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Abstract 21 

Geographically heterogeneous linear and non-linear chlorophyll-a (CHL) trends in the East 22 

Sea/Japan Sea (EJS) region were analyzed based on monthly mean Moderate Resolution Imaging 23 

Spectroradiometer (MODIS) CHL data from January 2003 to December 2012. The non-linear 24 

trends were derived from the residuals of decomposed CHL time series using ensemble empirical 25 

mode decomposition (EEMD). To understand the general spatial and temporal variability of the 26 

non-linear CHL trends, a complex empirical orthogonal function (CEOF) was employed. The first 27 

two CEOF modes indicate that an upward CHL trend occurred in 2007 with 95.6% variance, 28 

whereas a downward CHL trend occurred in 2009 with 4.1% variance. Furthermore, the specific 29 

timing of the phase changes in CHL was calculated based on upward or downward non-linear 30 

trends of CHL for six major regions of interests.   31 

To examine the dominant forces in phase changes in CHL, the Multivariate El Nino-32 

Southern Oscillation (ENSO) Index (MEI) was used. We determined that the local turning patterns 33 

of CHL over the last ten years were closely related to changes in ENSO events, which were also 34 

associated with changes in the total amount of fish catches off the east coast of the Korean 35 

Peninsula. These results also suggest that the short-term total amount of fish catches may be 36 

predictable based on the remotely sensed non-linear CHL observations.  37 

 38 

 39 

 40 

 41 

 42 

 43 
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1. Introduction 44 

The East Sea/Japan Sea (EJS) is a marginal sea located in the northwestern Pacific and is 45 

surrounded by Korea, Japan, and Russia (Fig. 1). The EJS is connected to adjacent seas by five 46 

shallow straits.  There are four surface current systems in the EJS: the Tsushima Warm Current 47 

(TWC), the East Korean Warm Current (EKWC), the North Korean Cold Current (NKCC), and 48 

the Liman Current. The NKCC and the EKWC meet along the east coast of Korea. The warm 49 

saline water of the TWC passes through the Korean Strait, where the flow often bifurcates into 50 

western and eastern branches. The EKWC later turns eastward between 37°N and 39°N, where it 51 

meets the NKCC [Seung and Kim, 1989] and becomes a sub-polar front (SF). The NKCC 52 

originates from the Liman Current coming from the Tatar Strait, and some of the denser water in 53 

the NKCC intrudes along the coast below the surface.   54 

Two blooms, appearing in the spring and fall, are typical feature of phytoplankton 55 

variability in the temperate zone. The spatial distributions of phytoplankton blooms are specific 56 

features of the EJS. Blooms of phytoplankton (chlorophyll-a (CHL)) increasing) appear in the 57 

spring [Yamada et al., 2004; Yoo and Kim, 2004; Kim et al., 2007] and fall in the EJS [Yamada et 58 

al., 2004; Kim et al., 2007]. Ocean color data for 1997-2002 show the inter-annual variability of 59 

CHL in the EJS; earlier spring blooms occur during El Nino years, and later spring blooms occur 60 

during La Nina years due to the associated wind patterns [Yamada et al., 2004].  In particular, the 61 

spring bloom duration of 1999 in the EJS was influenced by La Nina through wind stress changes 62 

[Yoo and Kim, 2004].  The winds play an important role in the seasonal variability of CHL; a 63 

spring bloom began approximately 10 days after the wind stress weakened, and a fall bloom started 64 

approximately a week after the wind strengthened [Kim et al., 2007].    65 
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Several studies have found that the impacts of climatic regime shifts within the EJS are 66 

significant with respect to the marine ecosystem and fishery resources. Zhang et al. [2004] reported 67 

that the total biomass in the EJS ecosystem increased by 15% and the total catch production 68 

increased by 48% due to the 1976 regime shift.  Similarly, Zhang et al., [2007] analyzed the before 69 

and after effects of the 1988/89 regime shift on the structure and function of the southwestern EJS 70 

ecosystem and reported that the total biomass of all species groups in the ecosystem increased by 71 

59% after the 1988/89 regime shift.  Recently, Tian et al. [2013] reported that the abundance trends 72 

of squid were largely forced by environmental factors with latitudinal differences in the response 73 

to the climatic regime shift. Seasonal and inter-annual CHL variability associated with climatic 74 

regime shifts has been reported. Such changes can result in significant changes in latitudinal 75 

fishery resources within the EJS [Zhang et al., 2000]. 76 

Studies have reported that there are indications of climate change in Korean waters. For 77 

instance, Kim and Yoo [1996] reported evidence that temperatures increased in the mid-1970s, and 78 

fishery resources reflected these changes. There were significant increases in the biomass of 79 

zooplankton within the last two decades in the Yellow Sea [Son et al., 2005], in the East/Japan Sea 80 

