
1 

Machine learning-based evidence and attribution mapping of 100,000 1 

climate impact studies 2 
 3 
Max Callaghan1,2, Carl-Friedrich Schleussner3,5, Shruti Nath3,4, Quentin Lejeune3 , Thomas R. Knutson6, 4 
Markus Reichstein7,8, Gerrit Hansen9, Emily Theokritoff3,5,, Marina Andrijevic3,5, Robert J. Brecha3,10, 5 
Michael Hegarty3, Chelsea Jones3, Kaylin Lee3, Agathe Lucas, Nicole van Maanen3,5, Inga Menke3, Peter 6 
Pfleiderer3,5, Burcu Yesil3, Jan C. Minx1,2  7 
 8 

1  Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany. 9 
2  Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK. 10 
3Climate Analytics, Berlin, Germany 11 
4Institute of Atmospheric and Climate Sciences, ETH Zürich, Switzerland 12 
5Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt 13 
University, Berlin, Germany 14 
6NOAA/Geophysical Fluid Dynamics Laboratory. Princeton, NJ, 08540, USA 15 
7Max Planck Institute for Biogeochemistry, Department Biogeochemical Integration, D-07701 Jena, 16 
Germany 17 
8Michael Stifel Center Jena for Data-driven and Simulation Science, Jena, Germany 18 
9Robert Bosch Stiftung GmbH, Berlin, Germany 19 
10Hanley Sustainability Institute, Renewable and Clean Energy Program and Physics Dept., University 20 
of Dayton, Dayton, Ohio, USA 21 

 22 
Accepted for publication in Nature Climate Change, version as of Aug. 31, 2021 23 
 24 

Abstract 25 

Increasing evidence suggests that climate change impacts are already observed around the world. 26 
Global environmental assessments face challenges to appraise the growing literature. Here we use 27 
the language model BERT to identify and classify studies on observed climate impacts, producing a 28 
comprehensive machine-learning-assisted evidence map. We estimate that 100,724 (62,950-162,838) 29 
publications document a broad range of observed impacts. By combining our spatially resolved 30 
database with grid cell level human-attributable changes in temperature and precipitation, we infer 31 
that attributable impacts may be occurring across 80% of the world’s land area where 85% of the 32 
population reside. Our results reveal a substantial 'attribution gap' as robust levels of evidence for 33 
attributable impacts is twice as prevalent in high income than low income countries. While gaps 34 
remain on confidently establishing attributable climate impacts at the regional and sectoral level, 35 
this database illustrates the potential current impact of anthropogenic climate change across the 36 
globe. 37 
 38 
 39 



