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A numerically converged solution to the inviscid global shallow water equations 

on a predefned time interval is documented to provide a convenient benchmark 

for model validation. The solution is based on the same initial conditions as 

a previously documented solution for the viscous equations. The solution is 

computed using two independent numerical schemes, one a pseudospectral 

scheme based on an expansion in spherical harmonics, the other a fnite-volume 

scheme on a cubed-sphere grid. Flow felds and various integral norms are both 

documented to facilitate model comparison and validation. Attention is drawn 

to the utility of the potential vorticity supremum as a convenient and sensitive 

test of numerical convergence, in which the exact value is known a priori over 

the entire time interval. Copyright c 2013 Royal Meteorological Society 

Key Words: 

Received . . . 

Citation: . . . 



       

           

        

         

         

        

         

         

          

          

        

          

         

       

         

 

      

          

          

          

         

        

         

       

         

           

          

       

         

          

            

          

           

       

         

         

         

      

 

       

        

      

       

       

       

       

       

       

        

         

          

           

         

         

          

           

         

          

       

          

       

       

        

        

       

       

       

          

         

         

         

         

         

         

          

        

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–13 (2013) 

1. Introduction 

The development of accurate and effcient numerical 

schemes for solving the equations of motion that 

govern fundamental atmospheric dynamics underpins our 

capability for accurate numerical weather forecasting and 

climate prediction. Such development is a hierarchical 

process, involving many stages from theoretical numerical 

analysis to the implementation of general circulation 

models on specifc c omputer a rchitectures. O nce a 

particular numerical scheme has been implemented, the 

next important stage of the development process involves 

the testing and validation of the scheme against known 

solutions of the equations of motion. This stage has two 

distinct objectives: at the frst level, the objective is to ensure 

that the numerical scheme can be integrated stably and 

converges to the correct solution; thereafter it is desirable 

to assess the accuracy and effciency of the scheme against 

alternatives. To the extent to which it is possible, such tests 

should be carried out using solutions that are representative 

of the actual fows encountered in the atmosphere, fows that 

typically involve strong nonlinearity, chaotic time evolution, 

and the rapid generation of small scales, in particular fronts 

and other strong gradients in the dynamical variables. 

An important aspect of any atmospheric general circula-

tion model is the formulation of the horizontal discritiza-

tion, in particular the nonlinear horizontal advection. This 

may frequently be considered independently of vertical 

discretization, and consequently the implementation of the 

shallow water equations is typically an important intermedi-

ate step in model development. A standard suite of reference 

solutions to the shallow water equations was suggested by 

Williamson et al. (1992), which which continues to provide 

a useful means of validation of new numerical schemes. 

The analytic nature of some of those solutions provide 

the obvious beneft t hat t he d ynamical f elds ar e exactly 

knowable at all times. The solutions are limited, however, 

in that they do not possess the desirable nonlinearity and 

complexity of typical atmospheric flows. The need for a 

more realistic benchmark fow p rompted G alewsky e t al. 

(2004) and Polvani et al. (2004) to seek a complex but 

numerically converged solution to the equations that might 

complement the analytic test cases of Williamson et al. 

The approach taken was that numerical resolution may be 

increased systematically until the point that the numerically 

generated fow e volution o ver a f xed ti me in terval has 

converged to within a predefned t olerance, i n t he sense 

that further increases in resolution do not result in changes 

to the fow o f g reater m agnitude t han t hat t olerance, in 

some suitably defned m easure. B ecause t he s olution thus 

obtained may be considered as an exact solution to the 

equations (to within the specifed t olerance), i t i s thus 

independent of numerical scheme: any correct numerical 

implementation of the same equations must converge to the 

same solution. 

