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Abstract

Land subsidence is an important cause of relative sea-level rise along the Gulf Coast. There is
a lack of effective monitoring of coastal subsidence with high accuracy and high spatial
resolution for improving coastal risk assessment and mitigation. This study is the first attempt

to integrate satellite interferometric synthetic aperture radar (InSAR) and airborne LiDAR
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methods to investigate the spatiotemporal pattern of coastal subsidence. The study area is
around Eagle Point, Texas, a region known for its fast rate of relative sea-level rise in recent
decades. From 2006 to 2011, the line-of-sight velocities were up to —33 mm/year based on
ascending ALOS-1 PALSAR-1 images. From 2016 to 2021, the vertical velocities were up to
—34 mm/year based on ascending and descending Sentinel-1 images. Additional details of the
subsidence pattern were revealed by incorporating the surface difference derived from 1-m
airborne LiDAR results. Comparisons of the InSAR-derived velocities from image time series
and the LiDAR-derived surface changes from time-lapsed observations were conducted at
different spatial levels with linkages to land cover patterns and topography. The results
showed that local subsidence rates could vary significantly below the spatial resolution of
InSAR results, indicating a valuable role of airborne LiDAR results in extending InSAR
results to parcel and building levels and explaining subpixel uncertainties. Also, subsidence
appeared stronger in vegetated areas than in developed areas and negatively correlated with
surface imperviousness. The magnitude of subsidence was not correlated with elevation along
selected transect lines. Overall, this study demonstrated the benefits of combining InSAR
results with other geospatial datasets to characterize coastal subsidence. In particular, the high
vertical accuracy InSAR results and the high spatial resolution airborne LiDAR results could
be complementary, highlighting the necessity of multi-resolution data fusion to support

studies on coastal flood vulnerability, infrastructure reliability, and erosion control.
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1. Introduction

More than 600 million people, or 10 % of the world’s population, live in low-lying coastal
areas below 10 m in elevation (Neumann et al. 2015). These coastal areas are unique
ecosystems that offer habitats for many species and provide essential services to human
society. The market value of marine and coastal resources was estimated at $3 trillion annually
as the year of 2015, accounting for 5% of global gross domestic product (Global Ocean
Commission 2014). Over the past decades, relative sea-level rise (RSLR) has been identified
as a significant threat to many coastal areas. It is exacerbating a variety of environmental and
ecological problems such as coastal flooding (Ezer and Atkinson 2014), wetland loss
(Schuerch et al. 2018), and coastal erosion (Leatherman et al. 2000), endangering local
ecosystems and communities. RSLR is the combined effect of sea-level rise and land
subsidence. Potential causes of sea-level rise include meltwater from glaciers and ice sheets,
thermal expansion of seawater, and transfers of water from storage on land to sea (Frederikse
et al. 2020; Meredith et al. 2019). Land subsidence is associated with natural and human
causes at local or regional scales, such as groundwater withdrawal, oil and gas extraction, soil
compaction, fault growth, tectonic activities, and other natural processes (Coplin and
Galloway 1999).

The contribution of land subsidence to RSLR is particularly significant along the Texas
Gulf Coast (Coplin and Galloway 1999). For example, the contribution of land subsidence
was estimated to be 76-85% of RSLR from 1909 to 1992 and decreased to 30% in 2018 at

tide gauge Galveston Pier 21, Texas (Liu et al. 2020), over an area known for significant
3
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subsidence (Miller and Shirzaei 2019; Qu et al. 2015). Driven by growing concerns about the
effect of land subsidence on coastal flooding, shoreline erosion, and fault movement (Coplin
and Galloway 1999; Miller and Shirzaei 2021), there is an urgent need for effective
characterization of land subsidence to improve risk management strategies for Texas coastal
areas.

Traditional efforts of subsidence analysis rely on ground-based techniques. For example,
geodetic surveying methods such as leveling have been used to measure the vertical change of
the ground surface at the local scale. Extensometers have also been used to measure aquifer
compaction and expansion for estimating subsidence around wells (Huang et al. 2012), but
the low spatial coverage of extensometers hinders the understanding of the spatial variations
of regional subsidence. Another method for subsidence monitoring is the global navigation
satellite system (GNSS) (Wang et al. 2017). In particular, continuous GNSS stations, such as
NOAA'’s continuously operating reference station (CORS) network, can offer positioning
observations with high accuracy, but the results are only valid for a limited area around the
stations.

Geodetic remote sensing techniques can continuously monitor the dynamic displacement
of the ground surface and provide a new means to quantify land subsidence. In particular, the
interferometric synthetic aperture radar (InSAR) has been proven to be an effective tool to
map land subsidence with centimeter-to-millimeter accuracy over a large geospatial extent
(Biirgmann et al. 2000). It compares two or more synthetic aperture radar (SAR) images that

are collected at different times over the same region to quantify the change of ground surface.
4
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Due to the growing availability of high-quality SAR datasets, InSAR has been increasingly

used in coastal subsidence studies (Dixon et al. 2006; Wang et al. 2012). For example, Qu et

al. (2015) mapped the line of sight (LOS) subsidence in the Galveston-Houston region, Texas,

using InSAR based on ERS, Envisat ASAR, and ALOS-1 PALSAR-1 images from 1993 to

2011. Miller and Shirzaei (2021) generated the vertical land subsidence rate over this area

based on ALOS-1 PALSAR-1 and Sentinel-1 images between 2007 and 2019 and GNSS

measurements which provided the horizontal component of the motion for the same period.

Results of these InSAR-based subsidence studies typically have a horizontal spatial resolution

in tens-of-meters. In comparison, airborne LiDAR (Light Detection and Ranging) could offer

insights at a higher spatial resolution (up to 1 m), although with a lower vertical accuracy

(10—15 cm). Airborne LiDAR is an aerial mapping technology that integrates LiDAR and

aerial platforms (e.g., a drone, plane, or helicopter) to collect the three-dimensional (3D) point

cloud of the earth’s surface for the generation of digital terrain models (DTM) or digital

elevation models (DEM). Recent advances in drone technology have particularly promoted

the applications of airborne LiDAR. Integrating InSAR and airborne LiDAR methods can

potentially study coastal subsidence with high accuracy and high spatial resolution.

The objectives of this study are to 1) quantify the subsidence rates in a Texas coastal area

from 2006 to 2021 using the small baseline subset (SBAS) InSAR method, and 2) compare the

InSAR results to the high-resolution land surface differences derived from multitemporal

airborne LiDAR data, and 3) investigate the relationships between subsidence and the patterns

of land cover and topography. This study aims to explore a complementary relationship
5
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between the high accuracy InSAR results and the high spatial resolution airborne LiDAR

results in supporting coastal subsidence studies.