2 

There is overwhelming evidence that the impacts of climate change are already being observed in human 40 
and natural systems1. These effects are emerging in a range of different systems and at different scales, 41 
covering a broad range of research fields from glaciology to agricultural science, and marine biology to 42 
migration and conflict research2. The evidence base for observed climate impacts is expanding3, and the 43 
wider climate literature is growing exponentially4,5. Systematic reviews and systematic maps offer 44 
structured ways to collectively identify and describe this evidence while maintaining transparency, 45 
attempting to ensure comprehensiveness and reduce bias6. However, their scope is often confined to very 46 
specific questions covering no more than dozens to hundreds of studies.   47 
 48 
In the climate science community, evidence-based assessments of observed climate change impacts are 49 
performed by the Intergovernmental Panel on Climate Change (IPCC)2. Since the first Assessment Report 50 
(AR) of the IPCC in 1990, we estimate that the number of studies relevant to observed climate impacts 51 
published per year has increased by more than two orders of magnitude (Fig. 1a). Since the third AR, 52 
published in 2001, the number has increased ten-fold. This exponential growth in peer-reviewed scientific 53 
publications on climate change4,5 is already pushing manual expert assessments to their limits. To address 54 
this issue, recent work has investigated ways to handle big literature in sustainability science by scaling 55 
systematic review and map methods to large bodies of published research using technological innovations 56 
and machine learning methods7–11. Much of this work builds on a related literature that has applied natural 57 
language processing techniques to problems of evidence synthesis in the health sciences12–14. 58 
 59 
Fully utilising the available knowledge on emerging climate change impacts is key to informing global 60 
policy processes15 as well as regional and local risk assessments and on-the-ground action on climate 61 
adaptation16,17. While the global policy process may be served well with literature assessments presenting 62 
results aggregated on the level of continents or world regions2,18, informing climate adaptation typically 63 
requires more highly localised and contextualised information on climate impacts19,20.  64 
 65 
Another core challenge of literature reviews and assessments of observed climate impacts relates to the 66 
question of whether climate impacts can be attributed to anthropogenic forcing21. While anthropogenic 67 
climate change signals have been identified in observed trends in a number of variables21 including 68 
temperature22, precipitation23, sea level rise24, or water resources25, and selected extreme weather26 events, 69 
the confidence in these assessments is still subject to substantial regional variations and remains relatively 70 
tentative at smaller spatial scales even if very high confidence levels can be reached for larger scale (e.g., 71 
global scale) attribution findings. Confidence also strongly depends on the variable being considered, and 72 
specifically decreases further down the impact chain, i.e. for indicators of changes in human and natural 73 
systems that are driven by changes in other climate impact variables21. In addition, methodological 74 
approaches and robustness criteria for climate change attribution differ widely between studies and 75 
disciplines, requiring expert judgement on a case-by-case basis in order to compile a comprehensive 76 
evidence base. 77 
 78 
This points towards the added value of joining the body of evidence documenting regional or local-scale 79 
studies about climate impacts linked to common climate drivers such as temperature and precipitation 80 
change to a spatially resolved detection/attribution database of those variables. 81 
 82 
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Using BERT, a state of the art deep learning language representation model27, we develop a machine 83 
learning pipeline to identify, locate and classify studies on observed climate impacts at a scale beyond 84 
that which is possible manually (see Extended Figure 1). We combine this spatially resolved dataset with 85 
an approach to attributing observed trends in surface temperature and precipitation at the grid cell level 86 
(5o x 5o and 2.5o x 2.5o cells respectively) to human influence on the climate. In doing so, we establish a 87 
new paradigm for assessing the impacts of climate change across human and natural systems.   88 
 89 
 90 
Mapping over 100,000 impact studies 91 
 92 
We searched two large bibliographic databases (Web of Science and Scopus) using an inclusive and 93 
transparent search method to systematically identify the literature on climate impacts. We assessed 94 
comprehensiveness by ensuring that our search string returned all references from tables 18.5-18.9 in 95 
AR5 WGII, which deal with the detection and attribution of climate impacts. Recent breakthroughs in 96 
natural language processing (NLP) have extended the capabilities of text classification. BERT 97 
(Bidirectional Encoder Representations from Transformers) is a deep learning language model trained 98 
using semi-supervised learning on massive corpora to represent text where word representations are 99 
dependent on context. Such models are able to some extent able to capture the context-dependent 100 
meanings of texts. The pretrained model can be fine-tuned on downstream tasks, and has achieved state of 101 
the art results across a range of NLP tasks. Using training data assembled by collaboratively screening 102 
