associated with the lowest subsidence velocities among all categories (Fig. 11). The
444 velocities based on Sentinel-1 analysis were more dispersed than that from PALSAR-1
445 analysis for each land type (Fig. 11c and 11d).

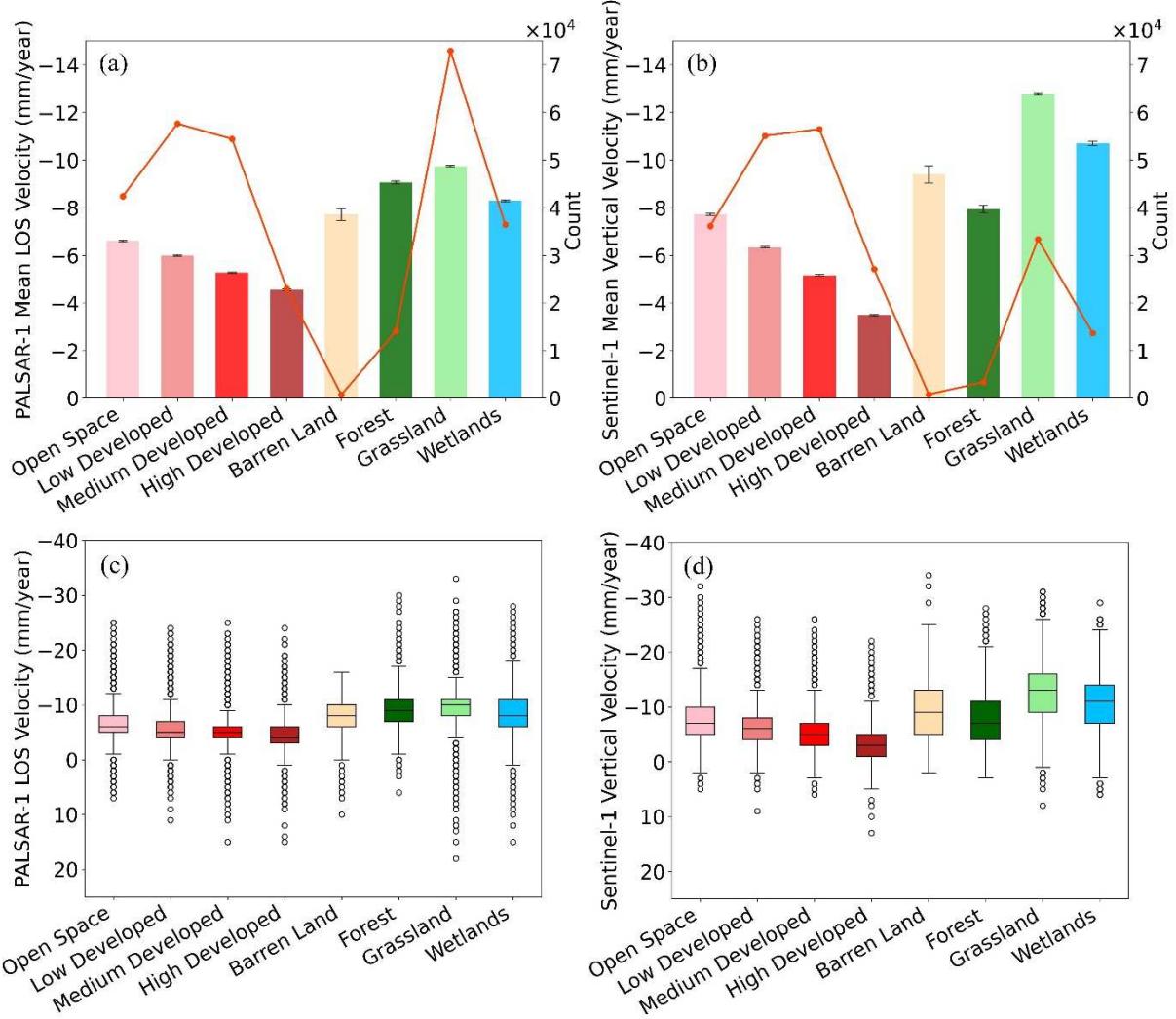
446



447

448 **Figure 10.** Land cover of the study area based on NLCD 2019.

449



450

451 **Figure 11.** PALSAR-1 mean LOS velocities (a) and Sentinel-1 mean vertical velocities (b)

452 for different land cover types. The 95% confidence intervals are computed as 1.96 standard

453 errors for each land type. The red line represents the number of pixels. Subplots c and d show

454 the interquartile ranges of PALSAR-1 LOS velocities and Sentinel-1 vertical velocities for

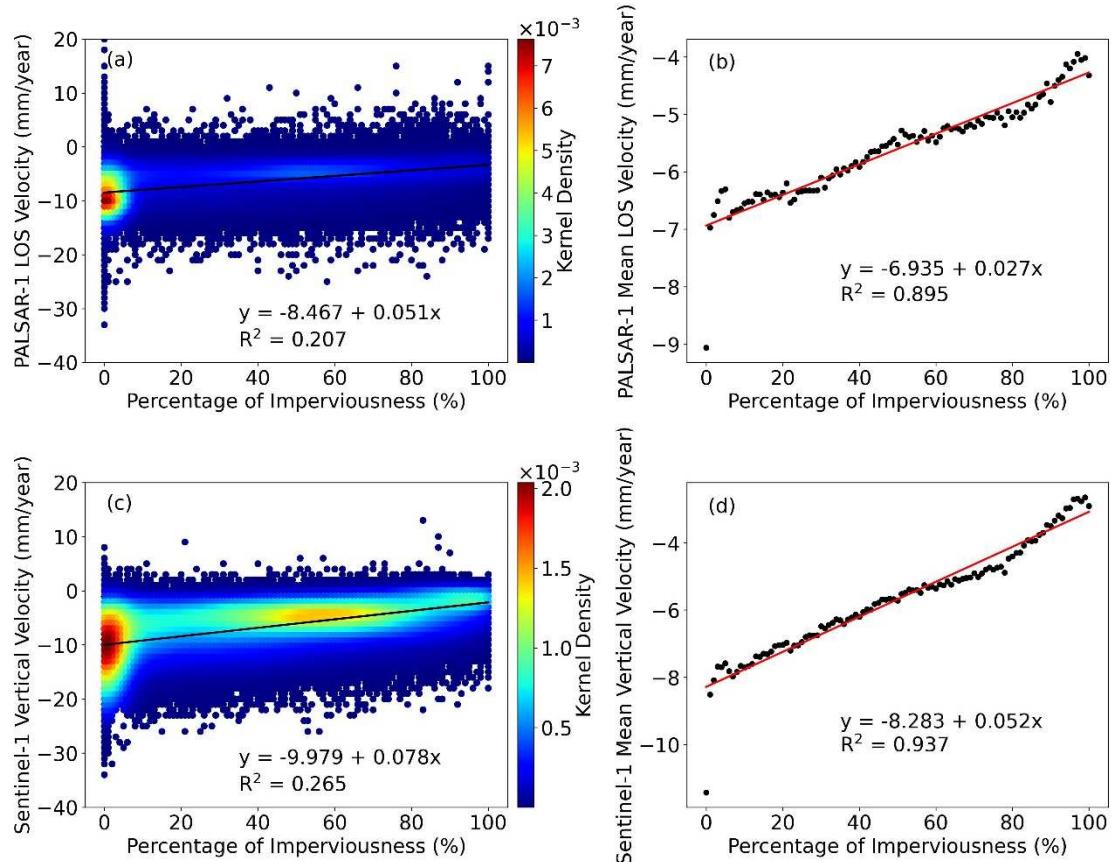
455 different land cover types, respectively.