To facilitate numerical convergence at moderate resolu-

tion, the benchmark solutions of Galewsky et al. (2004) and 

Polvani et al. (2004) included an explicit diffusion term in 

the equations of motion, of fxed strength, which limited the 

generation of small-scale motions to a fxed diffusive length 

scale, independent of resolution. In that case, numerical 

convergence was obtained relatively easily as soon as the 

numerical discretization was suffciently fne to accurately 

represent the diffusive length scale. There are, however, two 

main drawbacks of that approach. The frst is that the scales 

represented by these solutions are restricted to ones that are 

signifcantly greater than many important scales occurring 

in typical atmospheric motions, such as the formation of 

fronts or tropopause folds: the fow features of the Galewsky 

et al. and Polvani et al. solutions were limited to those that 

may be represented with a grid spacing of around 0.4◦ . 

A more stringent test of any numerical scheme lies in the 

accurate representation of much smaller-scale features, and 

these should therefore be present in a good benchmark 

solution. 

The second drawback of the above solutions lies in 

the need for an explicit diffusion. For many numerical 

schemes, for example, finite volume or semi-Lagrangian 

) 



        

           

     

           

         

        

         

         

       

        

       

         

        

         

      

          

          

        

        

        

        

      

           

        

 

            

        

           

      

        

       

          

          

          

         

       

       

       

           

        

         

          

          

       

          

         

        

       

       

         

        

          

           

         

         

           

        

        

            

          

         

       

       

          

        

        

          

         

            

           

          

           

        

         

        

        

          

        

3 Inviscid shallow water equations on the sphere 

schemes (Lin and Rood 1997), diffusion of small-scale 

features is implicit in the scheme: the inherent diffusion 

due to interpolation errors is often suffcient to prevent the 

build-up of enstrophy at small scales and to stabilize the 

numerical evolution. To compute the benchmark solutions 

of Galewsky et al. and Polvani, et al., such numerical 

schemes would be required to add an additional explicit 

diffusion term to the underlying equations of motion, 

inconsistent with the underlying model philosophy, and 

complicating the validation of the desired operational 

scheme. Indeed, this diffculty h as l ed v arious g roups to 

compute the Galewsky et al. solution without introducing 

explicit diffusion (e.g. Chen et al. 2013; Salehipour et al. 

2013; Ullrich et al. 2014, among many others). While this is 

convenient numerically and may give a crude indication that 

the numerical scheme is performing more or less correctly, 

it prevents the test case being used as a precise check 

of the numerical implementation and its accuracy. Thus, 

while the community clearly recognizes the importance for 

a refnement to the Galewsky et al. solution, so far none has 

been presented with a suffcient degree of rigour to enable 

accurate model validation (beyond being able to say that 

ones model is doing approximately the right thing). 

In many commonly used numerical schemes, diffusion 

is linked to the grid scale and decreases as numerical 

resolution increases; the diffusive length scale thus also 

decreases, and the numerical solution approaches what is 

in essence a solution to the inviscid equations of motion. 

In this case, the extent to which numerical convergence 

is possible is limited by the nature of the solution. If the 

solution to the inviscid equations is such that a shock or 

infnite g radient i n a p articular f eld de velops in a fnite 

time (so that the solution is only valid in the appropriate 

weak sense) numerical convergence will not typically be 

achievable at any fnite resolution. In situations of relevance 

to atmospheric fows, w here g radients m ay b e increasing 

exponentially in time, the issue of numerical convergence 

will now involve the specifcation o f a f xed ti me interval 

over which convergence may be sought. Over this time 

interval, solutions to the inviscid equations should be 

regular to the extent that all felds are representable by the 

numerical scheme at some achievable resolution. 

In view of the above, it has become clear that an 

important addition to the Galewsky et al. (2004) and 

Polvani et al. (2004) benchmark solutions should consist 

of a numerical converged solution to the inviscid equations 

of motion in an appropriately defned t ime i nterval, over 

which suffcient nonlinearity and small-scale fow features 

develop, but over which solutions also remain suffciently 

regular that a numerically converged inviscid solution 

may be obtained. Because of the tendency for rapid 

intensifcation o f f ow gr adients in ty pical no nlinear fow 

felds, s atisfying t hese t wo c onstraints t urns o ut t o be 

challenging, requiring computation at signifcantly higher 

resolutions than for the case of explicit diffusion. In the 

shallow water system, which will form the focus of this 

paper, suffcient r esolutions m ay b e r eached w ith relative 

ease on current computers. The primitive equation case 

appears signifcantly more demanding, both on account of 

the need to increase simultaneously both horizontal and 

vertical resolution, and because small-scale development 

is considerably more active by virtue of the nature of the 

dynamics at the horizontal boundaries (e.g. Juckes 1995; 

Scott 2011). 