and coding 2,629 abstracts, we use supervised machine learning, fine-tuning the smaller and faster BERT 103 
variant DistilBERT28, to classify, also based on the abstract text, documents relevant to understanding the 104 
observed impacts of climate change in general, and to predict the human or natural systems for which 105 
they document impacts (i.e., the impact categories), as well as the climate variable(s) driving the 106 
documented impacts. Uncertainty estimates for the predictions are derived from bootstrapping. We 107 
employ a nested cross-validation approach to hyperparameter tuning, model selection and classifier 108 
evaluation, and find that our binary inclusion classifier achieves an average F1 score of 0.71, and ROC 109 
AUC score of 0.92. The prediction of impact type is achieved with an average macro F1 score of 0.84 110 
while the prediction of climate driver is achieved with an average F1 score of 0.79 (see Methods section 111 
and Extended Figures 1-5 for a detailed explanation of the labelling, machine learning approach and 112 
classifier performance).  113 
 114 
Our query returned 601,677 unique documents (Fig.1a): many more than would have been possible to 115 
screen by hand. Of these we estimate that 102,160 (64,386-164,274) documents are relevant to 116 
understanding the observed impacts of climate change in general, based on the spread of 117 
inclusion/exclusion predictions obtained from our model via bootstrapping (Fig. 1a.). This base of 118 
relevant publications has grown substantially through the IPCC assessment cycles. 46,442 (34,473-119 
87,861) articles have been published in the sixth assessment cycle so far; this represents more than twice 120 
the number of studies published during the AR5 period. 121 
 122 
We used a geoparser pre-trained using neural networks29 to extract structured geographic information 123 
from the titles and abstracts of the studies in our database. Although the number of relevant studies in 124 
North America, Asia, and Europe is much higher than in South America, Africa, and Oceania, there is a 125 
large body of relevant studies available on all continents (fig 1.c). Adjusted for population 126 
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(Supplementary Fig. 1), the number of papers focusing on Oceania far exceeds the size of the literature 127 
devoted to other continents, with Africa and Asia receiving the least attention per million inhabitants. The 128 
relevant publications are also unevenly distributed across impact categories, with by far the largest 129 
number of studies 34,988 (18,520 - 65,666) documenting impacts on terrestrial and freshwater ecosystems 130 
(Fig 1.b.). However, the category with the comparably smallest coverage--mountains, snow and ice--still 131 
has 6,307 (3,526 - 12,228) studies.  132 
 133 
In contrast to the map of observed impacts produced by the IPCC, we do not only include papers which 134 
formally attribute impacts to observed trends in climate. Instead, we take a more comprehensive approach 135 
reflecting that our objective is to map all possibly relevant studies on climate-related changes, rather than 136 
a list of studies where the relationship between an observed climate trend and specific impacts has been 137 
demonstrated with high confidence, or even linked to human influence on the climate. This includes 138 
studies attributing impacts to observed trends in climate variables, even where the authors do not attribute 139 
these trends to human influence, such as, for example, a study documenting the influence of the date of 140 
snowmelt on the phenology and population growth of mammals30. In addition, we include studies which 141 
provide evidence on the sensitivity of human or natural systems to climate metrics, such as how heart 142 
disease mortality responds to variations in temperature31. Finally, we include documents describing the 143 
impacts of extreme events and studies which detect significant trends in climate variables or climate 144 
extremes32, regardless of  whether or not these trends are in line with the expected effects of 145 
anthropogenic climate change. We exclude all studies which only describe potential or modelled impacts 146 
of future climate change. 147 
 148 
Combining geolocated literature with climate information 149 
To add context on the role of anthropogenic climate change in driving impacts, or more precisely the role 150 
of historical changes in anthropogenic climate forcing agents such as greenhouse gases and aerosols, we 151 
combine our literature database of studies selected using machine learning with spatially explicit analysis 152 
of detectable and attributable trends in two key climate variables. Combining evidence from climate 153 
model simulations and observational datasets allows identification of trends likely attributable in part to 154 
anthropogenic climate change for near-surface temperature and precipitation at the level of 5 degree 155 
(temperature) or 2.5 degree (precipitation) grid cells22,23. Here we apply this methodology to analyse 156 
trends from 1951 to updated observational data until 2018 for temperature (Fig.2a) and until 2016 for 157 
precipitation (Fig.2b). Grid cells in  categories +-2 or +-3 show where trends cannot be explained by 158 
internal variability and are either consistent with or greater than the expected change in climate model 159 
simulations that include anthropogenic forcing agents. We infer that these cells display detectable and at 160 
least partly attributable trends (see Methods for more details). 161 
 162 
We next resolve the structured geographic information extracted from our studies, which range from 163 