[Zhang et al., 2000], and along the southern coast of Korea [Kim and Kang, 2000].  It has been 81 

shown that the variability of fishery biomass corresponded to climate change during the last several 82 

decades around the Korean Seas. The 1976 regime shift in the North Pacific caused a decrease in 83 

the biomass of sauries, an increase in the biomass of sardines in the Korea Seas [Zhang et al., 84 

2000], and an increase in the total catch of anchovies and mackerels along the southern coast of 85 

Korea [Kim and Kang, 2000]. The study showed that there are high correlations between 86 

environmental variations derived from water transparency (Secchi depth) and CHL in Korean 87 

waters. 88 
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To understand CHL variability due to climate change, long-term CHL observations are 89 

necessary. Because we do not have enough CHL observations to resolve a regime shift resulting 90 

from global climate change, we analyzed the timing of phase changes (either downward or upward 91 

trends) in CHL to detect and understand when CHL changed significantly.  The timing of phase 92 

changes in CHL is not comparable to a regime shift, but it shows the short-term variability in the 93 

middle of a regime shift. Understanding phase changes in CHL is important because it relates 94 

ecological processes of climatological forces to the prediction fishery resources [e.g., Bertolo et 95 

al., 1999; Polovina et al., 2001, Platt et al., 2003].. Platt et al. [2003] reported that the survival of 96 

larval fish depends on the timing of the local spring bloom of phytoplankton based on remote-97 

sensing satellite data and a long-term data set of haddock recruitment off the eastern continental 98 

shelf of Nova Scotia, Canada.  99 

   Thus, in this study, we addressed how CHL has changed in the last ten years based on 100 

linear and non-linear trends. The conventional linear trend shows only steady, straight-line 101 

increases or decreases, with the trend line going up or down.  In contrast, a non-linear trend shows 102 

the local maximum or minimum in a time series, enabling us to determine the timing of a turning 103 

point. The non-linear trend of CHL derived from the residual of ensemble empirical mode 104 

decomposition has a local maximum or local minimum, which we can further analyze for general 105 

spatial and temporal patterns based on complex empirical orthogonal functions (Section 3.1), the 106 

specific timing of turning points (Section 3.2), and the relationship between non-linear CHL 107 

patterns and fishery resources (Section 3.3).  These three analyses are the main objectives of this 108 

study. 109 

  110 

 111 
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2. Data and Methods 112 

MODIS Ocean Color, Sea Surface Temperature, Multivariate El Nino-Southern 113 

Oscillation (ENSO) Index, and Total Fish Catches: Moderate Resolution Imaging 114 

Spectroradiometer (MODIS) reprocessed 2013 data were used in this study. Monthly Standard 115 

Mapped Image (SMI) CHL using the Ocean Color Chlorophyll version 3 (OC3) algorithm from 116 

January 2003 to December 2012 for MODIS was obtained from the NASA ocean biology 117 

processing group (http://oceancolor.gsfc.nasa.gov). The spatial resolution of the MODIS data is 118 

4×4 km. The monthly data were divided into a subset for the EJS.  To examine the dominant forces 119 

on CHL, the monthly mean Multivariate El Nino-Southern Oscillation (ENSO) Index (MEI) 120 

(http://www.esrl.noaa.gov/psd/enso/mei/) was used. 121 

Fishery catch data were obtained from the Korean Fishery Information Service 122 

(www.fips.go.kr). To calculate the total amount of catches in the EJS region, the catch amount of 123 

coastal and offshore fisheries by species, cities, and provinces within the EJS region were 124 

aggregated. The use of fishery catch data from commercial marine fisheries (coastal and offshore 125 

fisheries) has limitations in terms of analyzing the range of the distribution areas for fish species 126 

because it is biased by operational and social factors of fishing that are difficult to quantify and 127 

filter. Because the data on the total biomass of fish stocks were also not available, we used data 128 

for the total amount of catches of coastal and offshore fish from 2003 to 2012 off the east coast of 129 

the EJS. 130 

Complex Empirical Orthogonal Function: The Complex (time domain) Empirical Orthogonal 131 

Function  was introduced to analyze a set of time series data that has a phase lag by adding 132 

components that are the original time series data rotated by 90 degrees on a complex plane using 133 

a Hilbert transform [von Storch and Zwiers, 1999]. The benefit of using CEOF is that we can 134 

http://oceancolor.gsfc.nasa.gov/
http://www.esrl.noaa.gov/psd/enso/mei/
http://www.fips.go.kr/
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135 analyze not only spatial and temporal amplitudes but also changes in spatial and temporal phases 

136 [Merrifield and Guze, 1990].  The phase changes are shown in Figures 6b and d. Accordingly, the 

137 CEOF is an alternative method for detecting propagating signals, and decomposed CEOF modes 

138 reveal spatial structures that propagate in space and vary in time.   

tn

CHL( ,x y, t) =∑PCm m(t)S ( ,x y)
139                                           m=1                  (1) 

PCm m( )t = A ( )t exp[iφn ( )t ],
Sm m( ,x y) = B ( ,x y) exp[iφn ( ,x y)].