The aim of the present short paper is thus to present a 

reference solution to the inviscid shallow water equations, 

which will be of potential use in the validation of the 

horizontal discretization component of new numerical 

schemes or implementations. It represents a small but 

nonetheless important advance on the viscous solution 

of Galewsky et al. (2004). The paper identifes a time 

interval over which the initial conditions (the same as those 

used in Galewsky et al. (2004)) generate a regular fow 

with features that may be captured at resolutions readily 

achievable on present-day computers. We present numerical 

converged solutions obtained using two separate numerical 

methods: a standard pseudo-spectral method (Hack and 

Jakob 1992; Rivier et al. 2002; Scott et al. 2004) and a 



                

              

          

           

           

     

  

       

           

        

       

        

                 

            

             

             

         

       

          

        

        

4 R. K. Scott & 

fnite-volume method discretized on a cubed-sphere grid 

(Putman and Lin 2007; Harris and Lin 2013). We emphasize 

that the solution obtained is independent of numerical 

scheme and, furthermore, independent of any small-scale 

dissipation or fltering. Any numerical scheme solving the 

inviscid shallow-water equations should converge to this 

same solution, provided only that any artifcial diffusion 

continually diminishes with increasing spatial resolution. 

The remainder of this paper is organized as follows. 

In section two, we review the initial conditions; these are 

the same as those used in Galewsky et al. (2004) but 

are included here for completeness. In section three, we 

provide a brief description of the two numerical schemes 

used. In section four, we present solutions to the inviscid 

shallow water equations computed using the pseudo-

spectral method, defning an appropriate time-interval 

over which convergence is obtained at the resolutions 

considered, and present various diagnostic quantities that 

may be used to quantify the convergence. In section fve, 

we show the degree to which the solutions obtained are 

independent of the numerical scheme and present details 

of the rate of convergence in each case; these rates will in 

general vary from one numerical scheme to another. 

2. Problem specifcation 

m. (This has the effect that the mean layer h = 120ˆ 1/15 andWe consider the equations for rotating shallow water on a 

sphere of radius a = 6.37122 × 106 m: 

ut + u · ru + f k̂ × u = grh (1a) 

ht + r · (uh) = 0, (1b) 

where u = (u, v, 0) is the horizontal velocity, k̂ is the unit 

vector in the vertical, h is the fuid depth, g = 9.80616 ms−1 

is gravity, and f = 2Ω sin φ is the Coriolis parameter, where 

Ω = 7.292 × 10−5 s−1 and φ is latitude. 

Equations (1a,1b) are solved by integrating from 

specifed initial conditions for u and h . These comprise a 

barotropically unstable jet as defned i n G alewsky e t al. 

(2004), with zonally symmetric zonal velocity field u = 

u0(φ) given by: 

umax 
u0 = 

en 
exp [(φ − φ0)(φ − φ1)]

−1 for φ0 < φ < φ1 

(2) 

with u = 0 for φ ≤ φ0 and φ ≥ φ1. The functional 

form for u0 has the advantage of being compact 

yet infnitely differentiable. The parameter values are 

umax = 80 ms−1 , φ0 = π/7, φ1 = π/2 − φ0, and en = 

exp [−4(φ1 − φ0)
−2], for which the jet maximum is located 

at π/4 = 45◦N. The initial height feld h0 is defned from 

u0 through gradient wind balance, that is, the v-component 

of (1a) for steady, axisymmetric fow, with the requirement 

that the global mean layer depth of the axisymmetric fow 

is H = 104 m. An important initial test of any numerical 

scheme is that this balanced and axisymmetric fow remain 

axisymmetric and steady in time. This is particularly 

important when considering numerical schemes that do not 

have an underlying zonal symmetry, such as those based on 

cubed-sphere or icosahedral grids. 