continental scale down to individual watersheds or communities, to sets of grid cells (Extended Fig. 9, 164 
Methods). We can then derive the weighted number of studies per grid cell according to the number of 165 
grid cells to which each study relates. By combining studies related to temperature or precipitation with 166 
the gridded information on attributable trends in temperature and precipitation, this provides a  necessary 167 
(though not necessarily sufficient) condition for a systematic two-step attribution to anthropogenic 168 
activities of the impacts predicted by the classifier33. Where studies documenting impacts associated with 169 
changes in temperature or precipitation co-occur with attributable trends in those variables, we claim that 170 
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there is at least preliminary evidence for attributable impacts in these areas. This approach is similar in 171 
nature to the “joint attribution” applied in IPCC AR434,35.  172 
 173 
In general, we note that this type of automated assessment procedure is no substitute for careful 174 
assessment by experts, but can identify large numbers of studies for a region that may point toward 175 
attributable human influence on impacts. Confidence in multi-step attribution claims depends on 176 
confidence in the attribution of the individual components (steps) along with the confidence or limitation 177 
in linking the different steps in the proposed causal chain35.  One limitation of the partially automated 178 
two-step attribution approach is that we cannot verify that every temperature or precipitation trend cited 179 
in impact studies matches, either in sign, magnitude or time period, those attributed to human influence 180 
by the regional detection and attribution studies for temperature22 and precipitation23. This is a greater 181 
problem for studies driven by precipitation, where both wetting and drying trends occur with greater 182 
temporal variation, though these make up the minority of partially attributed studies and grid cells. We 183 
also note that not all studies in our database document impacts in response to trends in climate variables. 184 
Where impacts are attributed to extreme events or variation in temperature or precipitation, the fact that 185 
recent trends in temperature or precipitation can be attributed to human influence provides important 186 
context, but does not allow robust attribution of those impacts. These factors limit confidence in our cases 187 
of potential attribution of impacts to anthropogenic forcing.  Our approach could be extended with more 188 
fine-grained analysis of studies or with attribution of additional signals in climate variables in order to 189 
make more robust attribution statements. 190 
 191 
For 80% of global land area (excluding Antarctica), trends in temperature and/or precipitation can be 192 
attributed at least in part to human influence on the climate (purple cells,  Fig. 2c). Using gridded 193 
population density data36, we calculate that this covers 85% of the world’s population. The majority of 194 
land grid cells show attributable warming trends, with exceptions where trends cannot be robustly 195 
distinguished from internal variability (white cells, category 0) or where there is insufficient data to 196 
establish trends (grey cells). For precipitation, attributable wetting and drying trends are found with 197 
greater geographical variation. There are also more grid cells where a trend in precipitation cannot be 198 
established, or where the observed trend is opposite in sign to that simulated by climate model historical 199 
simulations (purple and yellow cells, +-4). 200 
 201 
Though most of the world’s population resides in areas where trends in temperature and or precipitation 202 
can be at least partially attributed to human influence, there is substantial geographical variation in the 203 
degree to which the impacts of temperature and precipitation on human and natural systems have been 204 
studied. We characterise areas with fewer than 5 weighted studies per grid cell as displaying low 205 
evidence, areas with between 5 and 20 weighted studies as robust evidence, and areas with more than 20 206 
weighted studies as high evidence. 207 
 208 
For 48% of global land area (hosting 74% of global population), we find robust or high evidence of 209 
impacts on human and natural systems colocated with attributable temperature or precipitation trends 210 
(Fig. 2c). Areas with this combination of evidence are indicated by the darker purple cells. These 211 
constitute almost all grid cells in Western Europe, North America, South and East Asia, and there are 212 
parts of all continents which have similar pockets of substantial preliminary evidence. 213 
 214 
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However, for 33% of global land area (hosting 11% of global population), although there is evidence that 215 
long-term trends in precipitation and temperature are attributable at least in part to human influence, there 216 
is relatively little evidence in the existing literature about how these trends impact human and natural 217 
systems (Fig. 2c lightest purple shading). This imbalance suggests, in line with research measuring 218 
climate impacts using remote sensing37, that the lack of evidence in individual studies is because these 219 
locations are less intensively studied, rather than an absence of impacts in these areas. Parts of Western 220 
Africa, South-east, Western and Northern Asia contain several light red grid cells where there is evidence 221 
to suggest that the climate (temperature and/or precipitation) has changed because of human influence, 222 