140                                                           (2) 

141 PCm and Sm represent temporal and spatial functions of CHL, respectively. Whereas the PCm 

142 reveals the dominant time-based patterns, such as semi-annual, annual, inter-annual, decadal, etc., 

143 Sm reveals the highest and the lowest changes in the mode in response to the each temporal EOF 

144 mode. Thus, the PCm and Sm allow us to identify the dominant patterns of temporal and spatial 

145 signals in the long-term time series measurements according to the variance.  tn is 120 months for 

146 this study. x and y are zonal and meridional locations of each grid point for CHL measurements. 

147 Am and Bm are the amplitudes of temporal and spatial EOFs, respectively. φn is the phase for 

148 temporal and spatial EOFs. EOF has been well accepted as a tool to analyze the critical temporal 

149 and spatial changes of dominant features in response to different variances.  In this study, we 

150 employed CEOF to analyze non-linear trends and determine the local phase changes from the 

151 temporal CEOF based on PCm(t) and those associated with the spatial CEOF.  Thus, this study 

152 focuses not only on dominant phase and amplitude changes based on the CEOF but also on local 

153 temporal and spatial changes using Ensemble Empirical Mode Decomposition (EEMD). 

154 Ensemble Empirical Mode Decomposition: Huang et al. [1998] demonstrated the differences 

155 between Fouriesr Analysis, Wavelet analysis and Hilbert Spectral Analysis (HAS). Empirical 
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156 Mode Decomposition (EMD) of HAS is an empirical technique for analyzing non-stationary and 

157 non-linear time series [Huang et al. 1998]. Based on EMD, the data are initially decomposed into 

158 a set of Intrinsic Mode Function (IMF) components. According to Huang et al. [1998], an IMF 

159 represents a simple oscillatory mode and in general has variable amplitude and frequency 

160 expressed as functions of time.  One of the major problems with conventional EMD is the frequent 

161 appearance of mode mixing, which can produce signals of disparate scales residing in the same 

162 IMF component.  To overcome this problem, Wu and Huang [2009] introduced a newer version 

163 of EMD called Ensemble Empirical Mode Decomposition (EEMD), which produces improved 

164 IMF components calculated as the mean of an ensemble of trials, each consisting of the signal plus 

165 white noise of finite amplitude.  Because the IMF components are essentially independent and can 

166 thus be linearly combined, we can reconstruct the residual (R(t)) from the original record, CHL (t), 

167 and summation of all IMFs,  

n

R( )t = CHL( )t −∑ IMFm
168                                              m=1 ,                                   (3) 

169 where n represents the total number of IMFs, which can be determined by ‘log(total number of 

170 data points)-1’ [Wu and Huang, 2009].  According to Huang and Wu [1998], the IMF components 

171 are often physically meaningful, so they can provide insight into the processes involved. The non-

172 linear trends of CHL were obtained from Eq. 3.  The non-linear trend is also called the adaptive 

173 trend according to Huang et al. [1998] because the filtering processes to determine IMFs are based 

174 on the data adaptive method. The benefit of using EEMD is that we can obtain two components in 

175 the CHL observations: oscillatory components and a trend. Unlike Fourier Transform, EEND is a 

176 data adaptive method where each decomposed mode is determined objectively. 
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177  The advantage to using HHT is to estimate the instantaneous frequency, enabling us to 

178 understand the phase changes (θ) of dynamical signals with time.  The instantaneous frequency 

179 (ω) is defined as follows:  

dθ (t)ω(t) =
180                                        dt .                                          (4) 

181 Once the instantaneous frequency (as a function of time) of a time series has been generated, 

182 the time-dependent spectrum can be determined.  Using Eq. 4, the timing of each turning point 

183 was determined to analyze the propagation of regional CHL changes and to identify the phase 

184 changes in CHL.  

