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Abstract  

Land  subsidence  is  an  important  cause  of  relative  sea-level  rise  along  the  Gulf  Coast.  There  is  

a  lack  of  effective  monitoring  of  coastal  subsidence  with  high  accuracy  and  high  spatial  

resolution  for  improving  coastal  risk  assessment  and  mitigation.  This  study i s  the  first  attempt  
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21 methods  to  investigate  the  spatiotemporal  pattern  of  coastal  subsidence.  The  study  area  is  

around  Eagle  Point,  Texas,  a  region  known  for  its  fast  rate  of  relative  sea-level  rise  in  recent  

decades.  From  2006  to  2011,  the  line-of-sight  velocities  were  up  to  −33  mm/year  based  on  

ascending  ALOS-1  PALSAR-1  images.  From  2016  to  2021,  the  vertical  velocities  were  up  to  

−34 m m/year  based on a  scending  and de scending S entinel-1 i mages.  Additional  details  of  the  

subsidence  pattern  were  revealed  by  incorporating  the  surface  difference  derived  from  1-m  

airborne  LiDAR  results.  Comparisons  of  the  InSAR-derived  velocities  from  image  time  series  

and  the  LiDAR-derived  surface  changes  from  time-lapsed  observations  were  conducted  at  

different  spatial  levels  with  linkages  to  land  cover  patterns  and  topography.  The  results  

showed  that  local  subsidence  rates  could  vary  significantly  below  the  spatial  resolution  of  

InSAR  results,  indicating  a  valuable  role  of  airborne  LiDAR  results  in  extending  InSAR  

results  to  parcel  and  building  levels  and  explaining  subpixel  uncertainties.  Also,  subsidence  

appeared  stronger  in  vegetated  areas  than  in  developed  areas  and  negatively  correlated  with  

surface  imperviousness.  The  magnitude  of  subsidence  was  not  correlated  with  elevation  along  

selected  transect  lines.  Overall,  this  study  demonstrated  the  benefits  of  combining  InSAR  

results  with  other  geospatial  datasets  to  characterize  coastal  subsidence.  In  particular,  the  high  

vertical  accuracy  InSAR  results  and  the  high  spatial  resolution  airborne  LiDAR  results  could  

be  complementary,  highlighting  the  necessity  of  multi-resolution  data  fusion  to  support  

studies  on c oastal  flood v ulnerability, i nfrastructure  reliability,  and e rosion  control.  
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42 1.  Introduction  

More  than  600  million  people,  or  10  %  of  the  world’s  population,  live  in  low-lying  coastal  

areas  below  10  m  in  elevation  (Neumann  et  al.  2015).  These  coastal  areas  are  unique  

ecosystems  that  offer  habitats  for  many  species  and  provide  essential  services  to  human  

society. T he  market  value  of  marine  and c oastal  resources  was  estimated  at  $3  trillion  annually  

as  the  year  of  2015,  accounting  for  5%  of  global  gross  domestic  product  (Global  Ocean  

Commission 2014) .  Over  the  past  decades,  relative  sea-level  rise  (RSLR)  has  been  identified  

as  a  significant  threat  to  many  coastal  areas.  It  is  exacerbating  a  variety  of  environmental  and  

ecological  problems  such  as  coastal  flooding  (Ezer  and  Atkinson  2014),  wetland  loss  

(Schuerch  et  al.  2018),  and  coastal  erosion  (Leatherman  et  al.  2000),  endangering  local  

ecosystems  and  communities.  RSLR  is  the  combined  effect  of  sea-level  rise  and  land  

subsidence.  Potential  causes  of  sea-level  rise  include  meltwater  from  glaciers  and  ice  sheets,  

thermal  expansion  of  seawater,  and  transfers  of  water  from  storage  on  land  to  sea  (Frederikse  

et  al.  2020;  Meredith  et  al.  2019).  Land  subsidence  is  associated  with  natural  and  human  

causes  at  local  or  regional  scales,  such  as  groundwater  withdrawal,  oil  and  gas  extraction,  soil  

compaction,  fault  growth,  tectonic  activities,  and  other  natural  processes  (Coplin  and  

Galloway  1999).  

The  contribution  of  land  subsidence  to  RSLR  is  particularly  significant  along  the  Texas  

Gulf  Coast  (Coplin  and  Galloway  1999).  For  example,  the  contribution  of  land  subsidence  

was  estimated  to  be  76-85%  of  RSLR  from  1909  to  1992  and  decreased  to  30%  in  2018  at  

tide  gauge  Galveston  Pier  21,  Texas  (Liu  et  al.  2020),  over  an  area  known  for  significant  
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63 subsidence  (Miller  and  Shirzaei  2019;  Qu  et  al.  2015).  Driven  by  growing  concerns  about  the  

effect  of  land  subsidence  on  coastal  flooding,  shoreline  erosion,  and  fault  movement  (Coplin  

and  Galloway  1999;  Miller  and  Shirzaei  2021),  there  is  an  urgent  need  for  effective  

characterization  of  land  subsidence  to  improve  risk  management  strategies  for  Texas  coastal  

areas.  

Traditional  efforts  of  subsidence  analysis  rely  on  ground-based  techniques.  For  example,  

geodetic  surveying m ethods  such  as  leveling ha ve  been  used  to  measure  the  vertical  change  of  

the  ground  surface  at  the  local  scale.  Extensometers  have  also  been  used  to  measure  aquifer  

compaction  and  expansion  for  estimating  subsidence  around  wells  (Huang  et  al.  2012),  but  

the  low  spatial  coverage  of  extensometers  hinders  the  understanding  of  the  spatial  variations  

of  regional  subsidence.  Another  method  for  subsidence  monitoring  is  the  global  navigation  

satellite  system  (GNSS)  (Wang  et  al.  2017).  In  particular,  continuous  GNSS  stations,  such  as  

NOAA’s  continuously  operating  reference  station  (CORS)  network,  can  offer  positioning  

observations  with  high  accuracy,  but  the  results  are  only  valid  for  a  limited  area  around  the  

stations.   

Geodetic  remote  sensing  techniques  can  continuously m onitor  the  dynamic  displacement  

of  the  ground  surface  and  provide  a  new  means  to  quantify  land  subsidence.  In  particular,  the  

interferometric  synthetic  aperture  radar  (InSAR)  has  been  proven  to  be  an  effective  tool  to  

map  land  subsidence  with  centimeter-to-millimeter  accuracy  over  a  large  geospatial  extent  

(Bürgmann  et  al.  2000).  It  compares  two  or  more  synthetic  aperture  radar  (SAR)  images  that  

are  collected  at  different  times  over  the  same  region  to  quantify t he  change  of  ground  surface.  
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84 Due  to  the  growing  availability  of  high-quality  SAR  datasets,  InSAR  has  been  increasingly  

used  in  coastal  subsidence  studies  (Dixon  et  al.  2006;  Wang  et  al.  2012).  For  example,  Qu  et  

al.  (2015)  mapped  the  line  of  sight  (LOS)  subsidence  in t he  Galveston-Houston  region,  Texas,  

using  InSAR  based  on  ERS,  Envisat  ASAR,  and  ALOS-1  PALSAR-1  images  from  1993  to  

2011.  Miller  and  Shirzaei  (2021)  generated  the  vertical  land  subsidence  rate  over  this  area  

based  on  ALOS-1  PALSAR-1  and  Sentinel-1  images  between  2007  and  2019  and  GNSS  

measurements  which  provided  the  horizontal  component  of  the  motion  for  the  same  period.  

Results  of  these  InSAR-based  subsidence  studies  typically ha ve  a  horizontal  spatial  resolution  

in  tens-of-meters.  In  comparison,  airborne  LiDAR  (Light  Detection  and  Ranging)  could  offer  

insights  at  a  higher  spatial  resolution  (up  to  1  m),  although  with  a  lower  vertical  accuracy  

(10−15  cm).  Airborne  LiDAR  is  an  aerial  mapping  technology  that  integrates  LiDAR  and  

aerial  platforms  (e.g.,  a  drone,  plane,  or  helicopter)  to  collect  the  three-dimensional  (3D)  point  

cloud  of  the  earth’s  surface  for  the  generation  of  digital  terrain  models  (DTM)  or  digital  

elevation  models  (DEM).  Recent  advances  in  drone  technology  have  particularly  promoted  

the  applications  of  airborne  LiDAR.  Integrating  InSAR  and  airborne  LiDAR  methods  can  

potentially  study  coastal  subsidence  with hi gh  accuracy  and hi gh s patial  resolution.   

The  objectives  of  this  study  are  to 1 )  quantify  the  subsidence  rates  in a   Texas  coastal  area  

from  2006 t o 2021 us  ing t he  small  baseline  subset  (SBAS)  InSAR  method,  and 2)   compare  the  

InSAR  results  to  the  high-resolution  land  surface  differences  derived  from  multitemporal  

airborne  LiDAR  data, a nd 3)   investigate  the  relationships  between  subsidence  and t he  patterns  

of  land  cover  and  topography.  This  study  aims  to  explore  a  complementary  relationship  
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105 between  the  high  accuracy  InSAR  results  and  the  high  spatial  resolution  airborne  LiDAR  

results  in s upporting  coastal  subsidence  studies.   