2. Study Area

The study area is a 520 km? area around Eagle Point in Texas, located between 29°20'N
and 29°34’N and between 95°5°W and 94°52’W (Fig. 1). The land cover is dominated by a
mixture of coastal prairie, urban areas, and an industrial zone of oil and gas facilities in the
southeast area. Elevation ranges from —4.43 m to 17.05 m with an average slope of 0.18".
Records from the Eagle Point Tide Gauge Station show an RSLR rate of 13.7 mm y™! from 1993
to 2017 (Fig. 1b). A possible cause is the withdrawal of groundwater from the Chicot,
Evangeline, and Jasper aquifers, all components of a broader Gulf Coast aquifer system, to
meet the increasing industrial and municipal water demands from the Galveston area. Oil and
gas extraction, and surface fault activities could also contribute to the land subsidence here

(Coplin and Galloway 1999; Qu et al. 2015).
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Figure 1. Study area: (a) SAR data coverage (black squares) over the elevation map around the
study area (red square); (b) a Google Earth image of the study area and the monthly mean RSLR
observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker
shows the location of the TXLM GPS station, and magenta dots denote the location of the

reference points for Sentinel-1 and ALOS-1 PALSAR-1 image processing.

3. Methods and Materials

3.1 Overview

This study combined InSAR, airborne LiDAR, GPS, and land cover data to investigate
the spatiotemporal pattern of coastal land subsidence and its relation to different land cover
and topography, consisting of several steps (Fig. 2). First, three stacks of SAR images were
used to obtain the LOS subsidence velocities, i.e., two orbits from Sentinel-1 and one from
ALOS-1 PALSAR-1. LOS velocities in both ascending and descending geometries of

Sentinel-1 were utilized then to generate the projections onto the vertical and east-west
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horizontal directions under the assumption of zero north-south motion. Second, this study
generated a 1-m land surface difference map from two temporal airborne LiDAR point cloud
data to compare and complement InSAR results. Third, the InSAR results were overlapped
with land cover data to examine the occurrence of subsidence in different land cover
categories, and its relationship with percent surface imperviousness. Finally, InSAR results
and LiDAR DEM were combined in a profile analysis to investigate the pattern of subsidence
along selected transections and highways across the study area. Highways are often a focus of
mitigation and response studies for flooding risk management, as land subsidence along

low-lying highway sections could exacerbate the inundation risk.
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Figure 2. Research framework.
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3.2 InSAR-Based Subsidence Analysis

3.2.1 SAR Images

This study used two sets of SAR data (Table 1). The L-band ALOS-1 PALSAR-1 data

included 26 ascending images taken between December 2006 and January 2011. The

descending PALSAR-1 data over the study area was limited and not adopted in this study.

Therefore, we analyzed the LOS velocities based on these ascending PALSAR-1 images. The

PALSAR-1 raw data were provided by Japan Aerospace Exploration Agency (JAXA). The

C-band Sentinel-1 SAR data included 252 ascending and descending images between April

2016 and September 2021. Combining ascending and descending Sentinel-1 images allowed

for calculating both vertical and east-west horizontal components of LOS velocities under the

assumption of zero north-south components (Eq. (1-5)). Most SAR satellites, such as ALOS

and Sentinel-1, operate in a sun-synchronous orbit with an inclination of around 98°, resulting

in range observations almost in the east-west direction and rarely in the north-south direction.

Consequently, the north-south components cannot be extracted adequately from these SAR

data-derived LOS velocities (Wright et al. 2004). Using Sentinel-1 images till 2021 other than

till 2018 (the same end year with airborne LiDAR data) would provide a more comprehensive

understanding of the subsidence pattern for our study area. The Sentinel-1 single look

complex (SLC) data were provided by the Copernicus program of the European Space

Agency. Full details of the InSAR data are presented in Supplementary Information.
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Table 1. Characteristics of SAR data.

Characteristics \ Sensor ALOS-1 PALSAR-1 Sentinel-1
Band (Wavelength) L (23.6 cm) C (5.6 cm)
Beam mode FBS, FBD w
Revisit time 46 days 12 days
Orbital geometry Ascending Ascending/Descending
Path 175 136/143
Frame 570, 580 90-93/491-494
Temporal span 12/2006-1/2011 4/2016-9/2021

3.2.2 SBAS InSAR Analysis

We used the SBAS method to retrieve historical subsidence from SAR images. The
SBAS method utilizes interferograms from small temporal and spatial baseline subsets,
reducing both spatial and temporal decorrelation and improving phase estimates' performance
(Berardino et al. 2002). Persistent Scatterer Interferometry (PSI) uses persistent scatterers (PS)
to obtain the land surface displacements (Ferretti et al. 2001). The persistent scatterers are
always substantial in developed urban areas, which renders PSI to be applied more in the
urban area. In this study, the study area covers developed urban areas, grassland areas, and
wetlands. One of our objectives is investigating the relationship between land subsidence and
land cover. SBAS method can overcome the rapid loss of coherence in long-term
interferograms in PSI over nonurban areas. So, although PSI can achieve full-resolution

(single-look), this study finally applied the SBAS method to map the land subsidence.
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For the ALOS-1 PALSAR-1 data, we selected the image collected on 28 March 2008 as
the reference image. All other images were coregistered to this reference image. The temporal
and perpendicular baseline thresholds for PALSAR-1 data were set as 1,200 days and 1,500 m,
respectively (Fig. 3a). For the Sentinel-1 data, the image collected on 10 January 2019 was
chosen as the reference image. Interferograms were generated between each epoch and the
adjacent four epochs for Sentinel-1 data (Fig. 3b and 3c). This study used the InSAR Scientific
Computing Environment (ISCE) (Rosen et al. 2012) to obtain 49 and 1012 interferograms for
PALSAR-1 and Sentinel-1 stacks, respectively. The multilooking approach was leveraged to
alleviate the phase noise, which was 9 x 2 (azimuth by range) and 2 x 10 for the PALSAR-1 and
Sentinel-1 data, respectively, leading to approximately 30-m pixels. The topographic phase was
removed from interferograms based on a 30-m Shuttle Radar Topography Mission DEM. In
addition, orbit parameters were incorporated to correct orbital errors in the generation of
Sentinel-1 interferograms. All interferograms were unwrapped by adopting the SNAPHU
(Statistical-Cost Network-Flow Algorithm for Phase Unwrapping) (Chen and Zebker 2002).

