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Abstract—Ocean color data are critical for the monitoring and 

understanding of biological and ecological processes and 
phenomena, and the data are also important sources of input data 
for physical and biogeochemical ocean models. The Visible 
Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 
National Polar-orbiting Partnership (SNPP) has continued to 
provide global ocean color data since its launch in October 2011. 
However, there are always many missing pixels in the original 
VIIRS-measured ocean color images due to clouds and various 
other reasons. The Data Interpolating Empirical Orthogonal 
Functions (DINEOF) is a method to reconstruct (gap-filling) 
missing data in geophysical datasets based on the Empirical 
Orthogonal Function (EOF). In this study, the DINEOF is applied 
to VIIRS-derived global Level-3 binned ocean color data of 9-km 
spatial resolution, and the DINEOF reconstructed ocean color 
data are used to fill the gaps of missing data. In particular, daily, 
8-day, and monthly VIIRS global Level-3 binned ocean color data, 
including chlorophyll-a (Chl-a) concentration, diffuse attenuation 
coefficient at 490 nm (Kd(490)), as well as normalized water-
leaving radiance spectra (nLw(λ)) at the five VIIRS visible bands, 
are tested and evaluated. To validate and evaluate the gap-filled 
data, a set of original valid non-missing pixels in the VIIRS images 
are selected randomly and treated as missing pixels in the 
DINEOF process, so that the reconstructed pixels can be 
compared with the original data. Results show that the DINEOF 
method can successfully reconstruct and gap-fill meso-scale and 
large-scale spatial ocean features in the global VIIRS Level-3 
images, as well as capture the temporal variations of these 
features. 

Index Terms—Ocean color remote sensing, VIIRS, gap-filling 
missing data, DINEOF 
 

I. INTRODUCTION 
CEAN color data from satellite sensors such as the Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) [1], the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on 
the Terra and Aqua satellites [2, 3], the Medium Resolution 
Imaging Spectrometer (MERIS) on the Envisat [4], the Visible 
Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 
National Polar-orbiting Partnership (SNPP) [5, 6] and NOAA-
20, and the Ocean and Land Colour Instrument (OLCI) on the 
Sentinel-3A satellite are critical for the monitoring and 
understanding of ocean biological and ecological processes and 
phenomena, and they are also required input data for physical 
and biogeochemical ocean models. For example, the satellite-
derived water diffuse attenuation coefficient for the 
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photosynthetically available radiation (PAR), Kd(PAR), is used 
to estimate heat flux within the upper water column in global 
and regional ocean numerical models [7]. Since the SNPP 
launch in October 2011, VIIRS ocean color products have been 
routinely produced globally [6, 8]. The standard VIIRS ocean 
color product suite includes normalized water-leaving radiance 
spectra nLw(λ) [9, 10], chlorophyll-a (Chl-a) concentration [11-
13], water diffuse attenuation coefficient at the wavelength of 
490 nm Kd(490) and at PAR Kd(PAR) [14, 15], as well as many 
experimental products such as inherent optical properties 
(IOPs) [16] and a newly added QA score product for measuring 
data quality [17]. In addition, VIIRS global ocean color 
products using the shortwave infrared (SWIR)-based and near-
infrared (NIR)-SWIR combined ocean color data processing 
approaches have been routinely produced [18, 19], which 
improve ocean color data quality over turbid coastal and inland 
waters [20-22]. Furthermore, VIIRS ocean color data 
processing algorithms have been significantly improved, 
including enhanced sensor on-orbit calibration using both solar 
and lunar approaches [23]. In July 2017, NOAA declared 
operational status for VIIRS ocean color products. 

However, for global ocean color products similar to those 
from SeaWiFS, MODIS, MERIS, OLCI, and other ocean color 
satellite sensors, there are always missing pixels in the VIIRS-
measured ocean color data imageries due to cloud cover [24, 
25] and various other reasons, e.g., strong sun glint 
contamination [26], dust storms, very large solar- and sensor-
zenith angles, etc. It is certainly useful to gap-fill the missing 
pixels before the data are used as input for ocean models and 
for some other applications. In fact, it is usually a requirement 
to complete a filled (no-gap) data set for model input. For 
example, the Empirical Orthogonal Function (EOF) analysis is 
a method to determine a set of orthogonal functions that 
characterizes the co-variability of a time series for a set of grid 
points [27]. It is often used to study possible spatial modes 
(patterns) of variability and to learn how they change with time. 
Traditional EOF analysis operates on matrices and requires a 
complete array of data without gaps in the matrices.  