To the axisymmetric fow we add a perturbation to the 

height feld of the form: 

ˆ −[(φ−φ2)/β]
2 

h0(λ, φ) = h cos φ e−(λ/α)2 

e (3) 

where −π < λ ≤ π is longitude, φ2 = π/4, α = 1/3, β = 

depth of the total initial condition modifed very slightly to 

10000.3 m.) The reader is referred to Figure 1 of Galewsky 

et al. (2004) for a graphical rendering of the initial basic 

state u0, h0 and perturbation h0 . 

3. Numerical schemes 

We use two independently developed numerical schemes 

to verify the accuracy of the solution. The frst i s the 

BOB pseudo-spectral scheme (Rivier et al. 2002), which 

solves the shallow water equations in vorticity-divergence 

form, with prognostic variables absolute vorticity ζa = 

2Ω sin φ + k · r × u, divergence δ = r · u, and height 

perturbation η = h − H . A small hyperdiffusive term D = 



         

       

          

       

  

         

          

        

 

           

          

        

        

         

        

          

         

       

           

          

     

           

          

         
          

         

           

        

         

          

           

          

         

          

          

          

          

     

         

          

         

          

          

        

        

          

         

             

            

        

          

            

          

          

          

          

         

          

    

       

       

          

        

        

        

     

         

       

         

        

         

        

         

           

      

       

      

5 Inviscid shallow water equations on the sphere 

−νr4ξ is included in the equation for each prognostic 

variable ξ, purely as a means to prevent enstrophy build-up 

at small scales. We note again the fundamental difference 

from Galewsky et al. (2004), where the coeffcient ν was 

held fxed as resolution was increased. Here, in contrast, ν 

decreases with increasing resolution such that the diffusive 

timescale on the highest resolved wavenumber is constant 

across resolution. Thus, ν = ν∗[a2/N(N + 1)]2 where N 

is the maximum total wavenumber at a particular resolution 

and ν∗ is the diffusion rate at the smallest scale. It is fxed 

here at a value that is suffcient to control enstrophy over the 

time interval considered. We emphasize that the particular 

value of ν∗ is unimportant and we purposefully omit giving 

2nits value here; in fact, the form of the diffusion operator r 

may also be varied with essentially the same results. Neither 

do we consider here the question of how the diffusion 

should be chosen optimally. The important point is that the 

diffusion coeffcient ν should tend to zero as resolution is 

increased. The solutions thus obtained may be considered to 

be solutions to the inviscid equations over the time interval 

over which they remain regular. 

The second numerical scheme is the GFDL fnite-

volume cubed-sphere dynamical core (FV3), described in 

Putman and Lin (2007) and Harris and Lin (2013). FV3 

is a fnite-volume s cheme o n t he e quidistant gnomonic 

cubed-sphere grid Putman and Lin (2007) following the 

Lin and Rood (1997) shallow-water algorithm in the 

horizontal, which discretizes the vector-invariant (vorticity-

kinetic energy form) shallow-water equations on the D grid 

using a forward-backward time integration, and computes 

the pressure gradient force through the algorithm of Lin 

(1997). Fluxes for mass, absolute vorticity, and kinetic 

energy are computed using a modifcation by Putman and 

Lin (2007) of the piecewise parabolic method (Colella 

and Woodward 1984). In the results presented below, the 

model was run in a confguration s imilar t o t hat u sed in 

comprehensive climate simulations, in particular, including 

a monotonicity constraint and a standard scale-selective, 

fourth-order divergence damping. We emphasize again that 

these details are unimportant. Indeed, the model was run 

separately with no monotonicity constraint and divergence 

damping at half the conventional rate; in both cases the 

model converges to the same solution presented below. 

4. Inviscid solution 

In this section we present results from the pseudospectral 

scheme only; we demonstrate in section 5 that the solutions 

obtained with the fnite-volume s cheme c onverge t o the 

same fow. 