The Miami InSAR time-series software in Python (MintPy) (Yunjun et al. 2019) was
applied to perform the SBAS approach. This study selected the interferogram network by
utilizing minimum spanning tree (MST) and spatial coherence threshold, i.e., accomplished the
MST first by using the inverse of average spatial coherence of all interferograms as weight,
then excluded the interferograms (except for MST’s interferograms) with spatial coherence
lower than the threshold. Average spatial coherence thresholds of 0.6 for the Sentinel-1

interferograms and 0.65 for PALSAR-1 interferograms were applied in this study (Fig. 3). For
11
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the Sentinel-1 interferogram network, the temporal baseline threshold of not exceeding 100
days was applied then (Fig. 3b and 3c). Water bodies were masked out by applying a
DEM-based water mask in radar coordinates. We selected two buildings as reference points
for PALSAR-1 and Sentinel-1 datasets (magenta dots, denoted as Ref. in Fig. 1b). All
interferograms were referenced to the reference point so that the relative LOS velocities can
be calculated later. The components of tropospheric delay were removed by ERAS reanalysis
using PyAPS (Python-based Atmospheric Phase Screen estimation) module (Jolivet et al. 2011).
This study estimated the LOS velocity as the slope of the best fitting line to the range change
time series and the uncertainty of the velocity as the goodness of fit, i.e., standard deviation
(Fattahi and Amelung 2015).

The LOS velocity v;,; can be decomposed into three velocity components in the
east-west direction (vg), the north-south direction (vy), and the vertical direction (vy) (Fialko

and Simons 2001; Wright et al. 2004):

Vg
Vips = —sSinBcosa sinOsina cos0) <UN) (D)
Vy

where 6 is the radar incidence angle and a is the satellite heading angle (i.e., the direction
of the satellite motion). The incidence angle and heading angle are known. In this study, for
Sentinel-1 ascending and descending geometries, the mean values for the incidence angles are
32.55° and 32.50°, and the heading angles are 349.22° and 190.79°, respectively. Based on
estimated Sentinel-1 ascending LOS velocities v and descending LOS velocities v2s, Eq.

(2) and Eq. (3) can be developed with three unknown velocity components vy, vy, and vy:

12
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v{S = —singScosiSvy + singsindSvy + cosg v, (2)
DS _ _cin. S S 0 Sein S s
Vijps = —Sing>c0Sy, Vg + sing”sing vy + cosg’vy  (3)

Assuming that the motion in the north-south direction (vy) is negligible, Eq. (2) and Eq. (3)
could be solved to yield the LOS velocity projections onto the vertical (vy, Eq. (4)) and

east-west horizontal direction (vg, Eq. (5)):

sineDScosBS vfﬁ—sin‘é‘scosésvﬁg

vy = : : 4
4 COSQSSIDGDSCOSES—SlngSCOSéSCOSeDS ( )

cos§SvPS—cospSvilS

i AS AS DS AS;..DS DS (5)
SINg~COS~CO0Sg ™~ —COSy~SlNg~COSy

Ve =
E C

During the data processing, by inputting Sentinel-1 ascending and descending geometries
LOS velocities in the decomposition operation of MintPy, the Sentinel-1 vertical components
under the assumption of zero north-south motion will be generated. For the PALSAR-1
ascending geometry used in this study, only Eq. (2) could be developed. With three unknown
velocity components, the study estimated the vertical components of PALSAR-1 LOS
velocities using Eq. (6). This equation was derived from Eq. (2) by assuming that the
east-west and north-south motion were negligible. The mean incidence angle for PALSAR-1
data is 39.7°. This decomposition was executed in the calculation operation of MintPy.

AS

Vios
Vy = —as 6
COS‘SS ( )

13
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Figure 3. Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with
perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b) Sentinel-1

ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images.

3.2.3 Validation Based on GPS Data

A CORS GPS station (TXLM) is located in a highly developed area of the study site (Fig.
1b). The GPS data for 2006-2021 were provided by the National Geodetic Survey (NGS) and
processed by the Nevada Geodetic Laboratory with respect to the IGS14 reference frame
(Blewitt et al. 2018). We used the GPS vertical land surface displacement measurements to
validate our InSAR-based subsidence results over an approximately 30 m X 30 m area

centered on the GPS station.
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3.3 Airborne LiDAR-Based Land Surface Difference

We used two airborne LiDAR point cloud datasets of 2006 and 2018, provided by the 3D
Elevation Program (3DEP) of the United States Geological Survey (USGS). These datasets'
vertical and horizontal datums were NAVDS88 and NADS3, respectively. The point density of
the 2006 data was below 2 points/m? and was deemed adequate to generate a 1-m DEM. 14
categories were classified for the LAS airborne LiDAR point cloud data according to the
ASPRS classification standard. This study leveraged the ground class of the point cloud and
applied a standard filtering procedure to extract the bare earth point cloud data (Fig. 2). DEM
tiles were generated based on those ground points using the LAStools and were merged then
to produce a seamless 1-m DEM. For the 2018 DEM, raw 1-m DEM tiles (1.65 km x 1.85 km)
were downloaded from 3DEP and merged into a DEM using QGIS. The airborne LiDAR data
in 2018 was offered at level 2 (QL2), which had a minimum nominal pulse spacing (NPS) of
0.7 m and a vertical error of 0.1 m, measured as root mean square error (RMSE). Finally, the
land surface differences in the vertical direction between 2006 and 2018 were calculated
based on two temporal DEMs using subtraction analysis in QGIS (Fig. 2). The uncertainties
of surface differences were unlikely to be spatially homogeneous, caused by factors such as
uncertainties of original DEMs and the error propagation during the change detection. The
uncertainties of airborne LiDAR-derived DEM were also heterogeneous but always offered as

a single value. In this study, the absolute vertical accuracy for QL2 airborne LiDAR data was

15
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provided in the USGS report as 0.1 m, but the relative vertical accuracy would be smaller than

0.06 m for smooth surfaces. Quantifying uncertainty in change detection results of airborne

LiDAR is not a trivial work and is still very limited (Okyay et al. 2019). Land surface

difference from airborne LiDAR includes the accumulation of gradual land subsidence and

land displacements induced by human activities and other surface processes. The periods of

airborne LiDAR measurements (2006-2018) had overlaps with that of ALOS-1

PALSAR-1(2006-2011) and Sentinel-1(2016-2021) SAR data. This study compared airborne

LiDAR-derived land surface differences to the InSAR-derived velocities. The 1-m map of

land surface differences would complement the PALSAR-1 and Sentinel-1 results by

revealing more details of the spatial variations of gradual subsidence below the scale of the

30-m InSAR pixels and identifying the significant land surface change which InSAR cannot

capture.

3.4 Subsidence Analysis over Different Coastal Land Cover and Topographic Patterns

We obtained the 30-m 2019 land cover from the National Land Cover Database (NLCD).