To reconstruct missing pixels in the remote sensing data, 
various methods have been developed in several previous 
studies. Shen et al. [28] reviewed and summarized these 
established and emerging reconstruction methods, and 
suggested that they can be classified into four categories: (1) 
spatial-based methods, (2) spectral-based methods, (3) 

Applications and Research, NESDIS/NOAA, 5830 University Research Court, 
College Park, MD 20746, USA. Xiaoming Liu is also affiliated with CIRA at 
Colorado State University, Fort Collins, CO 80523, USA.  

O 

mailto:Xiaoming.Liu@noaa.gov
mailto:Menghua.Wang@noaa.gov


TGRS-2017-01182 
 

2 

temporal-based methods, and (4) hybrid methods [28]. In their 
study, these algorithms were also applied to a few other useful 
applications for reconstruction of missing pixels in remote 
sensing data, and the strengths and weaknesses of each method 
were surveyed theoretically and experimentally.  

The Data Interpolating Empirical Orthogonal Functions 
(DINEOF) [29, 30] is an EOF-based technique developed to 
reconstruct missing data in geophysical datasets. It exploits the 
spatio-temporal coherency of the data to infer a value at the 
missing location, and has been successfully applied in various 
applications [30-36]. In fact, the DINEOF method has been 
applied to ocean color data from MODIS [37-39], the Spinning 
Enhanced Visible and Infrared Imager (SEVIRI) onboard the 
Meteosat Second Generation 2 [40], and the Korean 
Geostationary Ocean Color Imager (GOCI) [41]. The DINEOF-
derived results have also been compared with other gap-filling 
methods to assess their accuracy. Henn et al. [42] compared the 
DINEOF method with a method based on temporal 
interpolation and with three other methods based on spatial 
Kriging and Least-Squares-Fit. It was concluded that DINEOF 
was the most accurate method for applications with a large 
number of stations and grids [42], which is also applicable to 
the case of satellite remote sensing data. 

As VIIRS ocean color products become operational and used 
more frequently by operational users in the future, filling the 
gap of missing pixels in the VIIRS ocean color data imageries 
will be increasingly necessary and useful. In addition, the 
previous DINEOF applications were mostly focused on 
regional oceans, and no former studies were found that use the 
DINEOF to reconstruct global ocean color data. In this study, 
the DINEOF method is used to reconstruct and gap-fill global 
VIIRS daily, 8-day, and monthly ocean color product data, 
including Chl-a, Kd(490), and nLw(λ) at the VIIRS-SNPP five 
visible bands (i.e., 410, 443, 486, 551, and 671 nm). With the 
reconstructed (gap-filled) VIIRS global daily Chl-a images, 
ocean features can now be well identified and observed both 
spatially and temporally. Some examples that demonstrate 
advantages and usefulness of the gap-filled VIIRS global ocean 
color products are provided. Furthermore, the DINEOF 
reconstructed non-gap VIIRS global daily, 8-day, and monthly 
ocean color images with some validation and evaluation results 
are presented and discussed. 

II. DATA AND METHODS 

A. VIIRS Global Level-3 Ocean Color Data 
The Multi-Sensor Level-1 to Level-2 (MSL12), which is the 

official NOAA VIIRS ocean color data processing system, has 
been used for processing VIIRS data from Sensor Data Records 
(SDR or Level-1B data) to the Environmental Data Records 
(EDR or Level-2 data) [6, 8]. MSL12 was originally developed 
for the purpose of using a consistent and common ocean color 
data processing system to process global ocean color data from 
multiple satellite ocean color sensors [43-45]. Specifically, 
MSL12 is based on the SeaWiFS Data Analysis System 
(SeaDAS) version 4.6 with some significant improvements, 
including the SWIR- and NIR-SWIR-based atmospheric 

correction algorithms for improved satellite ocean color data 
over coastal and inland waters [18-20]. There are also many 
studies and applications using the SWIR-based ocean color data 
processing over global highly turbid coastal and inland waters 
[21, 46-51]. In fact, MSL12 has been routinely producing 
VIIRS-NOAA-20 global ocean color products since its door 
opened on December 13, 2017. In addition, since July 2012, 
MSL12 has been used for the routine production of NOAA 
operational ocean color products from MODIS-Aqua over the 
12 NOAA CoastWatch regions (i.e., various U.S. open oceans, 
and coastal, and inland waters) [52] (www.ospo.noaa.gov/ 
Products/ocean/). Furthermore, MSL12 has been used to 
process ocean color products from the GOCI [53]. Certainly, 
MSL12 will also be used for producing ocean color products 
from all future VIIRS sensors onboard the Joint Polar Satellite 
System (JPSS) series, e.g., JPSS-2, JPSS-3, etc. 