185 Cumulative Sums: The cumulative sums method is applied to the MEI to examine the impact of 

186 ENSO events on the changing phase of CHL.  The method of cumulative sums is usually used to 

187 detect points that may correspond to abrupt changes, such as regime shifts. Cumulative sums 

188 (CUSUMs) represent the running total of the deviations of the first n observations from a mean 

189 based on the same interval [Page, 1954; Wetheril and Brown, 1991; Hawkins and Olwell, 1998; 

190 Breaker, 2007].  The Cumulative Sums (CS) can be expressed as follows:  

n

191 CS=∑ ( )xt − x                                        (5) 
t=1

192 where xt represents the nth observation, x  is the mean of xt from t = 1 to n, and CS is plotted versus 

193 time to produce the so-called CUSUM chart.  Abrupt changes in the slope of the CUSUM often 

194 reflect change points. The benefit of using Cumulative Sum is that we can recognize the timing of 

195 sudden changes in observation time series.  This method is particularly sensitive to change points, 

196 such as regime shifts in coastal observations of SST [Breaker, 2007, Jo et al., 2014].  Abrupt 

197 changes in the slope of the CUSUM often reflect change points which, in our case, could indicate 
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a regime shift. The coastal temperature may increase or decreases, depending on the locations as 198 

a result of the regime change. These events have time scales on the order of six months and may 199 

have a long-term impact on the mean state of the ocean. 200 

 201 

3. Results 202 

 3.1      Regional Linear and Non-linear Trends of CHL 203 

 To understand the variability of CHL in the EJS, Fig. 1 is made in terms of the percent 204 

change in CHL.  There are relatively larger changes along the Liman Current and near the Tsugaru 205 

Strait. Although we can see the relative changes in CHL, we cannot see the long-term trend to 206 

project changes in CHL to the near future. The “trend” is defined as the overall tendency of the 207 

data over its entire time span, which will presumably continue into the future when new 208 

observations are added.  Accordingly, the long-term trend is sensitive to the periods of 209 

measurement, despite the wide ranges of CHL changing.  Figure 2 shows the linear CHL trends, 210 

suggesting that the regional CHL trends are not the same but rather depend on geographic location. 211 

In general, the linear trends are high with an order of [0.06 mg m-3] year-1 along the Liman Current 212 

from the Tartar Strait and to the west off the coast of the Tsugaru Strait and the Yamato Basin. In 213 

contrast, negative linear trends appear mainly in the southwest regions, especially along the EKWC 214 

(order of  [-0.03 mg m-3] year-1). Similar to the linear trends of CHL, the SST trends are also found 215 

(not shown). The SST linear trends reveal geographic unevenness and vary from -0.1°C yr-1 near 216 

the coast of the Korean Peninsula (especially approximately 40°N, 131°E) to 0.4°C yr-1 near the 217 

west coast of Japan (especially 38°N, 136°E). According to Jo et al. [2014], the most significant 218 

warming appears in the long-term SST trends based on approximately 40 years of SST 219 

measurements off the coast of the EJS, where it approaches +0.05°C yr-1. 220 
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In addition to direct comparisons between CHL and SST trends, we computed correlation 221 

coefficients between the monthly mean CHL and SST data for the last ten years (Fig. 2), showing 222 

negative correlation coefficients in most of the regions because the lower SST is aligned with 223 

higher CHL concentrations.  Although linear trends enable us to easily understand how CHL and 224 

SST have changed over the observation period, it is not possible to understand non-linear processes 225 

in the CHL and SST signals over time.  As will be demonstrated, whereas non-linearity is dominant 226 

over linearity in CHL variability, linearity is dominant over non-linearity in SST variability within 227 

the EJS. Because of this scaling, we extracted non-linear signals from the CHL time series using 228 

the residuals of the EEMD.  Figure 3 was made to illustrate how to decompose the CHL time series 229 

and obtain non-linear trends from the residuals of the EEMD. As described in Fig. 3, the CHL time 230 

series was decomposed into five modes for different time scales, enabling us to understand at what 231 

time scales CHL is varying. Furthermore, the residuals of the EEMD show the adaptive data trends, 232 

or non-linear trends.  As we stated earlier, this study aims to analyze the non-linear characteristics 233 

of CHL rather than merely interpret different scales of CHL variability. Because we can 234 

decompose CHL time series into oscillatory signals and a residual (or a trend) using EEMD (Fig. 235 

3), we considered the EEMD residual the CHL trend, which is well-documented by Ezer and 236 

Corlett [2012]. Most of the CHL trends derived from the EEMD residual were non-linear (Fig. 4).  237 