USGS generated the NLCD products through integrating multi-source geospatial datasets and

classification using machine learning methods (Jin et al. 2019), and their accuracies were

validated at the national level (Wickham et al. 2021).

The land cover analysis was conducted in ArcGIS Pro. First, the NLCD data was

extracted and clipped to the same extent as the study area. Then, the NLCD categories were

16
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modified to address the land cover pattern of the study area. Deciduous forest, evergreen

forest, and mixed forest categories were merged into a forest category. Shrub/scrub,

grassland/herbaceous, pasture/hay, and cultivated crops categories were merged into a

grassland category. Woody wetlands and emergent herbaceous wetlands categories were

merged into a wetlands category. The resulted land cover raster was converted into

multi-feature polygons. These polygons were linked to the subsidence estimates using the

Spatial Join Tool in ArcGIS Pro. Based on attribute tables of the Spatial Join-derived feature

classes, mean subsidence velocities, standard error, and interquartile ranges were calculated

for different land cover categories. In addition, linear regression was performed to analyze the

relationship between subsidence velocities and surface imperviousness at the pixel level and

between mean subsidence velocities and surface imperviousness at the class level.

We further examined the relationship between subsidence and topography using the

2018 airborne LiDAR DEM. The floating-type DEM was first converted into an integer-type

DEM and then into polygon features. Next, we established two transect lines (Fig. 15a) to

represent the dominant elevation gradients over the study area, e.g., transect QI across the

northeast-southwest gradient from the shoreline to a river mouth and transect ST located

along the northwest-southeast shoreline. Then, this study applied the Stack Profile Tool in

ArcGIS Pro to extract elevation and subsidence velocities along these transect lines for profile

analysis.
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4. Results

4.1 InSAR-Derived Subsidence Velocity

4.1.1 Spatiotemporal Pattern of Land Subsidence

The LOS velocities from ALOS-1 PALSAR-1 and Sentinel-1 images are shown in Fig.

4. Positive values indicate ground motions toward the satellite (i.e., uplift) and negative

values indicate ground motions away from the satellite (i.e., subsidence). For PALSAR-1

analysis between 2006 and 2011, the LOS velocities varied from —33 to 20 mm/year (Fig. 4a)

with the standard deviations of 0 to 12 mm/year (Fig. 4b). Results show that the significant

subsidence in 2006-2011 tended to continue in the next time window analyzed and with a

similar magnitude. From 2016 to 2021, the LOS velocities ranged from —31 to 19 mm/year

for Sentinel-1 ascending geometries analysis (Fig. 4c) and ranged from —31 to 17 mm/year for

descending geometries analysis (Fig. 4e). The standard deviations of LOS velocities for

Sentinel-1 ascending and descending geometries were smaller than 2 mm/year (Fig. 4d and

4f).

The velocities in the vertical direction under the assumption of zero north-south motion

in 2016-2021 based on both ascending and descending Sentinel-1 images are shown in Fig. 5.

For velocities in the vertical direction, positive and negative values indicate ground uplift and

subsidence, respectively. This study found that the vertical velocities were up to —34

mm/year, with a spatial pattern similar to that of the LOS velocities (Fig. 4c and 4e). Our

findings agreed with the results from a previous InSAR study in this region (Miller and Shirzaei
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Figure 5. The vertical components under the assumption of zero north-south motion in

2016-2021 based on Sentinel-1 ascending and descending LOS results (Fig. 4c and 4e).

4.1.2 Validation

Fig. 6 shows the validation of subsidence velocities in the vertical direction against the
vertical GPS measurements, all presented in the form of accumulative depth. For the ALOS-1
PALSAR-1 results, only ascending data were available over the study area. Therefore, the
vertical velocities transformed from LOS velocities using the local incidence angle were used
for validation, assuming that the vertical component dominated the subsidence. For the
Sentinel-1 results, the derived vertical velocities under the assumption of zero north-south

motion (Wright et al. 2004) were directly compared to vertical GPS measurements. The GPS
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measurements agreed well with both PALSAR-1 results from 2006 to 2011 (RMSE = 7.5 mm)

and Sentinel-1 results from 2016 to 2021 (RMSE =11.6 mm).
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Figure 6. Comparison of InSAR-derived cumulative subsidence to GPS measurements in the

vertical direction. The location of the TXLM GPS station is shown in Figure 1.

4.2 Airborne LiDAR-Derived Land Surface Difference

Here we compare the results of InSAR and airborne LiDAR over a subset of the study
area that experienced substantial subsidence (Fig. 7, also marked as a blue rectangle in Fig.
1b). InSAR results (Fig. 7c and 7d) included some empty pixels because of the temporal
coherence thresholds setting used to ensure reliable estimates. In contrast, the 1-m ground
differences between 2006 and 2018 based on two temporal airborne LiDAR data covered the
entire area (Fig. 7b). As the airborne LiDAR measurements were in the vertical direction,
LOS PALSAR-1 results-derived vertical components based on Eq. (6) (Fig. 7c) and
Sentinel-1 vertical results (Fig. 7d) were used here. The PALSAR-1 results indicated a strong
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subsidence process (up to —22 mm/year) in 2006-2011 (Fig. 7c). The subsidence process
appeared to be continuing at several locations in 2016-2021 from Sentinel-1 results (Fig. 7d),
and the subsidence velocities in the vertical direction were up to —25 mm/year. In the
upper-right part, the vertical velocities derived from PALSAR-1 images under the assumption
of no east-west and north-south motion (Fig. 7c) were larger than that from Sentinel-1 images
under the assumption of no north-south motion (Fig. 7d). Groundwater use, human activities
such as building construction, etc. might lead to quicker subsidence in 2006-2011 than in
2016-2021. In the selected area, airborne LiDAR results revealed plenty of areas with a
surface change between —0.3 to 0.1 m (Fig. 7b). Limited and scattered areas were with large
surface changes (negative or positive), which were likely induced by human activities and
other surface processes (for example, areas Al and A2 highlighted in Fig. 7a). Overall, both
InSAR-based analysis and airborne LiDAR measurements indicated substantial subsidence in
this area. Most highly subsided areas based on InSAR analysis also showed relatively large
surface changes based on airborne LiDAR measurements, between —0.1 to —0.3 m during
2006-2018 (Fig. 7). The 1-m airborne LiDAR results offered more details of the surface
differences and could capture some large changes that InSAR cannot monitor.