Figure 1 shows snapshots of the evolution of the fow at 

3 times, obtained from the numerical integration of (1–3) at 

the highest resolution considered. It illustrates eddy growth 

characteristic of barotropic instability, in which the spatially 

localized perturbation does not favour the growth of a 

particular wavenumber. The development is similar to that 

of Galewsky et al. (2004) but the higher effective Reynolds 

number here results in much more energetic generation of 

small-scale features, steep vorticity gradients and frontal 

regions. We take this to be our reference solution and it 

remains to establish over what time interval the solution can 

be considered to be numerically converged. 

Figure 2 shows a magnifcation o f t he f eld at t = 

6 days for a series of integrations at different numerical 

resolutions, from T85, corresponding to a grid of about 

1.4◦ at the equator and comparable to the resolution used 

in many models of the CMIP5, to T2730, corresponding 

to a grid of about 0.044◦ at the equator (or about 

5 km). Differences between successive panels decrease as 

resolution is increased. The last two panels are almost 

identical in terms of the position and shape of features 

such as the large cut-off low (a region of high potential 

vorticity) centred on 265◦W, 30◦N, or the undulation of the 

original jet. Even at these high resolutions, however, small 

differences between the two fnal panels may be detected in 

details such as the ridge of potential vorticity connecting the 

cut-off low to the jet undulation (265–275◦W, 20◦N), or the 

degree to which potential vorticity gradients at the jet edge 

have been intensified (e.g., 292◦W, 38◦N). 
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Figure 1. Snapshots of the fow evolution: potential vorticity, ζa/h, for the highest resolution case at t = 4, 5, 6 days. Contours are integer multiples of 
0.2Ω/H . 

Differences in the representation of the fow at 

different resolutions may be quantifed b y consideration 

of appropriate norms. The globally-averaged eddy kinetic 

energy, shown in Fig. 3a, illustrates the usual exponential 

growth of the perturbation from the zonal mean. Although 

it is a common measure of unstable development, it is a 

poor indicator of numerical convergence, being relatively 

insensitive to resolution, even for resolutions at which a 

casual inspection of the felds shown in Fig. 2 immediately 

reveals significant differences. Based on consideration of 

the total eddy kinetic energy alone, one would conclude 

that the sequence of calculations had converged already 

at a resolution of T170; Fig. 2, on the other hand, shows 

that many small-scale features are poorly represented at 

this resolution. To a similar extent, the same can be said 

of the l2 norm of the relative vorticity, Fig. 3b. The global 

averaging involved in the computation of these quantities 

obscures most of the differences clearly present in the fields 

themselves. 



        

            

         

          

        

            

         

         

         

       

        

         

7 Inviscid shallow water equations on the sphere 
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Figure 2. Potential vorticity at t = 6 days at resolutions increasing from T85 to T2730. The domain shown corresponds to the boxed region of Fig. 1c. 
Contours are integer multiples of 0.2Ω/H . 

A more precise indicator of convergence is given by suggests that this quantity would be accurately represented 

the l∞ norms of quantities such as relative vorticity at t = 6 perhaps only with a resolution of around T10000, 

or potential vorticity, shown in Fig. 3c,d. The relative which is impractical on present day computers. On the 

vorticity immediately reveals differences between even the other hand, the values of kζk∞ for the two highest 

two highest resolution integrations, T1365 and T2730, at resolutions remain indistinguishable on the plot up until 

t = 6 days. Extrapolation of the sequence of integrations around t = 5 days: the relative error at t = 5 between 
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(a) 1

2
‖u′‖22

T85

T2730

(b) ‖ζ‖2

T85

T2730

(c) ‖ζ‖∞

T85

T2730

(d)
‖q‖∞−‖q0‖∞

‖q0‖∞

T85

T170

T341

T2730

Figure 3. Diagnostic quantities as a function of time (in days): (a) globally-averaged eddy kinetic energy (units m2s−2); (b) rms relative vorticity (units 
s−1); (c) maximum relative vorticity (units s−1); (d) relative error of the maximum potential vorticity based on the initial potential vorticity, q0. 

