
Forward looking evidence based decision 

making for operational environmental modeling 

with an application to ensemble modeling 

Hendrik L. Tolman 

Senior Advisor for Advanced Modeling Systems 

NOAA, National Weather Service, Office of Science and Technology 

Integration 

October 2024 

DOI: https://doi.org/10.25923/nkme-1926 

This is an unreviewed manuscript primarily intended for informal exchange of information 

among NOAA staff members contractors and partners 





This is an unreviewed manuscript,
primarily intended for informal exchange of information among NOAA staff members.

Forward looking evidence based decision making for operational environmental modeling
with an application to ensemble modeling

Hendrik L. Tolman a
a Office of Science and Technology Integration, National Weather Service, National Oceanographic and Oceanic Administration, USA

ABSTRACT: Evidence-based decision making is critical for improving operational environmental numerical models. This is particularly
important because the development of such models moves more and more into a community-based open-source and open-science envi-
ronment. Present evidence used for operational implementation decisions generally considers the present model performance only. This
essay presents a simple model to assess impacts of different modeling strategies in the future. This model require estimates of present
performance gaps and impacts of strategies on improvement rates of models. It is shown that such data are available for many operational
(weather) models. An example application of this model to ensemble development strategies suggests that a focus on the development of
a Unified (single model) Model Ensemble in an established development group is expected to provide better operational results than an
Multi Model Ensemble (MME) development approach well within a typical 5 to 10 year strategic development period, whereas an MME
of opportunity can still add skill at minimal costs if it consists of the combination of unified ensembles produced by different groups.

SIGNIFICANCE STATEMENT: A simple model is
presented to predict (operational) model improvement in
the future under different model development scenarios. It
is shown that sufficient model accuracy and sustained im-
provement data are available for operational forecast mod-
els to use this model for model improvement. An example
application to ensemble weather modeling suggests that
operational centers should focus on building single-model
ensembles, and that multi model ensembles are best used
as ensembles of opportunity, combining results from dif-
ferent sources / centers, with the understanding that the
examples used here based on simple metrics might not be
sufficient to obtain authoritative assessments for this

1. Introduction

Development of operational environmental modeling sys-
tems at national centers is more and more performed by
large teams. This coincides with a move of such cen-
ters to go to so called “Unified Modeling” approaches
across scales and applications, as pioneered by the UK
Met Office (e.g., Brown et al. 2012). Arguments for such
an approach are both scientific (“one environment”) and
practical (an efficient business model for development and
maintenance). Such a unified approach is now finding its
way into many operational centers, and is being adopted by
the World Meteorological Organization (WMO, Mariotti
et al. 2018). Strategic planning at the US National Oceanic
and Atmospheric Administration (NOAA, Link et al. 2017;
Tolman and Cortinas 2020a,b) is moving NOAA to an
open-source and open-science Unified Forecast System
(UFS) approach supported by the Earth Prediction Inno-
vation Center (EPIC) (Jacobs 2021; Uccellini et al. 2022).
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Benefits of such as approach as achieved with NOAA’s
operational wave models are documented in Alves et al.
(2022).
Themove ofNOAA to aUFS approach has long been ad-

vocated by external reviews of NOAA’s operational model-
ing enterprise, with the caveat that all changes and improve-
ments of operational modeling have to be driven by evi-
dence1. As the development of operational systems moves
from small groups at the operational centers to much larger
teams including the private sector and academia, the formal
definition of metrics becomes important to increase trust
and efficiency within teams. In the UFS metrics are stan-
dardized in the Model Evaluation Tools (MET B. Brown
et al. 2021) and a holistic set of metrics for coupled UFS
models has been developed with input from a broad group
of stakeholders2.
Traditional, evidence used in decisions for operational

implementations has been "instantaneous", that is, con-
sidering the present performance of models. An example
of where this appears to have been detrimental for the
sustained rate of improvement of operational models at
NOAA can be found in the replacement of the Geophysical
Fluid Dynamics Laboratory (GFDL) hurricane model with
the Hurricane Weather Research and Forecasting (HWRF)
hurricane model. NOAA chose to keep developing and
upgrading the GFDL model while preparing the HWRF
model for implementation, creating a "moving target" for
the latter model. With this moving target, the process of
replacing the model dragged out for roughly a decade, In