We further conducted profile analysis along two transect lines (Fig. 7a) to evaluate the
agreement and disagreement between InSAR and airborne LiDAR estimates. The transect line
L1 represented the northwest-southeast direction, with the land use dominated by developed
and vegetated areas. PALSAR-1 and Sentinel-1 results presented a trend similar to that of the

accumulative land surface differences in 2006-2018 from the airborne LiDAR results (Fig. 8a
22
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and 8b). The lower subsidence velocities tended to be associated with smaller accumulative

surface differences, and higher velocities aligned with greater accumulative surface

differences. In particular, the airborne LiDAR results of sections BC and DE exhibited large

land surface differences. The PALSAR-1 and Sentinel-1 velocities showed high values in

these sections, especially velocities from Sentinel-1 analysis (up to about —20 mm/year). The

high velocities would contribute to the large subsidence, which had a good agreement with

the airborne LiDAR results (Fig. 8b). Based on Google historical images, section BC was on a

piece of land with some grass and almost had no change from 2006 to 2011 (Fig. 9a). This

area was influenced by a pool and other activities then, confirming the great variations of

Sentinel-1 subsidence velocities (Fig. 8b). Section AB subsided from both PALSAR-1 and

Sentinel-1 results, whereas airborne LiDAR results presented some uplift. Based on this

multi-period information, we could infer that this segment had an uplift in 2011- 2016.

The transect line L2 represented the southwest-northeast direction. Sentinel-1 velocities

trend almost fits well with the land surface difference trend as shown in airborne LiDAR

results (Fig. 8d). PALSAR-1 velocities trend of the sections starting around H fits relatively

well with the land surface difference trend (Fig. 8c). Sentinel-1 analysis showed high

velocities in the vertical direction over the area where airborne LiDAR obtained large surface

differences. In particular, sections GH and IJ underwent larger subsidence in 2016-2021 than

in 2006-2011, leading to some large subsidence in agreement with airborne LiDAR results

(Fig. 8c and 8d). The airborne LiDAR results show a heterogeneous pattern of surface change

along section HI, agreed better with Sentinel-1 results than PALSAR-1 results. As shown in
23
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Fig. 9b, the area along the HI was mainly dominated by grassland in 2006-2011 and had a

relatively homogeneous subsidence pattern accordingly (Fig. 8c). Within the period of

Sentinel-1 results (2016-2019), the area along the HI was disturbed and/or changed by some

land reclamation and construction activities (Fig. 9b), leading to a heterogeneous subsidence

trend as well as some substantial surface changes that could only be captured by airborne

LiDAR (Fig. 8d). Sections FG subsided much faster in 2006-2011 than in 2016-2021, and the

land surface change was relatively small. Overall, the land surface difference pattern derived

from airborne LiDAR data between 2006 and 2018 generally agreed with InSAR-derived

velocities along the selected transect lines and provided a more effective means to

characterize large surface changes in areas with human activities.
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Figure 7. Detailed subsidence pattern of a selected area: (a) Google Earth image, (b) airborne
LiDAR-derived vertical surface differences, (c) vertical component based on PALSAR-1
results (assuming no east-west and north-south motions), and (d) vertical component based on
Sentinel-1 results (assuming no north-south motion). Figure 1b shows the location of this

area.
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424  Figure 8. Comparison of InSAR and airborne LiDAR results along transect lines L1 (a and b)
425 and L2 (c and d). Error bars indicate standard deviations. The locations of the transect lines
426  are shown in Figure 7a.
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Figure 9. Historical Google Earth images and airborne LiDAR-derived land surface
differences over the selected profiles BC (a) and HI (b). The locations of BC and HI are
shown in Fig. 7a.

Checkpoints B, C, H, and I are denoted by yellow placemarks.
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4.3 Relationships between Subsidence and Land Cover

Based on the land cover pattern of the study area, the standard NLCD land cover

categories were re-classified as developed building area, barren land, forest area, grassland

area, wetland area, and open water (Fig. 10). Developed areas included four classes based on

percent impervious surface coverage: open space area (1%-20%), low-intensity area

(20%-49%), medium intensity area (50-79%), and high-intensity area (80%-100%). This

study analyzed the subsidence (Fig.4a and Fig.5) distribution for different land cover types

(Fig. 10) over the entire study area. Results showed relatively high subsidence velocities in

grassland, forest, wetlands, and barren land (Fig. 11). By contrast, the classes of developed

areas had relatively low subsidence velocities. In particular, the developed high-intensity area

was associated with the lowest subsidence velocities among all categories (Fig. 11). The

velocities based on Sentinel-1 analysis were more dispersed than that from PALSAR-1

analysis for each land type (Fig. 11c and 11d).
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448  Figure 10. Land cover of the study area based on NLCD 2019.
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Figure 11. PALSAR-1 mean LOS velocities (a) and Sentinel-1 mean vertical velocities (b)

for different land cover types. The 95% confidence intervals are computed as 1.96 standard

errors for each land type. The red line represents the number of pixels. Subplots ¢ and d show

the interquartile ranges of PALSAR-1 LOS velocities and Sentinel-1 vertical velocities for

different land cover types, respectively.

This study then used linear regression to explore the relationship between the percent
surface imperviousness (Fig. 10) and subsidence velocities (Fig. 4a and Fig. 5) at two
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different scales (Fig. 12) over the entire study area. First, for all individual 30-m pixels, the
least squares polynomial fit (first degree) was applied to model the relationship between the
percent surface imperviousness and subsidence velocities (Fig. 12a and 12¢). Results indicate
that surface imperviousness was negatively correlated with the magnitude of subsidence
velocities derived from both PALSAR-1 images (R? = 0.207) and Sentinel-1 images (R? =
0.265). Second, 30-m pixels with the same percent imperviousness value were extracted and
clustered in 1% intervals from 0% to 100%, resulting in 100 clusters in which each cluster
with the same imperviousness value included many pixels with various subsidence velocities.
This study calculated the mean subsidence velocities for the resulted 100 clusters. Then, for
the clustering results, the least squares polynomial fit (first degree) was used again to model
the relationship between the percent surface imperviousness and the mean subsidence
velocities (Fig. 12b and 12d). Results showed that the clustering procedure led to higher
correlations between surface imperviousness and subsidence velocities for both PALSAR-1

(R?=0.895) and Sentinel-1 (R? = 0.937).
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Figure 12. Relationships between percent impervious coverage and subsidence velocities:
PALSAR-1 LOS velocities at (a) the pixel level and (b) the cluster level; Sentinel-1 vertical
velocities at (c) the pixel level and (d) the cluster level. Black lines (a and c¢) and red lines (b

and d) indicate linear fit.