T1365 and T2730 (where the error is normalized by the 

highest resolution value) is approximately 0.0002. Based 

on the relative vorticity maximum, and an error tolerance 

of 0.0002 we could thus claim that the sequence has 

converged numerically at t = 5 days at a resolution of 

T2730. In fact, for practical purposes it turns out that 

a relative error tolerance of 0.005, or 0.5% is a good 

indication of convergence for this particular fow a nd this 

is the criterion that we adopt in the remainder of the 

paper. We note that other choices of time interval and error 

tolerance result in convergence at different resolutions. Our 

choice is motivated simply by the desire to have a test 

that may be implemented without the need for excessive 

computational requirements, while retaining a reasonable 

level of complexity in the fow feld. 

Different quantities yield different convergence proper-

ties. Some, such as the maximum vorticity gradient are 

extremely sensitive and may indicate a relatively poor level 

of convergence, even at the resolutions considered here. 

A refnement o f t he vorticity m aximum i s t o c onsider the 

potential vorticity maximum. (Potential vorticity has also 

been used as a convenient diagnostic in the evaluation of 

tracer schemes (Whitehead et al. 2015)). We may take 

advantage of the fact that potential vorticity is conserved 

exactly on fuid p arcels i n t he i nviscid s ystem, a nd hence 

that we know a priori that kqk∞ = constant for the true 



         

        

         

        

              

        

        

          

         

        

           

         

        

         

        

        

        

        

         

        

         

          

         

       

      

          

       

           

      

              

         

      

          

            

          

         

         

        

        

        

        

        

        

         

         

           

        

        

         

        

              

         

         

     

        

          

         

         

         

            

            

         

         

          

      

         

        

    

        

         

        

          

          

        

         

        

9 Inviscid shallow water equations on the sphere 

inviscid solution, even without the explicit calculation of 

such a solution. Departures of the numerically generated 

solution from the true inviscid solution, associated either 

with numerical errors or with processes associated with 

the small-scale dissipation, will in general be refected in 

departures of kqk∞ from this constant initial value, kq0k∞. 

Fig. 3d shows that kqk∞ is constant at early times, before 

signifcant enstrophy has cascaded to the smallest resolved 

scales. Departures from the inviscid solution appear at 

progressively later times as resolution is increased. At the 

highest resolution considered here, a departure from the 

inviscid value is visible in the plot as early as t = 4.6 days, 

just before the target time established above, although the 

relative error remains small, just below the 0.005 tolerance 

level at t = 5 days. 

Our convergence criterion based on a relative error 

of kζk∞ or kqk∞ below 0.005 is consistent with a 

visual comparison of the potential vorticity felds a t the 

level of magnifcation u sed p reviously. F ig. 4 s hows the 

same magnifcation o f t he s ame r egion a s was considered 

Fig. 2 but for the two cases T1365 and T2730 at the 

time t = 5 days. The felds a re very n early i dentical aside 

from a single contour level that follows the extension 

of the potential vorticity ridge along the lower boundary 

of the jet core, a feature highly sensitive to numerical 

dissipation. Because the two-dimensional felds contain 

more information than the normed quantities, it is desirable 

that the criterion for convergence is based on both. 

5. Robustness of the solution 

Computation of the same solution with the alternative 

numerical scheme FV3 was carried out both to validate 

the pseudo-spectral solution, and to investigate the extent 

to which the rate of convergence depends on the particular 

scheme. 

Figure 5 shows kζk∞ and kqk∞ for the FV3 scheme 

for resolutions c80, corresponding to a grid resolution 

of 1.125◦ at the equator, to c2560, corresponding to 

a grid resolution of 0.035◦ . This range is comparable 

to the range of resolutions used for the pseudospectral 

integrations. The relative vorticity indicates a similar rate 

of convergence of the FV3 scheme as the pseudospectral 

scheme. The relative errors compared with the c2560 

solution at t = 5 days are 0.02 for c640 and 0.004 for c1280. 