1 e.g., see 2015 UMAC report at http://www.ncep.noaa.gov/director/
ucar_reports/ucacn_20151207/UMEC_Final_Report_20151207-
v14.pdf

2See Developmental Tested Center (DTC) UFS evaluation met-
rics website at https://dtcenter.org/events/2021/2021-dtc-ufs-evaluation-
metrics-workshop
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this time existing resources had to be split between the two
models, which was likely detrimental for the development
rate of both models. NOAA learned from this experience
when the dynamic core of the global weather models was
recently replaced (Ji and Toepfer 2016). After the new
dynamic core was selected, NOAA chose to stop all devel-
opment on the old core. This resulted in a better resourcing
of the new core and a more rapid replacement of the old
model, and tentatively, a more rapid long-term improve-
ment rate during the corresponding transition period.
The example of the global model dynamic core replace-

ment was forward looking rather than instantaneous as de-
cisions were made on future expectations of performance,
rather than on the present performance. The main purpose
of the present essay is to present a simple model for pre-
dicting the sustained improvement rate of such operational
models under different resourcing strategies. This model
is presented in Section 2. Such a model can help in evi-
dence based decision making with regard to strategies for
model improvement. The remainder of the essay focuses
on applying the improvement model to varies scenarios
of ensemble modeling. The results presented here are in-
tended as examples, and are not intended to be an in-depth
analysis of the underlying models, as a full assessment of
UME and MME strategies may require a similar assess-
ment of more in-depth metrics.
Numerical modeling has been the foundation of weather

forecasting for several decades. The seminal paper of Mur-
phy (1993) identifies three element of the “goodness” of
a forecast; consistency, quality and value. Value is cre-
ated by decisions made by users of the forecast, which
is driven by both the accuracy and the reliability of the
forecast. Murphy observes that “In general, . . . , forecasts
must be expressed in probabilistic terms”. A probabilistic
approach is achieved by ensemble forecasting, using a set
of perturbed model runs for each individual forecast, as de-
scribed in the report “Completing the Forecast” (National
Research Council 2006).
At the core of an ensemble system is the underlying

model. For NOAA’s National Weather Service (NWS),
the underlying (deterministic) global model is the Global
Forecast System (GFS). This model forms the basis of the
Global Ensemble Forecast System (GEFS),which typically
has been based on a lower-resolution previous version of
the GFS, using a perturbed ensemble of initial conditions.
Whereas the high resolution GFS is more accurate at short
forecast ranges, the lower resolution ensemble mean of the
GEFS is more accurate at longer forecast ranges (see Sec-
tion 3). A larger ensemble is then created by combining the
GEFS with the US Navy and Canadian ensembles forming
the North American Ensemble Forecast System (NAEFS).
TheNAEFS in turn is more accurate than theGEFS, and all
other individual ensembles making up the NAEFS. Thus,
the GFS is the underlying deterministic model, the GEFS
is a is a Single or “Unified”Model Ensemble (UME) solely

based on the GFS model, and the NAEFS is a Multi Model
Ensemble (MME).
Other ensembles are designed at their core as an MME.