Most of the applications for EEMD have been employed to analyze each mode with 238 

different frequencies. However, in this study, the focus is on the trend. The method is to separate 239 

oscillatory modes from the trend. The non-linear trend (residual of EEMD) is well examined based 240 

on long-term tide measurements along the Chesapeake Bay [Ezder and Corlett, 2012].  This study 241 

demonstrates that the EEMD is robust within an acceptable statistical confidence level and that the 242 
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trends are comparable with results obtained by other methods.  The statistical confidence interval 243 

is calculated using a standard bootstrap method [Mudelsee, 2010]. 244 

To examine the geographically uneven trends and non-linear processes of CHL, we 245 

removed all oscillatory signals, such as the intra-annual, annual, and inter-annual modes from the 246 

monthly mean CHL data (shown in Fig. 3).  Two specific cases are illustrated in Fig. 4: one is for 247 

a downward trend, and the other is for an upward trend.  The linear CHL trend (blue line) shows a 248 

linearly increasing slope, but this does not represent the CHL variability (black line, decreasing 249 

after 2010).  The non-linear trend (red line) represents the actual CHL variability and has a turning 250 

point after approximately 2008, showing decreasing CHL in recent years.  The opposite case is 251 

also shown in Fig. 4b. Whereas the linear trend is underestimated (blue line), especially for the 252 

years 2003 through 2005, the non-linear trend (red line) represents the overall CHL change over 253 

the time, and has an upward turning point circa 2008.  As demonstrated in Fig. 4, we obtained non-254 

linear trends for the EJS.   255 

To examine the statistical confidence interval for the non-linear CHL trend derived from 256 

the EEMD residual, we used a standard bootstrap simulation [Mudelsee, 2010]. The specific cases 257 

were conducted by Ezer and Corlett for their analysis [2012]. The main idea is to randomly 258 

resample the data many times to calculate errors and confidence intervals.  As Fig. 5 shows, the 259 

simulated mean non-linear CHL through the bootstrap method (red line) is very close to the 260 

original CHL derived from EEMD residual (black line) and is within the 95% confidence level 261 

(red dot-line).   Likewise, all non-linear CHL trends used in Figs. 6 and 8 were applied to CEOF 262 

and the timing of phase changes. 263 

To understand the spatial and temporal variability in the non-linear trend of CHL, the 264 

CEOF was employed. With the CEOF modes, we analyzed the variability of the waters in the EJS 265 
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and addressed the question of how CHL has changed over the past ten years with respect to spatial 266 

and temporal variability.  It is worth noting that annual variability is the most significant signal 267 

when the monthly mean CHL data are applied to CEOF compared to any other frequencies. Thus, 268 

we removed all oscillatory signals using the EEMD and used only the residual signals as a non-269 

linear time series of CHL.  The advantage of using non-linear trend signals for the CEOF is that 270 

we can determine their spatial and temporal changes.     271 

The CEOF shows the spatial features at different scales (Fig. 6).   The first mode, with 272 

95.6% of the variance, shows high variability near the Tartar Strait and the Tsugaru Strait, as well 273 

as low variability near the Ulleung Basin.  The first temporal CEOF has a turning point in 274 

approximately 2007. From 2003 to 2007, CHL decreased over 4 years, whereas from 2007 to 2012, 275 

CHL increased for 6 years.  In addition, the phase function (red dots) shows an eastward phase of 276 

0.14π/month and a strong shift in approximately 2007.    277 

The second mode, with 4.1% of the variance, mainly shows the negative and positive 278 

maxima at approximately 40°N 130°E and 40°N 140°E, respectively.  The second temporal 279 

variability has a downswing turning point in approximately 2009.  From 2003 to 2009, CHL 280 

increased for 6 years, whereas from 2009 to 2012, CHL decreased for 4 years.  Furthermore, the 281 

phase function (red dots) shows a westward phase of -0.08π month-1, which is much slower than 282 

the first eastward CEOF.    283 

The first two modes account for 99.7% and the corresponding errors in eigenvalues are 284 

very small when compared with the eigenvalues of each mode (Fig. 7). Whereas the first temporal 285 

mode suggests that the 95.6% of general CHL changes have the turning points circa 2007, the 286 

second temporal mode reveals that the CHL has a downturn trend in 2009.  Although we can 287 

understand the general spatial and temporal changes from CEOF analysis, we may not be able to 288 
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289 determine exactly when the specific regional changes occur.  For instance, do all high or low spatial 

290 variances in modes 1 and 2 vary together over time?  Or, if the trends change, how and when do 

291 they change? Due to the limited observations, these questions will be answered by examining the 

292 timing of the turning points, which indicate when the trend changes, either positively or negatively 

293 (Eq. 4).  

294 To examine the errors in the eigenvalues, we used the North’s rule-of-thumb (North et al., 

295 1982).  

2
296 δλk ≈ λk                 (6) 

N

δλ
297 δe ≈ k

k ⋅e j           (7)  
λ j − λk

298 where λk is the eigenvalue closest to λj and N is the number of measurements. δek is the typical 

299 error in eigenvalues. Accordingly, δek is the previous error in eigenvalues in the process in Eq. 7.  