 

2.  Study A rea   

The  study  area  is  a  520  km2  area  around  Eagle  Point  in  Texas,  located  between  29◦20’N  

and  29◦34’N  and  between  95◦5’W  and  94◦52’W  (Fig.  1).  The  land  cover  is  dominated  by  a  

mixture  of  coastal  prairie,  urban  areas,  and  an  industrial  zone  of  oil  and  gas  facilities  in  the  

 southeast  area.  Elevation  ranges  from  −4.43  m  to  17.05  m  with  an  average  slope  of  0.18◦.  

Records  from  the  Eagle  Point  Tide  Gauge  Station  show  an  RSLR  rate  of  13.7  mm  y -1  from  1993  

to  2017  (Fig.  1b).  A  possible  cause  is  the  withdrawal  of  groundwater  from  the  Chicot,  

Evangeline,  and  Jasper  aquifers,  all  components  of  a  broader  Gulf  Coast  aquifer  system,  to  

meet  the  increasing  industrial  and  municipal  water  demands  from  the  Galveston  area.  Oil  and  

gas  extraction,  and  surface  fault  activities  could  also  contribute  to  the  land  subsidence  here  

(Coplin a nd G alloway  1999;  Qu e t  al. 2015) .  
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121 Figure  1.  Study  area:  (a)  SAR  data  coverage  (black  squares)  over  the  elevation  map  around  the  

study  area  (red  square);  (b)  a  Google  Earth  image  of  the  study  area  and  the  monthly  mean  RSLR  

observed  at  the  Eagle  Point  Tide  Gauges  Station  (blue  marker)  from  1993  to  2017.  Red  marker  

shows  the  location  of  the  TXLM  GPS  station,  and  magenta  dots  denote  the  location  of  the  

reference  points  for  Sentinel-1 a nd A LOS-1 P ALSAR-1 i mage  processing.   

 

3.  Methods  and  Materials  

3.1 O verview  

This  study  combined  InSAR,  airborne  LiDAR,  GPS,  and  land  cover  data  to  investigate  

the  spatiotemporal  pattern  of  coastal  land  subsidence  and  its  relation  to  different  land  cover  

and  topography,  consisting  of  several  steps  (Fig.  2).  First,  three  stacks  of  SAR  images  were  

used  to  obtain  the  LOS  subsidence  velocities,  i.e.,  two  orbits  from  Sentinel-1  and  one  from  

ALOS-1  PALSAR-1.  LOS  velocities  in  both  ascending  and  descending  geometries  of  

Sentinel-1  were  utilized  then  to  generate  the  projections  onto  the  vertical  and  east-west  
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135 horizontal  directions  under  the  assumption  of  zero  north-south  motion.  Second,  this  study  

generated  a  1-m  land  surface  difference  map  from  two  temporal  airborne  LiDAR  point  cloud  

data  to  compare  and  complement  InSAR  results.  Third,  the  InSAR  results  were  overlapped  

with  land  cover  data  to  examine  the  occurrence  of  subsidence  in  different  land  cover  

categories,  and  its  relationship  with  percent  surface  imperviousness.  Finally,  InSAR  results  

and  LiDAR  DEM  were  combined  in  a  profile  analysis  to  investigate  the  pattern  of  subsidence  

along  selected  transections  and  highways  across  the  study a rea.  Highways  are  often  a  focus  of  

mitigation  and  response  studies  for  flooding  risk  management,  as  land  subsidence  along  

low-lying  highway  sections  could e xacerbate  the  inundation r isk.  
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145 Figure 2. Research framework. 
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147 3.2 I nSAR-Based  Subsidence  Analysis  

3.2.1 S AR  Images  

This  study  used  two  sets  of  SAR  data  (Table  1).  The  L-band  ALOS-1  PALSAR-1  data  

included  26  ascending  images  taken  between  December  2006  and  January  2011.  The  

descending  PALSAR-1  data  over  the  study  area  was  limited  and  not  adopted  in  this  study.  

Therefore,  we  analyzed  the  LOS  velocities  based  on  these  ascending  PALSAR-1  images.  The  

PALSAR-1  raw  data  were  provided  by  Japan  Aerospace  Exploration  Agency  (JAXA).  The  

C-band  Sentinel-1  SAR  data  included  252  ascending  and  descending  images  between  April  

2016  and  September  2021.  Combining  ascending  and  descending  Sentinel-1  images  allowed  

for  calculating  both  vertical  and  east-west  horizontal  components  of  LOS  velocities  under  the  

assumption  of  zero  north-south  components  (Eq.  (1-5)).  Most  SAR  satellites,  such  as  ALOS  

and  Sentinel-1,  operate  in  a  sun-synchronous  orbit  with  an  inclination  of  around  98°,  resulting  

in  range  observations  almost  in  the  east-west  direction  and  rarely  in  the  north-south  direction.  

Consequently,  the  north-south  components  cannot  be  extracted  adequately  from  these  SAR  

data-derived  LOS  velocities  (Wright  et  al.  2004).  Using S entinel-1  images  till  2021  other  than  

till  2018  (the  same  end  year  with  airborne  LiDAR  data)  would  provide  a  more  comprehensive  

understanding  of  the  subsidence  pattern  for  our  study  area.  The  Sentinel-1  single  look  

complex  (SLC)  data  were  provided  by  the  Copernicus  program  of  the  European  Space  

Agency.  Full  details  of  the  InSAR  data  are  presented i n S upplementary  Information.   
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167 Table 1. Characteristics of SAR data. 

Characteristics \ Sensor ALOS-1 PALSAR-1 Sentinel-1 

Band (Wavelength) L (23.6 cm) C (5.6 cm) 

Beam mode FBS, FBD IW 

Revisit time 46 days 12 days 

Orbital geometry Ascending Ascending/Descending 

Path 175 136/143 

Frame 570, 580 90-93/491-494 

Temporal span 12/2006-1/2011 4/2016-9/2021 

168 

169 3.2.2 S BAS  InSAR  Analysis  

We  used  the  SBAS  method  to  retrieve  historical  subsidence  from  SAR  images.  The  

SBAS  method  utilizes  interferograms  from  small  temporal  and  spatial  baseline  subsets,  

reducing  both  spatial  and  temporal  decorrelation  and  improving  phase  estimates'  performance  

(Berardino  et  al.  2002).  Persistent  Scatterer  Interferometry  (PSI)  uses  persistent  scatterers  (PS)  

to  obtain  the  land  surface  displacements  (Ferretti  et  al.  2001).  The  persistent  scatterers  are  

always  substantial  in  developed  urban  areas,  which  renders  PSI  to  be  applied  more  in  the  

urban  area.  In  this  study,  the  study  area  covers  developed  urban  areas,  grassland  areas,  and  

wetlands.  One  of  our  objectives  is  investigating  the  relationship  between  land  subsidence  and  

land  cover.  SBAS  method  can  overcome  the  rapid  loss  of  coherence  in  long-term  

interferograms  in  PSI  over  nonurban  areas.  So,  although  PSI  can  achieve  full-resolution  

(single-look), t his  study  finally  applied t he  SBAS  method t o m ap t he  land s ubsidence.  
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181 For  the  ALOS-1  PALSAR-1  data,  we  selected  the  image  collected  on  28  March  2008  as  

the  reference  image.  All  other  images  were  coregistered  to  this  reference  image.  The  temporal  

and  perpendicular  baseline  thresholds  for  PALSAR-1  data  were  set  as  1,200  days  and  1,500  m,  

respectively  (Fig.  3a).  For  the  Sentinel-1  data,  the  image  collected  on  10  January  2019  was  

chosen  as  the  reference  image.  Interferograms  were  generated  between  each  epoch  and  the  

adjacent  four  epochs  for  Sentinel-1  data  (Fig.  3b  and  3c).  This  study  used  the  InSAR  Scientific  

Computing  Environment  (ISCE)  (Rosen  et  al.  2012)  to  obtain  49  and  1012  interferograms  for  

PALSAR-1  and  Sentinel-1  stacks,  respectively.  The  multilooking  approach  was  leveraged  to  

alleviate  the  phase  noise,  which  was  9  ×  2  (azimuth  by  range)  and  2  ×  10  for  the  PALSAR-1  and  

Sentinel-1  data,  respectively,  leading  to  approximately  30-m  pixels.  The  topographic  phase  was  

removed  from  interferograms  based  on  a  30-m  Shuttle  Radar  Topography  Mission  DEM.  In  

addition,  orbit  parameters  were  incorporated  to  correct  orbital  errors  in  the  generation  of  

Sentinel-1  interferograms.  All  interferograms  were  unwrapped  by  adopting  the  SNAPHU  

(Statistical-Cost  Network-Flow  Algorithm  for  Phase  Unwrapping)  (Chen a nd Z ebker  2002).  