The VIIRS global Level-3 ocean color product data are 
generated using the spatial and temporal binning from the 
corresponding Level-2 data. The Level-3 data processing 
algorithm is essentially the same as the one used for producing 
SeaWiFS and MODIS global Level-3 ocean color products 
[54]. Specifically, in the Level-3 data processing, pixels 
containing valid Level-2 data are mapped to a fixed spatial grid 
with spatial resolution of 9 × 9 km2. The grid elements or bins 
are arranged in rows beginning at the South Pole. Each row 
begins at 180° longitude and circumscribes Earth at a given 
latitude. Within each bin, the statistics of mean or median are 
accumulated for periods of one day, eight days, and one month 
(or for any time periods). Before the binning process, several 
Level-2 data quality flags from MSL12 (mainly high solar-
zenith angle, high sensor-zenith angle, high sun glint [26], 
stray-light/cloud shadowing [55], and ice contamination [56]) 
are applied to VIIRS ocean color Level-2 data. In this study, 
VIIRS global Level-3 binned data of 9-km spatial resolution in 
January, April, July, and October of 2014 are used. These four 
months represent four seasons in VIIRS-derived global ocean 
color data. Figure 1 shows examples of the global Level-3 daily 
Chl-a images for January 15 (Fig. 1a), April 15 (Fig. 1b), July 
15 (Fig. 1c), and October 15 (Fig. 1d) of 2014. Obviously, there 
are many missing pixels in the VIIRS Chl-a images. In fact, 
there are ~70% pixels missing in these global daily images due 
to cloud cover, high sun glint contamination, high solar- or 
sensor-zenith angles, and various other reasons. 

B. Applications of the DINEOF Method on VIIRS Global 
Level-3 Data 

The DINEOF method [29, 30] is an EOF-based technique, 
which identifies and utilizes dominant spatial and temporal 
patterns in geophysical datasets to reconstruct missing data. The 
DINEOF procedure can be summarized as the following:  

(a) First, initial data are obtained through subtracting the 
mean value from the entire data set and setting the missing data 
to zero.  

(b) Next, the EOF is performed to the data set, and the 
missing data are replaced with the initial guess by the data 
reconstruction using the spatial and temporal functions of only 
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Fig. 1. Original VIIRS-derived global daily Chl-a images for the dates of (a) January 15, (b) April 15, (c) July 15, and (d) October 15, 2014. 
These VIIRS Chl-a data and images were generated from the MSL12 and VIIRS global daily Level-3 binned data. 

Fig. 2. Fully reconstructed (gap-filled) VIIRS global daily Chl-a images using the DINEOF method for the dates of (a) January 15, (b) April 15, 
(c) July 15, and (d) October 15, 2014. Examples of the 11 meso-scale ocean features revealed in the reconstructed global VIIRS daily Chl-a 
images are indicated. 

the first EOF mode.  
(c) Finally, the first EOF mode is recalculated iteratively 

using the previous best guess as the initial value of the missing 
data for the subsequent iteration until the process converges.   

This procedure is repeated iteratively with n EOF modes (n 
= 1, 2, 3, …) until it reaches convergence. At each step, a cross-
validation method is used to calculate the final optimum 
number of EOF modes to retain, so that the cross-validation 
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error is minimum. It should be noted that not all EOF modes are 
used in the final data reconstruction, and the noise, as well as
small scale and transient features in the high order EOF modes, 
are removed from the reconstructed data. Henn et al. [39]
provided a very useful and more detailed pseudo code algorithm 
of the DINEOF method in their appendix. The complete and 
detailed description about the DINEOF technique can be found 
in Beckers and Rixen [29] and Alvera-Azcarate et al. [30].  