In contrast, the potential vorticity maximum shows better 

behaviour to that of the pseudospectral case, remaining 

very nearly constant over the entire 6 day interval at 

resolutions c640 and higher. This may be expected from 

consideration of the way potential vorticity is treated 

numerically. In FV3 it is transported as a passive tracer with 

an advection scheme (Lin and Rood 1997) that prevents 

oscillatory errors. We note that in separate integrations 

of the same numerical scheme in which the monotonicity 

constraints are removed, the convergence of the potential 

vorticity maximum (not shown) looks similar to that 

found in the pseudospectral scheme, with departures from 

zero error appearing at progressively later times with 

increasing resolution, as in Fig. 3d. The results indicate 

that convergence characteristics, in the sense that one 

scheme may show better convergence in one norm than 

another, may vary from scheme to scheme, or even for 

a given scheme run with different means of numerical 

regularization. For example, the FV3 scheme without 

monotonicity constraint shows slightly better convergence 

in kζk∞ but worse convergence in kqk∞ than the same 

scheme with monotonicity constraint included. While these 

details affect the rate of convergence, they do not affect the 

converged solution itself. Notwithstanding these subtleties, 

it is clear that at t = 5 days FV3 is converged at c2560 

(with either choice of small-scale damping) according to the 

criterion put forward in the previous section. 

Figure 6a shows the potential vorticity feld q(x, y ) at 

t = 5 days at the highest FV3 resolution (thick dotted lines), 

plotted on top of same feld a t t he h ighest pseudospectral 

resolution (thin red solid lines). The degree of agreement 

between the two calculations is exact in the visual 

comparison. This should not be surprising: both calculations 

are converged at this resolution to the unique solution 
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Figure 4. Potential vorticity at t = 5 days at resolutions T1365 and T2730. Contours are integer multiples of 0.2Ω/H . 
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Figure 5. Diagnostic quantities as a function of time from the fnite-volume integration; (a) maximum relative vorticity; (b) relative error of the maximum 
potential vorticity. 

of the equations with the prescribed initial condition. 

Discrepancies between the two solutions would imply either 

that one or other numerical scheme had not converged, or 

else a failure in one of the numerical schemes to converge 

to the correct solution. 

We noted previously that the solutions obtained with 

each scheme are not fully converged at the later time of 

t = 6 days, in the sense that the two highest resolution 

felds o f e ach n umerical s cheme ( T1365 a nd T 2730 for 

pseudospectral, c1280 and c2560 for FV3) are not identical. 

Nonetheless, it is interesting to observe that at the very 

highest resolution the two schemes agree with each other 

to a remarkable extent, as shown in Figure 6b. While we are 

unable to compare these fields to ones at an even higher 

resolution, the fact that the two independent numerical 

schemes agree to such a close extent is highly suggestive 

that the fow given in the fgure is an accurate representation 

of the true solution at t = 6 days. The same conclusion 

was obtained from the results of FV3 with no monotonicity 

constraint and weaker divergence damping. 

Finally, Fig. 7 shows the pointwise relative errors at 

different resolutions of the solutions calculated with both 

schemes, where the “true” solution is taken to be the 

highest resolution solution in each case. At each resolution, 

the error is computed by interpolating the low resolution 

velocity felds o nto t he h igh r esolution g rid, t aking the 

difference between the low and high resolution velocity 

fields, and then computing the eddy kinetic energy of this 
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Figure 6. Potential vorticity from the fnite-volume integration at (a) t = 5 days and (b) t = 6 days at resolutions c2160 (dotted) superposed on the same 
feld from the pseudospectral integration at resolution T2730 (thin red lines). 
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Figure 7. Eddy kinetic energy: relative error from highest resolution solution at t = 5 days (solid) and t = 6 days (dotted): (a) pseudo-spectral 
integration, (b) fnite-volume integration. 

difference. Errors are computed in this way both at t = 

5 days (solid) and t = 6 days (dashed), with larger errors 

occurring at the later time as expected. Both pseudospectral 

and FV3 schemes show algebraic decrease in error with 

increasing resolution, with slightly faster decrease for the 

pseudospectral scheme. FV3 has less error at the lowest 

c80 resolution because it has a well-developed breaking 

wave on days 5 and 6, as opposed to the pseudospectral 

solution at T85 (see Fig. 2); it has higher errors at the 

highest resolutions, mostly likely due to edge and corner 

effects in the cubed-sphere grid. Again, the relative rates 

of convergence of the two schemes will depend on the 

particular norms used to quantify them. However, as we 

are less interested in the relative merits of one numerical 

scheme over another than in simply ensuring that the 

solutions converge at some reasonable resolution, we do not 

analyze these differences further. 