300 The specific processes is well documented in North et al. (1982) and Sparnocchia et al. (2003).  

301 One can see the small error bars for the eigenvalues for each mode.   

302  

303 3.2 Determination of the Timing of Phase Changes in CHL  

304  How can we determine local regime shifts with limited observations? It is nearly 

305 impossible without long enough series of observations. However, we can determine sudden phase 

306 changes in CHL in a similar way as we study a regime shifts using the Cumulative Sums. 

307 Accordingly, the turning points for non-linear trends can indeed be used to determine the timing 

308 of phase changes in CHL, the main objective of this study.  A turning point is defined as a local 

309 minimum or maximum in the non-linear trend.  Although we cannot determine turning points from 
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linear trends, we are able to determine them from the non-linear trends.  The use of EEMD 310 

residuals as a non-linear trend has been discussed [e.g., Ezer and Corlett, 2012]. The non-linear 311 

trend contains either a local maximum or minimum or a linear relation. The strength of the residual 312 

lies in its ability to virtually eliminate the problem of contamination from interannual, decadal and 313 

multi-decadal variability.       314 

 The timing of turning points was determined (Fig. 8).  Based on these processes, we 315 

determined either a local maximum showing a downward trend or a local minimum showing an 316 

upward trend.  In other words, we examined how CHL trends changed during an increase in the 317 

rate of CHL, eventually becoming a decrease, and vice versa.  Whereas Fig. 8a shows a downswing 318 

in the rate of CHL that turns into another downswing, Fig. 8b shows an upswing in the rate of CHL 319 

that turns into another upswing.  The color scale indicates the specific time when the turning points 320 

occur in the different regions. The masked white areas in the EJS do not have any non-linear trends 321 

(neither local maxima nor minima in the EEMD residual) so no turning points exist, implying that 322 

the locations for the non-linear trends dominate those of the linear trends. The ratio between 323 

regions with non-linear and regions with linear CHL trends is 9:1.   324 

Areas I, II and III in Fig. 8a have turning points occurring approximately in the years 2007, 325 

2009, and 2008, respectively.  The downward turning features are comparable with the second 326 

spatial CEOF (Fig. 6c). Thus, there are two years of time differences between upward and 327 

downward turning trends in the CEOF, suggesting that some time is needed to adjust CHL phases 328 

from one phase to another. (Fig. 6d).  Similarly, Areas IV to VI in Fig. 8b have turning points 329 

approximately in the years of 2010, 2005 and 2007, respectively.  The upswing turning features 330 

are comparable with the first spatial CEOF (Fig. 6a). Thus, there are six years of time differences 331 

in the CEOF (Fig 6b).   332 
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 An intriguing question is what type of force controls the local regime shift. In Fig. 8, the 333 

timing of downward or upward turning points mainly occurs approximately in 2007 (shown with 334 

green) or in 2010 (shown with yellow).  We examined these timings with the MEI index (Fig. 9). 335 

The ENSO events also have an impact on CHL in the EJS, as discussed in the introduction. While 336 

small and large El Nino events occur in 2003-2006, 2007, 2010 and 2012, the La Nina events occur 337 

in 2008-2009, 2011.  Because we are examining sudden changes in CHL, the Cumulative Sums 338 

was applied to the MEI index, as shown with a red curve in Fig. 9. Local maxima were found in 339 

the years of 2007 and 2010, followed by the years 2005-2006.  The year 2007 was the timing of a 340 

downward turning point, and most of the regions in Fig. 8a are relevant (especially Areas I and 341 

III).  Similarly, the year 2010 was the timing of a downward turning point in Area II in Fig. 8a. 342 

The influence of the local maxima in the years 2005-2006 appears to be very small in Fig. 8a. The 343 

influence might be weakened due to the following event in the year 2007.   344 

As introduced in the introduction, research shows that the relations between ENSO events 345 

and CHL change.  However, they also demonstrate the difficulties of estimating the relations 346 

specifically because many signals are merged in both measurements.  Thus, in this study we used 347 

Cumulative Sums to detect the timing of phases when MEI changed significantly, which was 348 

compared with that timing of CHL upward or downward trends. 349 

 The upward turning points in Fig. 8b occurred in the years 2010, 2005, and 2007 for Areas 350 

IV, V and VI, respectively. It is worth noting that we only could find some relationship between 351 

local maxima from Cumulative Sums and both the timing of downward and upward turning points.  352 

It seems that the local minima in the years of 2009 and 2010 from Cumulative Sums are too short 353 

to be dominant because of the local maxima in the year 2010.   354 

 355 
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3.3        Impact of CHL Phase Changes on Total Fisheries Catch 356 