An example of that at the NWS is the Short Range En-
semble System (SREF), which is a limited area mesoscale
ensemble using various underlying mesoscale models and
physics packages to build an ensemble (e.g., Du et al. 2004;
Zhou and Du 2010).
Considering this, the use of MMEs is prevalent at the

NWS as they tend to provide the most accurate forecast
tools. At the same time, MMEs represent a business model
where resources for development and maintenance of the
underlying models need to be divided which is bound to
have a negative impact on the improvement rates of the
individual models as well as the ensembles. After perfor-
mance and improvement rates of ensembles under various
scenarios have been estimated in Section 3, they are ap-
plied to the simple model improvement model in Section 4.
A discussion of the results is presented in Section 5 and
conclusions are provided in Sections 6.
The application of the model improvement model to

MMEstrategies ismostly intended to illustrate the potential
use of this model, and does not claim to be a complete
assessment of MME strategies. Nevertheless, this initial
MME strategy assessment suggests that a UME strategy
is to be preferred for the NWS global models, and might
be feasible for regional models soon enough to focus on
UMEs for such regional models. The essay focuses on
NWS ensembles only to illustrate the power of forward
looking assessment of model accuracy. By no means, this
is intended to suggest that the NWS ensemble are the only
or even the best ensemble systems in the world.

2. Modeling model improvement

Model improvement is objectively assessed using measur-
able metrics. A simple model for describing the evolution
in time 𝑡 of the value of an arbitrary metric 𝑚(𝑡), with an
initial value 𝑚0 = 𝑚(0) and ideal target value 𝑚(∞) = 𝑚𝑡 ,
assuming a constant improvement rate in time 𝛼, can be
described as

𝑑 [𝑚(𝑡) −𝑚𝑡 ] = −𝛼 [𝑚(𝑡) −𝑚𝑡 ] , (1)
𝑑𝑡

which results in the simple e-folding equation

𝑚 𝑡 = 𝑚 𝑚 𝑚 𝑒−𝛼𝑡( ) 𝑡 + ( 0− 𝑡 ) . (2)

A model with a poorer initial metric 𝑚0 but a larger im-
provement rate 𝛼 will eventually become better than the
model it is compared to. Using the suffixes 1 and 2 for
the two models, the critical time 𝑡𝑐 where the performance
(value of the metrics considered) for both models is equal
becomes
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ln (𝛽+1) 𝑚0
𝑐 =

𝑡
𝑡 , 𝛽 =

,2−𝑚
−1 , Δ𝛼 = 𝛼2−𝛼1 , (3)

Δ𝛼 𝑚0,1−𝑚𝑡

where 𝛽 is the relative performance gap for themodels with
respect to metric 𝑚, and Δ𝛼 is the acceleration in model
improvement rate between the two models. If model 2 is
initially less accurate than model 1 (𝛽 > 0), any accelerated
improvement rate Δ𝛼 > 0 will result in a solution for 𝑡𝑐 .
The only restriction for applying this simple model is that
the metric chosen has to be bounded, that is, it has to be
possible to define or estimate 𝑚𝑡

3. Model improvement rates

Operational computer models supportingweather forecast-
ing have been run for many decades. Continuous moni-
toring of such models provides data to be used to estimate
𝛽, Δ𝛼, and hence 𝑡𝑐 in Eq. (3). Data from NOAA’s
global models, hurricane and convection allowing mod-
els are assessed here for the purpose of obtaining realistic
improvement rates of numerical models and ensembles.
Note that for arbitrary metrics, the target value 𝑚𝑡 typ-

ically has a theoretical value, but also a practical value.
The latter occurs as measurements are of finite accuracy,
so that a “zero-error” can never be actually measured. The
distinction between ideal and practical error metrics will
generally be ignored below, buy is illustrated where appro-
priate.

a. Global models

Performance data for NOAA’s operational global (GFS,
GEFS, NAEFS) models have been provided by the Envi-
ronmental Modeling Center (EMC).Model performance is
measured by the 500 hPa height anomaly correlations (𝑎𝑐),
where 𝑚𝑡 = 1, and 𝑚(𝑡) < 1. EMC provided these data for
2008 through 2017 for each forecast day up to day 16 for
the three modeling systems. Values for the ensembles are
obtained from the ensemble mean forecast. Equation (2)
was fit objectively to these data by linear regression of
the logarithm of the anomaly correlation for each model,
forecast day, and calendar year individually. Results are
presented in Table 1.
The top part of Table 1 shows the anomaly correlations

