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Abstract

Geographically heterogeneous linear and non-linear chlorophyll-a (CHL) trends in the East
Sea/Japan Sea (EJS) region were analyzed based on monthly mean Moderate Resolution Imaging
Spectroradiometer (MODIS) CHL data from January 2003 to December 2012. The non-linear
trends were derived from the residuals of decomposed CHL time series using ensemble empirical
mode decomposition (EEMD). To understand the general spatial and temporal variability of the
non-linear CHL trends, a complex empirical orthogonal function (CEOF) was employed. The first
two CEOF modes indicate that an upward CHL trend occurred in 2007 with 95.6% variance,
whereas a downward CHL trend occurred in 2009 with 4.1% variance. Furthermore, the specific
timing of the phase changes in CHL was calculated based on upward or downward non-linear
trends of CHL for six major regions of interests.

To examine the dominant forces in phase changes in CHL, the Multivariate El Nino-
Southern Oscillation (ENSO) Index (MEI) was used. We determined that the local turning patterns
of CHL over the last ten years were closely related to changes in ENSO events, which were also
associated with changes in the total amount of fish catches off the east coast of the Korean
Peninsula. These results also suggest that the short-term total amount of fish catches may be

predictable based on the remotely sensed non-linear CHL observations.
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1. Introduction

The East Sea/Japan Sea (EJS) is a marginal sea located in the northwestern Pacific and is
surrounded by Korea, Japan, and Russia (Fig. 1). The EJS is connected to adjacent seas by five
shallow straits. There are four surface current systems in the EJS: the Tsushima Warm Current
(TWC), the East Korean Warm Current (EKWC), the North Korean Cold Current (NKCC), and
the Liman Current. The NKCC and the EKWC meet along the east coast of Korea. The warm
saline water of the TWC passes through the Korean Strait, where the flow often bifurcates into
western and eastern branches. The EKWC later turns eastward between 37°N and 39°N, where it
meets the NKCC [Seung and Kim, 1989] and becomes a sub-polar front (SF). The NKCC
originates from the Liman Current coming from the Tatar Strait, and some of the denser water in
the NKCC intrudes along the coast below the surface.

Two blooms, appearing in the spring and fall, are typical feature of phytoplankton
variability in the temperate zone. The spatial distributions of phytoplankton blooms are specific
features of the EJS. Blooms of phytoplankton (chlorophyll-a (CHL)) increasing) appear in the
spring [ Yamada et al., 2004; Yoo and Kim, 2004; Kim et al., 2007] and fall in the EJS [Yamada et
al., 2004; Kim et al., 2007]. Ocean color data for 1997-2002 show the inter-annual variability of
CHL in the EJS; earlier spring blooms occur during El Nino years, and later spring blooms occur
during La Nina years due to the associated wind patterns [ Yamada et al., 2004]. In particular, the
spring bloom duration of 1999 in the EJS was influenced by La Nina through wind stress changes
[Yoo and Kim, 2004]. The winds play an important role in the seasonal variability of CHL; a
spring bloom began approximately 10 days after the wind stress weakened, and a fall bloom started

approximately a week after the wind strengthened [Kim et al., 2007].
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Several studies have found that the impacts of climatic regime shifts within the EJS are
significant with respect to the marine ecosystem and fishery resources. Zhang et al. [2004] reported
that the total biomass in the EJS ecosystem increased by 15% and the total catch production
increased by 48% due to the 1976 regime shift. Similarly, Zhang et al., [2007] analyzed the before
and after effects of the 1988/89 regime shift on the structure and function of the southwestern EJS
ecosystem and reported that the total biomass of all species groups in the ecosystem increased by
59% after the 1988/89 regime shift. Recently, Tian et al. [2013] reported that the abundance trends
of squid were largely forced by environmental factors with latitudinal differences in the response
to the climatic regime shift. Seasonal and inter-annual CHL variability associated with climatic
regime shifts has been reported. Such changes can result in significant changes in latitudinal
fishery resources within the EJS [Zhang et al., 2000].