The original DINEOF package was used to reconstruct (gap-
fill) the missing pixels in the VIIRS global Level-3 daily, 8-day, 
and monthly ocean color data. It is noted that DINEOF is
applied directly to the VIIRS Level-3 bin data files, instead of 
the mapped data files. As described in the previous section, the 
number of bins is different for each row of the VIIRS Level-3 
data, so they are not in the standard matrix. Therefore, a
preprocessor is developed to reorganize the Level-3 bins before 
being used as input of DINEOF. In the preprocessing, bins in
all Level-3 data files are put into an m × n matrix, where m is 
the number of bins in the region (spatial), and n is the number
of Level-3 data files in the time series (temporal). In the
meantime, land mask is applied to extract ocean pixels. 
DINEOF is then applied on the m × n matrix to fill the gap
pixels. Similarly, a postprocessor is also developed to convert
the m × n matrix back into Level-3 bin format after the DINEOF 
process. 

First, DINEOF is applied to one month of daily data in the
month of January, April, July, October of 2014, separately. 
However, due to the limitation (cut off) for high solar-zenith 
angle, there are no pixels available for the entire month in the
large areas of northern high latitude region in January and
southern high latitude region in July. Thus, the missing pixels
in these high latitude areas cannot be reconstructed. Since there 
are about 6 million bins in each daily global Level-3 data file
with 9-km spatial resolution, performing the DINEOF on the
entire global dataset is very inefficient. Therefore, in the
preprocessing, the global dataset is evenly divided into 16 zonal 
sections between 80°S and 80°N at every 10°, i.e., 80°S–70°S, 
70°S–60°S, …, 60°N–70°N, and 70°N–80°N, and DINEOF is
applied to each of zonal sections separately. In fact, DINEOF is 
applied to these 16 zonal sections simultaneously to improve
data processing efficiency. Since a 10-degree zonal section is
large enough to capture both large and meso-scale spatial
features, the major EOF modes in each zonal section are kept,
and the impact on the final results can be neglected. In the
postprocessing, the 16 zonal sections are recombined into one
global Level-3 file. After global Level-3 gap-filled daily data
are generated, global Level-3 8-day and monthly data can then 
be generated from these gap-filled daily data. It is noted that
this procedure is repeated for each of the seven VIIRS ocean
color products, i.e., Chl-a, Kd(490), nLw(410), nLw(443), 
nLw(486), nLw(551), and nLw(671).  

III. RESULTS 

A. Gap Filling for VIIRS Global Daily Chl-a Data 
We define the terminology for three types of images: original 

image, reconstructed image, and filled image. Original image is 

 

 

 

 

 

 
 

 
 

 

 
 
 

 
 
 

 

 
 
 
 
 
 
 

 
 

 
TABLE I. MEAN, MEDIAN AND STD OF RECONSTRUCTED/ORIGINAL RATIO 
OF CHL-A FOR JANUARY 15, APRIL 15, JULY 15, AND OCTOBER 15 OF 2014. 

 

Date in 2014 Mean Median STD 

January 15 1.022 0.996 0.261 
April 15 1.033 0.996 0.319 
July 15 1.015 0.986 0.246 

October 15 1.021 0.985 0.354 
 

 

Fig. 3. Density-scatter plots of global reconstructed versus original 
Chl-a data for the dates of (a) January 15, (b) April 15, (c) July 15, 
and (d) October 15, 2014. 

from the original VIIRS global Level-3 binned data, which 
contain missing data. Reconstructed image is calculated from 
the retained EOF modes using the DINEOF method [29]. In the 
reconstructed image, all ocean color data are reconstructed on 
every ocean pixel (including valid non-missing pixels). The 
reconstructed image has no-gap spatially. However, there are 
some small differences between reconstructed and original data 
even for non-missing pixels due to truncated EOF modes in 
computing all data values. The filled image is a combination of 
the original image and the reconstructed image, i.e., missing 
pixels are filled with reconstructed data and original data are 
kept for non-missing pixels. As examples, Figure 2 shows the 
fully reconstructed global daily Chl-a images of the same dates 
as in Fig. 1, i.e., January 15 (Fig. 2a), April 15 (Fig. 2b), July 
15 (Fig. 2c), and October 15 (Fig. 2d) of 2014. All gaps in the 
original images (see Fig. 1) are now reconstructed (filled), and 
the transitions between the gap and non-gap pixels are smooth 
spatially. Due to high solar-zenith angles (> 70°), there are no 
observations for January (July) in the northern (southern) high 
latitude region in the entire month, and therefore, the missing 
data in these regions could not be filled using the DINEOF 
process.  