(𝑎𝑐) for the three models for selected forecast days, aver-
aged over the last five years of the data set. This period is
long enough to average yearly variations, and short enough
to be representative for the present state of the models. As
expected, the 𝑎𝑐 drops off with increasing forecast time,
and the models no longer provide a skillful forecast (gener-
ally defined as 𝑎𝑐 < 0.6) in the 8 to 10 day forecast range.
The GEFS (ensemble mean) is more accurate than the de-
terministic GFS, and the NAEFS (MME) is more accurate
than the GEFS (UME).

Themiddle part of Table 1 shows the relative accuracy of
the models expressed as the performance gap 𝛽 of Eq. (2)
(average for the last five years). For short forecast ranges,
the GFS outperforms the GEFS (𝛽 < 0) as the benefits of
the higher resolution of the GFS outweigh the benefits of
the averaging of random errors in the GEFS. For forecast
ranges larger than 6 days the GEFS is systematically over
30% more accurate that the GFS as measured with 𝛽. The
NAEFS (MME) is systematically more accurate than the
GEFS (UME), more so for short forecast ranges, and sys-
tematically by approximately 7% to 10% for longer forecast
ranges.
Finally, the bottom part of Table 1 shows the average an-

nual improvement rate 𝛼, obtained from curve fitting to the
entire 10 year data set. For forecast ranges less than 5 days,
annual improvement rates are better than 5%. However, as
the 𝑎𝑐 for these ranges is close to ideal, the practical rele-
vance of these improvement rates is limited. For forecast
ranges where the 𝑎𝑐 starts showing model deficiencies, but
still has predictability (6 to 10h forecast ranges) annual
model improvement rates are typically 2 - 4%. Improve-
ment of the GFS are solely due to improvements of the
model (and data assimilation) whereas the improvements
of the GEFS compound these improvements with improve-
ments in ensemble techniques, and are therefore expected
to be larger.
The analysis of global model ensembles at NCEP shows

that the MME approach is 7-10% more accurate with re-
spect to the 𝑎𝑐 in extended forecast ranges where the en-
semble has (borderline) predictive skills and that in this
range present annual improvement rates of the UMEGEFS
ensemble shows annual improvement rates 𝛼 of 1.5 - 3%,
and theMMENAEFS has annual improvement rates of 2.5
- 4%

b. Hurricane models

Traditional error metrics used for hurricane models and
forecasts are the track error and the intensity error in terms
of maximum wind speed. Ideal metric values for both are
𝑚𝑡 = 0. The evolution of thesemetrics over time since 1970
is documented on the website of the National Hurricane
Center (NHC)3. Sections 5 and 6 of this web site show
the trends of the official forecast error and of the model
errors, respectively. A caparison of forecast and model
track errors in the two sections indicate that the forecast
errors are strongly correlated to the model errors. As the
forecast errors show better defined trends than the errors of
individual models, the former will be used here as a proxy
for the latter.
Table 2 presents annual improvement rates 𝛼 in percent

for the track error from the NHC data base, for both North
Atlantic and Eastern North Pacific storms. Results are
presented for the entire data set, or for the last 17 years

3 https://www.nhc.noaa.gov/verification
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forecast at day : 2 4 6 8 10 12 14

𝑎𝑐

GFS : 0.990 0.938 0.801 0.605 0.421 0.281 0.191
GEFS : 0.990 0.945 0.843 0.704 0.568 0.456 0.369
NAEFS : 0.992 0.952 0.858 0.726 0.596 0.489 0.407