Studies have reported that there are indications of climate change in Korean waters. For
instance, Kim and Yoo [1996] reported evidence that temperatures increased in the mid-1970s, and
fishery resources reflected these changes. There were significant increases in the biomass of
zooplankton within the last two decades in the Yellow Sea [Son et al., 2005], in the East/Japan Sea
[Zhang et al., 2000], and along the southern coast of Korea [Kim and Kang, 2000]. It has been
shown that the variability of fishery biomass corresponded to climate change during the last several
decades around the Korean Seas. The 1976 regime shift in the North Pacific caused a decrease in
the biomass of sauries, an increase in the biomass of sardines in the Korea Seas [Zhang et al.,
2000], and an increase in the total catch of anchovies and mackerels along the southern coast of
Korea [Kim and Kang, 2000]. The study showed that there are high correlations between
environmental variations derived from water transparency (Secchi depth) and CHL in Korean

waters.



89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

To understand CHL variability due to climate change, long-term CHL observations are
necessary. Because we do not have enough CHL observations to resolve a regime shift resulting
from global climate change, we analyzed the timing of phase changes (either downward or upward
trends) in CHL to detect and understand when CHL changed significantly. The timing of phase
changes in CHL is not comparable to a regime shift, but it shows the short-term variability in the
middle of a regime shift. Understanding phase changes in CHL is important because it relates
ecological processes of climatological forces to the prediction fishery resources [e.g., Bertolo et
al., 1999; Polovina et al., 2001, Platt et al., 2003].. Platt et al. [2003] reported that the survival of
larval fish depends on the timing of the local spring bloom of phytoplankton based on remote-
sensing satellite data and a long-term data set of haddock recruitment off the eastern continental
shelf of Nova Scotia, Canada.

Thus, in this study, we addressed how CHL has changed in the last ten years based on
linear and non-linear trends. The conventional linear trend shows only steady, straight-line
increases or decreases, with the trend line going up or down. In contrast, a non-linear trend shows
the local maximum or minimum in a time series, enabling us to determine the timing of a turning
point. The non-linear trend of CHL derived from the residual of ensemble empirical mode
decomposition has a local maximum or local minimum, which we can further analyze for general
spatial and temporal patterns based on complex empirical orthogonal functions (Section 3.1), the
specific timing of turning points (Section 3.2), and the relationship between non-linear CHL
patterns and fishery resources (Section 3.3). These three analyses are the main objectives of this

study.
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2. Data and Methods

MODIS Ocean Color, Sea Surface Temperature, Multivariate El Nino-Southern
Oscillation (ENSO) Index, and Total Fish Catches: Moderate Resolution Imaging
Spectroradiometer (MODIS) reprocessed 2013 data were used in this study. Monthly Standard
Mapped Image (SMI) CHL using the Ocean Color Chlorophyll version 3 (OC3) algorithm from
January 2003 to December 2012 for MODIS was obtained from the NASA ocean biology
processing group (http://oceancolor.gsfc.nasa.gov). The spatial resolution of the MODIS data is
4x4 km. The monthly data were divided into a subset for the EJS. To examine the dominant forces
on CHL, the monthly mean Multivariate El Nino-Southern Oscillation (ENSO) Index (MEI)
(http://www.esrl.noaa.gov/psd/enso/mei/) was used.

Fishery catch data were obtained from the Korean Fishery Information Service
(www.fips.go.kr). To calculate the total amount of catches in the EJS region, the catch amount of
coastal and offshore fisheries by species, cities, and provinces within the EJS region were
aggregated. The use of fishery catch data from commercial marine fisheries (coastal and offshore
fisheries) has limitations in terms of analyzing the range of the distribution areas for fish species
because it is biased by operational and social factors of fishing that are difficult to quantify and
filter. Because the data on the total biomass of fish stocks were also not available, we used data
for the total amount of catches of coastal and offshore fish from 2003 to 2012 off the east coast of
the EJS.