but there is little evidence on how this may be impacting human and natural systems. These demonstrable 223 
evidence gaps suggest a lack of impacts research commensurate with current knowledge of how the local 224 
climate (temperature and/or precipitation) is changing.  225 
 226 
Some of the spatial features can be explained by the geographical characteristics. Among the regions with 227 
limited evidence are vast, sparsely populated and difficult to reach areas with a comparable uniform 228 
biosphere and climate such as Siberia or the Saharan desert. But beyond these features, our results clearly 229 
reveal a substantial 'attribution gap'. We find that 23% of the population of low income countries live in 230 
areas with low impact evidence despite at least partially attributable trends in temperature and/or 231 
precipitation (Fig. 2.d). In high income countries, this figure is only 3%. A density of 5 studies per grid 232 
cell or more with attributable impacts is 1.76 times as prevalent by population for high income countries 233 
(88%) as for low income countries (50%), while a density of 20 studies or more with attributable impacts 234 
is more than 4 times as prevalent (81% compared to 17%).  235 
 236 
In the remaining grey grid cells (Fig. 2c), trends in precipitation and temperature have not been attributed 237 
to human influence on the climate according to the methodology in refs. 18 and 19, as applied to CMIP6 238 
models. This does not rule out the possibility that some trends in precipitation or temperature have 239 
occurred in these regions that have been driven, at least in part, by human influence on the climate. 240 
However, due to various factors, such as lack of adequate observational data, high levels of natural 241 
variability compared to the climate change signal, or limitations in modelling or estimated climate 242 
forcings, some observed changes that actually include anthropogenic contributions may not yet be 243 
attributable at the grid cell level. This categorisation of individual gridpoints may well change as new 244 
observational data are collected, as models improve, as the global climate continues to warm, or as 245 
detection/attribution methodologies improve. Darker grey grid cells (10% of analyzed land area) indicate 246 
where there are no detectable trends in temperature or precipitation that can be attributed to human 247 
influence at a grid cell level, but where there nevertheless appears to be substantial evidence that local 248 
trends in some climate variables lead to impacts on human and natural systems. For example, many 249 
studies refer to the impacts of temperature in the state of Western Australia, but of the 40 grid cells in the 250 
state, an attributable temperature trend can be demonstrated for 22 cells. For 16 of the remaining cells a 251 
lack of data means that a detectable trend cannot be established, and for the remaining 2 cells, no 252 
attributable trend can be established. 253 
 254 
The lightest grey cells (17% of land area) describe areas where we do not detect anthropogenic influence 255 
on regional temperature or precipitation and find few publications about the impacts of temperature or 256 
precipitation on human and natural systems in those areas. Apart from high latitudes and over the ocean, 257 
these cells are primarily in Africa. For example, in the light grey patch over the central part of sub-258 
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Saharan Africa, either limitations of observed data, models, or low signal to noise imply that we are 259 
unable to attribute temperature or precipitation trends to human influence on the climate using the 260 
methodologies employed here (see extended fig. 4); further, we have identified few studies analysing the 261 
impacts of climate change on human and natural systems in those regions. These evidence gaps constitute 262 
significant blind spots in understanding of climate impacts, and in some cases understanding of 263 
attributable anthropogenic influence on regional precipitation and/or temperature.  264 
 265 
In total, 57,366 studies discuss impacts related to a driver which our analysis suggests can be attributed in 266 
part to human influence on the climate in at least one grid cell to which the study refers. We find 267 
hundreds of partially or mostly attributable studies (where there are attributable trends in the relevant 268 
climate variable for at least 1% or more than 50% of grid cells respectively) in each impact category 269 
across all continents (Fig. 3, indicated by the darker green and purple bars). This figure ranges from 268 270 
(143-514) studies of impacts on mountains, snow and ice in Africa to 7,835 (4,308-13,552) studies of 271 
impacts on terrestrial ecosystems in North America. Wide confidence intervals here reflect the compound 272 
uncertainty deriving from classification of relevance, impact and driver.  273 
 274 
Our analysis also allows quantification of how the share of research on each impact category varies from 275 
continent to continent. For example, research on human and managed systems makes up 12% of all 276 
research globally, but only 10% of research in Europe, compared to 19% in Africa. This focus on human 277 
and managed systems in Africa is remarkable given that the absolute numbers of studies in Africa (1,466) 278 
is similar to that in Europe (1,799) despite the vast difference in total numbers of studies between the two 279 
continents. This greater share of research in Africa documents impacts in human and managed systems 280 
may reflect the high vulnerability of particularly sub-Saharan Africa to climate impacts38. 281 
 282 
  283 
 284 