𝛽 (%)
GFS→ GEFS : -3.4 13.1 27.1 34.0 34.4 33.8 28.6

GEFS→ NAEFS : 25.5 14.8 10.5 8.2 7.0 6.6 6.8
GFS→ NAEFS : 21.0 29.9 40.4 45.0 41.1 41.3 39.6

𝛼 (%)
GFS : 6.4 4.3 2.6 1.5 0.9 0.4 0.2
GEFS : 7.6 5.1 3.3 2.1 1.4 0.9 0.6
NAEFS : 9.2 6.4 4.3 3.0 2.2 1.7 1.2

Table 1. Global 500 hPa height anomaly correlation (𝑎𝑐, average for 2013-2017), performance gap (𝛽, average for 2013-2017), and annual
improvement rates (𝛼, average for 2008-2017).

for which the extended range forecast were made (96 and
120h forecasts). Improvement rates were obtained by ob-
jectively fitting 𝑒−𝛼𝑡 to the data set, consistent with Eq. (2).
Note that improvement rates 𝛼 computed in this way are
systematically larger that those obtained with a traditional
linear regression as presented in other studies.
For the shortest forecast range (12h) the track errors are

still close to the analysis (0h forecast) errors (see NHCweb
site), and hence the assumption that 𝑚𝑡 ≈ 0 is violated and
will result in an underestimation of 𝛼. For longer forecast
ranges and for the entire set of years for which data are
available, annual improvement rates 𝛼 are in the 3 - 4 %
range, and for the last 17 years in the 4 -5.5 % range,
Improvements rates in the Pacific are systematically higher
than improvement rates in the Atlantic.
The NHC data base shows intensity errors for the official

forecast, but not formodels. It is well known that skill of in-
tensity forecasting is more challenging to obtain than skill
for the track forecast. In fact, for many years the intensity
errors of the official forecast have shown much variability
but limited improvements, where physical hurricane mod-
els effectively showed no skill in predicting intensity. To
remedy this, the Hurricane Forecast Improvement Project
(HFIP) aimed to reduce the intensity error of the HWRF
model by 10% annually, with a goal of a 50% error re-
duction in 5 years. The focused research funded by HFIP
resulted in approximately 10% annual reduction of the in-
tensity error over 5 years as is documented in Fig. 8 of
HFIP (2017) and in Tallapragada (2016).
The HFIP project shows two things. First, focused ef-

forts on model improvements can dramatically accelerate
the improvement of models. Second, stretch goals of 10%
annualmodel improvementmay be realistic with the proper
focus of research and resources.

c. Regional models

To represent regional convection allowing models here,
wewill considermodel improvement rates of theRapidUp-
date (RAP) and High Resolution Rapid Refresh (HRRR)
models of NOAA. Model performance data for these mod-
els were provided by Curtis Alexander (personal commu-
nication). For the period 2010-2015, rms errors of temper-
ature, humidity and wind profiles have reduced at a rate of
𝛼 = 5% annually, whereas precipitation errors and biases
have improved by 10 and 12% annually, respectively. Con-
sidering that the focus of the development of these models
in on severe weather (precipitation), these data indicate
that a focus on development in these models can result in
an acceleration of improvement of 5-7% (difference in im-
provement rate of focus parameters versus general model
behavior).

4. Prediction ensembles improvements

Equation 3 defines the critical time 𝑡𝑐 needed for a model
that is less accurate by 𝛽 to catch up given a differential
improvement rate Δ𝛼. Figure 1 presents the corresponding
lines of constant critical time 𝑡𝑐 for given 𝛽 and Δ𝛼, as well
as a representation of data gathered in the previous section.
Figure 2 represents the same data using lines of constant
differential model improvement Δ𝛼 for given 𝛽 and 𝑡𝑐 .
In both Figures, the red line represents 𝑡𝑐 = 10y, loosely
representative for a typical period of strategic planning.
The global ensembles discussed in Section 3.a target

outlooks beyond 4-5 days. In this forecast range the MME
is 7-10% more accurate than the UME. The GEFS and
NAEFS show corresponding improvement rates 𝛼 of 1.5-
3% and 2.5-4%, respectively. Assuming that the the ac-
celerated model improvement rate increases 𝛼 by 33 to
100%, Δ𝛼 is estimated as 0.5-4%. The corresponding area
is identified with a green ellipse marked with ‘G’ in Figs. 1
and 2.
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forecast : 12h 24h 36h 48h 72h 96h 120h