Complex Empirical Orthogonal Function: The Complex (time domain) Empirical Orthogonal
Function was introduced to analyze a set of time series data that has a phase lag by adding
components that are the original time series data rotated by 90 degrees on a complex plane using

a Hilbert transform [von Storch and Zwiers, 1999]. The benefit of using CEOF is that we can
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analyze not only spatial and temporal amplitudes but also changes in spatial and temporal phases
[Merrifield and Guze, 1990]. The phase changes are shown in Figures 6b and d. Accordingly, the
CEOQOF is an alternative method for detecting propagating signals, and decomposed CEOF modes

reveal spatial structures that propagate in space and vary in time.

CHL(x, y,t) = iPCm )S,,(x,»)
el (1)

PC,(t)= 4, (t)explig, (1),
S, (x,y) =B, (x,y)exp[ig,(x, y)].
()

PC,, and S, represent temporal and spatial functions of CHL, respectively. Whereas the PC,
reveals the dominant time-based patterns, such as semi-annual, annual, inter-annual, decadal, etc.,
Sn reveals the highest and the lowest changes in the mode in response to the each temporal EOF
mode. Thus, the PC,, and S,, allow us to identify the dominant patterns of temporal and spatial
signals in the long-term time series measurements according to the variance. tn is 120 months for
this study. x and y are zonal and meridional locations of each grid point for CHL measurements.
Am and B, are the amplitudes of temporal and spatial EOFs, respectively. ¢, is the phase for
temporal and spatial EOFs. EOF has been well accepted as a tool to analyze the critical temporal
and spatial changes of dominant features in response to different variances. In this study, we
employed CEOF to analyze non-linear trends and determine the local phase changes from the
temporal CEOF based on PCy(t) and those associated with the spatial CEOF. Thus, this study
focuses not only on dominant phase and amplitude changes based on the CEOF but also on local
temporal and spatial changes using Ensemble Empirical Mode Decomposition (EEMD).

Ensemble Empirical Mode Decomposition: Huang et al. [1998] demonstrated the differences

between Fouriesr Analysis, Wavelet analysis and Hilbert Spectral Analysis (HAS). Empirical
7
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Mode Decomposition (EMD) of HAS is an empirical technique for analyzing non-stationary and
non-linear time series [Huang et al. 1998]. Based on EMD, the data are initially decomposed into
a set of Intrinsic Mode Function (IMF) components. According to Huang et al. [1998], an IMF
represents a simple oscillatory mode and in general has variable amplitude and frequency
expressed as functions of time. One of the major problems with conventional EMD is the frequent
appearance of mode mixing, which can produce signals of disparate scales residing in the same
IMF component. To overcome this problem, Wu and Huang [2009] introduced a newer version
of EMD called Ensemble Empirical Mode Decomposition (EEMD), which produces improved
IMF components calculated as the mean of an ensemble of trials, each consisting of the signal plus
white noise of finite amplitude. Because the IMF components are essentially independent and can
thus be linearly combined, we can reconstruct the residual (R(#)) from the original record, CHL (?),

and summation of all IMFs,

m

R(t)= CHL(t) - Zn:IMF
m=1 , (3)

where n represents the total number of IMFs, which can be determined by ‘log(total number of
data points)-1’ [Wu and Huang, 2009]. According to Huang and Wu [1998], the IMF components
are often physically meaningful, so they can provide insight into the processes involved. The non-
linear trends of CHL were obtained from Eq. 3. The non-linear trend is also called the adaptive
trend according to Huang et al. [ 1998] because the filtering processes to determine IMFs are based
on the data adaptive method. The benefit of using EEMD is that we can obtain two components in
the CHL observations: oscillatory components and a trend. Unlike Fourier Transform, EEND is a

data adaptive method where each decomposed mode is determined objectively.
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The advantage to using HHT is to estimate the instantaneous frequency, enabling us to
understand the phase changes (6) of dynamical signals with time. The instantaneous frequency
() is defined as follows:

do(1)
di . (4)

(1) =

Once the instantaneous frequency (as a function of time) of a time series has been generated,

the time-dependent spectrum can be determined. Using Eq. 4, the timing of each turning point

was determined to analyze the propagation of regional CHL changes and to identify the phase
changes in CHL.

