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1. Introduction

The development of accurate and efficient numerical

schemes for solving the equations of motion that
govern fundamental atmospheric dynamics underpins our
capability for accurate numerical weather forecasting and
climate prediction. Such development is a hierarchical
process, involving many stages from theoretical numerical
analysis to the implementation of general circulation
models on specificc omputer a rchitectures. O nce a

particular numerical scheme has been implemented, the
next important stage of the development process involves
the testing and validation of the scheme against known
solutions of the equations of motion. This stage has two
distinct objectives: at the first level, the objective is to ensure
that the numerical scheme can be integrated stably and
converges to the correct solution; thereafter it is desirable
to assess the accuracy and efficiency of the scheme against
alternatives. To the extent to which it is possible, such tests
should be carried out using solutions that are representative
of the actual flows encountered in the atmosphere, flows that
typically involve strong nonlinearity, chaotic time evolution,

and the rapid generation of small scales, in particular fronts

and other strong gradients in the dynamical variables.

An important aspect of any atmospheric general circula-
tion model is the formulation of the horizontal discritiza-
tion, in particular the nonlinear horizontal advection. This
may frequently be considered independently of vertical
discretization, and consequently the implementation of the
shallow water equations is typically an important intermedi-
ate step in model development. A standard suite of reference
solutions to the shallow water equations was suggested by
Williamson et al. (1992), which which continues to provide
a useful means of validation of new numerical schemes.
The analytic nature of some of those solutions provide
the obvious benefit t hat t he d ynamical fi elds ar e exactly
knowable at all times. The solutions are limited, however,
in that they do not possess the desirable nonlinearity and

complexity of typical atmospheric flows. The need for a
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more realistic benchmark flow prompted G alewsky e 7 al.

(2004) and Polvani et al. (2004) to seek a complex but
numerically converged solution to the equations that might
complement the analytic test cases of Williamson et al.
The approach taken was that numerical resolution may be
increased systematically until the point that the numerically
generated flow e volution o ver a fi xed ti me in terval has

converged to within a predefined t olerance, i n t he sense
that further increases in resolution do not result in changes
to the flow o f g reater m agnitude t han t hat t olerance, in

some suitably defined measure. B ecause the solution thus
obtained may be considered as an exact solution to the
equations (to within the specified t olerance), i ti s thus

independent of numerical scheme: any correct numerical
implementation of the same equations must converge to the
same solution.

To facilitate numerical convergence at moderate resolu-
tion, the benchmark solutions of Galewsky ez al. (2004) and
Polvani et al. (2004) included an explicit diffusion term in
the equations of motion, of fixed strength, which limited the
generation of small-scale motions to a fixed diffusive length
scale, independent of resolution. In that case, numerical
convergence was obtained relatively easily as soon as the
numerical discretization was sufficiently fine to accurately
represent the diffusive length scale. There are, however, two
main drawbacks of that approach. The first is that the scales
represented by these solutions are restricted to ones that are
significantly greater than many important scales occurring
in typical atmospheric motions, such as the formation of
fronts or tropopause folds: the flow features of the Galewsky
et al. and Polvani et al. solutions were limited to those that
may be represented with a grid spacing of around 0.4°.
A more stringent test of any numerical scheme lies in the
accurate representation of much smaller-scale features, and
these should therefore be present in a good benchmark
solution.

The second drawback of the above solutions lies in
the need for an explicit diffusion. For many numerical

schemes, for example, finite volume or semi-Lagrangian

)
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schemes (Lin and Rood 1997), diffusion of small-scale
features is implicit in the scheme: the inherent diffusion
due to interpolation errors is often sufficient to prevent the
build-up of enstrophy at small scales and to stabilize the
numerical evolution. To compute the benchmark solutions
of Galewsky et al. and Polvani, et al., such numerical
schemes would be required to add an additional explicit
diffusion term to the underlying equations of motion,
inconsistent with the underlying model philosophy, and
complicating the validation of the desired operational
scheme. Indeed, this difficulty h as1ed v arious g roups to
compute the Galewsky et al. solution without introducing
explicit diffusion (e.g. Chen er al. 2013; Salehipour et al.
2013; Ullrich ef al. 2014, among many others). While this is
convenient numerically and may give a crude indication that
the numerical scheme is performing more or less correctly,
it prevents the test case being used as a precise check
of the numerical implementation and its accuracy. Thus,
while the community clearly recognizes the importance for
a refinement to the Galewsky et al. solution, so far none has
been presented with a sufficient degree of rigour to enable
accurate model validation (beyond being able to say that