The  Miami  InSAR  time-series  software  in  Python  (MintPy)  (Yunjun  et  al.  2019)  was  

applied  to  perform  the  SBAS  approach.  This  study  selected  the  interferogram  network  by  

utilizing  minimum  spanning  tree  (MST)  and  spatial  coherence  threshold,  i.e.,  accomplished  the  

MST  first  by  using  the  inverse  of  average  spatial  coherence  of  all  interferograms  as  weight,  

then  excluded  the  interferograms  (except  for  MST’s  interferograms)  with  spatial  coherence  

lower  than  the  threshold.  Average  spatial  coherence  thresholds  of  0.6  for  the  Sentinel-1  

interferograms  and  0.65  for  PALSAR-1  interferograms  were  applied i n  this  study  (Fig.  3).  For  
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202 the Sentinel-1 interferogram network, the temporal baseline threshold of not exceeding 100 

203 days was applied then (Fig. 3b and 3c). Water bodies were masked out by applying a 

204 DEM-based water mask in radar coordinates. We selected two buildings as reference points 

205 for PALSAR-1 and Sentinel-1 datasets (magenta dots, denoted as Ref. in Fig. 1b). All 

206 interferograms were referenced to the reference point so that the relative LOS velocities can 

207 be calculated later. The components of tropospheric delay were removed by ERA5 reanalysis 

208 using PyAPS (Python-based Atmospheric Phase Screen estimation) module (Jolivet et al. 2011). 

209 This study estimated the LOS velocity as the slope of the best fitting line to the range change 

210 time series and the uncertainty of the velocity as the goodness of fit, i.e., standard deviation 

211 (Fattahi and Amelung 2015). 

212 The LOS velocity ���� can be decomposed into three velocity components in the 

213 east-west direction (��), the north-south direction (��), and the vertical direction (��) (Fialko 

214 and Simons 2001; Wright et al. 2004): 

215 ���� = − sin θ cos α sin θ sin α cos θ� �����
�
�
� (1) 

216 where � is the radar incidence angle and � is the satellite heading angle (i.e., the direction 

217 of the satellite motion). The incidence angle and heading angle are known. In this study, for 

218 Sentinel-1 ascending and descending geometries, the mean values for the incidence angles are 

219 32.55° and 32.50°, and the heading angles are 349.22° and 190.79°, respectively. Based on 

�� 220 estimated Sentinel-1 ascending LOS velocities ������ and descending LOS velocities ����, Eq. 

221 (2) and Eq. (3) can be developed with three unknown velocity components �� , ��, and ��: 
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222 ��� = −sin��cos��� �� s ���� � cos �� � + in�� sin���� + � ��   (2)  

��� = −  � sin ��� � cos �� si  � � + n �� sin �� � + cos �� � ��   (3)  

Assuming  that  the  motion  in  the  north-south  direction  (��)  is  negligible,  Eq.  (2)  and  Eq.  (3)  

could  be  solved  to  yield  the  LOS  velocity  projections  onto  the  vertical  (��,  Eq.  (4))  and  

east-west  horizontal  direction ( �� , E q. ( 5)):   

!"#%&'(!%&  *./0!"#1&'(!1&*2/ � =  $ ) +,- $ ) +,-� '(!1&!"#%&'(!%&0! 1&$ ( %&   4)  $ ' !1& ($ ) "# ) '(!$
� =  '(!1& 2/$ * ' .- (! & / +, 0 %$ *+,-� 1&  (5)  (!1&  !"#$ ' ) '(!%& '(!1& & $ !" #%& %$ 0 $ '(!)

During  the  data  processing,  by  inputting  Sentinel-1  ascending  and  descending  geometries  

LOS  velocities  in  the  decomposition  operation  of  MintPy,  the  Sentinel-1  vertical  components  

under  the  assumption  of  zero  north-south  motion  will  be  generated.  For  the  PALSAR-1  

ascending  geometry  used  in  this  study,  only  Eq.  (2)  could  be  developed.  With  three  unknown  

velocity  components,  the  study  estimated  the  vertical  components  of  PALSAR-1  LOS  

velocities  using  Eq.  (6).  This  equation  was  derived  from  Eq.  (2)  by  assuming  that  the  

east-west  and  north-south  motion  were  negligible.  The  mean  incidence  angle  for  PALSAR-1  

data  is  39.7°. T his  decomposition w as  executed i n t he  calculation ope ration  of  MintPy.  

  ./ �� = *+,-&   6)  '(!1 ($
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  238 

239  Figure  3.  Interferogram  networks  from  ALOS-1  PALSAR-1  and  Sentinel-1  acquisitions  with  

  perpendicular  and  temporal  baselines:  (a)  PALSAR-1  ascending  images,  (b)  Sentinel-1  

  ascending  images,  and ( c)  Sentinel-1 de scending  images. R ed c ircles  represent  SAR  images.   

   

  3.2.3 V alidation  Based  on  GPS  Data  

  A  CORS  GPS  station ( TXLM)  is  located i n  a  highly  developed  area  of  the  study  site  (Fig.  

  1b).  The  GPS  data  for  2006-2021  were  provided  by  the  National  Geodetic  Survey  (NGS)  and  

  processed  by  the  Nevada  Geodetic  Laboratory  with  respect  to  the  IGS14  reference  frame  

  (Blewitt  et  al.  2018).  We  used  the  GPS  vertical  land  surface  displacement  measurements  to  

  validate  our  InSAR-based  subsidence  results  over  an  approximately  30  m  ✕  30  m  area  

  centered on t  he  GPS  station.   
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250 

251 3.3 A irborne  LiDAR-Based  Land  Surface  Difference  

We  used t wo a irborne  LiDAR  point  cloud da tasets  of  2006 a nd 2018, p  rovided b y  the  3D  

Elevation  Program  (3DEP)  of  the  United  States  Geological  Survey  (USGS).  These  datasets'  

vertical  and  horizontal  datums  were  NAVD88  and  NAD83,  respectively.  The  point  density of   

the  2006  data  was  below  2  points/m2  and  was  deemed  adequate  to  generate  a  1-m  DEM.  14  

categories  were  classified  for  the  LAS  airborne  LiDAR  point  cloud  data  according  to  the  

ASPRS  classification  standard.  This  study  leveraged  the  ground  class  of  the  point  cloud  and  

applied  a  standard  filtering  procedure  to  extract  the  bare  earth  point  cloud  data  (Fig.  2).  DEM  

tiles  were  generated  based  on  those  ground  points  using  the  LAStools  and  were  merged  then  

to  produce  a  seamless  1-m  DEM.  For  the  2018  DEM,  raw  1-m  DEM  tiles  (1.65  km  ×  1.85 k m)  

were  downloaded  from  3DEP  and  merged  into  a  DEM  using Q GIS.  The  airborne  LiDAR  data  

in  2018  was  offered  at  level  2  (QL2),  which  had  a  minimum  nominal  pulse  spacing  (NPS)  of  

0.7  m  and  a  vertical  error  of  0.1  m,  measured  as  root  mean  square  error  (RMSE).  Finally,  the  

land  surface  differences  in  the  vertical  direction  between  2006  and  2018  were  calculated  

based  on  two  temporal  DEMs  using  subtraction  analysis  in  QGIS  (Fig.  2).  The  uncertainties  

of  surface  differences  were  unlikely  to  be  spatially  homogeneous,  caused  by  factors  such  as  

uncertainties  of  original  DEMs  and  the  error  propagation  during  the  change  detection.  The  

uncertainties  of  airborne  LiDAR-derived  DEM  were  also  heterogeneous  but  always  offered  as  

a  single  value.  In  this  study,  the  absolute  vertical  accuracy  for  QL2  airborne  LiDAR  data  was  
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270 provided i n t he  USGS  report  as  0.1 m , but   the  relative  vertical  accuracy  would be   smaller  than  

0.06  m  for  smooth  surfaces.  Quantifying  uncertainty  in  change  detection  results  of  airborne  

LiDAR  is  not  a  trivial  work  and  is  still  very  limited  (Okyay  et  al.  2019).  Land  surface  

difference  from  airborne  LiDAR  includes  the  accumulation  of  gradual  land  subsidence  and  

land  displacements  induced  by  human  activities  and  other  surface  processes.  The  periods  of  

airborne  LiDAR  measurements  (2006-2018)  had  overlaps  with  that  of  ALOS-1  

PALSAR-1(2006-2011)  and  Sentinel-1(2016-2021)  SAR  data.  This  study  compared  airborne  

LiDAR-derived  land  surface  differences  to  the  InSAR-derived  velocities.  The  1-m  map  of  

land  surface  differences  would  complement  the  PALSAR-1  and  Sentinel-1  results  by  

revealing  more  details  of  the  spatial  variations  of  gradual  subsidence  below  the  scale  of  the  

30-m  InSAR  pixels  and  identifying  the  significant  land  surface  change  which  InSAR  cannot  

capture.  

 

3.4 S ubsidence  Analysis  over  Different  Coastal  Land  Cover  and  Topographic  Patterns   

We  obtained t he  30-m  2019 l and c over  from  the  National  Land C over  Database  (NLCD).  

USGS  generated  the  NLCD  products  through  integrating  multi-source  geospatial  datasets  and  

classification  using  machine  learning  methods  (Jin  et  al.  2019),  and  their  accuracies  were  

validated a t  the  national  level  (Wickham  et  al. 202 1).   