Cumulative Sums: The cumulative sums method is applied to the MEI to examine the impact of

ENSO events on the changing phase of CHL. The method of cumulative sums is usually used to

detect points that may correspond to abrupt changes, such as regime shifts. Cumulative sums

(CUSUMs) represent the running total of the deviations of the first n observations from a mean

based on the same interval [Page, 1954; Wetheril and Brown, 1991; Hawkins and Olwell, 1998;

Breaker, 2007]. The Cumulative Sums (CS) can be expressed as follows:

cs=Y (x,-¥) 5)

where x; represents the n™ observation, X is the mean of x; from #= 1 to n, and CS is plotted versus
time to produce the so-called CUSUM chart. Abrupt changes in the slope of the CUSUM often
reflect change points. The benefit of using Cumulative Sum is that we can recognize the timing of
sudden changes in observation time series. This method is particularly sensitive to change points,
such as regime shifts in coastal observations of SST [Breaker, 2007, Jo et al., 2014]. Abrupt

changes in the slope of the CUSUM often reflect change points which, in our case, could indicate

9
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a regime shift. The coastal temperature may increase or decreases, depending on the locations as
a result of the regime change. These events have time scales on the order of six months and may

have a long-term impact on the mean state of the ocean.

3. Results
3.1 Regional Linear and Non-linear Trends of CHL

To understand the variability of CHL in the EJS, Fig. 1 is made in terms of the percent
change in CHL. There are relatively larger changes along the Liman Current and near the Tsugaru
Strait. Although we can see the relative changes in CHL, we cannot see the long-term trend to
project changes in CHL to the near future. The “trend” is defined as the overall tendency of the
data over its entire time span, which will presumably continue into the future when new
observations are added. Accordingly, the long-term trend is sensitive to the periods of
measurement, despite the wide ranges of CHL changing. Figure 2 shows the linear CHL trends,
suggesting that the regional CHL trends are not the same but rather depend on geographic location.
In general, the linear trends are high with an order of [0.06 mg m~] year! along the Liman Current
from the Tartar Strait and to the west off the coast of the Tsugaru Strait and the Yamato Basin. In
contrast, negative linear trends appear mainly in the southwest regions, especially along the EKWC
(order of [-0.03 mg m~] year!). Similar to the linear trends of CHL, the SST trends are also found
(not shown). The SST linear trends reveal geographic unevenness and vary from -0.1°C yr'!' near
the coast of the Korean Peninsula (especially approximately 40°N, 131°E) to 0.4°C yr'!' near the
west coast of Japan (especially 38°N, 136°E). According to Jo et al. [2014], the most significant
warming appears in the long-term SST trends based on approximately 40 years of SST

measurements off the coast of the EJS, where it approaches +0.05°C yr'.
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In addition to direct comparisons between CHL and SST trends, we computed correlation
coefficients between the monthly mean CHL and SST data for the last ten years (Fig. 2), showing
negative correlation coefficients in most of the regions because the lower SST is aligned with
higher CHL concentrations. Although linear trends enable us to easily understand how CHL and
SST have changed over the observation period, it is not possible to understand non-linear processes
in the CHL and SST signals over time. As will be demonstrated, whereas non-linearity is dominant
over linearity in CHL variability, linearity is dominant over non-linearity in SST variability within
the EJS. Because of this scaling, we extracted non-linear signals from the CHL time series using
the residuals of the EEMD. Figure 3 was made to illustrate how to decompose the CHL time series
and obtain non-linear trends from the residuals of the EEMD. As described in Fig. 3, the CHL time
series was decomposed into five modes for different time scales, enabling us to understand at what
time scales CHL is varying. Furthermore, the residuals of the EEMD show the adaptive data trends,
or non-linear trends. As we stated earlier, this study aims to analyze the non-linear characteristics
of CHL rather than merely interpret different scales of CHL wvariability. Because we can
decompose CHL time series into oscillatory signals and a residual (or a trend) using EEMD (Fig.
3), we considered the EEMD residual the CHL trend, which is well-documented by Ezer and
Corlett [2012]. Most of the CHL trends derived from the EEMD residual were non-linear (Fig. 4).