ones model is doing approximately the right thing).

In many commonly used numerical schemes, diffusion
is linked to the grid scale and decreases as numerical
resolution increases; the diffusive length scale thus also
decreases, and the numerical solution approaches what is
in essence a solution to the inviscid equations of motion.
In this case, the extent to which numerical convergence
is possible is limited by the nature of the solution. If the
solution to the inviscid equations is such that a shock or
infinite g radient i n a p articular fi eld de velops in a finite
time (so that the solution is only valid in the appropriate
weak sense) numerical convergence will not typically be
achievable at any finite resolution. In situations of relevance
to atmospheric flows, w here gradients m ay b e increasing
exponentially in time, the issue of numerical convergence
will now involve the specification of a fixed time interval

over which convergence may be sought. Over this time

interval, solutions to the inviscid equations should be
regular to the extent that all fields are representable by the

numerical scheme at some achievable resolution.

In view of the above, it has become clear that an
important addition to the Galewsky et al. (2004) and
Polvani et al. (2004) benchmark solutions should consist
of a numerical converged solution to the inviscid equations
of motion in an appropriately defined time interval, over
which sufficient nonlinearity and small-scale flow features
develop, but over which solutions also remain sufficiently
regular that a numerically converged inviscid solution
may be obtained. Because of the tendency for rapid
intensification o f fl ow gr adients in ty pical no nlinear flow
fields, s atisfying t hese t wo c onstraints t urns o utt o be
challenging, requiring computation at significantly higher
resolutions than for the case of explicit diffusion. In the
shallow water system, which will form the focus of this
paper, sufficient r esolutions may b e reached w ith relative
ease on current computers. The primitive equation case
appears significantly more demanding, both on account of
the need to increase simultaneously both horizontal and
vertical resolution, and because small-scale development
is considerably more active by virtue of the nature of the
dynamics at the horizontal boundaries (e.g. Juckes 1995;
Scott 2011).

The aim of the present short paper is thus to present a
reference solution to the inviscid shallow water equations,
which will be of potential use in the validation of the
horizontal discretization component of new numerical
schemes or implementations. It represents a small but
nonetheless important advance on the viscous solution
of Galewsky et al. (2004). The paper identifies a time
interval over which the initial conditions (the same as those
used in Galewsky er al. (2004)) generate a regular flow
with features that may be captured at resolutions readily
achievable on present-day computers. We present numerical
converged solutions obtained using two separate numerical
methods: a standard pseudo-spectral method (Hack and

Jakob 1992; Rivier et al. 2002; Scott et al. 2004) and a
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finite-volume method discretized on a cubed-sphere grid
(Putman and Lin 2007; Harris and Lin 2013). We emphasize
that the solution obtained is independent of numerical
scheme and, furthermore, independent of any small-scale
dissipation or filtering. Any numerical scheme solving the
inviscid shallow-water equations should converge to this
same solution, provided only that any artificial diffusion
continually diminishes with increasing spatial resolution.
The remainder of this paper is organized as follows.
In section two, we review the initial conditions; these are
the same as those used in Galewsky er al. (2004) but
are included here for completeness. In section three, we
provide a brief description of the two numerical schemes
used. In section four, we present solutions to the inviscid
shallow water equations computed using the pseudo-
spectral method, defining an appropriate time-interval
over which convergence is obtained at the resolutions
considered, and present various diagnostic quantities that
may be used to quantify the convergence. In section five,
we show the degree to which the solutions obtained are
independent of the numerical scheme and present details
of the rate of convergence in each case; these rates will in