456

457 This study then used linear regression to explore the relationship between the percent

458 surface imperviousness (Fig. 10) and subsidence velocities (Fig. 4a and Fig. 5) at two

459 different scales (Fig. 12) over the entire study area. First, for all individual 30-m pixels, the
460 least squares polynomial fit (first degree) was applied to model the relationship between the
461 percent surface imperviousness and subsidence velocities (Fig. 12a and 12c). Results indicate
462 that surface imperviousness was negatively correlated with the magnitude of subsidence
463 velocities derived from both PALSAR-1 images ($R^2 = 0.207$) and Sentinel-1 images ($R^2 =$
464 0.265). Second, 30-m pixels with the same percent imperviousness value were extracted and
465 clustered in 1% intervals from 0% to 100%, resulting in 100 clusters in which each cluster
466 with the same imperviousness value included many pixels with various subsidence velocities.
467 This study calculated the mean subsidence velocities for the resulted 100 clusters. Then, for
468 the clustering results, the least squares polynomial fit (first degree) was used again to model
469 the relationship between the percent surface imperviousness and the mean subsidence
470 velocities (Fig. 12b and 12d). Results showed that the clustering procedure led to higher
471 correlations between surface imperviousness and subsidence velocities for both PALSAR-1
472 ($R^2 = 0.895$) and Sentinel-1 ($R^2 = 0.937$).



473

474 **Figure 12.** Relationships between percent impervious coverage and subsidence velocities:
 475 PALSAR-1 LOS velocities at (a) the pixel level and (b) the cluster level; Sentinel-1 vertical
 476 velocities at (c) the pixel level and (d) the cluster level. Black lines (a and c) and red lines (b
 477 and d) indicate linear fit.

478

479 **5. Discussion**

480 **5.1 Improvements in Existing Coastal Subsidence Investigation**

481 Coastal subsidence studies often have high expectations of spatial resolution and vertical
 482 accuracy to meet the requirements of various coastal studies such as flood risk analysis,
 483 shoreline erosion control, etc. InSAR works well in monitoring the gradual land subsidence

484 with high accuracy over the coastal areas (Higgins et al. 2014). However, it cannot capture
485 significant surface displacements in a short time due to decorrelation. On the other hand,
486 airborne LiDAR can monitor the land surface difference with a high spatial resolution (Jones
487 et al. 2013). In this study, airborne LiDAR datasets contributed to a 1-m land surface
488 difference mapping with about 10 cm vertical accuracy. Land surface change includes the
489 accumulation of gradual land subsidence and land displacements induced by human activities
490 and other surface processes. The results of this study indicate the unique benefits of
491 combining InSAR and airborne LiDAR measurements to improve the understanding of the
492 spatiotemporal pattern of subsidence.

493 From the spatial perspective, InSAR analysis based on PALSAR-1 and Sentinel-1
494 images was constrained by its relatively low spatial resolution. However, the detailed surface
495 changes derived from the 1-m airborne LiDAR results can contribute to a better
496 understanding of the spatial variability of land deformation within the 30-m InSAR pixel. As
497 demonstrated in the first example in Fig. 13, the gradual subsidence over a piece of land with
498 some grasses was consistently captured in both InSAR and airborne LiDAR results (Fig. 13a).
499 PALSAR-1 and Sentinel-1 results indicated moderate subsidence rates of -0.9 to -1.5
500 cm/year, while airborne LiDAR results also suggested a moderate magnitude of the total
501 surface change between -0.1 to -0.3 m over 12 years. In addition to the consistent
502 characterization of an overall moderate subsidence process, the airborne LiDAR result
503 revealed a higher degree of spatial heterogeneity. Besides, for areas with significant surface
504 displacements over a short time which InSAR cannot capture, the additional surface change