To quantitatively evaluate the accuracy of the DINEOF data 
reconstruction method, a set of valid pixels are intentionally 
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TABLE II. LIST OF SOME MESO-SCALE OCEAN FEATURES REVEALED IN THE RECONSTRUCTED VIIRS GLOBAL CHL-A IMAGES. 

Number Description Location Figure 

1 Tropical instability waves (equatorial Pacific) Equator 2a 
2 North Brazil Current ring 9.18°N & 54.23°W 2a 
3 Spin-off eddies in the tropical Pacific Ocean 10°N & 100°W 2b 
4 Eddies associated with costal current near Baja 27°N & 115°W 2b 
5 Madagascar plumes 26°S & 58°E 2b 
6 Loop Current and associated eddies 26°N & 88°W 2c 
7 Gulf Stream and associated eddies 39°N & 68°W 2c 
8 Tropical instability waves (equatorial Atlantic) 6°N & 42°W 2d 
9 Eddies generated near Hawaii 21°S & 163°W 2d 

10 Eddies of California Coastal Current 38°N & 128.5°W 2d 
11 Eddies of Kuroshio 32°N & 141°E 2d 

 
 
treated as “missing pixels,” so that DINEOF-reconstructed data 
can be compared with the original data. Specifically, before the 
DINEOF process, 5% of the valid (non-missing) pixels are
purposely removed from the original global Level-3 data on
January 15, April 15, July 15, and October 15 of 2014. The
locations of these validation pixels are randomly selected using 
the random number generator in the Interactive Data Language 
(IDL). It is noted that 5% taken from the valid pixels in the
original images in Fig. 1 is quite a significant amount since only 
~30% of the pixels are valid pixels in global oceans. After the 
DINEOF process, these data are reconstructed and compared
with the original data. Figure 3 shows the density scatter plots 
of the reconstructed data versus original data, which show that 
most points are close to the 1:1 line. It should be noted again 
that comparison results in Fig. 3 are only for those validation 
pixels (i.e., those 5% purposely removed non-missing pixels). 
The quantitative comparison results are given in Table I, and 
the mean, median, and standard deviation (STD) of the
reconstructed/original ratio for the case of January 15, 2014 are 
1.022, 0.996, and 0.261, respectively. Similar statistics results 
are obtained for the other three cases (Table I). The average
values of mean, median, and STD from these four cases in
Table I are 1.023, 0.991, and 0.295, respectively.  

B. Ocean Features Revealed in the Reconstructed Global 
Daily Chl-a Data  

The reconstructed daily images in Fig. 2 reveal many meso-
scale and large-scale ocean features that are invisible in the
original Chl-a images in Fig. 1. With the reconstructed (gap-
filled) global Chl-a images, the oligotrophic waters (Chl-a 
concentration < 0.1 mg m−3) in the center of the five subtropical 
ocean gyres, i.e., North Atlantic, South Atlantic, North Pacific, 
South Pacific, and South Indian Ocean, show the most obvious 
large-scale ocean features, which cover major parts of the
global oceans. Equatorial Pacific Ocean and equatorial Atlantic 
Ocean regions have more enhanced Chl-a (~0.1–0.5 mg m−3) 
than those in the subtropical gyres. In contrast, there is no
significant increase of Chl-a in the equatorial Indian Ocean. On 
the other hand, high Chl-a concentrations are found in the high 
latitude regions in the North Atlantic Ocean, North Pacific
Ocean, and Southern Ocean.  

In addition to these large-scale features, the reconstructed

images also reveal many meso-scale ocean features, such as 
eddies and filaments associated with western boundary currents 
or coastal currents. The descriptions and locations of these 
meso-scale features are listed in Table II, and their locations are 
also marked in Fig. 2. Some of these features are warm-core 
eddies [57], such as the Loop Current (LC) eddies that have 
lower Chl-a concentrations, and some are cold-core eddies [57], 
such as eddies generated near Hawaii that have enhanced Chl-
a concentrations. 