general vary from one numerical scheme to another.
2. Problem specification

We consider the equations for rotating shallow water on a
sphere of radius a = 6.37122 x 105 m:
ut+u~Vu+f12xu=th (1a)
hi + V- (uh) =0, (1b)
where u = (u,v,0) is the horizontal velocity, k is the unit
vector in the vertical, A is the fluid depth, g = 9.80616 ms~!
is gravity, and f = 2(2sin ¢ is the Coriolis parameter, where
Q =7.292 x 107°s~! and ¢ is latitude.
Equations (la,lb) are solved by integrating from
specified initial conditions for u and A . These comprise a
barotropically unstable jet as defined in G alewsky e 7 al.

(2004), with zonally symmetric zonal velocity field u =

uo(¢) given by:

for ¢pg < & < @1
2
with u=0 for ¢ < ¢y and ¢ > ¢;. The functional

uo = = exp (6~ Go)(6 — ¢1)]

n

form for wp has the advantage of being compact
yet infinitely differentiable. The parameter values are
Umax = 80ms ™Y, ¢g =7/7, ¢1 =7/2 — ¢g, and e, =
exp [—4(¢1 — ¢o) 2], for which the jet maximum is located
at m/4 = 45°N. The initial height field hg is defined from
uq through gradient wind balance, that is, the v-component
of (1a) for steady, axisymmetric flow, with the requirement
that the global mean layer depth of the axisymmetric flow
is H = 10*m. An important initial test of any numerical
scheme is that this balanced and axisymmetric flow remain
axisymmetric and steady in time. This is particularly
important when considering numerical schemes that do not
have an underlying zonal symmetry, such as those based on
cubed-sphere or icosahedral grids.

To the axisymmetric flow we add a perturbation to the
height field of the form:

W\ ) = hcos e~ M @)? o=[(6=¢2)/81° 3)
where —m < A < 7 is longitude, ¢po = /4, a = 1/3, 8 =
1/15and h = 120 m. (This has the effect that the mean layer
depth of the total initial condition modified very slightly to
10000.3 m.) The reader is referred to Figure 1 of Galewsky
et al. (2004) for a graphical rendering of the initial basic

state ug, ho and perturbation ’.

3. Numerical schemes

We use two independently developed numerical schemes
to verify the accuracy of the solution. The firsti s the
BOB pseudo-spectral scheme (Rivier et al. 2002), which
solves the shallow water equations in vorticity-divergence
form, with prognostic variables absolute vorticity (, =
2Qsing +k -V x u, divergence 6 =V -u, and height

perturbation n = h — H. A small hyperdiffusive term D =
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—vV4¢ is included in the equation for each prognostic
variable &, purely as a means to prevent enstrophy build-up
at small scales. We note again the fundamental difference
from Galewsky et al. (2004), where the coefficient v was
held fixed as resolution was increased. Here, in contrast, v
decreases with increasing resolution such that the diffusive
timescale on the highest resolved wavenumber is constant
across resolution. Thus, v = v,[a?/N (N + 1)]?> where N
is the maximum total wavenumber at a particular resolution
and v, is the diffusion rate at the smallest scale. It is fixed
here at a value that is sufficient to control enstrophy over the
time interval considered. We emphasize that the particular
value of v, is unimportant and we purposefully omit giving
its value here; in fact, the form of the diffusion operator Vv2n
may also be varied with essentially the same results. Neither
do we consider here the question of how the diffusion
should be chosen optimally. The important point is that the
diffusion coefficient v should tend to zero as resolution is
increased. The solutions thus obtained may be considered to
be solutions to the inviscid equations over the time interval

over which they remain regular.