Most of the applications for EEMD have been employed to analyze each mode with
different frequencies. However, in this study, the focus is on the trend. The method is to separate
oscillatory modes from the trend. The non-linear trend (residual of EEMD) is well examined based
on long-term tide measurements along the Chesapeake Bay [Ezder and Corlett, 2012]. This study

demonstrates that the EEMD is robust within an acceptable statistical confidence level and that the
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trends are comparable with results obtained by other methods. The statistical confidence interval
is calculated using a standard bootstrap method [Mudelsee, 2010].

To examine the geographically uneven trends and non-linear processes of CHL, we
removed all oscillatory signals, such as the intra-annual, annual, and inter-annual modes from the
monthly mean CHL data (shown in Fig. 3). Two specific cases are illustrated in Fig. 4: one is for
a downward trend, and the other is for an upward trend. The linear CHL trend (blue line) shows a
linearly increasing slope, but this does not represent the CHL variability (black line, decreasing
after 2010). The non-linear trend (red line) represents the actual CHL variability and has a turning
point after approximately 2008, showing decreasing CHL in recent years. The opposite case is
also shown in Fig. 4b. Whereas the linear trend is underestimated (blue line), especially for the
years 2003 through 2005, the non-linear trend (red line) represents the overall CHL change over
the time, and has an upward turning point circa 2008. As demonstrated in Fig. 4, we obtained non-
linear trends for the EJS.

To examine the statistical confidence interval for the non-linear CHL trend derived from
the EEMD residual, we used a standard bootstrap simulation [Mudelsee, 2010]. The specific cases
were conducted by Ezer and Corlett for their analysis [2012]. The main idea is to randomly
resample the data many times to calculate errors and confidence intervals. As Fig. 5 shows, the
simulated mean non-linear CHL through the bootstrap method (red line) is very close to the
original CHL derived from EEMD residual (black line) and is within the 95% confidence level
(red dot-line). Likewise, all non-linear CHL trends used in Figs. 6 and 8 were applied to CEOF
and the timing of phase changes.

To understand the spatial and temporal variability in the non-linear trend of CHL, the

CEOF was employed. With the CEOF modes, we analyzed the variability of the waters in the EJS
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and addressed the question of how CHL has changed over the past ten years with respect to spatial
and temporal variability. It is worth noting that annual variability is the most significant signal
when the monthly mean CHL data are applied to CEOF compared to any other frequencies. Thus,
we removed all oscillatory signals using the EEMD and used only the residual signals as a non-
linear time series of CHL. The advantage of using non-linear trend signals for the CEOF is that
we can determine their spatial and temporal changes.

The CEOF shows the spatial features at different scales (Fig. 6). The first mode, with
95.6% of the variance, shows high variability near the Tartar Strait and the Tsugaru Strait, as well
as low variability near the Ulleung Basin. The first temporal CEOF has a turning point in
approximately 2007. From 2003 to 2007, CHL decreased over 4 years, whereas from 2007 to 2012,
CHL increased for 6 years. In addition, the phase function (red dots) shows an eastward phase of
0.14m/month and a strong shift in approximately 2007.

The second mode, with 4.1% of the variance, mainly shows the negative and positive
maxima at approximately 40°N 130°E and 40°N 140°E, respectively. The second temporal
variability has a downswing turning point in approximately 2009. From 2003 to 2009, CHL
increased for 6 years, whereas from 2009 to 2012, CHL decreased for 4 years. Furthermore, the
phase function (red dots) shows a westward phase of -0.08® month™!, which is much slower than
the first eastward CEOF.

The first two modes account for 99.7% and the corresponding errors in eigenvalues are
very small when compared with the eigenvalues of each mode (Fig. 7). Whereas the first temporal
mode suggests that the 95.6% of general CHL changes have the turning points circa 2007, the
second temporal mode reveals that the CHL has a downturn trend in 2009. Although we can

understand the general spatial and temporal changes from CEOF analysis, we may not be able to
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determine exactly when the specific regional changes occur. For instance, do all high or low spatial
variances in modes 1 and 2 vary together over time? Or, if the trends change, how and when do
they change? Due to the limited observations, these questions will be answered by examining the
timing of the turning points, which indicate when the trend changes, either positively or negatively
(Eq. 4).