All ocean features in Table II are dynamic since they vary 
with time. Figure 4 shows the transformation of a super North 
Brazil Current (NBC) ring [58] as an example. NBC rings are 
Earth’s largest oceanic rings formed by the retroflection of the 
NBC near 8°N in the western tropical Atlantic [59]. The NBC 
is a western boundary current, which flows northward along 
Brazil’s coast passing by the Amazon River mouth. The NBC 
separates from the South American coastline at 6°N–8°N and 
curves back on itself to feed the eastward North Equatorial 
Countercurrent (NECC) and close the clockwise wind-driven 
equatorial gyre [58]. The NBC occasionally curves back upon 
itself to pinch off large warm-core eddies. Figure 4 shows the 
formation and transformation of a super NBC ring with a 
diameter of ~500 km. On January 7, 2014, the NBC curved back 
but still did not completely closed itself (Fig. 4a), and the center 
of the ring was located at 9.18°N and 54.23°W (Fig. 4b). Six 
days later on January 13, 2014, the NBC formed a complete ring 
(Fig. 4c), and continued translating northwestward (Figs. 4d 
and 4e). By January 22, 2014, the center of the ring moved to 
10.33°N and 56.95°W (Fig. 4f). Beginning on January 25, 
2014, the ring started to transform from a circular shape to an 
elongated oval while moving further to the northwest (Figs. 4g–
4i). It is also noted that a branch of the NBC flowed to the east 
and joined the NECC.  

As another example, Fig. 5 shows the interaction of the LC 
with a spin-off eddy and the coastal waters in the West Florida 
Shelf (WFS). LC is a warm ocean current that flows northward 
between Cuba and the Yucatán Peninsula, moves north into the 
Gulf of Mexico, and loops east and south before exiting to the 
east through the Florida Straits [60]. Every 3 to 17 months, the 
“loop” spins off from the LC system and becomes a separate 
eddy [61]. Chl-a concentration within the LC and spin-off eddy 
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Fig. 4. The transformation progress for a super North Brazil Current ring in January 2014 using the reconstructed (gap-filled) VIIRS daily Chl-a 
images for panels (a)–(i) of January 7, 10, 13, 16, 19, 22, 25, 28, and 31, respectively. 

is usually low due to their oligotrophic water source and the images (as expected), and the meso-scale features are still 
clockwise rotation as warm-core rings. Figure 5 shows a well- visible. The reconstructed 8-day Chl-a data are also compared 
developed “loop” and an eddy to the north with very low Chl-a with the original 8-day Chl-a data, which are generated by 
concentration (< 0.1 mg m−3), and the WFS waters with high binning the original daily data. Figure 7 shows the density 
Chl-a concentration (> ~1 mg m−3). As seen in Fig. 5 from the scatter plot of the reconstructed versus original 8-day Chl-a 
VIIRS daily Chl-a spatial pattern progress, the LC extended images (all common pixels are included), and the quantitative 
northward from July 16 to July 31, 2014, as it moved closer to comparison results are listed in Table III. It is particularly noted 
the eddy. As a result, the water with high Chl-a concentration that for the 8-day data comparison (Fig. 7) all common pixels 
between the eddy and loop current was squeezed out, and the from both original and new 8-day Chl-a data are used. 
WFS waters with high Chl-a concentration extended southward Therefore, there are significantly more data in Fig. 7 than those 
significantly from July 22 to July 31, 2014 (Figs. 5f–5i).  in Fig. 3. The mean, median, and STD values for the ratio of the 

reconstructed/original for the case of January 9–16, 2014 are 
C. Gap Filling for Global 8-day and Monthly Chl-a Data 0.984, 0.980, and 0.152, respectively. Similar statistics results 

The global Level-3 8-day ocean color data are generated are obtained for the other three 8-day cases (Table III). The 
using the reconstructed (gap-filled) Level-3 daily data from the average values of mean, median, and STD from these four 8-
eight daily files. In the time-binning process for the Level-3 8- day cases in Table III are 0.983, 0.980, and 0.159, respectively.  
day data, the median is calculated as the 8-day value for each Similarly, monthly global Level-3 ocean color data are 
bin. Figure 6 shows examples of the reconstructed 8-day Chl-a reconstructed by binning the corresponding daily Level-3 data 
images on January 9–16 (Fig. 6a), April 15–22 (Fig. 6b), July for the corresponding month. Figure 8 shows examples of the 
12–19 (Fig. 6c), and October 8–15 (Fig. 6d) of 2014. The 8-day reconstructed monthly Chl-a images for January (Fig. 8a), April 
global Chl-a images are smoother spatially than those of daily (Fig. 8b), July (Fig. 8c), and October (Fig. 8d) of 2014. The 
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Fig. 5. Interaction of the LC, spin-off eddy, and coastal waters in the West Florida Shelf for the period of October 7–31, 2014 from the 
reconstructed images for panels (a)–(i) of July 7, 10, 13, 16, 19, 22, 25, 28, and 31, respectively. 