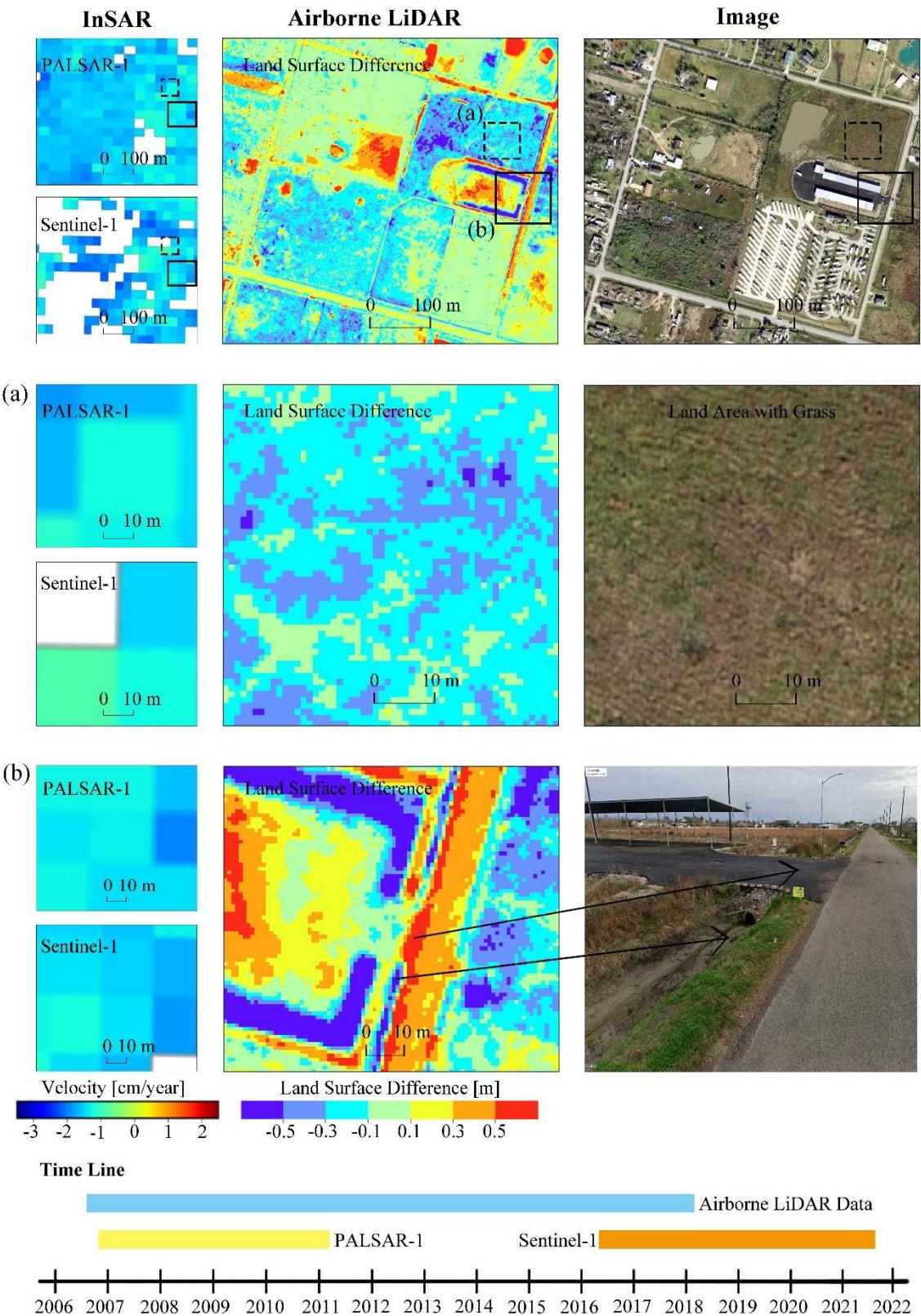
505 information from airborne LiDAR could contribute to the analysis at the block or even
506 building scale, playing a critical role in high-resolution hydraulic and hydrologic simulations
507 in coastal regions. These relatively large surface displacements occur most likely due to
508 human activities changing the structure of the upper ground such as modifications related to
509 roads and drainage structures construction or building foundations. The second example (Fig.
510 13b) illustrated a large surface deformation caused by the construction of a stormwater
511 drainage system for a new RV parking lot. It involved some local elevation decreases due to
512 the elevation excavation of a stormwater ditch and some local elevation increases caused by
513 the placement of a culvert (Fig. 13b). These changes were clearly delineated in the airborne
514 LiDAR results and obviously not associated with gradual subsidence, and they were not
515 identifiable in the InSAR results. Overall, without the complementary high-resolution
516 information from airborne LiDAR results, PALSAR-1 and Sentinel-1 analysis excluded
517 important surface changes within a coarse InSAR pixel could not address significant land
518 deformation over the small dimensions of natural and built features in a heterogeneous urban
519 environment.

520 From the temporal perspective, subsidence velocities derived from PALSAR-1 and
521 Sentinel-1 images in non-overlapping periods validated and complemented the land surface
522 differences revealed by airborne LiDAR results and vice versa. In this study, InSAR analysis
523 provided subsidence velocities in 2006-2011 (PALSAR-1, Fig. 7c) and 2016-2021 (Sentinel-1,
524 Fig. 7d). Airborne LiDAR-derived land surface change estimated the total surface change
525 between 2006 and 2018 (Fig. 7b). Our analysis showed that InSAR results and airborne

526 LiDAR measurements fit relatively well along the selected profiles (Fig. 8). It implies that we
527 can deduce a large land surface difference based on high PALSAR-1 and/or Sentinel-1
528 subsidence velocities as well as deduce high subsidence velocities from the large land surface
529 change. The validation between high subsidence velocities and large land surface differences
530 could be achieved. Besides, two temporal InSAR results complement the airborne LiDAR
531 results by offering the velocities variation in the different periods. The analysis across the
532 partially overlapping monitoring periods of airborne LiDAR, PALSAR-1, and Sentinel-1
533 allowed for the investigation of possible changes that took place within 2011-2016, i.e., the
534 gap between the ALOS-1 and Sentinel-1 results. For example, the subsidence velocities of
535 section AB (Fig. 7a) exceeded -15 mm/year in 2006-2011 and 2016-2021 (Fig. 8a and 8b).
536 However, section AB presented limited negative land surface differences from airborne
537 LiDAR results, which may imply some uplift from 2011 to 2016. Such partially overlapping
538 periods of InSAR and airborne LiDAR measurements would be common in many regions,
539 given the global availability of ALOS-1 and Sentinel-1 data. As a result, the unique advantage
540 of including airborne LiDAR measurements could be applicable to other coastal regions.

541 Finally, high accuracy and resolution topography information is essential for flood risk
542 analysis, shoreline erosion control, etc. This is particularly true for coastal plains with gentle
543 slopes. A slight variation in the subsidence rates may significantly impact the calculations of
544 flow directions and paths in hydrological and hydraulic simulations that are based on the
545 subsidence-corrected DEMs. For such simulations in urban watersheds along the Texas Gulf
546 Coast, to our knowledge, DEMs with spatial resolutions from 1-m to 10-m and vertical

547 accuracies below 10 cm would be desired in most cases. Some present studies try to apply
548 high-resolution airborne LiDAR topography to the hydrological model for improving urban
549 flooding analysis and apply UAV-collected high-resolution images for shoreline detection
550 (Trepekli et al. 2022). This study offers 1-m land surface change results and cm-level velocities,
551 which will contribute to a much more robust analysis.