What does the timing of the downswing and upswing turning points of CHL mean for 357 

fishery abundance? We used the catch data from Korean marine capture fisheries at three different 358 

locations to interpret these turning points.  The locations are provinces A and B and city C, Busan.  359 

Each location is indicated in Fig. 8a.   Province A is directly under the influence of the North 360 

Korean Cold Water originating from the Liman Current.  Province B is under the influence of the 361 

EKWC, and city C is located near the Korean Strait.  In Fig. 10, the blue and green lines represent 362 

the annual total fish catch (TFC) and non-linear trend of CHL at three locations, respectively. We 363 

determined the timing of the turning points. Whereas provinces A and B have a downward turning 364 

point in CHL in 2007-2008, Busan has an upward turning point in CHL in 2008 over 10 years.  365 

The annual total fish catch off the coast of Areas A to C varies from a minimum of 4.2x104 tons 366 

in 2003, 1.2x105 tons in 2003, and 2.3 x 105 tons in 2004 to a maximum of 6.25x104 tons in 2007, 367 

1.7x105 tons in 2008, and 2.6x105 tons in 2005, respectively.   One can see that the local maxima 368 

and minima of the TFC are comparable to the timing of the turning points of CHL in Fig. 10, 369 

implying that the TFC changes are similar to the CHL non-linear trends.  370 

Because there are no long-term CHL measurements to resolve climatic regime shifts, we 371 

focus on CHL phase changes, which are influenced by significant changes from the North Pacific. 372 

As climatic regime shift affects annual variability in the catches of major fisheries [Zhang et al., 373 

2007], the timing of phase changes in CHL also affects the annual TFC off the coast of Korea. 374 

Accordingly, Fig. 10 suggests that the trends of downward turning and upward turning points in 375 

other regions (Fig. 8) may have similar TFC trends as illustrated with Fig. 10.  Specifically, while 376 

the Areas I, II and III in Fig. 8a have downward TFC trends approximately 2007, 2007 and 2010, 377 
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respectively as Areas A and B have (Fig. 10).  Similarly, the Areas IV, V, and VI, in Fig. 8b have 378 

upward TFC trends in approximately 2009, 2005 and 2006, respectively, as has Area C (Fig. 10).     379 

It is worth noting that the TFC data do not represent any specific fish species.  The TFC 380 

include any fish caught near the Areas A, B, and C. Furthermore, although we used the TFC data 381 

for the specific provinces and a city, some of fish could be caught other near regions. However, 382 

with some uncertainties we tried to examine the relationship between long-term non-linear CHL 383 

trends and the trend of TFC.  Because it is not possible to show how the specific fish species are 384 

related to the non-linear trends of CHL due to limited fish sampling data, we leave it for our future 385 

work.   386 

 387 

4. Summary 388 

The CHL time series has either linear or non-linear trends, which depend on the geographic 389 

locations (Fig. 2).  In addition to discussing the linear trend of CHL in the EJS, we analyzed non-390 

linear processes in the CHL observations. To understand non-linear processes in the observations, 391 

we decomposed CHL into empirical modes using EEMD and determined the timing of turning 392 

points derived from the residual of the decomposed CHL. The non-linear trends can be separated 393 

into the categories of either an upward trend or downward trend (Figs. 4 and 8).  The linear trends 394 

in Fig. 2 shows similar spatial features in the first spatial CEOF, which has an upswing turning 395 

point in the first temporal CEOF (Fig. 6b) and the turning points highlighted in areas IV, V, and 396 

VI (Fig. 8b).  Similarly, the linear trends in Fig. 2 show some of the spatial features of the second 397 

spatial CEOF, which has a downswing turning point in the second temporal CEOF (Fig. 6d), as 398 

well as the highlighted turning points in areas I, II, and III (Fig. 8a).  Thus, despite the limited 399 



19 

 

fishery catch data, we were able to identify the change in fish catches that are closely related to 400 

the non-linear CHL trends (Fig. 10).  401 

Our findings can be summarized as follows. 402 

1. The linear CHL trend varies from -0.06 to 0.1 [mg m-3] yr-1, depending on the geographic 403 

location. The relatively high CHL has relatively high positive correlations with the non-404 

linear SST trend (not shown).  405 

2. Whereas the first CEOF (Figs. 6a and 6b) is related to upswing turning points (Fig. 8b), 406 

the second CEOF (Figs. 6c and 6d) is related to downswing turning points in the non-linear 407 

trends (Fig. 8a).  Additionally, whereas the spatial CEOF represents the general phase and 408 

amplitude changes, the timing of the turning points determined from non-linear trends 409 

shows the specific time during which the changes occurred.  410 

3. Whereas the downward turning points occurred approximately in 2004 to 2007 around the 411 

Ulleung Basin and the west coast of Japan, the upward turning points occurred 412 

approximately in 2010 in the middle of the west EJS and in 2008 in the northeast of the 413 