The second numerical scheme is the GFDL finite-
volume cubed-sphere dynamical core (FV?), described in
Putman and Lin (2007) and Harris and Lin (2013). FV3
is a finite-volume s cheme o n t he e quidistant gnomonic
cubed-sphere grid Putman and Lin (2007) following the
Lin and Rood (1997) shallow-water algorithm in the
horizontal, which discretizes the vector-invariant (vorticity-
kinetic energy form) shallow-water equations on the D grid
using a forward-backward time integration, and computes
the pressure gradient force through the algorithm of Lin
(1997). Fluxes for mass, absolute vorticity, and kinetic
energy are computed using a modification by Putman and
Lin (2007) of the piecewise parabolic method (Colella
and Woodward 1984). In the results presented below, the
model was run in a configuration s imilar t o t hat u sed in
comprehensive climate simulations, in particular, including
a monotonicity constraint and a standard scale-selective,

fourth-order divergence damping. We emphasize again that

these details are unimportant. Indeed, the model was run
separately with no monotonicity constraint and divergence
damping at half the conventional rate; in both cases the

model converges to the same solution presented below.

4. Inviscid solution

In this section we present results from the pseudospectral
scheme only; we demonstrate in section 5 that the solutions
obtained with the finite-volume s cheme c onverge t o the
same flow.

Figure 1 shows snapshots of the evolution of the flow at
3 times, obtained from the numerical integration of (1-3) at
the highest resolution considered. It illustrates eddy growth
characteristic of barotropic instability, in which the spatially
localized perturbation does not favour the growth of a
particular wavenumber. The development is similar to that
of Galewsky et al. (2004) but the higher effective Reynolds
number here results in much more energetic generation of
small-scale features, steep vorticity gradients and frontal
regions. We take this to be our reference solution and it
remains to establish over what time interval the solution can
be considered to be numerically converged.

Figure 2 shows a magnificationo ft hefi eldat ¢ =
6days for a series of integrations at different numerical
resolutions, from T85, corresponding to a grid of about
1.4° at the equator and comparable to the resolution used
in many models of the CMIPS5, to T2730, corresponding
to a grid of about 0.044° at the equator (or about
5km). Differences between successive panels decrease as
resolution is increased. The last two panels are almost
identical in terms of the position and shape of features
such as the large cut-off low (a region of high potential
vorticity) centred on 265°W, 30°N, or the undulation of the
original jet. Even at these high resolutions, however, small
differences between the two final panels may be detected in
details such as the ridge of potential vorticity connecting the
cut-off low to the jet undulation (265-275°W, 20°N), or the
degree to which potential vorticity gradients at the jet edge

have been intensified (e.g., 292°W, 38°N).
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Figure 1. Snapshots of the flow evolution: potential vorticity, (4 /h, for the highest resolution case at t = 4, 5, 6 days. Contours are integer multiples of

0.2Q/H.

Differences in the representation of the flow at
different resolutions may be quantified b y consideration
of appropriate norms. The globally-averaged eddy kinetic
energy, shown in Fig. 3a, illustrates the usual exponential
growth of the perturbation from the zonal mean. Although
it is a common measure of unstable development, it is a
poor indicator of numerical convergence, being relatively
insensitive to resolution, even for resolutions at which a
casual inspection of the fields shown in Fig. 2 immediately

reveals significant differences. Based on consideration of

the total eddy kinetic energy alone, one would conclude
that the sequence of calculations had converged already
at a resolution of T170; Fig. 2, on the other hand, shows
that many small-scale features are poorly represented at
this resolution. To a similar extent, the same can be said
of the s norm of the relative vorticity, Fig. 3b. The global
averaging involved in the computation of these quantities
obscures most of the differences clearly present in the fields

themselves.
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Figure 2. Potential vorticity at t = 6 days at resolutions increasing from T85 to T2730. The domain shown corresponds to the boxed region of Fig. lc.

Contours are integer multiples of 0.2Q2/ H.