552

553 **Figure 13.** Examples of the multiscale measurements: (a) a grassland area (dashed box) with

554 details presented in the second row; and (b) a developed area (solid box) with details

555 presented in the third row. In example (a), the 0.3-m HxGN aerial image shows the landscape.
556 In example (b), black arrows indicate the ditch and the culvert. This area is also marked in
557 Figure 7b.

558

559 **5.2 Limitation and Potential of Airborne LiDAR for Coastal Surface Change Mapping**

560 Point positioning accuracy of airborne LiDAR systems is influenced by system
561 calibration, time synchronization between system components, errors in the navigation
562 solution (position and attitude errors), range measurement errors, etc. (May¹ and Toth 2007),
563 which lead to a relatively low vertical accuracy (10–15 cm) of airborne LiDAR measurements.
564 The limitation of low vertical accuracy results in the fact that airborne LiDAR is a less
565 popular option for land subsidence monitoring under the conventional assumption that the
566 total subsidence will be equal to or even smaller than the errors, as well as when the
567 decision-makers are seeking very high accuracy. However, InSAR results have indicated
568 substantial subsidence rates in our study area, up to –22 mm/year in 2006-2011 (Fig. 7c) and
569 up to –25 mm/year in 2016-2021 (Fig.7d), as well as the broader Houston region, up to –30
570 mm/year in 2004-2011 (Qu et al. 2015). Given such large subsidence rates, the vertical
571 accuracy of airborne LiDAR would no longer be a constraint to decision-makers interested in
572 identifying significant surface deformation. Our results found that most highly subsided areas
573 from InSAR also showed relatively large surface changes from airborne LiDAR, between -0.1
574 m to -0.3 m during 2006-2018 (Fig. 7). The further comparison between InSAR results and

575 airborne LiDAR results along the selected profiles revealed a very similar trend in most areas
576 (Fig. 8). This proved the reliability of airborne LiDAR-derived results to some extent.
577 Furthermore, our results demonstrated that airborne LiDAR monitored the land surface
578 change from gradual land subsidence and land displacements in coastal regions. In particular,
579 land displacements caused by human activities and other surface processes tend to have
580 relatively large deformation over a short time which conventional InSAR methods cannot
581 capture.

582 While LiDAR measurements are still limited by the low vertical accuracy, few SAR
583 images could match the spatial resolution of airborne LiDAR measurements. New satellite
584 images (e.g., TerraSAR-X images) have improved spatial resolutions, but their coverage and
585 availability are far from that of Sentinel-1, resulting in relatively coarse spatial resolution of
586 InSAR analysis for lots of coastal studies. Therefore, it would be valuable to explore airborne
587 LiDAR data when these data can be readily obtained in areas that do not have high-resolution
588 SAR images yet. The spatial variability information of surface change derived from
589 multi-temporal airborne LiDAR data, even if the actual measurements are not as precise as
590 InSAR, provides invaluable higher resolution complementary information, especially for the
591 cases with large velocities that are the most important. It will benefit a variety of coastal
592 studies, particularly on the resilience of our coastal infrastructure systems, e.g., the design of
593 sea walls. This is also adaptive to flooding studies that typically require high-resolution
594 elevation information. As shown in Fig. 13b, the drainage ditch identified from the airborne
595 LiDAR results will contribute to the flooding analysis.

596 High-quality airborne LiDAR data spanning a long time over the coastal area is not
597 widely distributed. Fortunately, more and more institutes, such as USGS, are opening their
598 data nowadays. Airborne LiDAR data will be a good source of terrain information for surface
599 change analysis over coastal areas with relatively large subsidence rates. Acting as
600 complementary information, airborne LiDAR will be a potential opportunity for coastal
601 studies.

602

603 **5.3 Forest Influence over the InSAR Analysis**

604 The wavelength of radar waves plays an important role in applications of InSAR over
605 densely forested areas (Xu et al. 2021). The penetration capability of short-wavelength (3.1
606 cm for X-band, 5.6 cm for C-band) radar pulses is limited, which leads to the detection of the
607 forest canopies rather than the bare land surface. As a result, decorrelation would occur in
608 InSAR analysis, leading to no subsidence results over the densely forested area, as shown in
609 the forest area (Fig. 10), where few pixels (Fig. 11b) obtained subsidence results based on
610 C-band Sentinel-1 images (Fig. 4c and 4e). Penetration capacity can be influenced by forest
611 density as well as forest canopy height (Ni et al. 2014). Therefore, subsidence velocities over
612 the forest area (Fig. 11b) in this study were likely measured from the ground surface over the
613 low-density forest area. Long-wavelength (24.2 cm for L-band, 69.72 cm for P-band) radar
614 pulses have better penetration capacity and can sense further into forest canopies. The
615 calculated subsidence velocities in the forest area (Fig. 11a) based on L-band PALSAR-1

616 images had relatively large uncertainties (Fig. 4b), likely caused by low coherence (Shirzaei et
617 al. 2020). Besides, a system bias, referred to as the fading signal, has been reported and
618 discussed when multiple multi-looked short temporal baseline interferograms are used to
619 overcome the rapid loss of coherence in long-term interferograms over the forest and densely
620 vegetated areas (Ansari et al. 2021; De Luca et al. 2022; Pepe et al. 2015). This phase bias
621 might be a further possible source of uncertainty in short-time SBAS InSAR analysis.