To examine the errors in the eigenvalues, we used the North’s rule-of-thumb (North et al.,

Oy = /1/(\/% (6)

oe, x ——-€e,; (7)

1982).

where A is the eigenvalue closest to A; and N is the number of measurements. oex is the typical
error in eigenvalues. Accordingly, dex is the previous error in eigenvalues in the process in Eq. 7.
The specific processes is well documented in North et al. (1982) and Sparnocchia et al. (2003).

One can see the small error bars for the eigenvalues for each mode.

3.2 Determination of the Timing of Phase Changes in CHL
How can we determine local regime shifts with limited observations? It is nearly
impossible without long enough series of observations. However, we can determine sudden phase
changes in CHL in a similar way as we study a regime shifts using the Cumulative Sums.
Accordingly, the turning points for non-linear trends can indeed be used to determine the timing
of phase changes in CHL, the main objective of this study. A turning point is defined as a local

minimum or maximum in the non-linear trend. Although we cannot determine turning points from
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linear trends, we are able to determine them from the non-linear trends. The use of EEMD
residuals as a non-linear trend has been discussed [e.g., Ezer and Corlett, 2012]. The non-linear
trend contains either a local maximum or minimum or a linear relation. The strength of the residual
lies in its ability to virtually eliminate the problem of contamination from interannual, decadal and
multi-decadal variability.

The timing of turning points was determined (Fig. 8). Based on these processes, we
determined either a local maximum showing a downward trend or a local minimum showing an
upward trend. In other words, we examined how CHL trends changed during an increase in the
rate of CHL, eventually becoming a decrease, and vice versa. Whereas Fig. 8a shows a downswing
in the rate of CHL that turns into another downswing, Fig. 8b shows an upswing in the rate of CHL
that turns into another upswing. The color scale indicates the specific time when the turning points
occur in the different regions. The masked white areas in the EJS do not have any non-linear trends
(neither local maxima nor minima in the EEMD residual) so no turning points exist, implying that
the locations for the non-linear trends dominate those of the linear trends. The ratio between
regions with non-linear and regions with linear CHL trends is 9:1.

Areas I, IT and IIT in Fig. 8a have turning points occurring approximately in the years 2007,
2009, and 2008, respectively. The downward turning features are comparable with the second
spatial CEOF (Fig. 6¢). Thus, there are two years of time differences between upward and
downward turning trends in the CEOF, suggesting that some time is needed to adjust CHL phases
from one phase to another. (Fig. 6d). Similarly, Areas IV to VI in Fig. 8b have turning points
approximately in the years of 2010, 2005 and 2007, respectively. The upswing turning features
are comparable with the first spatial CEOF (Fig. 6a). Thus, there are six years of time differences

in the CEOF (Fig 6b).
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An intriguing question is what type of force controls the local regime shift. In Fig. 8, the
timing of downward or upward turning points mainly occurs approximately in 2007 (shown with
green) or in 2010 (shown with yellow). We examined these timings with the MEI index (Fig. 9).
The ENSO events also have an impact on CHL in the EJS, as discussed in the introduction. While
small and large El Nino events occur in 2003-2006, 2007, 2010 and 2012, the La Nina events occur
in 2008-2009, 2011. Because we are examining sudden changes in CHL, the Cumulative Sums
was applied to the MEI index, as shown with a red curve in Fig. 9. Local maxima were found in
the years of 2007 and 2010, followed by the years 2005-2006. The year 2007 was the timing of a
downward turning point, and most of the regions in Fig. 8a are relevant (especially Areas I and
IIT). Similarly, the year 2010 was the timing of a downward turning point in Area II in Fig. 8a.
The influence of the local maxima in the years 2005-2006 appears to be very small in Fig. 8a. The
influence might be weakened due to the following event in the year 2007.