NA 1970 - 2016 : 2.1 2.7 3.3 3.4
ENP 1989 - 2016 : 2.7 3.6 4.2 4.4 4.4
NA 2001 - 2016 : 2.9 3.8 4.2 3.9 3.9 3.2 2.6
ENP 2001 - 2016 : 4.0 5.1 5.6 5.6 5.4 5.2 4.9

Table 2. Annual improvement rates 𝛼 in percent for the hurricane track error from the official forecast of the National Hurricane Centerfor North
Atlantic (NA) and Eastern North Pacific (ENP) storms.

Author, date and/or title 1 / manyMeeting ID

(y-1)

Δα

30%25%20%15%10%5%0%
β (-)

15%

12%

9%

6%

3%

0%

0.25 0.5 1

2

4

8

16
G

HRRR focus

HFIP intensity

Fig. 1. Lines of constant critical time 𝑡𝑐 in years as a function of
the model performance gap 𝛽 and differential model improvement rate
Δ𝛼. Red line corresponds to 𝑡𝑐 = 10y. Shaded area with ‘G’ represents
data from NWS global models.

Author, date and/or title 1 / manyMeeting ID

30%25%20%15%10%5%0%
β (-)

(y)

tc

15

12

9

6

3

0

0.25% 0.5% 1%

2%

4%

8%

16%

G

HFIP intensity
HRRR focus

Fig. 2. Like Fig. 1 with lines of constant differential model im-
provement rate Δ𝛼 as a function of the model performance gap 𝛽 and
the critical time 𝑡𝑐 .

Hurricane intensity prediction (Section 3.b, HWRF,
HFIP) and severe weather prediction with convection al-
lowing mesoscale models (Section c, RAP and HRRR),
indicate that model improvement rates can be accelerated

by focused research by as much as Δ𝛼 ≈ 10% and 5-7%,
respectively. Because no solid data for performance gaps
𝛽 for UME versus MME approaches are available here, the
corresponding data are presented as annotated arrows for
a broad range of 𝛽 in Figs. 1 and 2.

5. Discussion

This essay presents a simple model for forward-looking
evidence-based decision making for strategies employed
to improve operational environmental models. The model
improvement model uses initial performance gaps and es-
timates of impacts of strategies on improvement rates to
estimate at which time a focussed strategy will result in
better model behavior than is expected to be obtained with
non-focussed approaches. Analysis of existing data on
sustained model improvement as presented in Section 3
shows that input data for the simple model presented here
is available for some operational modeling systems. As an
example of the potential of this simple model, it is applied
to various ensemble approached in Sec. 4. These results
will be discussed below.
The irony of making decisions based on projectedmodel

improvement is that it can generally not be verified objec-
tively, as that would require executing the different strate-
gies side-by-side. This can be partially remedied by setting
targets for model improvement rates 𝛼, and by tracking
these against improvement rates of MMEs of opportunity,
as was done in the HFIP project with respect to determin-
istic intensity forecasts (as discussed in Section 3).
The performance gaps and (accelerated) improvement