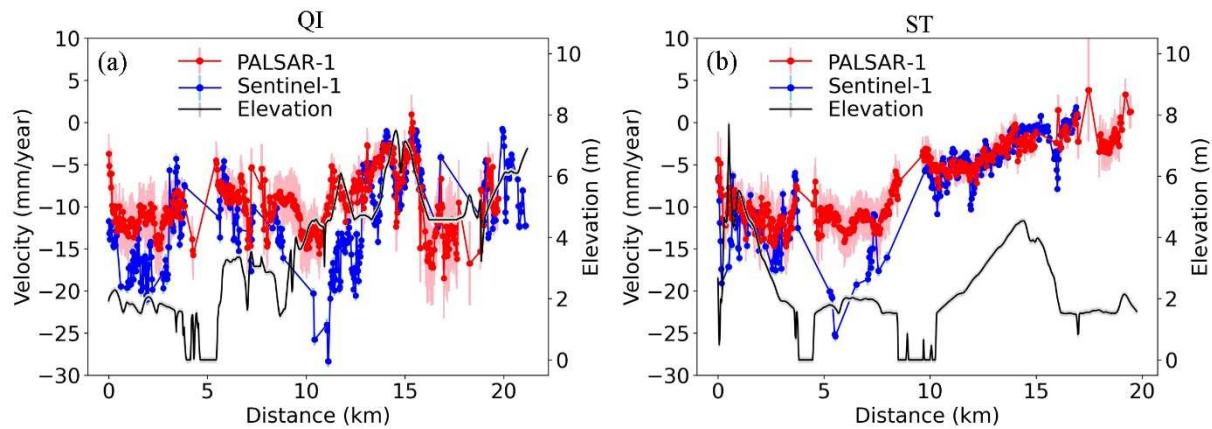
622

623 **5.4 Subsidence and Topography Patterns**

624 Topography is essential for flooding risk assessment and management over coastal
625 regions (Miller and Shirzaei 2021). Low-lying coastal areas are more prone to inundation.
626 Subsidence over the low elevation coastal area potentially exacerbates the situation. In this
627 study, subsidence velocities and elevation along the two profiles (Fig. 15a, QI, ST) over the
628 study area were extracted (Fig. 14). Sentinel-1-derived velocities in the vertical direction were
629 higher than PALSAR-1-derived LOS velocities from 2006 to 2011 in the 0 - 12 km section of
630 the profile QI (Fig. 14a). The elevation was lower than 5 m in the QI section 0 - 12 km.
631 Velocities for both sensors increased in QI section 15 - 20 km, where elevation declined
632 nearly 3 m in a similar trend (Fig. 14a). Along with the profile QI, the low elevation area
633 exhibited relatively high velocities, especially during the Sentinel-1 monitoring period. The
634 elevation along the profile ST was relatively lower than QI (Fig. 14b). High velocities
635 appeared in ~5 km, where the elevation was almost lower than 2 m. PALSAR-1 derived LOS

636 velocities along the ST showed a similar trend to the vertical velocities from Sentinel-1
637 analysis. By analyzing the subsidence performance over the topographic surface, this study
638 found that some low areas subsided at a relatively high velocity, especially in recent years,
639 which could contribute to flood vulnerability and risk.

640



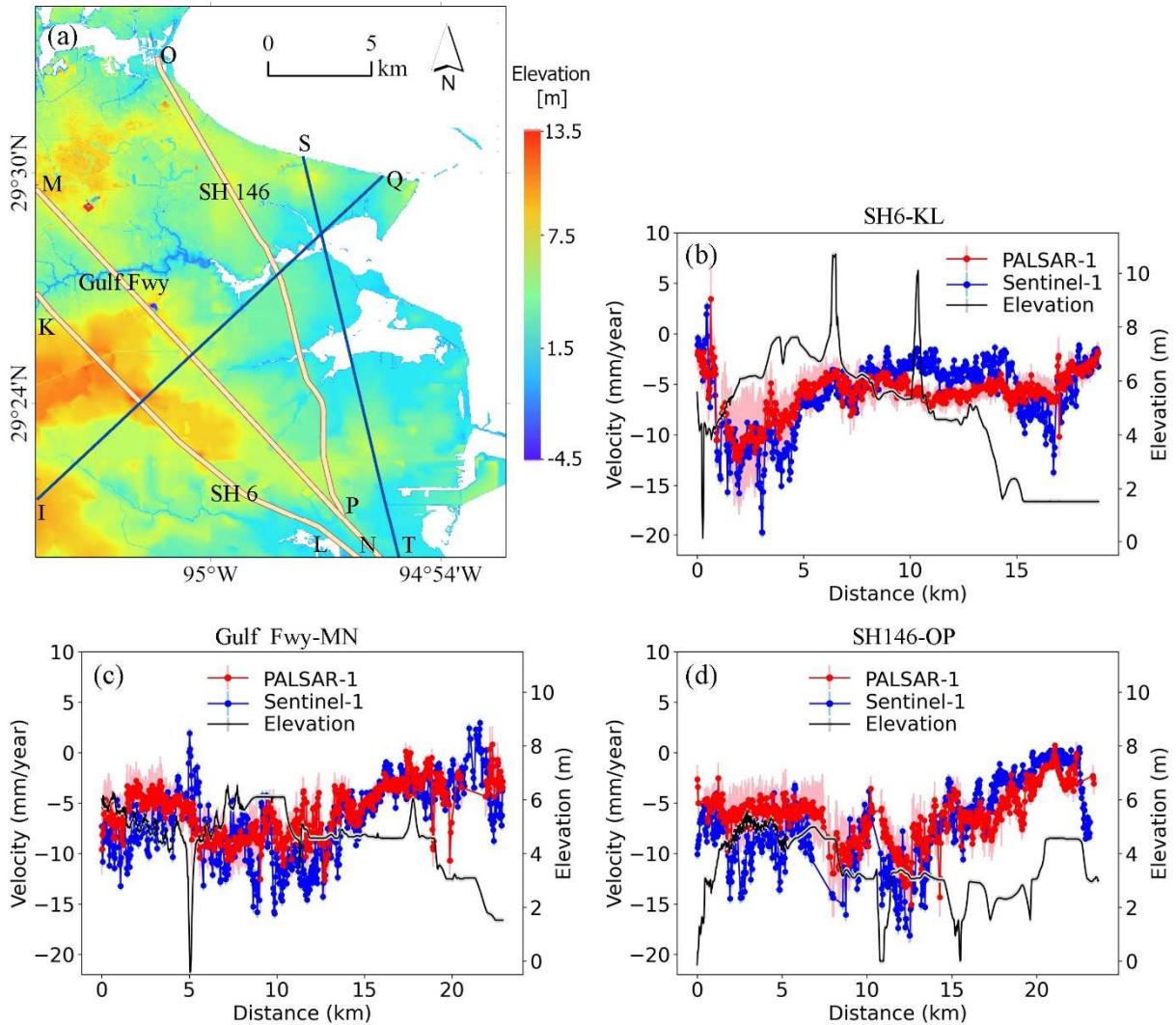
641
642 **Figure 14.** PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard
643 deviation (pink bar), Sentinel-1 vertical velocities (blue line) with standard deviation (light
644 blue bar), and elevation (black line with vertical accuracy shown as gray bar) along the
645 transects QI and ST. The locations of the transects are shown in Figure 15a.