A more precise indicator of convergence is given by
the l,, norms of quantities such as relative vorticity
or potential vorticity, shown in Fig. 3c,d. The relative
vorticity immediately reveals differences between even the
two highest resolution integrations, T1365 and T2730, at

t = 6days. Extrapolation of the sequence of integrations

suggests that this quantity would be accurately represented
at ¢t = 6 perhaps only with a resolution of around T10000,
which is impractical on present day computers. On the
other hand, the values of ||(||o for the two highest
resolutions remain indistinguishable on the plot up until

around ¢ = 5days: the relative error at ¢ =5 between
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Figure 3. Diagnostic quantities as a function of time (in days): (a) globally-averaged eddy kinetic energy (units m2s—2); (b) rms relative vorticity (units
s~ 1); (¢) maximum relative vorticity (units s~ 1); (d) relative error of the maximum potential vorticity based on the initial potential vorticity, qo.

T1365 and T2730 (where the error is normalized by the
highest resolution value) is approximately 0.0002. Based
on the relative vorticity maximum, and an error tolerance
of 0.0002 we could thus claim that the sequence has
converged numerically at ¢t = 5days at a resolution of
T2730. In fact, for practical purposes it turns out that
a relative error tolerance of 0.005, or 0.5% is a good
indication of convergence for this particular flow and this
is the criterion that we adopt in the remainder of the
paper. We note that other choices of time interval and error
tolerance result in convergence at different resolutions. Our
choice is motivated simply by the desire to have a test

that may be implemented without the need for excessive

computational requirements, while retaining a reasonable

level of complexity in the flow field.

Different quantities yield different convergence proper-
ties. Some, such as the maximum vorticity gradient are
extremely sensitive and may indicate a relatively poor level
of convergence, even at the resolutions considered here.
A refinement of the vorticity maximum is to consider the
potential vorticity maximum. (Potential vorticity has also
been used as a convenient diagnostic in the evaluation of
tracer schemes (Whitehead er al. 2015)). We may take
advantage of the fact that potential vorticity is conserved
exactly on fluid parcels in the inviscid s ystem, and hence

that we know a priori that ||¢|| .o = constant for the true
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inviscid solution, even without the explicit calculation of
such a solution. Departures of the numerically generated
solution from the true inviscid solution, associated either
with numerical errors or with processes associated with
the small-scale dissipation, will in general be reflected in
departures of ||¢|| from this constant initial value, ||go||oo-
Fig. 3d shows that ||¢||~ is constant at early times, before
significant enstrophy has cascaded to the smallest resolved
scales. Departures from the inviscid solution appear at
progressively later times as resolution is increased. At the
highest resolution considered here, a departure from the
inviscid value is visible in the plot as early as ¢ = 4.6 days,
just before the target time established above, although the
relative error remains small, just below the 0.005 tolerance
level at t = 5 days.

Our convergence criterion based on a relative error
of ||¢lloo or ||¢llcc below 0.005 is consistent with a
visual comparison of the potential vorticity fields a t the
level of magnification u sed p reviously. Fig. 4 s hows the
same magnification of the same region as was considered
Fig. 2 but for the two cases T1365 and T2730 at the
time ¢ = 5days. The fields are very nearly identical aside
from a single contour level that follows the extension
of the potential vorticity ridge along the lower boundary
of the jet core, a feature highly sensitive to numerical
dissipation. Because the two-dimensional fields contain
more information than the normed quantities, it is desirable

that the criterion for convergence is based on both.

5. Robustness of the solution

Computation of the same solution with the alternative
numerical scheme FV? was carried out both to validate
the pseudo-spectral solution, and to investigate the extent
to which the rate of convergence depends on the particular
scheme.