Discussion and conclusion  285 

We develop a two-step attribution process which combines a transparent and reproducible39,40 machine 286 
learning approach to identifying studies on observed climate impacts with model-based assessments of 287 
detectable anthropogenic contributions to historical temperature and precipitation trends. Using machine 288 
learning to scale up evidence synthesis allows us to map 100,000 studies of climate impacts, providing a 289 
comprehensive picture of the evidence base. Bringing together these two lines of evidence on climate 290 
change and climate impacts provides a new bridge between the climate science community and the 291 
impacts, adaptation, and vulnerabilities communities, and highlights the synergistic nature of their 292 
approaches. 293 
 294 
Our spatially resolved approach allows for a systematic provision of regional to local, sector-specific 295 
climate impact information to local or regional experts and adaptation practitioners. This offers 296 
perspectives for a novel climate service supporting the uptake of scientific information in local contexts 297 
and providing relevant information for adaptation action. Second, the quantification of an “attribution 298 
gap” highlights the need for more research on climate impacts in low income countries. Furthermore, the 299 
automated nature of the assessment allows for continuous updating of the database, creating a ‘living’ 300 
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evidence map that can also be improved and extended by incorporating additional sources of relevant 301 
publications (e.g. non-English speaking evidence, or improved/expanded regional detection/attribution 302 
studies) and targeted assisted learning in regional or topical areas of interest.  303 
 304 
The compiled database is vast, but neither complete nor perfect. Our systematic query-based literature 305 
search is extensive, but will also exclude some relevant studies. The selection and categorisation of 306 
studies was achieved using machine learning, meaning that results are subject to additional uncertainties, 307 
which compound for each level of classification. Further, documents were coded only at the abstract 308 
level, and only the abstracts were used as inputs to our classifiers. Given the relative simplicity of the type 309 
of information we extract (focusing on the impact area studied and the documented driver), we expect 310 
them to be covered in the abstract, which provides the condensed summary of the study’s findings.  311 
Applying classifiers to noisy full texts which contain contextual information and related research as well 312 
as the results and topic of a study would greatly increase the risks of false positives. We thus find our 313 
approach well justified for such high-level syntheses. 314 
 315 
The database we assemble will also incorrectly exclude some relevant documents and contain some 316 
documents that have been incorrectly included or incorrectly coded, but the approach enables us to report 317 
both classifier performance and associated uncertainties. Additionally, some included studies may be of 318 
low quality, as no process for critical appraisal (a key component of formal systematic reviews) was 319 
followed either by human reviewers or in the machine learning pipeline. In the case of systems subject to 320 
other anthropogenic interference such as the global biosphere, managed systems such as agriculture, or 321 
human systems themselves, identifying a robust climate change driver requires careful assessment of 322 
other socio-economic factors41,42, adding additional levels of complexity43.  323 
 324 
The two-step attribution process is also only applied for the subset of papers which provide evidence on 325 
impacts driven by temperature and precipitation. Exploring the role of human influence for studies 326 
analysing the effects of factors other than trends in mean temperature or precipitation as the main driver 327 
would require additional attribution strategies, but these could in principle be combined with individual 328 
studies in similar ways. There is a growing literature on attributable human influence on a number of 329 
climate metrics at the regional scale as well as extreme events44–46, and therefore much scope for 330 
expansion of this approach. Finally, we note that plausible causal chains of cascading impacts are not 331 
covered by our attribution approach (such as temperature driving an increase in drought, leading to 332 
reduced agricultural yields) except where studies address each part of the causal chain. 333 
 334 
These caveats highlight that the type of machine learning-assisted evidence map we present here is no 335 
substitute for careful assessment by experts, either in the context of a gold-standard systematic review47 or 336 
in IPCC assessments. However, in an age of “big literature”7,9, it is an invaluable complement. The use of 337 
machine learning means we consider more evidence than would otherwise be feasible, showing where 338 
evidence appears to be more prevalent  and where important gaps can be observed. While traditional 339 
assessments can offer relatively precise but incomplete pictures of the evidence, our machine-learning-340 
assisted approach generates an expansive preliminary but quantifiably uncertain map. Further, it enables 341 
us to provide an automated, living systematic map of climate impacts that can be readily updated. 342 
Ultimately, we hope that our global, living, automated, and multi-scale database will help to jump-start a 343 
host of reviews of climate impacts on particular topics or particular geographic regions. 344 
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 345 
Machine-learning pipelines as developed here will be useful to prepare the IPCC for the age of big 346 
literature by scaling systematic evidence mapping approaches. However, our results also show how 347 
synthesis and transparency can be lifted to new levels by combining so-far disparate lines of evidence and 348 
reporting classifier performance as well as associated uncertainties.  If science advances by standing on 349 
the shoulders of giants, in times of ever-expanding scientific literature giants’ shoulders become harder to 350 
reach. Our computer-assisted evidence mapping approach can offer a leg-up. 351 
 352 
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Methods 462 