646

647 **5.5 Subsidence along Highways**

648 Many low-lying sections of highways are susceptible to flood inundation. Land
649 subsidence could increase their flood vulnerability. This study examined the spatial pattern of
650 subsidence along three highways across the study area (Fig. 15). The highways were
651 digitalized in the Google Earth image and overlaid on the airborne LiDAR-derived DEM (Fig.

652 15a). Changes in elevation along the highway tracks from the northwest to the southeast were
653 illustrated in black (Fig. 15b, 15c, and 15d). Our results demonstrated that variations of
654 PALSAR-1 LOS velocities and Sentinel-1 velocities in the vertical direction along the
655 highway appeared to not correlate with elevation information. In particular, SH 6 underwent a
656 high subsidence velocity (>10 mm/year) over the 0-to-5 km section and lower velocities
657 around -5 mm/year for the rest of the track in both PALSAR-1 and Sentinel-1 results (Fig.
658 15b). Along Gulf Fwy, the estimated subsidence velocities appeared to be stable for the first
659 few kilometers then double from about -5 mm/year to -10 mm/year around the 5 km mark,
660 and then slowly increased for the rest of the track (Fig. 15c). SH 146 experienced high
661 subsidence velocities (~15 mm/year) in the 10-to-15 km section based on Sentinel-1 and
662 PALSAR-1 results (Fig. 15d). However, some low-lying sections of the highways underwent
663 relatively large subsidence velocities, such as around 17 km of the State Highway 6 (SH 6)
664 subsided up to 10mm/year with the elevation below 2 m, around 20 km mark of Gulf Fwy
665 subsided approximately 5-10 mm/year with elevation about 3 m, around 12 km of the State
666 Highway 146 (SH 146) subsided approximately 15 mm/year with elevation about 3 m.
667 Besides, Similar patterns (increasing-to-decreasing velocities along the northwest-southeast
668 direction) were identified in the PALSAR-1 and Sentinel-1 results for all selected highways.



669

670 **Figure 15.** (a) Digitalized highways and selected profiles over the airborne LiDAR-derived
 671 DEM. PALSAR-1 LOS velocities (red line) with standard deviation (pink bar), Sentinel-1
 672 velocities in the vertical direction (blue line) with standard deviation (light blue bar), and
 673 elevation (black line with vertical accuracy shown as gray) over the (b) State Highway 6
 674 (SH6)-KL, (c) Gulf Fwy-MN, and (d) State Highway 146 (SH 146)-OP.

675

676 **6. Conclusions**

677 The study integrated SBAS InSAR, airborne LiDAR, and land cover data to investigate
 678 coastal subsidence around Eagle Point in Texas, where a high RSLR was recorded at a tide

679 gauge station. Our results revealed that the subsidence velocities were up to -33 mm/year in
680 the LOS direction in 2006-2011 from ALOS-1 PALSAR-1 images and up to -34 mm/year in
681 the vertical direction in 2016-2021 from Sentinel-1 images. The low vertical accuracy of
682 airborne LiDAR measurements has limited its application for land subsidence mapping.
683 However, this study found that airborne LiDAR could be a complementary means to provide
684 information on high-resolution spatial variability of coastal subsidence over the highly
685 subsided area. Our study is unique in terms of using both the InSAR-derived velocities from
686 images time series and LiDAR-derived surface changes from time-lapsed observations.
687 Comparing the InSAR results to 1-m airborne LiDAR measurements showed good agreement
688 along the selected profiles, i.e., areas with higher subsidence velocities based on InSAR
689 tended to have larger surface change based on airborne LiDAR and vice versa. More
690 importantly, the comparison revealed that airborne LiDAR results could be complementary to
691 InSAR results by shedding light on the subpixel variations of InSAR results and identifying
692 significant surface changes that InSAR cannot capture. Airborne LiDAR data are not globally
693 available like SAR images yet, but the availability of airborne LiDAR data is improving
694 rapidly at local or regional levels in many countries. Furthermore, by incorporating land cover
695 data, this study found that the subsidence velocities tended to be higher in forest, grassland,
696 and wetlands than in developed urban areas over the study area. In addition, the subsidence
697 velocities appeared to be negatively correlated with the percent impervious coverage.
698 Overall, the results of this study show that the high vertical accuracy InSAR results and
699 the high spatial resolution airborne LiDAR data could be complementary in subsidence

700 monitoring. An improved characterization of subsidence using both InSAR and airborne
701 LiDAR results could provide valuable information to support a variety of coastal studies on
702 flood vulnerability, infrastructure reliability, and erosion control. Our findings indicate the
703 need and feasibility of a multi-resolution InSAR-LiDAR fusion for mapping coastal
704 subsidence mapping with both high accuracy and high resolution.

705

706 **Acknowledgments**

707 We thank four anonymous reviewers and the associate editor for their insightful comments.
708 This work was jointly supported by the National Science Foundation (NSF) under grants
709 2050986 and 2112631 to Texas A&M University-Corpus Christi, the Conrad Blucher Institute,
710 the U.S. Department of Commerce-National Oceanic and Atmospheric Administration (NOAA)
711 through the University of Southern Mississippi (USM) under the terms of Agreement (No.
712 NA13NOS4000166), and the China Scholarship Council (No. 201906180081). Any opinions,
713 findings, conclusions, or recommendations expressed in this material are those of the authors
714 and do not necessarily reflect the views of NSF, NOAA, USM, and CSC.

715

716 **References**

717 Ansari, H., De Zan, F., & Parizzi, A. (2021). Study of Systematic Bias in Measuring Surface
718 Deformation With SAR Interferometry. *IEEE Transactions on Geoscience and Remote Sensing*,
719 59, 1285-1301.

720 Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface
721 deformation monitoring based on small baseline differential SAR interferograms. *IEEE*
722 *Transactions on Geoscience and Remote Sensing*, 40, 2375-2383.

723 Blewitt, G., Hammond, W.C., & Kreemer, C. (2018). Harnessing the GPS data explosion for
724 interdisciplinary science. *Eos*, 99, 485.

725 Bürgmann, R., Rosen, P.A., & Fielding, E.J. (2000). Synthetic aperture radar interferometry to
726 measure Earth's surface topography and its deformation. *Annual review of earth and planetary*
727 *sciences*, 28, 169-209.