 
monthly images are so smooth spatially that the meso-scale 
ocean features are actually averaged out. However, the seasonal 
variations are now observable in the reconstructed (non-gap) 
images. For example, the winter Chl-a bloom in the Arabian 
Sea and the spring bloom in the North Atlantic Ocean can now 
be seen in the reconstructed image of January (Fig. 8a) and 
April (Fig. 8b), respectively. The global reconstructed monthly 
Chl-a data are also compared with the original monthly data. 
Figure 9 shows the density scatter plot of the monthly- 
reconstructed Chl-a versus those from the original monthly data 
(all common pixels included), and the quantitative comparison 
results are listed in Table III. Again, in the monthly data 
comparisons in Fig. 9, all common pixels from both original 
and new monthly Chl-a data are used. The mean, median, and 
STD of the reconstructed/original ratio for the case of January 
of 2014 are 0.989, 0.988, and 0.125, respectively. Similar 
statistics results are obtained for the other three monthly cases 
(Table III). The average values of mean, median, and STD from 
these four monthly cases in Table III are 0.985, 0.987, and 
0.126, respectively. 

D. Gap Filling for Global Kd(490) and nLw(λ) Data 
To further test and evaluate the DINEOF efficacy for other 

 
TABLE III. MEAN, MEDIAN, AND STD OF RECONSTRUCTED/ORIGINAL RATIO 
OF CHL-A FOR 8-DAY AND MONTHLY DATA. 

Date Period in 2014 Mean Median STD 

January 9-16 0.984 0.980 0.152 
April 15-22 0.983 0.979 0.154 
July 12-19 0.982 0.980 0.157 

October 8-15 0.981 0.979 0.172 
January (monthly) 0.989 0.988 0.125 
April (monthly) 0.991 0.989 0.125 
July (monthly) 0.981 0.987 0.116 

October (monthly) 0.980 0.982 0.137 

 

 

 

ocean color products, the same DINEOF procedure is applied 
to global daily Kd(490) and nLw(λ) at the five VIIRS visible 
bands to reconstruct missing pixels, and the 8-day and monthly 
Kd(490) and nLw(λ) are generated by binning the reconstructed 
(non-gap) daily data. Figure 10 shows examples of daily 
Kd(490) images on January 15 (Fig. 10a) and April 15 (Fig. 
10b), 8-day Kd(490) images for July 12–19 (Fig. 10c) and a 
monthly Kd(490) image for October (Fig. 10d) of 2014. Since 
Kd(490) is highly correlated to Chl-a [62], especially in open 
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Fig. 6.  Reconstructed (gap-filled) VIIRS global 8-day Chl-a images for the 8-day period of (a) January 9–16, (b) April 15–22, (c) July 12–19, 
and (d) October 8–15, 2014. 

Fig. 7.  Scatter plot of reconstructed versus original 8-day global 
Chl-a data for the 8-day period of (a) January 9–16, (b) April 15–
22, (c) July 12–19, and (d) October 8–15, 2014. 

oceans, the meso-scale and large-scale ocean features in the 
reconstructed (non-gap) Kd(490) images are generally similar to 
those in the Chl-a daily, 8-day, and monthly images.  

 Similarly, example images of the reconstructed daily, 8-
day, and monthly nLw(443) and nLw(551) are shown in Fig. 11 
and Fig. 12, respectively. As expected, while nLw(443) has the 
maximum values in the oligotrophic open oceans and minimum 
in the coastal/inland waters, nLw(551) is quite uniform spatially 
in the global open ocean. Global nLw(443) images in Fig. 11 
also show seasonal variations, i.e., highs in the southern 
(northern) hemisphere ocean gyres in winter (summer), and 
lows in the northern (southern) hemisphere ocean gyres in 
summer (winter). On the other hand, the global nLw(551) 
images in Fig. 12 show a quite stable value throughout of the 
year, except over coastal and inland waters.  