Outline 463 

An overview of each of the steps taken in this study is given in Extended Fig 1. These are outlined briefly 464 
here and explained in detail in the following sections. Over 600,000 documents were retrieved from 465 
bibliographic databases using a query. 2,373 of these documents were screened for relevance and coded 466 
for impact type and driver by human reviewers. The implicit inclusion and coding decisions for a further 467 
351 documents were extracted from Tables 18.5-18.9 in the contribution of Working Group II to the Fifth 468 
Assessment Report of the IPCC1. Machine learning classifiers were trained to predict relevance of 469 
documents using the titles and abstracts, and evaluated using nested cross-validation. The best performing 470 
classifier was then fit with all labelled documents using bootstrapping to make predictions with 471 
confidence intervals for the relevance of the remaining documents. Those documents predicted to be 472 
irrelevant were discarded, as were documents labelled by reviewers as irrelevant. Multilabel classifiers 473 
were then trained using the remaining labelled relevant documents, and assessed in a similar fashion using 474 
cross-validation. Predictions for impact type and driver were then made for the remaining unlabelled 475 
documents. Geographical entities were extracted from the included studies using a geoparser, and each 476 
entity was matched to the set of 2.5 degree grid cells overlapping it. Observed trends in precipitation and 477 
temperature were collected for 2.5 and 5 degree grid cells and compared with climate models to assess 478 
whether observed trends were detectable (i.e., unusual compared with natural variability, and in the same 479 
direction as simulated by historical forcing climate model simulations) and at least partially attributable to 480 
human influence on the climate, as discussed below. Finally, documents predicted to be driven by 481 
temperature or precipitation were extracted from the database of studies and merged with the grid cell 482 
attribution datasets so that each document could be characterised by the presence of human-attributable 483 
climate trends in the grid cells it referred to, and each grid cell could be characterised by the number of 484 
studies referring to it. 485 
 486 
 487 

Search, screening and coding 488 

Search Strategy 489 

Potentially relevant documents were assembled by developing a query to search bibliographic databases. 490 
To validate the query, we tested this against a set of records known to be relevant. Tables 18.5-18.9 in the 491 
contribution of Working Group II to the Fifth Assessment Report of the IPCC1 (AR5 WGII) contain the 492 
studies considered in their assessment of the observed impacts of climate change. After extracting these 493 
references, we built a query that would return all of the references in the tables that specifically referred to 494 
the role of climate change (rather than of counterfactual explanations for impacts). The query is 495 
reproduced in the Supplementary Information (in the format for Web of Science - the same query was 496 
used for Scopus) and is made up of three lists of keywords linked with boolean ANDs. The first set of 497 
keywords refer to climate and climate variables, the second to impacts, and the third to observations and 498 
attribution. 499 
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 500 
The query was performed on Scopus and the following citation indices from the Web of Science Core 501 
Collection: 502 

● Science Citation Index Expanded (SCI-EXPANDED) --1900-present 503 
● Social Sciences Citation Index (SSCI) --1900-present 504 
● Arts & Humanities Citation Index (A&HCI) --1975-present 505 
● Conference Proceedings Citation Index- Science (CPCI-S) --1990-present 506 
● Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH) --1990-present 507 
● Emerging Sources Citation Index (ESCI) --2015-present 508 

The queries were updated on October 19 2020: Web of Science returned 411,194 documents, while 509 
Scopus returned 476,778 documents. The total number of records after deduplication through fuzzy title 510 
and publication year matching using trigram similarity was 601,667. The queries were imported into a 511 
database and deduplicated using the NACSOS review platform48. 512 

Inclusion and exclusion criteria 513 

We take a broad definition of climate impacts to include all studies relevant to understanding the observed 514 
impacts of climate change. This includes 515 

● Studies which explicitly link impacts to climate change (8% of coded studies) 516 
● Studies which link impacts to trends in climate drivers like temperature or precipitation (42% of 517 

coded studies) 518 
● Studies which link impacts to extreme climate events (6% of coded studies) 519 
● Studies which link impacts to variation in climate drivers (39% of coded studies) 520 
● Studies which document regional or local climate trends (11% of coded studies) 521 