728 Chen, C.W., & Zebker, H.A. (2002). Phase unwrapping for large SAR interferograms:
729 Statistical segmentation and generalized network models. *IEEE Transactions on Geoscience*
730 *and Remote Sensing*, 40, 1709-1719.

731 Coplin, L.S., & Galloway, D. (1999). Houston-Galveston, Texas. *Land subsidence in the*
732 *United States: US geological survey circular* (pp. 35-48).

733 De Luca, C., Casu, F., Manunta, M., Onorato, G., & Lanari, R. (2022). Comments on “Study of
734 Systematic Bias in Measuring Surface Deformation With SAR Interferometry”. *IEEE*
735 *Transactions on Geoscience and Remote Sensing*, 60, 1-5.

736 Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S.W.,
737 Wdowinski, S., & Whitman, D. (2006). Subsidence and flooding in New Orleans. *Nature*, 441,
738 587-588.

739 Ezer, T., & Atkinson, L.P. (2014). Accelerated flooding along the U.S. East Coast: On the
740 impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations.
741 *Earth's Future*, 2, 362-382.

742 Fattah, H., & Amelung, F. (2015). InSAR bias and uncertainty due to the systematic and
743 stochastic tropospheric delay. *Journal of Geophysical Research: Solid Earth*, 120, 8758-8773

744 Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. *IEEE*
745 *Transactions on Geoscience and Remote Sensing*, 39, 8-20.

746 Fialko, Y., & Simons, M. (2001). The complete (3-D) surface displacement field in the
747 epicentral area of the 1999MW7.1 Hector Mine Earthquake, California, from space geodetic
748 observations. *Geophysical Research Letters*, 28, 3063-3066.

749 Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V.W., Dangendorf,
750 S., Hogarth, P., Zanna, L., Cheng, L., & Wu, Y.H. (2020). The causes of sea-level rise since
751 1900. *Nature*, 584, 393-397.

752 Global Ocean Commission (2014). From decline to recovery: A rescue package for the global
753 ocean. *Global Ocean Commission*.

754 Higgins, S.A., Overeem, I., Steckler, M.S., Syvitski, J.P.M., Seeber, L., & Akhter, S.H. (2014).
755 InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta,
756 Bangladesh. *Journal of Geophysical Research: Earth Surface*, 119, 1768-1781.

757 Huang, B., Shu, L., & Yang, Y.S. (2012). Groundwater Overexploitation Causing Land
758 Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling. *Water*
759 *Resources Management*, 26, 4225-4239.

760 Jin, S., Homer, C., Yang, L., Danielson, P., Dewitz, J., Li, C., Zhu, Z., Xian, G., & Howard, D.

761 (2019). Overall Methodology Design for the United States National Land Cover Database 2016

762 Products. *Remote Sensing*, 11, 2971.

763 Jolivet, R., Grandin, R., Lasserre, C., Doin, M.P., & Peltzer, G. (2011). Systematic InSAR

764 tropospheric phase delay corrections from global meteorological reanalysis data. *Geophysical*

765 *Research Letters*, 38, L17311.

766 Jones, B.M., Stoker, J.M., Gibbs, A.E., Grosse, G., Romanovsky, V.E., Douglas, T.A.,

767 Kinsman, N.E.M., & Richmond, B.M. (2013). Quantifying landscape change in an arctic

768 coastal lowland using repeat airborne LiDAR. *Environmental Research Letters*, 8.

769 Leatherman, S.P., Zhang, K., & Douglas, B.C. (2000). Sea level rise shown to drive coastal

770 erosion. *Eos, Transactions American Geophysical Union*, 81, 55-57.

771 Liu, Y., Li, J., Fasullo, J., & Galloway, D.L. (2020). Land subsidence contributions to relative

772 sea level rise at tide gauge Galveston Pier 21, Texas. *Scientific Reports*, 10, 1-11.

773 May¹, N.C., & Toth, C.K. (2007). Point positioning accuracy of airborne LiDAR systems: A

774 rigorous analysis. *International Archives of Photogrammetry, Remote Sensing and Spatial*

775 *Information Sciences, Munich, Germany*, 19-21.

776 Meredith, M., M. Sommerkorn, S. Cassotta, C. Derksen, A. Ekaykin, A. Hollowed, G. Kofinas,

777 A. Mackintosh, J. Melbourne-Thomas, M.M.C. Muelbert, G. Ottersen, H. Pritchard, & E.A.G.

778 Schuur. (2019). Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a

779 Changing Climate.

780

781 Miller, M.M., & Shirzaei, M. (2019). Land subsidence in Houston correlated with flooding
782 from Hurricane Harvey. *Remote Sensing of Environment*, 225, 368-378.

783 Miller, M.M., & Shirzaei, M. (2021). Assessment of Future Flood Hazards for Southeastern
784 Texas: Synthesizing Subsidence, Sea-Level Rise, and Storm Surge Scenarios. *Geophysical
785 Research Letters*, 48, 2021GL092544.

786 Neumann, B., Vafeidis, A.T., Zimmermann, J., & Nicholls, R.J. (2015). Future coastal
787 population growth and exposure to sea-level rise and coastal flooding-a global assessment.
788 *PLoS One*, 10, e0118571.

789 Ni, W., Zhang, Z., Sun, G., Guo, Z., & He, Y. (2014). The Penetration Depth Derived from the
790 Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest
791 Biomass. *Remote Sensing*, 6, 7303-7319.

792 Okyay, U., Telling, J., Glennie, C.L., & Dietrich, W.E. (2019). Airborne lidar change detection:
793 An overview of Earth sciences applications. *Earth-Science Reviews*, 198.

794 Pepe, A., Yang, Y., Manzo, M., & Lanari, R. (2015). Improved EMCF-SBAS Processing Chain
795 Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline
796 Multi-Look DInSAR Interferograms. *IEEE Transactions on Geoscience and Remote Sensing*,
797 53, 4394-4417.

798 Qu, F., Lu, Z., Zhang, Q., Bawden, G.W., Kim, J.-W., Zhao, C., & Qu, W. (2015). Mapping
799 ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. *Remote
800 Sensing of Environment*, 169, 290-306.

801 Rosen, P.A., Gurrola, E., Sacco, G.F., & Zebker, H. (2012). The InSAR scientific computing
802 environment. In, *EUSAR 2012; 9th European conference on synthetic aperture radar* (pp.
803 730-733): VDE.