6. Summary 

In this paper we have presented a numerically converged 

solution of the rotating shallow water equations (1a,1b) 

and initial conditions (2,3) in the limit of vanishing 

viscosity. The solution is established over a time interval of 

5 days, by which time small-scale features representative of 

atmospheric flows have developed. The intention is that the 
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solution will be a useful tool against which new numerical 

schemes may be validated. 

The frst step in the validation procedure is the 

integration of the equations from the initial conditions 

to t = 5 days at progressively higher resolutions, and 

decreasing dissipation, whether explicit or implicit to the 

numerical scheme, until such a point that the sequence 

of solutions thus generated has converged. Again, we 

emphasize that the details of the numerical or explicit 

diffusion are unimportant, provided only that they yield a 

stable solution. Here, the sequence of solutions may be 

considered converged when the l∞ norm of the relative 

vorticity gives a relative error, based on the difference 

between the two highest resolutions solutions, of less than 

0.005. As an alternative or additional measure, it may 

be required that the l∞ norm of the potential vorticity 

also gives a relative error less than 0.005, where here the 

relative error is based on the difference between the highest 

resolution solution and the maximum potential vorticity at 

t = 0. Because the norms are single value quantities, it 

is further recommended that the two-dimensional potential 

vorticity felds of the two highest resolution solutions are 

compared at a magnifcation similar to that of Figure 4. 

Differences in the positions of the contours should be 

minimal. It should be borne in mind that the resolution at 

which convergence occurs will in general vary from scheme 

to scheme and may differ from the ones reported here. 

Once it has been established that the sequence of 

solutions has converged by the above criteria, the highest 

resolution solution should be compared with the feld shown 

∗in Figure 6. The solutions should match to the level of 

agreement shown in that fgure; in particular, there should 

be no discernible difference in the contour positions at this 

level of magnifcation. As a further quantitative measure we 

∗To facilitate this comparison we have included datasets of potential 
vorticity at days 5 and 6 as supplementary online material. 

provide the following values at t = 5 days: 

eddy kinetic energy : 2 −281.14 ± 0.05 m s

kζk2 : 
−12.67251 ± 0.0006 × 10−5 s

kζk∞ : 
−11.51175 ± 0.0003 × 10−4 s

kqk∞ : 
−1 −12.42909 ± 0.01 × 10−8 m s

where the error bounds have been taken (conservatively) 

from the difference between the values obtained at the two 

highest resolution pseudospectral solutions. 

Finally, pointwise relative errors may be computed 

to indicate the rate of convergence of the particular 

numerical scheme and may be compared against those of 

the pseudospectral and FV3 schemes shown in Fig. 7. We 

emphasize that rates of convergence will in general vary 

from one scheme to another, and, moreover, may depend 

on the particular norm used to defne convergence. 

We close by providing a brief indication of the magnitude 

of errors that may be expected from errors in the numerical 

implementation of the governing equations (1a,1b). For 

simplicity we consider the effect of errors introduced in 

the physical parameters Ω, a, and g. Of these it was found 

that the solution was most sensitive to errors in Ω and a. 

As an example, when the value of a was set erroneously 

to 6.39 × 106 m, an error of approximately 0.25%, the 

converged solution changed by an amount shown in Fig. 8, 

where the correct solution is contoured in thin red lines and 

the wrong solution is contoured in black dotted lines. The 

values of the quantities in the above list are: eddy kinetic 

energy, 79.9 m2s−2; kζk2, 2.66 × 10−5 s−1; kζk∞, 1.50 × 

10−4 s−1; kqk∞, 2.44 × 10−8 m−1s−1; all of which lie 

outside the error bounds indicated. Consideration of either 

the feld shown in Fig. 8 or the normed quantities listed here 

would thus correctly lead to the rejection of this solution 

and point to an error in the numerical implementation. 
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