Figure 5 shows ||¢||s and ||q||o for the FV3 scheme
for resolutions ¢80, corresponding to a grid resolution
of 1.125° at the equator, to c¢2560, corresponding to

a grid resolution of 0.035°. This range is comparable

to the range of resolutions used for the pseudospectral
integrations. The relative vorticity indicates a similar rate
of convergence of the FV? scheme as the pseudospectral
scheme. The relative errors compared with the c¢2560
solution at ¢ = 5 days are 0.02 for c640 and 0.004 for c1280.
In contrast, the potential vorticity maximum shows better
behaviour to that of the pseudospectral case, remaining
very nearly constant over the entire 6 day interval at
resolutions ¢640 and higher. This may be expected from
consideration of the way potential vorticity is treated
numerically. In FV? it is transported as a passive tracer with
an advection scheme (Lin and Rood 1997) that prevents
oscillatory errors. We note that in separate integrations
of the same numerical scheme in which the monotonicity
constraints are removed, the convergence of the potential
vorticity maximum (not shown) looks similar to that
found in the pseudospectral scheme, with departures from
zero error appearing at progressively later times with
increasing resolution, as in Fig. 3d. The results indicate
that convergence characteristics, in the sense that one
scheme may show better convergence in one norm than
another, may vary from scheme to scheme, or even for
a given scheme run with different means of numerical
regularization. For example, the FV?3 scheme without
monotonicity constraint shows slightly better convergence
in ||¢]|cc but worse convergence in ||¢||cc than the same
scheme with monotonicity constraint included. While these
details affect the rate of convergence, they do not affect the
converged solution itself. Notwithstanding these subtleties,
it is clear that at ¢t = 5days FV3 is converged at c2560
(with either choice of small-scale damping) according to the

criterion put forward in the previous section.

Figure 6a shows the potential vorticity field g(x, y ) at
t = 5 days at the highest FV? resolution (thick dotted lines),
plotted on top of same field at the highest pseudospectral
resolution (thin red solid lines). The degree of agreement
between the two calculations is exact in the visual

comparison. This should not be surprising: both calculations

are converged at this resolution to the unique solution
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Figure 4. Potential vorticity at ¢ = 5 days at resolutions T1365 and T2730. Contours are integer multiples of 0.2Q2/H.
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Figure 5. Diagnostic quantities as a function of time from the finite-volume integration; (a) maximum relative vorticity; (b) relative error of the maximum

potential vorticity.

of the equations with the prescribed initial condition.
Discrepancies between the two solutions would imply either
that one or other numerical scheme had not converged, or
else a failure in one of the numerical schemes to converge

to the correct solution.

We noted previously that the solutions obtained with
each scheme are not fully converged at the later time of
t = 6days, in the sense that the two highest resolution
fields o f e ach n umerical s cheme ( T1365 a nd T 2730 for
pseudospectral, c1280 and c2560 for FV?) are not identical.
Nonetheless, it is interesting to observe that at the very
highest resolution the two schemes agree with each other
to a remarkable extent, as shown in Figure 6b. While we are

unable to compare these fields to ones at an even higher

resolution, the fact that the two independent numerical
schemes agree to such a close extent is highly suggestive
that the flow given in the figure is an accurate representation
of the true solution at ¢ = 6days. The same conclusion
was obtained from the results of FV3 with no monotonicity

constraint and weaker divergence damping.

Finally, Fig. 7 shows the pointwise relative errors at
different resolutions of the solutions calculated with both
schemes, where the “true” solution is taken to be the
highest resolution solution in each case. At each resolution,
the error is computed by interpolating the low resolution
velocity fields o nto t he h igh r esolution g rid, t aking the
difference between the low and high resolution velocity

fields, and then computing the eddy kinetic energy of this
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Figure 6. Potential vorticity from the finite-volume integration at (a) ¢ = 5 days and (b) t = 6 days at resolutions c2160 (dotted) superposed on the same

field from the pseudospectral integration at resolution T2730 (thin red lines).
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Figure 7. Eddy kinetic energy: relative error from highest resolution solution at ¢ = 5days (solid) and ¢t = 6 days (dotted): (a) pseudo-spectral

integration, (b) finite-volume integration.

difference. Errors are computed in this way both at ¢ =
5days (solid) and ¢ = 6 days (dashed), with larger errors
occurring at the later time as expected. Both pseudospectral
and FV?3 schemes show algebraic decrease in error with
increasing resolution, with slightly faster decrease for the
pseudospectral scheme. FV3 has less error at the lowest
¢80 resolution because it has a well-developed breaking
wave on days 5 and 6, as opposed to the pseudospectral
solution at T85 (see Fig. 2); it has higher errors at the
highest resolutions, mostly likely due to edge and corner
effects in the cubed-sphere grid. Again, the relative rates
of convergence of the two schemes will depend on the

particular norms used to quantify them. However, as we

are less interested in the relative merits of one numerical
scheme over another than in simply ensuring that the
solutions converge at some reasonable resolution, we do not

analyze these differences further.