The  land  cover  analysis  was  conducted  in  ArcGIS  Pro.  First,  the  NLCD  data  was  

extracted  and  clipped  to  the  same  extent  as  the  study  area.  Then,  the  NLCD  categories  were  
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290 modified  to  address  the  land  cover  pattern  of  the  study  area.  Deciduous  forest,  evergreen  

forest,  and  mixed  forest  categories  were  merged  into  a  forest  category.  Shrub/scrub,  

grassland/herbaceous,  pasture/hay,  and  cultivated  crops  categories  were  merged  into  a  

grassland  category.  Woody  wetlands  and  emergent  herbaceous  wetlands  categories  were  

merged  into  a  wetlands  category.  The  resulted  land  cover  raster  was  converted  into  

multi-feature  polygons.  These  polygons  were  linked  to  the  subsidence  estimates  using  the  

Spatial  Join  Tool  in  ArcGIS  Pro.  Based  on  attribute  tables  of  the  Spatial  Join-derived  feature  

classes,  mean  subsidence  velocities,  standard  error,  and  interquartile  ranges  were  calculated  

for  different  land  cover  categories.  In  addition,  linear  regression  was  performed  to  analyze  the  

relationship  between  subsidence  velocities  and  surface  imperviousness  at  the  pixel  level  and  

between m ean s ubsidence  velocities  and s urface  imperviousness  at  the  class  level.  

We  further  examined  the  relationship  between  subsidence  and  topography  using  the  

2018  airborne  LiDAR  DEM.  The  floating-type  DEM  was  first  converted  into  an  integer-type  

DEM  and  then  into  polygon  features.  Next,  we  established  two  transect  lines  (Fig.  15a)  to  

represent  the  dominant  elevation  gradients  over  the  study  area,  e.g.,  transect  QI  across  the  

northeast-southwest  gradient  from  the  shoreline  to  a  river  mouth  and  transect  ST  located  

along  the  northwest-southeast  shoreline.  Then,  this  study  applied  the  Stack  Profile  Tool  in  

ArcGIS  Pro  to  extract  elevation  and  subsidence  velocities  along t hese  transect  lines  for  profile  

analysis.  
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310 4.  Results  

4.1 I nSAR-Derived  Subsidence  Velocity  

4.1.1 S patiotemporal  Pattern  of  Land  Subsidence   

The  LOS  velocities  from  ALOS-1  PALSAR-1  and  Sentinel-1  images  are  shown  in  Fig.  

4.  Positive  values  indicate  ground  motions  toward  the  satellite  (i.e.,  uplift)  and  negative  

values  indicate  ground  motions  away  from  the  satellite  (i.e.,  subsidence).  For  PALSAR-1  

analysis  between  2006  and  2011,  the  LOS  velocities  varied  from  −33  to  20  mm/year  (Fig.  4a)  

with  the  standard  deviations  of  0  to  12  mm/year  (Fig.  4b).  Results  show  that  the  significant  

subsidence  in  2006-2011  tended  to  continue  in  the  next  time  window  analyzed  and  with  a  

similar  magnitude.  From  2016  to  2021,  the  LOS  velocities  ranged  from  −31  to  19  mm/year  

for  Sentinel-1  ascending  geometries  analysis  (Fig.  4c)  and r anged  from  −31  to 17 m  m/year  for  

descending  geometries  analysis  (Fig.  4e).  The  standard  deviations  of  LOS  velocities  for  

Sentinel-1  ascending  and  descending  geometries  were  smaller  than  2  mm/year  (Fig.  4d  and  

4f).   

The  velocities  in  the  vertical  direction  under  the  assumption  of  zero  north-south  motion  

in  2016-2021 ba sed  on  both  ascending  and  descending  Sentinel-1  images  are  shown  in  Fig.  5.  

For  velocities  in  the  vertical  direction,  positive  and  negative  values  indicate  ground  uplift  and  

subsidence,  respectively.  This  study  found  that  the  vertical  velocities  were  up  to  −34  

mm/year,  with  a  spatial  pattern  similar  to  that  of  the  LOS  velocities  (Fig.  4c  and  4e).  Our  

findings  agreed  with  the  results  from  a  previous  InSAR  study  in  this  region  (Miller  and S hirzaei  
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330 2021). 

331 

332 Figure 4. LOS velocities and standard deviations derived from (a and b) PALSAR-1 
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333 ascending images (2006-2011), (c and d) Sentinel-1 Path 136 ascending images (2016-2021), 

334 and (e and f) Sentinel-1 Path 143 descending images (2016-2021). 

335 

336 Figure 5. The vertical components under the assumption of zero north-south motion in 

337 2016-2021 based on Sentinel-1 ascending and descending LOS results (Fig. 4c and 4e). 

338 

339 4.1.2 Validation 

340 Fig.6 shows the validation of subsidence velocities in the vertical direction against the 

341 vertical GPS measurements, all presented in the form of accumulative depth. For the ALOS-1 

342 PALSAR-1 results, only ascending data were available over the study area. Therefore, the 

343 vertical velocities transformed from LOS velocities using the local incidence angle were used 

344 for validation, assuming that the vertical component dominated the subsidence. For the 

345 Sentinel-1 results, the derived vertical velocities under the assumption of zero north-south 

346 motion (Wright et al. 2004) were directly compared to vertical GPS measurements. The GPS 
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347 measurements agreed well with both PALSAR-1 results from 2006 to 2011 (RMSE = 7.5 mm) 

348 and Sentinel-1 results from 2016 to 2021 (RMSE =11.6 mm). 

349 

350 Figure  6.  Comparison  of  InSAR-derived  cumulative  subsidence  to  GPS  measurements  in  the  

vertical  direction. T he  location of   the  TXLM  GPS  station i s  shown i n F igure  1.  

  

4.2 A irborne  LiDAR-Derived  Land  Surface  Difference  

Here  we  compare  the  results  of  InSAR  and  airborne  LiDAR  over  a  subset  of  the  study  

area  that  experienced  substantial  subsidence  (Fig.  7,  also  marked  as  a  blue  rectangle  in  Fig.  

1b).  InSAR  results  (Fig.  7c  and  7d)  included  some  empty  pixels  because  of  the  temporal  

coherence  thresholds  setting  used  to  ensure  reliable  estimates.  In  contrast,  the  1-m  ground  

differences  between  2006  and  2018  based  on  two  temporal  airborne  LiDAR  data  covered  the  

entire  area  (Fig.  7b).  As  the  airborne  LiDAR  measurements  were  in  the  vertical  direction,  

LOS  PALSAR-1  results-derived  vertical  components  based  on  Eq.  (6)  (Fig.  7c)  and  

Sentinel-1  vertical  results  (Fig.  7d)  were  used  here.  The  PALSAR-1  results  indicated  a  strong  
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362 subsidence  process  (up  to  −22  mm/year)  in  2006-2011  (Fig.  7c).  The  subsidence  process  

appeared  to  be  continuing  at  several  locations  in  2016-2021  from  Sentinel-1  results  (Fig.  7d),  

and  the  subsidence  velocities  in  the  vertical  direction  were  up  to  −25  mm/year.  In  the  

upper-right  part,  the  vertical  velocities  derived  from  PALSAR-1  images  under  the  assumption  

of  no  east-west  and  north-south  motion  (Fig.  7c)  were  larger  than  that  from  Sentinel-1  images  

under  the  assumption  of  no  north-south  motion  (Fig.  7d).  Groundwater  use,  human  activities  

such  as  building  construction,  etc.  might  lead  to  quicker  subsidence  in  2006-2011  than  in  

2016-2021.  In  the  selected  area,  airborne  LiDAR  results  revealed  plenty  of  areas  with  a  

surface  change  between  −0.3  to  0.1  m  (Fig.  7b).  Limited  and  scattered  areas  were  with  large  

surface  changes  (negative  or  positive),  which  were  likely  induced  by  human  activities  and  

other  surface  processes  (for  example,  areas  A1  and  A2  highlighted  in  Fig.  7a).  Overall,  both  

InSAR-based  analysis  and  airborne  LiDAR  measurements  indicated  substantial  subsidence  in  

this  area.  Most  highly  subsided  areas  based  on  InSAR  analysis  also  showed  relatively  large  

surface  changes  based  on  airborne  LiDAR  measurements,  between  −0.1  to  −0.3  m  during  

2006-2018  (Fig.  7).  The  1-m  airborne  LiDAR  results  offered  more  details  of  the  surface  

differences  and c ould c apture  some  large  changes  that  InSAR  cannot  monitor.  

We  further  conducted  profile  analysis  along  two  transect  lines  (Fig.  7a)  to  evaluate  the  

agreement  and  disagreement  between  InSAR  and  airborne  LiDAR  estimates.  The  transect  line  

L1  represented  the  northwest-southeast  direction,  with  the  land  use  dominated  by  developed  

and  vegetated  areas.  PALSAR-1  and  Sentinel-1  results  presented  a  trend  similar  to  that  of  the  

accumulative  land  surface  differences  in  2006-2018  from  the  airborne  LiDAR  results  (Fig.  8a  
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383 and  8b).  The  lower  subsidence  velocities  tended  to  be  associated  with  smaller  accumulative  

surface  differences,  and  higher  velocities  aligned  with  greater  accumulative  surface  

differences.  In  particular,  the  airborne  LiDAR  results  of  sections  BC  and  DE  exhibited  large  

land  surface  differences.  The  PALSAR-1  and  Sentinel-1  velocities  showed  high  values  in  

these  sections,  especially  velocities  from  Sentinel-1  analysis  (up  to  about  −20  mm/year).  The  

high  velocities  would  contribute  to  the  large  subsidence,  which  had  a  good  agreement  with  

the  airborne  LiDAR  results  (Fig. 8b ).  Based on   Google  historical  images, s ection B C  was  on a   

piece  of  land  with  some  grass  and  almost  had  no  change  from  2006  to  2011  (Fig.  9a).  This  

area  was  influenced  by  a  pool  and  other  activities  then,  confirming  the  great  variations  of  

Sentinel-1  subsidence  velocities  (Fig.  8b).  Section  AB  subsided  from  both  PALSAR-1  and  

Sentinel-1  results,  whereas  airborne  LiDAR  results  presented  some  uplift.  Based  on  this  

multi-period i nformation, w e  could i nfer  that  this  segment  had a n upl ift  in 2 011- 2016.   