EJS.   414 

4. The timing of phase changes in CHL occurred in the year 2007, explained by the 415 

Cumulative Sum of MEI (Figs. 6 and 9).    416 

5. The local regime shifts determined from the non-linear CHL trends agree very well with 417 

the TFC, as illustrated by the coasts of the two provinces, Gangwon-do (Area A) and 418 

Gyungsangbook-do (Area B), and the city of Busan (Area C) (Fig. 10).  419 

 420 

We also examined whether the results based on the OC3 algorithm are different from those 421 

based on the Chlor-a algorithm based on an empirical relationship derived from in situ 422 



20 

 

measurements of chlorophyll concentration and blue-to-green band ratios of in situ remote sensing 423 

reflectances (Rrs) (http://oceancolor.gsfc.nasa.gov/cms/chlor_a). Because we could not find 424 

significant differences between the two algorithms, we concluded that the analysis based on two 425 

different algorithms for CHL is the same in the EJS. Although there are some biases between the 426 

two algorithms, our analysis is still valid. Because our study focuses on determining the timing of 427 

turning points based on the non-linear trend of CHL, the beginning and the last CHL data points 428 

are not very significant to determining turning points.  429 

The continuous CHL observations can be used to understand changes in fishery resources 430 

in time and space in response to local phase changes in CHL resulting from climate change events. 431 

However, it is not clear whether changes in the TFC are primarily a response to the ENSO events 432 

unless we use a numerical model to examine each case for different physical forces, such as winds, 433 

currents, and heat flux.   434 

 435 
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Figures 515 

 516 

 517 

Figure 1. Percent changes in CHL from January 2003 to December 2012.  Major sea surface 518 

currents are illustrated. TWC stands for the Tsushima Warm Current, EKWC stands for 519 

the East Korean Warm Current (EKWC), and NKCC stands for the North Korean Cold 520 

Current. 521 

 522 
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 523 

Figure 2. Linear trends in CHL over ten years from January 2003 to December 2012 (p=0.05).  524 

CHL trends below 95% significance level were masked out, as shown with white.  525 

 526 

 527 

528 
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 529 

Figure 3. Using EEMD, time series of CHL at one location (48°N, 141.5°E) was decomposed 530 

into five modes (C1 to C5) and a residual (CR).  The modes are intra-annual (C1), 531 

annual (C2), inter-annual (C3 to C5), respectively.  532 
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 533 

Figure 4. Monthly mean CHL (black), linear trends, and non-linear trends derived from EEMD 534 

residuals of CHL at 48°N, 141.5°E (a) and 41°N, 130.8°E (b). Whereas the monthly 535 

mean CHL in Fig. 4a shows a downward slope after approximately 2008, that in Fig. 4b 536 

shows an upward slope after 2008.     537 

 538 

 539 
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           540 

Figure 5. Bootstrap simulations of the CHL non-linear trend to examine the significance level. It 541 

was simulated 100 times (N=100).  542 

543 



30 

 

 544 

Figure 6. The first two spatial CEOF (a and c) and temporal CEOF (b and d). The first and 545 

second modes account for 95.6% and 4.1%, respectively.  The red dots in Figs.5b and 5d 546 

represent the phase function.  547 

 548 
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 549 

Figure 7. Typical errors of the eigenvalues used in Fig. 6. 550 
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 551 

Figure 8. Timing of downward turning points (a) and upward turning points (b) determined from 552 

the residuals of CHL (as shown with Fig. 4).  Provinces A to C were used to compare fish 553 

changes (Fig. 9) with the timing of turning points.  The red boxes off Provinces A, B, and 554 

C represent the total fish catch data collected. 555 

 556 

 557 

 558 

 559 

560 
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 561 

Figure 9. Monthly mean Multivariate ENSO index (MEI) (red line) and Cumulative Sums from 562 

January 2003 to December. 563 
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2012  564 

Figure 10. Total Fish Catches per year (TFC) shown with blue lines and non-linear CHL trend 565 

near the east coast of the EJS.   Different areas are shown in Fig. 8a:  off the coasts of Areas 566 

A (37°N -38°N, 128°E-129°E) (10a), B (35.4°N -37°N, 128°E -129.5°E) (10b) and C 567 

(34.5°N -35°N, 128.5°E -129°E) (10c) represent the provinces of Gangwon-do, 568 

Gyeongsangbuk-do, and Busan, respectively.  To illustrate the fish data and CHL in all 569 

three regions, the CHL was multiplied by 2 for Areas A and B.  570 
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