5. Discussion

5.1 Improvements in Existing Coastal Subsidence Investigation

Coastal subsidence studies often have high expectations of spatial resolution and vertical
accuracy to meet the requirements of various coastal studies such as flood risk analysis,

shoreline erosion control, etc. INSAR works well in monitoring the gradual land subsidence
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with high accuracy over the coastal areas (Higgins et al. 2014). However, it cannot capture

significant surface displacements in a short time due to decorrelation. On the other hand,

airborne LiDAR can monitor the land surface difference with a high spatial resolution (Jones

et al. 2013). In this study, airborne LiDAR datasets contributed to a 1-m land surface

difference mapping with about 10 cm vertical accuracy. Land surface change includes the

accumulation of gradual land subsidence and land displacements induced by human activities

and other surface processes. The results of this study indicate the unique benefits of

combining InSAR and airborne LiDAR measurements to improve the understanding of the

spatiotemporal pattern of subsidence.

From the spatial perspective, InSAR analysis based on PALSAR-1 and Sentinel-1

images was constrained by its relatively low spatial resolution. However, the detailed surface

changes derived from the 1-m airborne LiDAR results can contribute to a better

understanding of the spatial variability of land deformation within the 30-m InSAR pixel. As

demonstrated in the first example in Fig. 13, the gradual subsidence over a piece of land with

some grasses was consistently captured in both InSAR and airborne LiDAR results (Fig. 13a).

PALSAR-1 and Sentinel-1 results indicated moderate subsidence rates of —0.9 to —1.5

cm/year, while airborne LiDAR results also suggested a moderate magnitude of the total

surface change between —0.1 to —0.3 m over 12 years. In addition to the consistent

characterization of an overall moderate subsidence process, the airborne LiDAR result

revealed a higher degree of spatial heterogeneity. Besides, for areas with significant surface

displacements over a short time which InSAR cannot capture, the additional surface change
34



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

information from airborne LiDAR could contribute to the analysis at the block or even
building scale, playing a critical role in high-resolution hydraulic and hydrologic simulations
in coastal regions. These relatively large surface displacements occure most likely due to
human activities changing the structure of the upper ground such as modifications related to
roads and drainage structures construction or building foundations. The second example (Fig.
13b) illustrated a large surface deformation caused by the construction of a stormwater
drainage system for a new RV parking lot. It involved some local elevation decreases due to
the elevation excavation of a stormwater ditch and some local elevation increases caused by
the placement of a culvert (Fig. 13b). These changes were clearly delineated in the airborne
LiDAR results and obviously not associated with gradual subsidence, and they were not
identifiable in the InSAR results. Overall, without the complementary high-resolution
information from airborne LiDAR results, PALSAR-1 and Sentinel-1 analysis excluded
important surface changes within a coarse InSAR pixel could not address significant land
deformation over the small dimensions of natural and built features in a heterogeneous urban
environment.

From the temporal perspective, subsidence velocities derived from PALSAR-1 and
Sentinel-1 images in non-overlapping periods validated and complemented the land surface
differences revealed by airborne LiDAR results and vice versa. In this study, InSAR analysis
provided subsidence velocities in 2006-2011 (PALSAR-1, Fig. 7c) and 2016-2021 (Sentinel-1,
Fig. 7d). Airborne LiDAR-derived land surface change estimated the total surface change

between 2006 and 2018 (Fig. 7b). Our analysis showed that InSAR results and airborne
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LiDAR measurements fit relatively well along the selected profiles (Fig. 8). It implies that we

can deduce a large land surface difference based on high PALSAR-1 and/or Sentinel-1

subsidence velocities as well as deduce high subsidence velocities from the large land surface

change. The validation between high subsidence velocities and large land surface differences

could be achieved. Besides, two temporal InSAR results complement the airborne LiDAR

results by offering the velocities variation in the different periods. The analysis across the

partially overlapping monitoring periods of airborne LiDAR, PALSAR-1, and Sentinel-1

allowed for the investigation of possible changes that took place within 2011-2016, i.e., the

gap between the ALOS-1 and Sentinel-1 results. For example, the subsidence velocities of

section AB (Fig. 7a) exceeded —15 mm/year in 2006-2011 and 2016-2021 (Fig. 8a and 8b).

However, section AB presented limited negative land surface differences from airborne

LiDAR results, which may imply some uplift from 2011 to 2016. Such partially overlapping

periods of InSAR and airborne LiDAR measurements would be common in many regions,

given the global availability of ALOS-1 and Sentinel-1 data. As a result, the unique advantage

of including airborne LiDAR measurements could be applicable to other coastal regions.

Finally, high accuracy and resolution topography information is essential for flood risk

analysis, shoreline erosion control, etc. This is particularly true for coastal plains with gentle

slopes. A slight variation in the subsidence rates may significantly impact the calculations of

flow directions and paths in hydrological and hydraulic simulations that are based on the

subsidence-corrected DEMs. For such simulations in urban watersheds along the Texas Gulf

Coast, to our knowledge, DEMs with spatial resolutions from 1-m to 10-m and vertical
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accuracies below 10 cm would be desired in most cases. Some present studies try to apply
high-resolution airborne LiDAR topography to the hydrological model for improving urban
flooding analysis and apply UAV-collected high-resolution images for shoreline detection
(Trepekli et al. 2022). This study offers 1-m land surface change results and cm-level velocities,

which will contribute to a much more robust analysis.
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553  Figure 13. Examples of the multiscale measurements: (a) a grassland area (dashed box) with

554  details presented in the second row; and (b) a developed area (solid box) with details
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presented in the third row. In example (a), the 0.3-m HxGN aerial image shows the landscape.
In example (b), black arrows indicate the ditch and the culvert. This area is also marked in

Figure 7b.

5.2 Limitation and Potential of Airborne LiDAR for Coastal Surface Change Mapping

Point positioning accuracy of airborne LiDAR systems is influenced by system
calibration, time synchronization between system components, errors in the navigation
solution (position and attitude errors), range measurement errors, etc. (May! and Toth 2007),
which lead to a relatively low vertical accuracy (10—15 cm) of airborne LiDAR measurements.
The limitation of low vertical accuracy results in the fact that airborne LiDAR is a less
popular option for land subsidence monitoring under the conventional assumption that the
total subsidence will be equal to or even smaller than the errors, as well as when the
decision-makers are seeking very high accuracy. However, InSAR results have indicated
substantial subsidence rates in our study area, up to —22 mm/year in 2006-2011 (Fig. 7c) and
up to —25 mm/year in 2016-2021 (Fig.7d), as well as the broader Houston region, up to —30
mm/year in 2004-2011 (Qu et al. 2015). Given such large subsidence rates, the vertical
accuracy of airborne LiDAR would no longer be a constraint to decision-makers interested in
identifying significant surface deformation. Our results found that most highly subsided areas
from InSAR also showed relatively large surface changes from airborne LiDAR, between -0.1

m to -0.3 m during 2006-2018 (Fig. 7). The further comparison between InSAR results and
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airborne LiDAR results along the selected profiles revealed a very similar trend in most areas
(Fig. 8). This proved the reliability of airborne LiDAR-derived results to some extent.
Furthermore, our results demonstrated that airborne LiDAR monitored the land surface
change from gradual land subsidence and land displacements in coastal regions. In particular,
land displacements caused by human activities and other surface processes tend to have
relatively large deformation over a short time which conventional InNSAR methods cannot
capture.