As introduced in the introduction, research shows that the relations between ENSO events
and CHL change. However, they also demonstrate the difficulties of estimating the relations
specifically because many signals are merged in both measurements. Thus, in this study we used
Cumulative Sums to detect the timing of phases when MEI changed significantly, which was
compared with that timing of CHL upward or downward trends.

The upward turning points in Fig. 8b occurred in the years 2010, 2005, and 2007 for Areas
IV, V and VI, respectively. It is worth noting that we only could find some relationship between
local maxima from Cumulative Sums and both the timing of downward and upward turning points.
It seems that the local minima in the years of 2009 and 2010 from Cumulative Sums are too short

to be dominant because of the local maxima in the year 2010.
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33 Impact of CHL Phase Changes on Total Fisheries Catch

What does the timing of the downswing and upswing turning points of CHL mean for
fishery abundance? We used the catch data from Korean marine capture fisheries at three different
locations to interpret these turning points. The locations are provinces A and B and city C, Busan.
Each location is indicated in Fig. 8a. Province A is directly under the influence of the North
Korean Cold Water originating from the Liman Current. Province B is under the influence of the
EKWC, and city C is located near the Korean Strait. In Fig. 10, the blue and green lines represent
the annual total fish catch (TFC) and non-linear trend of CHL at three locations, respectively. We
determined the timing of the turning points. Whereas provinces A and B have a downward turning
point in CHL in 2007-2008, Busan has an upward turning point in CHL in 2008 over 10 years.
The annual total fish catch off the coast of Areas A to C varies from a minimum of 4.2x10* tons
in 2003, 1.2x10° tons in 2003, and 2.3 x 10° tons in 2004 to a maximum of 6.25x10% tons in 2007,
1.7x10° tons in 2008, and 2.6x10° tons in 2005, respectively. One can see that the local maxima
and minima of the TFC are comparable to the timing of the turning points of CHL in Fig. 10,
implying that the TFC changes are similar to the CHL non-linear trends.

Because there are no long-term CHL measurements to resolve climatic regime shifts, we
focus on CHL phase changes, which are influenced by significant changes from the North Pacific.
As climatic regime shift affects annual variability in the catches of major fisheries [Zhang et al.,
2007], the timing of phase changes in CHL also affects the annual TFC off the coast of Korea.
Accordingly, Fig. 10 suggests that the trends of downward turning and upward turning points in
other regions (Fig. 8) may have similar TFC trends as illustrated with Fig. 10. Specifically, while

the Areas I, II and III in Fig. 8a have downward TFC trends approximately 2007, 2007 and 2010,
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respectively as Areas A and B have (Fig. 10). Similarly, the Areas IV, V, and VI, in Fig. 8b have
upward TFC trends in approximately 2009, 2005 and 2006, respectively, as has Area C (Fig. 10).

It is worth noting that the TFC data do not represent any specific fish species. The TFC
include any fish caught near the Areas A, B, and C. Furthermore, although we used the TFC data
for the specific provinces and a city, some of fish could be caught other near regions. However,
with some uncertainties we tried to examine the relationship between long-term non-linear CHL
trends and the trend of TFC. Because it is not possible to show how the specific fish species are
related to the non-linear trends of CHL due to limited fish sampling data, we leave it for our future

work.

Summary

The CHL time series has either linear or non-linear trends, which depend on the geographic
locations (Fig. 2). In addition to discussing the linear trend of CHL in the EJS, we analyzed non-
linear processes in the CHL observations. To understand non-linear processes in the observations,
we decomposed CHL into empirical modes using EEMD and determined the timing of turning
points derived from the residual of the decomposed CHL. The non-linear trends can be separated
into the categories of either an upward trend or downward trend (Figs. 4 and 8). The linear trends
in Fig. 2 shows similar spatial features in the first spatial CEOF, which has an upswing turning
point in the first temporal CEOF (Fig. 6b) and the turning points highlighted in areas IV, V, and
VI (Fig. 8b). Similarly, the linear trends in Fig. 2 show some of the spatial features of the second
spatial CEOF, which has a downswing turning point in the second temporal CEOF (Fig. 6d), as

well as the highlighted turning points in areas I, 11, and III (Fig. 8a). Thus, despite the limited
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fishery catch data, we were able to identify the change in fish catches that are closely related to

the non-linear CHL trends (Fig. 10).