6. Summary

In this paper we have presented a numerically converged
solution of the rotating shallow water equations (la,lb)
and initial conditions (2,3) in the limit of vanishing
viscosity. The solution is established over a time interval of
5 days, by which time small-scale features representative of

atmospheric flows have developed. The intention is that the
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solution will be a useful tool against which new numerical

schemes may be validated.

The first step in the validation procedure is the
integration of the equations from the initial conditions
to t = >5days at progressively higher resolutions, and
decreasing dissipation, whether explicit or implicit to the
numerical scheme, until such a point that the sequence
of solutions thus generated has converged. Again, we
emphasize that the details of the numerical or explicit
diffusion are unimportant, provided only that they yield a
stable solution. Here, the sequence of solutions may be
considered converged when the /., norm of the relative
vorticity gives a relative error, based on the difference
between the two highest resolutions solutions, of less than
0.005. As an alternative or additional measure, it may
be required that the [, norm of the potential vorticity
also gives a relative error less than 0.005, where here the
relative error is based on the difference between the highest
resolution solution and the maximum potential vorticity at
t = 0. Because the norms are single value quantities, it
is further recommended that the two-dimensional potential
vorticity fields of the two highest resolution solutions are
compared at a magnification similar to that of Figure 4.
Differences in the positions of the contours should be
minimal. It should be borne in mind that the resolution at
which convergence occurs will in general vary from scheme

to scheme and may differ from the ones reported here.

Once it has been established that the sequence of
solutions has converged by the above criteria, the highest
resolution solution should be compared with the field shown
in Figure 6. * The solutions should match to the level of
agreement shown in that figure; in particular, there should
be no discernible difference in the contour positions at this

level of magnification. As a further quantitative measure we

*To facilitate this comparison we have included datasets of potential
vorticity at days 5 and 6 as supplementary online material.
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provide the following values at t = 5 days:

eddy kinetic energy :  81.14 4 0.05 m?s ™2
ICllz: 2.67251 4 0.0006 x 107° s~
I¢lloo : 1.5117540.0003 x 1074571
lglloo = 2.42909 +0.01 x 10" ¥m~*s™!

where the error bounds have been taken (conservatively)
from the difference between the values obtained at the two
highest resolution pseudospectral solutions.

Finally, pointwise relative errors may be computed
to indicate the rate of convergence of the particular
numerical scheme and may be compared against those of
the pseudospectral and FV? schemes shown in Fig. 7. We
emphasize that rates of convergence will in general vary
from one scheme to another, and, moreover, may depend
on the particular norm used to define convergence.

We close by providing a brief indication of the magnitude
of errors that may be expected from errors in the numerical
implementation of the governing equations (la,lb). For
simplicity we consider the effect of errors introduced in
the physical parameters €2, a, and g. Of these it was found
that the solution was most sensitive to errors in 2 and a.
As an example, when the value of a was set erroneously
to 6.39 x 10m, an error of approximately 0.25%, the
converged solution changed by an amount shown in Fig. 8,
where the correct solution is contoured in thin red lines and
the wrong solution is contoured in black dotted lines. The
values of the quantities in the above list are: eddy kinetic
energy, 79.9 m?s™2; [|([|2, 2.66 x 1075 s7%; ¢[00, 1.50 X

1074571 [|g]loos 244 x 1078 m~1s™1; all of which lie
outside the error bounds indicated. Consideration of either
the field shown in Fig. 8 or the normed quantities listed here
would thus correctly lead to the rejection of this solution

and point to an error in the numerical implementation.
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