IV. DISCUSSIONS AND SUMMARY 
In VIIRS-derived ocean color product data, there are many 

missing pixels (spatial gaps) due to cloud cover, high sun glint 
contamination, large solar- and sensor-zenith angles, and 
various other reasons. In this study, the DINEOF method is 
used to reconstruct and gap-fill missing data in VIIRS global 
Level-3 daily binned data files for seven ocean color products, 
i.e., Chl-a, Kd(490), nLw(410), nLw(443), nLw(486), nLw(551), 
and nLw(671). Since the number of bins is quite large in global 
Level-3 data with 9-km spatial resolution, the global dataset is 
divided into 16 zonal sections, and DINEOF is applied on each 
of the sections simultaneously to improve data processing 
efficiency. The VIIRS global 8-day and monthly Level-3 ocean 
color data are then generated using the daily-reconstructed 
(non-gap) data. In the reconstructed daily Chl-a images, the 
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Fig. 8. Reconstructed (gap-filled) VIIRS monthly Chl-a images for the month in 2014 of (a) January, (b) April, (c) July, and (d) October. 
 
 
 

 
Fig. 9. Scatter plots of reconstructed versus original monthly Chl-a 
for the month in 2014 of (a) January, (b) April, (c) July, and (d) 
October. 

 
transition between the gap and non-gap pixels is quite smooth 
spatially (no discontinuity boundaries), and both the meso-scale 
and large-scale ocean features are well captured in the
reconstructed (non-gap) images. This is an important advantage 
in using the reconstructed DINEOF approach, which will have 

 

no data discontinuities between gap-filled and non-gap data. In 
addition, the temporal variation of these meso-scale and large- 
scale ocean dynamic features are also smooth from the 
reconstructed (non-gap) images. To quantitatively evaluate the 
accuracy of the DINEOF data reconstruction method, a set of 
valid pixels are intentionally treated as “missing pixels,” so that 
DINEOF-reconstructed data can be compared with the original 
(“truth”) data. Quantitative comparison results show that the 
approach is valid and reasonable for gap-filling missing data in 
VIIRS global Level-3 ocean color product data. In fact, average 
values of the mean, median, and STD of the VIIRS daily Chl-a 
reconstructed/original ratio are 1.023, 0.991, and 0.295, 
respectively. 

The reconstructed 8-day and monthly VIIRS global Level-3 
Chl-a data are also evaluated. The reconstructed 8-day and 
monthly images are smoother spatially than those from daily 
images. The meso-scale features are still visible in the 8-day 
images, but they are averaged out in the monthly images. The 
seasonal variations of some ocean features, such as the winter 
bloom in the Arabia Sea and the spring bloom in the North 
Atlantic Ocean, are also reconstructed and well captured. In 
addition, the reconstructed 8-day and monthly Chl-a data are 
compared with original data for validation. Results show that 
the reconstructed 8-day and monthly data are reasonably 
accurate. Furthermore, the DINEOF method is also applied to 
Kd(490) and nLw(λ) at the VIIRS five visible bands to 
reconstruct missing data. The spatial and temporal variations in 
Kd(490) are similar to Chl-a. As expected, nLw(443) is at its 
maximum in the oligotrophic open oceans and at its minimum 
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Fig. 10.  Reconstructed (gap-filled) daily, 8-day, and monthly Kd(490) images for the month in 2014 of (a) January, (b) April, (c) July, and (d) 
October. 

in the coastal waters, and also show strong seasonal variations. oceans both spatially and temporally, except over coastal and 
On the other hand, nLw(551) is quite uniform over global open inland waters.  

Fig. 11.  Reconstructed (gap-filled) daily, 8-day, and monthly nLw(443) images for the month in 2014 of (a) January, (b) April, (c) July, and (d) 
October. 
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Fig. 12. Reconstructed (gap-filled) daily, 8-day, and monthly nLw(551) images for the month in 2014 of (a) January, (b) April, (c) July, and (d) 
October. 

 

Results in this study show that the DINEOF method can 
successfully reconstruct meso-scale and large-scale spatial 
features in the global VIIRS Level-3 daily images, as well as 
the temporal variation of these ocean features. However, due to 
high solar-zenith angle, there are no pixels available for the 
entire month in the large areas of the northern high latitude 
region in January and the southern high latitude region in July. 
For those missing pixels, DINEOF can only replace them with 
a global mean value without spatial and temporal variations. 
Therefore, those missing pixels in high latitude regions cannot 
be reconstructed using the DINEOF method. 

Finally, results in this study show that, using the DINEOF 
method with the proposed data processing approach, VIIRS 
daily ocean color products can be routinely produced without 
gaps, providing useful global ocean color product data for 
research and various applications in the ocean community. 
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