The  transect  line  L2  represented  the  southwest-northeast  direction.  Sentinel-1  velocities  

trend  almost  fits  well  with  the  land  surface  difference  trend  as  shown  in  airborne  LiDAR  

results  (Fig.  8d).  PALSAR-1  velocities  trend  of  the  sections  starting  around  H  fits  relatively  

well  with  the  land  surface  difference  trend  (Fig.  8c).  Sentinel-1  analysis  showed  high  

velocities  in  the  vertical  direction  over  the  area  where  airborne  LiDAR  obtained  large  surface  

differences.  In  particular,  sections  GH  and  IJ  underwent  larger  subsidence  in  2016-2021  than  

in  2006-2011,  leading  to  some  large  subsidence  in  agreement  with  airborne  LiDAR  results  

(Fig.  8c  and  8d).  The  airborne  LiDAR  results  show  a  heterogeneous  pattern  of  surface  change  

along  section  HI,  agreed  better  with  Sentinel-1  results  than  PALSAR-1  results.  As  shown  in  
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404 Fig.  9b,  the  area  along  the  HI  was  mainly  dominated  by  grassland  in  2006-2011  and  had  a  

relatively  homogeneous  subsidence  pattern  accordingly  (Fig.  8c).  Within  the  period  of  

Sentinel-1  results  (2016-2019),  the  area  along  the  HI  was  disturbed  and/or  changed  by  some  

land  reclamation  and  construction  activities  (Fig.  9b),  leading  to  a  heterogeneous  subsidence  

trend  as  well  as  some  substantial  surface  changes  that  could  only  be  captured  by  airborne  

LiDAR  (Fig.  8d).  Sections  FG  subsided  much  faster  in  2006-2011  than  in  2016-2021,  and  the  

land  surface  change  was  relatively  small.  Overall,  the  land  surface  difference  pattern  derived  

from  airborne  LiDAR  data  between  2006  and  2018  generally  agreed  with  InSAR-derived  

velocities  along  the  selected  transect  lines  and  provided  a  more  effective  means  to  

characterize  large  surface  changes  in a reas  with hum an a ctivities.  
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414 

415 Figure  7.  Detailed  subsidence  pattern  of  a  selected  area:  (a)  Google  Earth  image,  (b)  airborne  

LiDAR-derived  vertical  surface  differences,  (c)  vertical  component  based  on  PALSAR-1  

results  (assuming no   east-west  and  north-south  motions),  and  (d)  vertical  component  based  on  

Sentinel-1  results  (assuming  no  north-south  motion).  Figure  1b  shows  the  location  of  this  

area.  
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424 Figure  8.  Comparison  of  InSAR  and  airborne  LiDAR  results  along t ransect  lines  L1  (a  and  b)  

and  L2  (c  and  d).  Error  bars  indicate  standard  deviations.  The  locations  of  the  transect  lines  

are  shown i n  Figure  7a.  
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428 

429 Figure  9.  Historical  Google  Earth  images  and  airborne  LiDAR-derived  land  surface  

differences  over  the  selected  profiles  BC  (a)  and  HI  (b).  The  locations  of  BC  and  HI  are  

shown i n F ig. 7 a.  

Checkpoints  B, C , H , a nd  I  are  denoted b y y ellow  placemarks.  
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433 4.3 R elationships  between  Subsidence  and  Land  Cover   

Based  on  the  land  cover  pattern  of  the  study  area,  the  standard  NLCD  land  cover  

categories  were  re-classified  as  developed  building  area,  barren  land,  forest  area,  grassland  

area,  wetland  area,  and  open  water  (Fig.  10).  Developed  areas  included  four  classes  based  on  

percent  impervious  surface  coverage:  open  space  area  (1%-20%),  low-intensity  area  

(20%-49%),  medium  intensity  area  (50-79%),  and  high-intensity  area  (80%-100%).  This  

study  analyzed  the  subsidence  (Fig.4a  and  Fig.5)  distribution  for  different  land  cover  types  

(Fig.  10)  over  the  entire  study  area.  Results  showed  relatively  high  subsidence  velocities  in  

grassland,  forest,  wetlands,  and  barren  land  (Fig.  11).  By  contrast,  the  classes  of  developed  

areas  had  relatively  low  subsidence  velocities.  In  particular,  the  developed  high-intensity  area  

was  associated  with  the  lowest  subsidence  velocities  among  all  categories  (Fig.  11).  The  

velocities  based  on  Sentinel-1  analysis  were  more  dispersed  than  that  from  PALSAR-1  

analysis  for  each l and t ype  (Fig. 11 c  and 11d) .   
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447 

448 Figure 10. Land cover of the study area based on NLCD 2019. 
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450 

451 Figure  11.  PALSAR-1  mean  LOS  velocities  (a)  and  Sentinel-1  mean  vertical  velocities  (b)  

for  different  land  cover  types.  The  95%  confidence  intervals  are  computed  as  1.96  standard  

errors  for  each  land  type.  The  red  line  represents  the  number  of  pixels.  Subplots  c  and  d  show  

the  interquartile  ranges  of  PALSAR-1  LOS  velocities  and  Sentinel-1  vertical  velocities  for  

different  land  cover  types, r espectively.  

 

This  study  then  used  linear  regression  to  explore  the  relationship  between  the  percent  

surface  imperviousness  (Fig.  10)  and  subsidence  velocities  (Fig.  4a  and  Fig.  5)  at  two  
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459 different  scales  (Fig.  12)  over  the  entire  study  area.  First,  for  all  individual  30-m  pixels,  the  

least  squares  polynomial  fit  (first  degree)  was  applied  to  model  the  relationship  between  the  

percent  surface  imperviousness  and  subsidence  velocities  (Fig.  12a  and  12c).  Results  indicate  

that  surface  imperviousness  was  negatively  correlated  with  the  magnitude  of  subsidence  

velocities  derived  from  both  PALSAR-1  images  (R2  =  0.207)  and  Sentinel-1  images  (R2  =  

0.265).  Second,  30-m  pixels  with  the  same  percent  imperviousness  value  were  extracted  and  

clustered  in  1%  intervals  from  0%  to  100%,  resulting  in  100  clusters  in  which  each  cluster  

with  the  same  imperviousness  value  included  many  pixels  with  various  subsidence  velocities.  

This  study  calculated  the  mean  subsidence  velocities  for  the  resulted  100  clusters.  Then,  for  

the  clustering  results,  the  least  squares  polynomial  fit  (first  degree)  was  used  again  to  model  

the  relationship  between  the  percent  surface  imperviousness  and  the  mean  subsidence  

velocities  (Fig.  12b  and  12d).  Results  showed  that  the  clustering  procedure  led  to  higher  

correlations  between  surface  imperviousness  and  subsidence  velocities  for  both  PALSAR-1  

(R2  =  0.895)  and S entinel-1 ( R2  =  0.937).  

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

32 



 

 

  

 

 

 

 

 

 

 

 

 

 

473 

474 Figure  12.  Relationships  between  percent  impervious  coverage  and  subsidence  velocities:  

PALSAR-1  LOS  velocities  at  (a)  the  pixel  level  and  (b)  the  cluster  level;  Sentinel-1  vertical  

velocities  at  (c)  the  pixel  level  and  (d)  the  cluster  level.  Black  lines  (a  and  c)  and  red  lines  (b  

and d)   indicate  linear  fit.  

 

5.  Discussion  

5.1 I mprovements  in  Existing C oastal  Subsidence  Investigation   

Coastal  subsidence  studies  often  have  high  expectations  of  spatial  resolution  and  vertical  

accuracy  to  meet  the  requirements  of  various  coastal  studies  such  as  flood  risk  analysis,  

shoreline  erosion  control,  etc.  InSAR  works  well  in  monitoring  the  gradual  land  subsidence  
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484 with  high  accuracy  over  the  coastal  areas  (Higgins  et  al.  2014).  However,  it  cannot  capture  

significant  surface  displacements  in  a  short  time  due  to  decorrelation.  On  the  other  hand,  

airborne  LiDAR  can  monitor  the  land  surface  difference  with  a  high  spatial  resolution  (Jones  

et  al.  2013).  In  this  study,  airborne  LiDAR  datasets  contributed  to  a  1-m  land  surface  

difference  mapping  with  about  10  cm  vertical  accuracy.  Land  surface  change  includes  the  

accumulation  of  gradual  land  subsidence  and  land  displacements  induced  by  human  activities  

and  other  surface  processes.  The  results  of  this  study  indicate  the  unique  benefits  of  

combining  InSAR  and  airborne  LiDAR  measurements  to  improve  the  understanding  of  the  

spatiotemporal  pattern of   subsidence.   