While LiDAR measurements are still limited by the low vertical accuracy, few SAR
images could match the spatial resolution of airborne LiDAR measurements. New satellite
images (e.g., TerraSAR-X images) have improved spatial resolutions, but their coverage and
availability are far from that of Sentinel-1, resulting in relatively coarse spatial resolution of
InSAR analysis for lots of coastal studies. Therefore, it would be valuable to explore airborne
LiDAR data when these data can be readily obtained in areas that do not have high-resolution
SAR images yet. The spatial variability information of surface change derived from
multi-temporal airborne LiDAR data, even if the actual measurements are not as precise as
InSAR, provides invaluable higher resolution complementary information, especially for the
cases with large velocities that are the most important. It will benefit a variety of coastal
studies, particularly on the resilience of our coastal infrastructure systems, e.g., the design of
sea walls. This is also adaptive to flooding studies that typically require high-resolution
elevation information. As shown in Fig. 13b, the drainage ditch identified from the airborne

LiDAR results will contribute to the flooding analysis.
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High-quality airborne LiDAR data spanning a long time over the coastal area is not
widely distributed. Fortunately, more and more institutes, such as USGS, are opening their
data nowadays. Airborne LiDAR data will be a good source of terrain information for surface
change analysis over coastal areas with relatively large subsidence rates. Acting as
complementary information, airborne LiDAR will be a potential opportunity for coastal

studies.

5.3 Forest Influence over the InSAR Analysis

The wavelength of radar waves plays an important role in applications of InSAR over
densely forested areas (Xu et al. 2021). The penetration capability of short-wavelength (3.1
cm for X-band, 5.6 cm for C-band) radar pulses is limited, which leads to the detection of the
forest canopies rather than the bare land surface. As a result, decorrelation would occur in
InSAR analysis, leading to no subsidence results over the densely forested area, as shown in
the forest area (Fig. 10), where few pixels (Fig. 11b) obtained subsidence results based on
C-band Sentinel-1 images (Fig. 4c and 4e). Penetration capacity can be influenced by forest
density as well as forest canopy height (Ni et al. 2014). Therefore, subsidence velocities over
the forest area (Fig. 11b) in this study were likely measured from the ground surface over the
low-density forest area. Long-wavelength (24.2 cm for L-band, 69.72 cm for P-band) radar
pulses have better penetration capacity and can sense further into forest canopies. The

calculated subsidence velocities in the forest area (Fig. 11a) based on L-band PALSAR-1
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images had relatively large uncertainties (Fig. 4b), likely caused by low coherence (Shirzaei et
al. 2020). Besides, a system bias, referred to as the fading signal, has been reported and
discussed when multiple multi-looked short temporal baseline interferograms are used to
overcome the rapid loss of coherence in long-term interferograms over the forest and densely
vegetated areas (Ansari et al. 2021; De Luca et al. 2022; Pepe et al. 2015). This phase bias

might be a further possible source of uncertainty in short-time SBAS InSAR analysis.

5.4 Subsidence and Topography Patterns

Topography is essential for flooding risk assessment and management over coastal
regions (Miller and Shirzaei 2021). Low-lying coastal areas are more prone to inundation.
Subsidence over the low elevation coastal area potentially exacerbates the situation. In this
study, subsidence velocities and elevation along the two profiles (Fig. 15a, QI, ST) over the
study area were extracted (Fig. 14). Sentinel-1-derived velocities in the vertical direction were
higher than PALSAR-1-derived LOS velocities from 2006 to 2011 in the O - 12 km section of
the profile QI (Fig. 14a). The elevation was lower than 5 m in the QI section 0 - 12 km.
Velocities for both sensors increased in QI section 15 - 20 km, where elevation declined
nearly 3 m in a similar trend (Fig. 14a). Along with the profile QI, the low elevation area
exhibited relatively high velocities, especially during the Sentinel-1 monitoring period. The
elevation along the profile ST was relatively lower than QI (Fig. 14b). High velocities

appeared in ~5 km, where the elevation was almost lower than 2 m. PALSAR-1 derived LOS
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636  velocities along the ST showed a similar trend to the vertical velocities from Sentinel-1
637  analysis. By analyzing the subsidence performance over the topographic surface, this study
638  found that some low areas subsided at a relatively high velocity, especially in recent years,

639  which could contribute to flood vulnerability and risk.
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642  Figure 14. PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard
643  deviation (pink bar), Sentinel-1 vertical velocities (blue line) with standard deviation (light
644  blue bar), and elevation (black line with vertical accuracy shown as gray bar) along the
645  transects QI and ST. The locations of the transects are shown in Figure 15a.

646

647 5.5 Subsidence along Highways

648 Many low-lying sections of highways are susceptible to flood inundation. Land
649  subsidence could increase their flood vulnerability. This study examined the spatial pattern of
650  subsidence along three highways across the study area (Fig. 15). The highways were

651  digitalized in the Google Earth image and overlaid on the airborne LiDAR-derived DEM (Fig.
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15a). Changes in elevation along the highway tracks from the northwest to the southeast were

illustrated in black (Fig. 15b, 15c¢, and 15d). Our results demonstrated that variations of

PALSAR-1 LOS velocities and Sentinel-1 velocities in the vertical direction along the

highway appeared to not correlate with elevation information. In particular, SH 6 underwent a

high subsidence velocity (>10 mm/year) over the 0-to-5 km section and lower velocities

around -5 mm/year for the rest of the track in both PALSAR-1 and Sentinel-1 results (Fig.

15b). Along Gulf Fwy, the estimated subsidence velocities appeared to be stable for the first

few kilometers then double from about -5 mm/year to -10 mm/year around the 5 km mark,

and then slowly increased for the rest of the track (Fig. 15¢). SH 146 experienced high

subsidence velocities (~15 mm/year) in the 10-to-15 km section based on Sentinel-1 and

PALSAR-1 results (Fig. 15d). However, some low-lying sections of the highways underwent

relatively large subsidence velocities, such as around 17 km of the State Highway 6 (SH 6)

subsided up to 10mm/year with the elevation below 2 m, around 20 km mark of Gulf Fwy

subsided approximately 5-10 mm/year with elevation about 3 m, around 12 km of the State

Highway 146 (SH 146) subsided approximately 15 mm/year with elevation about 3 m.