rates of global model ensembles as identified by the green
ellipse in Fig. 1, suggests that a UME ensemble approach
will overtake the accuracy of anMMEgenerallywellwithin
a typical strategic time frame of 10y (most of the area is
above red line). Using the center of the estimated range
in (𝛽,Δ𝛼) space, the approach reaches benefit in typically
3-4 years. Figure 2 indicates that estimated critical or
catch-up times 𝑡𝑐 can be well beyond the 10 year limit, but
that such behavior is associated with accelerated model
improvement rates as small as Δ𝛼 < 1%. The latter accel-
erated improvement rate estimates are likely conservative.
Considering this, the NWS strategy to focus internally on
a UME approach as used in the GEFS, while leveraging
external ensemble data almost for free in the NAEFS is
supported by the evidence presented here.
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For the hurricane intensity data (HWRF) and the
mesoscale model data (HRRR), rapidly accelerated model
improvement is observed, but no performance gap data is
available. Evenwithout availability of the latter data, Fig. 2
shows that even for performance gaps as large as 𝛽 = 30%,
critical catch-up times 𝑡𝑐 are only a few years. As this is
well within periods at which strategic decisions are made,
it appears that the development of an UME is preferred
over that of an MME at individual development groups.
As with the global models, the MME approach should still
be considered as an ensemble of opportunity, combining
data from different modeling groups.
The example application to ensemble approaches has

used a simplistic descriptions of UME and MME devel-
opment approaches, with some implicit assumptions that
may require a more in-depth assessment of the examples
considered.
First, an underlying assumption of this study is that

model development is generally resource starved. Fo-
cusing resources then will structurally accelerate model
improvement. It is, however, possible that concentration
of resources may over-saturate resources, which will not
help development of a UME, and will be detrimental for
other worthy projects. The decision to move towards a
more UME-based approach should therefore always be ac-
companied by a resource need assessment.
Second, little attention is given to how an MME is con-

structed. There is a distinct difference between ensembles
that are designed as anMME, or anMME that is an ensem-
ble of opportunity, i.e., the multi-model aspect is created
by adding existing models effectively for free. The later
approach is generally beneficial, if only due to the increase
of the ensemble size compare to the ensemble size that a
group can afford to run internally, as is evident here in the
data presented on the global models.
Third, this study does not address scientific differences

between UME andMME approaches. For differences such
as clustering and application of bias corrections, reference
is made to the broadly published literature (e.g., Johnson
et al. 2011a,b; Hamill and Scheuerer 2018; Gallus et al.
2019).
Fourth, a full forward looking assessment of UME and

MME ensemble strategies may need to look at more rel-
evant metrics aligned with the mission for which the en-
semble is used. This is particularly true for the assessment
of the accuracy of global models using the ac only. Such
metrics could be, for instance, precipitation and tempera-
ture, weather extremes and extreme weather, and will be at
least to a degree dependent on the stakeholder served by
the product.
Finally, whereas the examples focus on evidence-based

decision making for ensemble atmospheric models, its im-
plications are broader. Presently, evidence based decisions
are based almost exclusively on “instant gratification”, that

is, how much better the next implementation is. For long-
term sustained model improvement it is likely better to
systematically address potential long-termmodel improve-
ment rates aswell, and to set corresponding targets to create
a long-term rather than instantaneous levels of evidence.

6. Conclusions

This essay presents a simple assessment model for fu-
ture model accuracy. With this model, a critical time
is estimated at which a model with poorer present be-
havior but with more rapid improvement will “catch up”
with a model that is presently more accurate. Such a
model of model accuracy allows for evidence-based deci-
sions on model development strategies, whereas presently
evidence-based decisions for operational model improve-
ments tend to consider instantaneous model behavior only.
The simple model requires data on performance gaps and
impacts of strategies on improvement rates. An assess-
ment of historical data of operational models at the US Na-
tional Weather Service indicates that such data are gener-
ally available. An example application of the simple model
to weather model ensemble approaches shows the poten-
tial of the forward looking approach presented here. The
example results indicate that a weather ensembles based
on a single underlying model will result in more accurate
products well before a typical 5 to10 year strategic hori-
zon, with the caveat that the examples focus on showing
the potential of forward looking evidence based decision
making, and may need more detailed assessment of more
refined performance metrics to be authoritative for ensem-
ble development strategies.
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