From  the  spatial  perspective,  InSAR  analysis  based  on  PALSAR-1  and  Sentinel-1  

images  was  constrained  by  its  relatively  low  spatial  resolution.  However,  the  detailed  surface  

changes  derived  from  the  1-m  airborne  LiDAR  results  can  contribute  to  a  better  

understanding  of  the  spatial  variability  of  land  deformation  within  the  30-m  InSAR  pixel.  As  

demonstrated  in  the  first  example  in  Fig.  13,  the  gradual  subsidence  over  a  piece  of  land  with  

some  grasses  was  consistently  captured  in  both  InSAR  and  airborne  LiDAR  results  (Fig.  13a).  

PALSAR-1  and  Sentinel-1  results  indicated  moderate  subsidence  rates  of  −0.9  to  −1.5  

cm/year,  while  airborne  LiDAR  results  also  suggested  a  moderate  magnitude  of  the  total  

surface  change  between  −0.1  to  −0.3  m  over  12  years.  In  addition  to  the  consistent  

characterization  of  an  overall  moderate  subsidence  process,  the  airborne  LiDAR  result  

revealed  a  higher  degree  of  spatial  heterogeneity.  Besides,  for  areas  with  significant  surface  

displacements  over  a  short  time  which  InSAR  cannot  capture,  the  additional  surface  change  
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505 information  from  airborne  LiDAR  could  contribute  to  the  analysis  at  the  block  or  even  

building  scale,  playing  a  critical  role  in  high-resolution  hydraulic  and  hydrologic  simulations  

in  coastal  regions.  These  relatively  large  surface  displacements  occure  most  likely  due  to  

human  activities  changing  the  structure  of  the  upper  ground  such  as  modifications  related  to  

roads  and  drainage  structures  construction  or  building  foundations.  The  second  example  (Fig.  

13b)  illustrated  a  large  surface  deformation  caused  by  the  construction  of  a  stormwater  

drainage  system  for  a  new  RV  parking  lot.  It  involved  some  local  elevation  decreases  due  to  

the  elevation  excavation  of  a  stormwater  ditch  and  some  local  elevation  increases  caused  by  

the  placement  of  a  culvert  (Fig.  13b).  These  changes  were  clearly  delineated  in  the  airborne  

LiDAR  results  and  obviously  not  associated  with  gradual  subsidence,  and  they  were  not  

identifiable  in  the  InSAR  results.  Overall,  without  the  complementary  high-resolution  

information  from  airborne  LiDAR  results,  PALSAR-1  and  Sentinel-1  analysis  excluded  

important  surface  changes  within  a  coarse  InSAR  pixel  could  not  address  significant  land  

deformation  over  the  small  dimensions  of  natural  and  built  features  in  a  heterogeneous  urban  

environment.  

From  the  temporal  perspective,  subsidence  velocities  derived  from  PALSAR-1  and  

Sentinel-1  images  in  non-overlapping  periods  validated  and  complemented  the  land  surface  

differences  revealed  by  airborne  LiDAR  results  and  vice  versa.  In  this  study,  InSAR  analysis  

provided  subsidence  velocities  in  2006-2011  (PALSAR-1,  Fig.  7c)  and  2016-2021  (Sentinel-1,  

Fig.  7d).  Airborne  LiDAR-derived  land  surface  change  estimated  the  total  surface  change  

between  2006  and  2018  (Fig.  7b).  Our  analysis  showed  that  InSAR  results  and  airborne  
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526 LiDAR  measurements  fit  relatively w ell  along  the  selected  profiles  (Fig.  8).  It  implies  that  we  

can  deduce  a  large  land  surface  difference  based  on  high  PALSAR-1  and/or  Sentinel-1  

subsidence  velocities  as  well  as  deduce  high  subsidence  velocities  from  the  large  land  surface  

change.  The  validation  between  high  subsidence  velocities  and  large  land  surface  differences  

could  be  achieved.  Besides,  two  temporal  InSAR  results  complement  the  airborne  LiDAR  

results  by  offering  the  velocities  variation  in  the  different  periods.  The  analysis  across  the  

partially  overlapping  monitoring  periods  of  airborne  LiDAR,  PALSAR-1,  and  Sentinel-1  

allowed  for  the  investigation  of  possible  changes  that  took  place  within  2011-2016,  i.e.,  the  

gap  between  the  ALOS-1  and  Sentinel-1  results.  For  example,  the  subsidence  velocities  of  

section  AB  (Fig.  7a)  exceeded  −15  mm/year  in  2006-2011  and  2016-2021  (Fig.  8a  and  8b).  

However,  section  AB  presented  limited  negative  land  surface  differences  from  airborne  

LiDAR  results,  which  may  imply  some  uplift  from  2011  to  2016.  Such  partially  overlapping  

periods  of  InSAR  and  airborne  LiDAR  measurements  would  be  common  in  many  regions,  

given  the  global  availability  of  ALOS-1  and  Sentinel-1  data.  As  a  result,  the  unique  advantage  

of  including  airborne  LiDAR  measurements  could be   applicable  to ot her  coastal  regions.    

Finally,  high  accuracy  and  resolution  topography  information  is  essential  for  flood  risk  

analysis,  shoreline  erosion  control,  etc.  This  is  particularly  true  for  coastal  plains  with  gentle  

slopes.  A  slight  variation  in  the  subsidence  rates  may  significantly  impact  the  calculations  of  

flow  directions  and  paths  in  hydrological  and  hydraulic  simulations  that  are  based  on  the  

subsidence-corrected  DEMs.  For  such  simulations  in  urban  watersheds  along  the  Texas  Gulf  

Coast,  to  our  knowledge,  DEMs  with  spatial  resolutions  from  1-m  to  10-m  and  vertical  
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547 accuracies  below  10  cm  would  be  desired  in  most  cases.  Some  present  studies  try  to  apply  

high-resolution  airborne  LiDAR  topography  to  the  hydrological  model  for  improving  urban  

flooding  analysis  and  apply  UAV-collected  high-resolution  images  for  shoreline  detection  

(Trepekli  et  al.  2022).  This  study  offers  1-m  land  surface  change  results  and  cm-level  velocities,  

which w ill  contribute  to a   much m ore  robust  analysis.  

548 

549 

550 

551 

37 



 

 

 

  

               

                

552 

553 Figure 13. Examples of the multiscale measurements: (a) a grassland area (dashed box) with 

554 details presented in the second row; and (b) a developed area (solid box) with details 
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555 presented  in  the  third  row.  In  example  (a),  the  0.3-m  HxGN  aerial  image  shows  the  landscape.  

In  example  (b),  black  arrows  indicate  the  ditch  and  the  culvert.  This  area  is  also  marked  in  

Figure  7b.   

 

5.2 L imitation  and  Potential  of  Airborne  LiDAR  for  Coastal  Surface  Change  Mapping  

Point  positioning  accuracy  of  airborne  LiDAR  systems  is  influenced  by  system  

calibration,  time  synchronization  between  system  components,  errors  in  the  navigation  

solution  (position  and  attitude  errors),  range  measurement  errors,  etc.  (May¹  and  Toth  2007),  

which l ead  to a   relatively  low  vertical  accuracy  (10−15 c m)  of  airborne  LiDAR  measurements.  

The  limitation  of  low  vertical  accuracy  results  in  the  fact  that  airborne  LiDAR  is  a  less  

popular  option  for  land  subsidence  monitoring  under  the  conventional  assumption  that  the  

total  subsidence  will  be  equal  to  or  even  smaller  than  the  errors,  as  well  as  when  the  

decision-makers  are  seeking  very  high  accuracy.  However,  InSAR  results  have  indicated  

substantial  subsidence  rates  in  our  study  area,  up  to  −22  mm/year  in  2006-2011  (Fig.  7c)  and  

up  to  −25  mm/year  in  2016-2021  (Fig.7d),  as  well  as  the  broader  Houston  region,  up  to  −30  

mm/year  in  2004-2011  (Qu  et  al.  2015).  Given  such  large  subsidence  rates,  the  vertical  

accuracy  of  airborne  LiDAR  would  no  longer  be  a  constraint  to  decision-makers  interested  in  

identifying  significant  surface  deformation.  Our  results  found  that  most  highly  subsided  areas  

from  InSAR  also  showed  relatively  large  surface  changes  from  airborne  LiDAR,  between  -0.1  

m  to  -0.3  m  during  2006-2018  (Fig.  7).  The  further  comparison  between  InSAR  results  and  
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575 airborne  LiDAR  results  along  the  selected  profiles  revealed  a  very  similar  trend  in  most  areas  

(Fig.  8).  This  proved  the  reliability  of  airborne  LiDAR-derived  results  to  some  extent.  

Furthermore,  our  results  demonstrated  that  airborne  LiDAR  monitored  the  land  surface  

change  from  gradual  land  subsidence  and  land  displacements  in  coastal  regions.  In  particular,  

land  displacements  caused  by  human  activities  and  other  surface  processes  tend  to  have  

relatively  large  deformation  over  a  short  time  which  conventional  InSAR  methods  cannot  

capture.  