Besides, Similar patterns (increasing-to-decreasing velocities along the northwest-southeast

direction) were identified in the PALSAR-1 and Sentinel-1 results for all selected highways.
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Figure 15. (a) Digitalized highways and selected profiles over the airborne LiDAR-derived

DEM. PALSAR-1 LOS velocities (red line) with standard deviation (pink bar), Sentinel-1

velocities in the vertical direction (blue line) with standard deviation (light blue bar), and

elevation (black line with vertical accuracy shown as gray) over the (b) State Highway 6

(SH6)-KL, (c) Gulf Fwy-MN, and (d) State Highway 146 (SH 146)-OP.

6. Conclusions

The study integrated SBAS InSAR, airborne LiDAR, and land cover data to investigate

coastal subsidence around Eagle Point in Texas, where a high RSLR was recorded at a tide
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gauge station. Our results revealed that the subsidence velocities were up to —33 mm/year in

the LOS direction in 2006-2011 from ALOS-1 PALSAR-1 images and up to —34 mm/year in

the vertical direction in 2016-2021 from Sentinel-1 images. The low vertical accuracy of

airborne LiDAR measurements has limited its application for land subsidence mapping.

However, this study found that airborne LiDAR could be a complementary means to provide

information on high-resolution spatial variability of coastal subsidence over the highly

subsided area. Our study is unique in terms of using both the InSAR-derived velocities from

images time series and LiDAR-derived surface changes from time-lapsed observations.

Comparing the InSAR results to 1-m airborne LiDAR measurements showed good agreement

along the selected profiles, i.e., areas with higher subsidence velocities based on InSAR

tended to have larger surface change based on airborne LiDAR and vice versa. More

importantly, the comparison revealed that airborne LiDAR results could be complementary to

InSAR results by shedding light on the subpixel variations of InSAR results and identifying

significant surface changes that InSAR cannot capture. Airborne LiDAR data are not globally

available like SAR images yet, but the availability of airborne LiDAR data is improving

rapidly at local or regional levels in many countries. Furthermore, by incorporating land cover

data, this study found that the subsidence velocities tended to be higher in forest, grassland,

and wetlands than in developed urban areas over the study area. In addition, the subsidence

velocities appeared to be negatively correlated with the percent impervious coverage.

Overall, the results of this study show that the high vertical accuracy InSAR results and

the high spatial resolution airborne LiDAR data could be complementary in subsidence
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monitoring. An improved characterization of subsidence using both InSAR and airborne

LiDAR results could provide valuable information to support a variety of coastal studies on

flood vulnerability, infrastructure reliability, and erosion control. Our findings indicate the

need and feasibility of a multi-resolution InSAR-LIDAR fusion for mapping coastal

subsidence mapping with both high accuracy and high resolution.
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List of Figure Captions

Figure 1. Study area: (a) SAR data coverage (black squares) over the elevation map around the
study area (red square); (b) a Google Earth image of the study area and the monthly mean RSLR
observed at the Eagle Point Tide Gauges Station (blue marker) from 1993 to 2017. Red marker
shows the location of the TXLM GPS station, and magenta dots denote the location of the

reference points for Sentinel-1 and ALOS-1 PALSAR-1 image processing.

Figure 2. Research framework.

Figure 3. Interferogram networks from ALOS-1 PALSAR-1 and Sentinel-1 acquisitions with
the perpendicular and temporal baselines: (a) PALSAR-1 ascending images, (b) Sentinel-1

ascending images, and (c) Sentinel-1 descending images. Red circles represent SAR images.

Figure 4. LOS velocities and standard deviations derived from (a and b) PALSAR-1 ascending
images (2006-2011), (c and d) Sentinel-1 Path 136 ascending images (2016-2021), and (e and f)

Sentinel-1 Path 143 descending images (2016-2021).

Figure 5. The vertical components under the assumption of zero north-south motion in

2016-2021 based on Sentinel-1 ascending and descending LOS results (Fig. 4c and 4e).
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Figure 6. Comparison of InSAR-derived cumulative subsidence to GPS measurements in the

vertical direction. The location of the TXLM GPS station is shown in Figure 1.

Figure 7. Detailed subsidence pattern of a selected area: (a) Google Earth image, (b) airborne
LiDAR-derived vertical surface differences, (c¢) vertical component based on PALSAR-1
results (assuming no east-west and north-south motions), and (d) vertical component based on
Sentinel-1 results (assuming no north-south motion). Figure 1b shows the location of this

arca.

Figure 8. Comparison of InSAR and airborne LiDAR results along transect lines L1 (a and b)
and L2 (c and d). Error bars indicate standard deviations. The locations of the transect lines

are shown in Figure 7a.

Figure 9. Historical Google Earth images and airborne LiDAR-derived land surface

differences over the selected profiles BC (a) and HI (b). The locations of BC and HI are

shown in Fig. 7a.

Checkpoints B, C, H, and I are denoted by yellow placemarks.

Figure 10. Land cover of the study area based on NLCD 2019.
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Figure 11. PALSAR-1 mean LOS velocities (a) and Sentinel-1 mean vertical velocities (b) for
different land cover types. The 95% confidence intervals are computed as 1.96 standard errors
for each land type. The red line represents the number of pixels. Subplots ¢ and d show the
interquartile ranges of PALSAR-1 LOS velocities and Sentinel-1 vertical velocities for

different land cover types, respectively.

Figure 12. Relationships between percent impervious coverage and subsidence velocities:
PALSAR-1 LOS velocities at (a) the pixel level and (b) the cluster level; Sentinel-1 vertical
velocities at (c) the pixel level and (d) the cluster level. Black lines (a and c¢) and red lines (b and

d) indicate linear fit.

Figure 13. Examples of the multiscale measurements: (a) a grassland area (dashed box) with
details presented in the second row; and (b) a developed area (solid box) with details
presented in the third row. In example (a), the 0.3-m HxGN aerial image shows the landscape.
In example (b), black arrows indicate the ditch and the culvert. This area is also marked in

Figure 7b.

Figure 14. PALSAR-1 LOS velocities from 2006 through 2011 (red line) with standard
deviation (pink bar), Sentinel-1 vertical velocities (blue line) with standard deviation (light blue
bar), and elevation (black line with vertical accuracy shown as gray bar) along the transects QI

and ST. The locations of the transects are shown in Figure 15a.
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Figure 15. (a) Digitalized highways and selected profiles over the airborne LiDAR-derived
DEM. PALSAR-1 LOS velocities (red line) with standard deviation (pink bar), Sentinel-1
velocities in the vertical direction (blue line) with standard deviation (light blue bar), and
elevation (black line with vertical accuracy shown as gray) over the (b) State Highway 6

(SH6)-KL, (c) Gulf Fwy-MN, and (d) State Highway 146 (SH 146)-OP.
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