804 Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M.L., Wolff, C., Lincke, D., McOwen,
805 C.J., Pickering, M.D., Reef, R., Vafeidis, A.T., Hinkel, J., Nicholls, R.J., & Brown, S. (2018).
806 Future response of global coastal wetlands to sea-level rise. *Nature*, *561*, 231-234.

807 Shirzaei, M., Freymueller, J., Törnqvist, T.E., Galloway, D.L., Dura, T., & Minderhoud, P.S.J.
808 (2020). Measuring, modelling and projecting coastal land subsidence. *Nature Reviews Earth &*
809 *Environment*, *2*, 40-58.

810 Trepekli, K., Balstrøm, T., Friberg, T., Fog, B., Allotey, A.N., Kofie, R.Y., & Møller-Jensen, L.
811 (2022). UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale
812 urban flood risk assessment. *Natural Hazards*, *1-29*.

813 Wang, G., Turco, M., Soler, T., Kearns, T.J., & Welch, J. (2017). Comparisons of OPUS and
814 PPP Solutions for Subsidence Monitoring in the Greater Houston Area. *Journal of Surveying*
815 *Engineering*, *143*, 05017005.

816 Wang, H., Wright, T.J., Yu, Y., Lin, H., Jiang, L., Li, C., & Qiu, G. (2012). InSAR reveals
817 coastal subsidence in the Pearl River Delta, China. *Geophysical Journal International*, *191*,
818 1119-1128.

819 Wickham, J., Stehman, S.V., Sorenson, D.G., Gass, L., & Dewitz, J.A. (2021). Thematic
820 accuracy assessment of the NLCD 2016 land cover for the conterminous United States. *Remote*
821 *Sensing of Environment*, *257*, 112357.

822 Wright, T.J., Parsons, B.E., & Zhong, L. (2004). Toward mapping surface deformation in three

823 dimensions using InSAR. *Geophysical Research Letters*, 31.

824 Xu, Y., Lu, Z., & Kim, J.-W. (2021). P-Band InSAR for Geohazard Detection over Forested

825 Terrains: Preliminary Results. *Remote Sensing*, 13, 4575.

826 Yunjun, Z., Fattah, H., & Amelung, F. (2019). Small baseline InSAR time series analysis:

827 Unwrapping error correction and noise reduction. *Computers & Geosciences*, 133, 104331.

828

829 **List of Figure Captions**

830

831 **Figure 1.** Study area: (a) SAR data coverage (black squares) over the elevation map around the
832 study area (red square); (b) a Google Earth image of the study area and the monthly mean RSLR
833 observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker
834 shows the location of the TXLM GPS station, and magenta dots denote the location of the
835 reference points for Sentinel-1 and ALOS-1 PALSAR-1 image processing.

836

837 **Figure 2.** Research framework.

838

839 **Figure 3.** Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with
840 the perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b) Sentinel-1
841 ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images.

842

843 **Figure 4.** LOS velocities and standard deviations derived from (a and b) PALSAR-1 ascending
844 images (2006-2011), (c and d) Sentinel-1 Path 136 ascending images (2016-2021), and (e and f)
845 Sentinel-1 Path 143 descending images (2016-2021).

846

847 **Figure 5.** The vertical components under the assumption of zero north-south motion in
848 2016-2021 based on Sentinel-1 ascending and descending LOS results (Fig. 4c and 4e).

849

850 **Figure 6.** Comparison of InSAR-derived cumulative subsidence to GPS measurements in the
851 vertical direction. The location of the TXLM GPS station is shown in Figure 1.

852

853 **Figure 7.** Detailed subsidence pattern of a selected area: (a) Google Earth image, (b) airborne
854 LiDAR-derived vertical surface differences, (c) vertical component based on PALSAR-1
855 results (assuming no east-west and north-south motions), and (d) vertical component based on
856 Sentinel-1 results (assuming no north-south motion). Figure 1b shows the location of this
857 area.

858

859 **Figure 8.** Comparison of InSAR and airborne LiDAR results along transect lines L1 (a and b)
860 and L2 (c and d). Error bars indicate standard deviations. The locations of the transect lines
861 are shown in Figure 7a.

862

863 **Figure 9.** Historical Google Earth images and airborne LiDAR-derived land surface
864 differences over the selected profiles BC (a) and HI (b). The locations of BC and HI are
865 shown in Fig. 7a.

866 Checkpoints B, C, H, and I are denoted by yellow placemarks.

867

868 **Figure 10.** Land cover of the study area based on NLCD 2019.

869

870 **Figure 11.** PALSAR-1 mean LOS velocities (a) and Sentinel-1 mean vertical velocities (b) for
871 different land cover types. The 95% confidence intervals are computed as 1.96 standard errors
872 for each land type. The red line represents the number of pixels. Subplots c and d show the
873 interquartile ranges of PALSAR-1 LOS velocities and Sentinel-1 vertical velocities for
874 different land cover types, respectively.

875

876 **Figure 12.** Relationships between percent impervious coverage and subsidence velocities:
877 PALSAR-1 LOS velocities at (a) the pixel level and (b) the cluster level; Sentinel-1 vertical
878 velocities at (c) the pixel level and (d) the cluster level. Black lines (a and c) and red lines (b and
879 d) indicate linear fit.

880

881 **Figure 13.** Examples of the multiscale measurements: (a) a grassland area (dashed box) with
882 details presented in the second row; and (b) a developed area (solid box) with details
883 presented in the third row. In example (a), the 0.3-m HxGN aerial image shows the landscape.
884 In example (b), black arrows indicate the ditch and the culvert. This area is also marked in
885 Figure 7b.

886

887 **Figure 14.** PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard
888 deviation (pink bar), Sentinel-1 vertical velocities (blue line) with standard deviation (light blue
889 bar), and elevation (black line with vertical accuracy shown as gray bar) along the transects QI
890 and ST. The locations of the transects are shown in Figure 15a.

891

892 **Figure 15.** (a) Digitalized highways and selected profiles over the airborne LiDAR-derived
893 DEM. PALSAR-1 LOS velocities (red line) with standard deviation (pink bar), Sentinel-1
894 velocities in the vertical direction (blue line) with standard deviation (light blue bar), and
895 elevation (black line with vertical accuracy shown as gray) over the (b) State Highway 6
896 (SH6)-KL, (c) Gulf Fwy-MN, and (d) State Highway 146 (SH 146)-OP.