While  LiDAR  measurements  are  still  limited  by  the  low  vertical  accuracy,  few  SAR  

images  could  match  the  spatial  resolution  of  airborne  LiDAR  measurements.  New  satellite  

images  (e.g.,  TerraSAR-X  images)  have  improved  spatial  resolutions,  but  their  coverage  and  

availability  are  far  from  that  of  Sentinel-1,  resulting  in  relatively  coarse  spatial  resolution  of  

InSAR  analysis  for  lots  of  coastal  studies.  Therefore,  it  would  be  valuable  to  explore  airborne  

LiDAR  data  when  these  data  can  be  readily obt ained  in  areas  that  do  not  have  high-resolution  

SAR  images  yet.  The  spatial  variability  information  of  surface  change  derived  from  

multi-temporal  airborne  LiDAR  data,  even  if  the  actual  measurements  are  not  as  precise  as  

InSAR,  provides  invaluable  higher  resolution  complementary  information,  especially  for  the  

cases  with  large  velocities  that  are  the  most  important.  It  will  benefit  a  variety  of  coastal  

studies,  particularly  on  the  resilience  of  our  coastal  infrastructure  systems,  e.g.,  the  design  of  

sea  walls.  This  is  also  adaptive  to  flooding  studies  that  typically  require  high-resolution  

elevation  information.  As  shown  in  Fig.  13b,  the  drainage  ditch  identified  from  the  airborne  

LiDAR  results  will  contribute  to t he  flooding  analysis.   
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596 High-quality  airborne  LiDAR  data  spanning  a  long  time  over  the  coastal  area  is  not  

widely  distributed.  Fortunately,  more  and  more  institutes,  such  as  USGS,  are  opening  their  

data  nowadays.  Airborne  LiDAR  data  will  be  a  good  source  of  terrain  information  for  surface  

change  analysis  over  coastal  areas  with  relatively  large  subsidence  rates.  Acting  as  

complementary  information,  airborne  LiDAR  will  be  a  potential  opportunity  for  coastal  

studies.  

 

5.3 F orest  Influence  over  the  InSAR  Analysis  

The  wavelength  of  radar  waves  plays  an  important  role  in  applications  of  InSAR  over  

densely  forested  areas  (Xu  et  al.  2021).  The  penetration  capability  of  short-wavelength  (3.1  

cm  for  X-band,  5.6  cm  for  C-band)  radar  pulses  is  limited,  which  leads  to  the  detection  of  the  

forest  canopies  rather  than  the  bare  land  surface.  As  a  result,  decorrelation  would  occur  in  

InSAR  analysis,  leading  to  no  subsidence  results  over  the  densely  forested  area,  as  shown  in  

the  forest  area  (Fig.  10),  where  few  pixels  (Fig.  11b)  obtained  subsidence  results  based  on  

C-band  Sentinel-1  images  (Fig.  4c  and  4e).  Penetration  capacity  can  be  influenced  by  forest  

density  as  well  as  forest  canopy  height  (Ni  et  al.  2014).  Therefore,  subsidence  velocities  over  

the  forest  area  (Fig.  11b)  in  this  study  were  likely  measured  from  the  ground  surface  over  the  

low-density  forest  area.  Long-wavelength  (24.2  cm  for  L-band,  69.72  cm  for  P-band)  radar  

pulses  have  better  penetration  capacity  and  can  sense  further  into  forest  canopies.  The  

calculated  subsidence  velocities  in  the  forest  area  (Fig.  11a)  based  on  L-band  PALSAR-1  
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616 images  had r elatively  large  uncertainties  (Fig. 4b) , l ikely  caused b y  low  coherence  (Shirzaei  et  

al.  2020).  Besides,  a  system  bias,  referred  to  as  the  fading  signal,  has  been  reported  and  

discussed  when  multiple  multi-looked  short  temporal  baseline  interferograms  are  used  to  

overcome  the  rapid  loss  of  coherence  in  long-term  interferograms  over  the  forest  and  densely  

vegetated  areas  (Ansari  et  al.  2021;  De  Luca  et  al.  2022;  Pepe  et  al.  2015).  This  phase  bias  

might  be  a  further  possible  source  of  uncertainty  in s hort-time  SBAS  InSAR  analysis.  

 

5.4 S ubsidence  and  Topography P atterns  

Topography  is  essential  for  flooding  risk  assessment  and  management  over  coastal  

regions  (Miller  and  Shirzaei  2021).  Low-lying  coastal  areas  are  more  prone  to  inundation.  

Subsidence  over  the  low  elevation  coastal  area  potentially  exacerbates  the  situation.  In  this  

study,  subsidence  velocities  and  elevation  along  the  two  profiles  (Fig.  15a,  QI,  ST)  over  the  

study  area  were  extracted  (Fig.  14).  Sentinel-1-derived  velocities  in  the  vertical  direction  were  

higher  than  PALSAR-1-derived  LOS  velocities  from  2006  to  2011  in  the  0  - 12  km  section  of  

the  profile  QI  (Fig.  14a).  The  elevation  was  lower  than  5  m  in  the  QI  section  0  - 12  km.  

Velocities  for  both  sensors  increased  in  QI  section  15  - 20  km,  where  elevation  declined  

nearly  3  m  in  a  similar  trend  (Fig.  14a).  Along  with  the  profile  QI,  the  low  elevation  area  

exhibited  relatively  high  velocities,  especially  during  the  Sentinel-1  monitoring  period.  The  

elevation  along  the  profile  ST  was  relatively  lower  than  QI  (Fig.  14b).  High  velocities  

appeared  in  ~5  km,  where  the  elevation  was  almost  lower  than  2  m.  PALSAR-1  derived  LOS  
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636 velocities  along  the  ST  showed  a  similar  trend  to  the  vertical  velocities  from  Sentinel-1  

analysis.  By  analyzing  the  subsidence  performance  over  the  topographic  surface,  this  study  

found  that  some  low  areas  subsided  at  a  relatively  high  velocity,  especially  in  recent  years,  

which c ould c ontribute  to f lood vul nerability  and  risk.   
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642 Figure  14.  PALSAR-1  LOS  velocities  from  2006  through  2011  (red  line)  with  standard  

deviation  (pink  bar),  Sentinel-1  vertical  velocities  (blue  line)  with  standard  deviation  (light  

blue  bar),  and  elevation  (black  line  with  vertical  accuracy  shown  as  gray  bar)  along  the  

transects  QI  and S T. T he  locations  of  the  transects  are  shown i n  Figure  15a.  

 

5.5 S ubsidence  along H ighways  

Many  low-lying  sections  of  highways  are  susceptible  to  flood  inundation.  Land  

subsidence  could  increase  their  flood  vulnerability.  This  study  examined  the  spatial  pattern  of  

subsidence  along  three  highways  across  the  study  area  (Fig.  15).  The  highways  were  

digitalized i n t he  Google  Earth i mage  and ove rlaid  on t he  airborne  LiDAR-derived D EM  (Fig.  
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652 15a).  Changes  in  elevation  along  the  highway t racks  from  the  northwest  to  the  southeast  were  

illustrated  in  black  (Fig.  15b,  15c,  and  15d).  Our  results  demonstrated  that  variations  of  

PALSAR-1  LOS  velocities  and  Sentinel-1  velocities  in  the  vertical  direction  along  the  

highway a ppeared  to  not  correlate  with  elevation  information.  In  particular,  SH  6  underwent  a  

high  subsidence  velocity  (>10  mm/year)  over  the  0-to-5  km  section  and  lower  velocities  

around  -5  mm/year  for  the  rest  of  the  track  in  both  PALSAR-1  and  Sentinel-1  results  (Fig.  

15b).  Along  Gulf  Fwy,  the  estimated  subsidence  velocities  appeared  to  be  stable  for  the  first  

few  kilometers  then  double  from  about  -5  mm/year  to  -10  mm/year  around  the  5  km  mark,  

and  then  slowly  increased  for  the  rest  of  the  track  (Fig.  15c).  SH  146  experienced  high  

subsidence  velocities  (~15  mm/year)  in  the  10-to-15  km  section  based  on  Sentinel-1  and  

PALSAR-1  results  (Fig.  15d).  However,  some  low-lying  sections  of  the  highways  underwent  

relatively  large  subsidence  velocities,  such  as  around  17  km  of  the  State  Highway  6  (SH  6)  

subsided  up  to  10mm/year  with  the  elevation  below  2  m,  around  20  km  mark  of  Gulf  Fwy  

subsided  approximately  5-10  mm/year  with  elevation  about  3  m,  around  12  km  of  the  State  

Highway  146  (SH  146)  subsided  approximately  15  mm/year  with  elevation  about  3  m.  

Besides,  Similar  patterns  (increasing-to-decreasing  velocities  along  the  northwest-southeast  

direction)  were  identified  in t he  PALSAR-1 a nd S entinel-1 r esults  for  all  selected hi ghways.   
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669 

670 Figure  15.  (a)  Digitalized  highways  and  selected  profiles  over  the  airborne  LiDAR-derived  

DEM.  PALSAR-1  LOS  velocities  (red  line)  with  standard  deviation  (pink  bar),  Sentinel-1  

velocities  in  the  vertical  direction  (blue  line)  with  standard  deviation  (light  blue  bar),  and  

elevation  (black  line  with  vertical  accuracy  shown  as  gray)  over  the  (b)  State  Highway  6  

(SH6)-KL, ( c)  Gulf  Fwy-MN, a nd ( d)  State  Highway  146  (SH  146)-OP.   