Our findings can be summarized as follows.
The linear CHL trend varies from -0.06 to 0.1 [mg m>] yr"!, depending on the geographic
location. The relatively high CHL has relatively high positive correlations with the non-

linear SST trend (not shown).

. Whereas the first CEOF (Figs. 6a and 6b) is related to upswing turning points (Fig. 8b),

the second CEOF (Figs. 6¢ and 6d) is related to downswing turning points in the non-linear
trends (Fig. 8a). Additionally, whereas the spatial CEOF represents the general phase and
amplitude changes, the timing of the turning points determined from non-linear trends

shows the specific time during which the changes occurred.

. Whereas the downward turning points occurred approximately in 2004 to 2007 around the

Ulleung Basin and the west coast of Japan, the upward turning points occurred
approximately in 2010 in the middle of the west EJS and in 2008 in the northeast of the

EJS.

. The timing of phase changes in CHL occurred in the year 2007, explained by the

Cumulative Sum of MEI (Figs. 6 and 9).

. The local regime shifts determined from the non-linear CHL trends agree very well with

the TFC, as illustrated by the coasts of the two provinces, Gangwon-do (Area A) and

Gyungsangbook-do (Area B), and the city of Busan (Area C) (Fig. 10).

We also examined whether the results based on the OC3 algorithm are different from those

based on the Chlor-a algorithm based on an empirical relationship derived from in situ
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measurements of chlorophyll concentration and blue-to-green band ratios of in situ remote sensing

reflectances (Rrs) (http://oceancolor.gsfc.nasa.gov/cms/chlor a). Because we could not find

significant differences between the two algorithms, we concluded that the analysis based on two
different algorithms for CHL is the same in the EJS. Although there are some biases between the
two algorithms, our analysis is still valid. Because our study focuses on determining the timing of
turning points based on the non-linear trend of CHL, the beginning and the last CHL data points
are not very significant to determining turning points.

The continuous CHL observations can be used to understand changes in fishery resources
in time and space in response to local phase changes in CHL resulting from climate change events.
However, it is not clear whether changes in the TFC are primarily a response to the ENSO events
unless we use a numerical model to examine each case for different physical forces, such as winds,

currents, and heat flux.
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Figure 1. Percent changes in CHL from January 2003 to December 2012. Major sea surface
currents are illustrated. TWC stands for the Tsushima Warm Current, EKWC stands for

the East Korean Warm Current (EKWC), and NKCC stands for the North Korean Cold

Current.
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Figure 2. Linear trends in CHL over ten years from January 2003 to December 2012 (p=0.05).

CHL trends below 95% significance level were masked out, as shown with white.
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Figure 3. Using EEMD, time series of CHL at one location (48°N, 141.5°E) was decomposed
into five modes (Ci to Cs) and a residual (Cr). The modes are intra-annual (Cy),

annual (C,), inter-annual (Cs to Cs), respectively.
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Figure 4. Monthly mean CHL (black), linear trends, and non-linear trends derived from EEMD

residuals of CHL at 48°N, 141.5°E (a) and 41°N, 130.8°E (b). Whereas the monthly

mean CHL in Fig. 4a shows a downward slope after approximately 2008, that in Fig. 4b

shows an upward slope after 2008.
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Figure 5. Bootstrap simulations of the CHL non-linear trend to examine the significance level. It

was simulated 100 times (N=100).
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represent the phase function.
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Figure 8. Timing of downward turning points (a) and upward turning points (b) determined from

the residuals of CHL (as shown with Fig. 4). Provinces A to C were used to compare fish

changes (Fig. 9) with the timing of turning points. The red boxes off Provinces A, B, and

C represent the total fish catch data collected.
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565  Figure 10. Total Fish Catches per year (TFC) shown with blue lines and non-linear CHL trend

566 near the east coast of the EJS. Different areas are shown in Fig. 8a: off the coasts of Areas
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