 

6.  Conclusions  

The  study  integrated  SBAS  InSAR,  airborne  LiDAR,  and  land  cover  data  to  investigate  

coastal  subsidence  around  Eagle  Point  in  Texas,  where  a  high  RSLR  was  recorded  at  a  tide  
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679 gauge  station.  Our  results  revealed  that  the  subsidence  velocities  were  up  to  −33  mm/year  in  

the  LOS  direction  in  2006-2011  from  ALOS-1  PALSAR-1  images  and  up  to  −34  mm/year  in  

the  vertical  direction  in  2016-2021  from  Sentinel-1  images.  The  low  vertical  accuracy  of  

airborne  LiDAR  measurements  has  limited  its  application  for  land  subsidence  mapping.  

However,  this  study  found  that  airborne  LiDAR  could  be  a  complementary  means  to  provide  

information  on  high-resolution  spatial  variability  of  coastal  subsidence  over  the  highly  

subsided  area.  Our  study  is  unique  in  terms  of  using  both  the  InSAR-derived  velocities  from  

images  time  series  and  LiDAR-derived  surface  changes  from  time-lapsed  observations.  

Comparing  the  InSAR  results  to  1-m  airborne  LiDAR  measurements  showed  good  agreement  

along  the  selected  profiles,  i.e.,  areas  with  higher  subsidence  velocities  based  on  InSAR  

tended  to  have  larger  surface  change  based  on  airborne  LiDAR  and  vice  versa.  More  

importantly,  the  comparison  revealed  that  airborne  LiDAR  results  could  be  complementary t o  

InSAR  results  by  shedding  light  on  the  subpixel  variations  of  InSAR  results  and  identifying  

significant  surface  changes  that  InSAR  cannot  capture.  Airborne  LiDAR  data  are  not  globally  

available  like  SAR  images  yet,  but  the  availability  of  airborne  LiDAR  data  is  improving  

rapidly a t  local  or  regional  levels  in  many  countries.  Furthermore,  by  incorporating l and  cover  

data,  this  study  found  that  the  subsidence  velocities  tended  to  be  higher  in  forest,  grassland,  

and  wetlands  than  in  developed  urban  areas  over  the  study  area.  In  addition,  the  subsidence  

velocities  appeared t o be   negatively  correlated  with t he  percent  impervious  coverage.  

Overall,  the  results  of  this  study  show  that  the  high  vertical  accuracy  InSAR  results  and  

the  high  spatial  resolution  airborne  LiDAR  data  could  be  complementary  in  subsidence  
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700 monitoring.  An  improved  characterization  of  subsidence  using  both  InSAR  and  airborne  

LiDAR  results  could  provide  valuable  information  to  support  a  variety  of  coastal  studies  on  

flood  vulnerability,  infrastructure  reliability,  and  erosion  control.  Our  findings  indicate  the  

need  and  feasibility  of  a  multi-resolution  InSAR-LiDAR  fusion  for  mapping  coastal  

subsidence  mapping  with  both hi gh a ccuracy  and  high r esolution.  
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829 List  of  Figure  Captions  

 

Figure  1.  Study  area:  (a)  SAR  data  coverage  (black  squares)  over  the  elevation  map  around  the  

study  area  (red  square);  (b)  a  Google  Earth  image  of  the  study  area  and  the  monthly  mean  RSLR  

observed  at  the  Eagle  Point  Tide  Gauges  Station  (blue  marker)  from  1993  to  2017.  Red  marker  

shows  the  location  of  the  TXLM  GPS  station,  and  magenta  dots  denote  the  location  of  the  

reference  points  for  Sentinel-1 a nd A LOS-1 P ALSAR-1 i mage  processing.   

 

Figure  2. R esearch f ramework.  

 

Figure  3.  Interferogram  networks  from  ALOS-1  PALSAR-1  and  Sentinel-1  acquisitions  with  

the  perpendicular  and  temporal  baselines:  (a)  PALSAR-1  ascending  images,  (b)  Sentinel-1  

ascending  images,  and ( c)  Sentinel-1 de scending  images. R ed c ircles  represent  SAR  images.   

 

Figure  4.  LOS  velocities  and  standard  deviations  derived  from  (a  and  b)  PALSAR-1  ascending  

images  (2006-2011),  (c  and  d)  Sentinel-1  Path  136  ascending  images  (2016-2021),  and  (e  and  f)  

Sentinel-1 P ath 143 de  scending  images  (2016-2021).    

 

Figure  5.  The  vertical  components  under  the  assumption  of  zero  north-south  motion  in  

2016-2021 ba sed on S  entinel-1 a scending a nd de scending L OS  results  (Fig. 4c   and 4e ).  

 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

841 

842 

843 

844 

845 

846 

847 

848 

849 

54 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

850 Figure  6.  Comparison  of  InSAR-derived  cumulative  subsidence  to  GPS  measurements  in  the  

vertical  direction. T he  location of   the  TXLM  GPS  station i s  shown i n F igure  1.  

 

Figure  7.  Detailed  subsidence  pattern  of  a  selected  area:  (a)  Google  Earth  image,  (b)  airborne  

LiDAR-derived  vertical  surface  differences,  (c)  vertical  component  based  on  PALSAR-1  

results  (assuming no   east-west  and  north-south  motions),  and  (d)  vertical  component  based  on  

Sentinel-1  results  (assuming  no  north-south  motion).  Figure  1b  shows  the  location  of  this  

area.  

 

Figure  8.  Comparison  of  InSAR  and  airborne  LiDAR  results  along t ransect  lines  L1  (a  and  b)  

and  L2  (c  and  d).  Error  bars  indicate  standard  deviations.  The  locations  of  the  transect  lines  

are  shown i n  Figure  7a.  

 

Figure  9.  Historical  Google  Earth  images  and  airborne  LiDAR-derived  land  surface  

differences  over  the  selected  profiles  BC  (a)  and  HI  (b).  The  locations  of  BC  and  HI  are  

shown i n F ig. 7 a.  

Checkpoints  B, C , H , a nd  I  are  denoted b y y ellow  placemarks.  

 

Figure  10.  Land c over  of  the  study  area  based on   NLCD  2019.  
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870 Figure  11. P ALSAR-1  mean L OS  velocities  (a)  and  Sentinel-1  mean  vertical  velocities  (b)  for  

different  land  cover  types.  The  95%  confidence  intervals  are  computed  as  1.96  standard  errors  

for  each  land  type.  The  red  line  represents  the  number  of  pixels.  Subplots  c  and  d  show  the  

interquartile  ranges  of  PALSAR-1  LOS  velocities  and  Sentinel-1  vertical  velocities  for  

different  land  cover  types, r espectively.  

 

Figure  12.  Relationships  between  percent  impervious  coverage  and  subsidence  velocities:  

PALSAR-1  LOS  velocities  at  (a)  the  pixel  level  and  (b)  the  cluster  level;  Sentinel-1  vertical  

velocities  at  (c)  the  pixel  level  and  (d)  the  cluster  level.  Black  lines  (a  and  c)  and  red  lines  (b  and  

d)  indicate  linear  fit.  

 

Figure  13.  Examples  of  the  multiscale  measurements:  (a)  a  grassland  area  (dashed  box)  with  

details  presented  in  the  second  row;  and  (b)  a  developed  area  (solid  box)  with  details  

presented  in  the  third  row.  In  example  (a),  the  0.3-m  HxGN  aerial  image  shows  the  landscape.  

In  example  (b),  black  arrows  indicate  the  ditch  and  the  culvert.  This  area  is  also  marked  in  

Figure  7b.  

 

Figure  14.  PALSAR-1  LOS  velocities  from  2006  through  2011  (red  line)  with  standard  

deviation  (pink  bar),  Sentinel-1  vertical  velocities  (blue  line)  with  standard  deviation  (light  blue  

bar), a nd e levation ( black l ine  with  vertical  accuracy  shown a s  gray  bar)  along  the  transects  QI  

and S T. T he  locations  of  the  transects  are  shown i n F igure  15a.  
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891 

892 Figure  15.  (a)  Digitalized  highways  and  selected  profiles  over  the  airborne  LiDAR-derived  

DEM.  PALSAR-1  LOS  velocities  (red  line)  with  standard  deviation  (pink  bar),  Sentinel-1  

velocities  in  the  vertical  direction  (blue  line)  with  standard  deviation  (light  blue  bar),  and  

elevation  (black  line  with  vertical  accuracy  shown  as  gray)  over  the  (b)  State  Highway  6  

(SH6)-KL, ( c)  Gulf  Fwy-MN, a nd ( d)  State  Highway  146  (SH  146)-OP.   

893 

894 

895 

896 

57 


	Integrated Coastal Subsidence Analysis Using InSAR, LiDAR, and Land Cover Data
	Introduction
	Study Area
	Methods and Materials
	Results
	Discussion
	Conclusions
	References
	Figure Captions