 522 
Documents which only provide evidence of likely future impacts of climate change were excluded. 523 
 524 
With this broad definition of climate impacts evidence, we do not claim that each study is in and of itself 525 
evidence of the impacts of climate change. Rather, taken together, and in the context of observations and 526 
climate models, this collection of included studies constitutes the evidence base necessary for 527 
understanding climate impacts. 528 
 529 

Coding impacts and drivers 530 

Where documents were selected for inclusion, reviewers coded the attribution category, the climate 531 
impacts and the drivers (where appropriate) for each paper. Impacts and their drivers were chosen from a 532 
selection of 75 specific categories, which were aggregated according to the hierarchy of categories 533 
included in the supplementary file category_aggregation.csv. 93% of included studies coded impacts in 534 
one or more of the 5 broad impact categories used by IPCC AR5: 535 

● Mountains, snow and ice (11.42% of included studies) 536 
● Rivers, lakes and soil moisture (21.27% of included studies) 537 
● Terrestrial ecosystems (33.13% of included studies) 538 
● Coastal and marine ecosystems (13.21% of included studies) 539 
● Human and managed systems (21.42% of included studies) 540 
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Remaining studies documented only trends in climate variables without reference to any of these systems. 541 
 542 

Screening and Coding 543 

 544 
A total of 2,373 documents were screened by members of the author team using the NACSOS platform48, 545 
of which 1,125 were included as relevant and coded for impacts and drivers. The median number of 546 
documents coded per user was 133, and the mean was 173. 547 
 548 
In addition, documents extracted from the tables 18.5-18.9 in AR5 WGII were automatically labelled as 549 
relevant and tagged with the broad impact categories corresponding to the table in which they were found. 550 
 551 
In order to mitigate a highly unbalanced sample (few relevant documents among many irrelevant 552 
documents), and to make best use of reviewing resources, some documents were selected for screening 553 
using an adapted active learning pipeline. With active learning, a classifier (see following section for 554 
details) is trained using existing screening decisions to predict the relevance of documents yet to be 555 
reviewed. Usually, reviewers screen subsequent documents in decreasing order of predicted relevance and 556 
the classifier is periodically updated with the new data that has been generated. Given that our goal was to 557 
not to screen all relevant documents but to generate useful labels efficiently, we created samples with 558 
relevance predictions greater than 0.2, 0.3 and 0.4, in order to exclude documents with a low likelihood of 559 
being relevant. Documents were first screened by a small group of reviewers who developed the 560 
categorisation scheme for impacts and drivers. A subsequent set of documents was screened by all 561 
reviewers, and differences in coding were discussed and alterations recorded. Reviewers were then split 562 
into teams corresponding with the AR5 impact categories according to expertise, and screened documents 563 
predicted to be rather relevant (>0.33) to the given category. Each team screened a sample of documents 564 
and discussed differences in screening and coding decisions. Teams reached average Cohen’s Kappa 565 
scores between 0.66, indicating substantial agreement, and 1.0, indicating full agreement49. After this 566 
initial round of double coding, reviewers proceeded to screen documents individually. Additional 567 
documents were selected for screening using keyword searches (https://github.com/mcallaghan/regional-568 
impacts-map/blob/master/literature_identification/category_keywords.ipynb) to identify documents from 569 
infrequently appearing subcategories.  570 
 571 
Because the documents selected using the methods described above are unlikely to be representative of 572 
the full set of documents returned by the query, we also screened 732 documents drawn at random which 573 
we used for validation. 574 
 575 
 576 

 577 

Machine learning classifiers for inclusion, impact type and drivers 578 

We first trained a binary classifier to predict the inclusion/exclusion decision given by reviewers. We use 579 
a nested cross-validation procedure (Extended Fig. 2) to optimize parameter settings and evaluate the 580 
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performance of a support vector machine (SVM) classifier50 as well as a pre-trained DistilBERT model 581 
fine-tuned with our labelled dataset28. Support vector machines have a long history of applications in 582 
evidence synthesis12, while the BERT27 (Bidirectional Encoder Representations from Transformers) 583 
model recently achieved state of the art results in a variety of natural language processing challenges, and 584 
has begun to be used in evidence synthesis pipelines8. However, large language models like BERT can 585 
have significant climate impacts51; motivating our decision to use the lighter and faster DistilBERT, 586 
which retains “97% of its language understanding”28, with greatly reduced computational resource usage. 587 
 588 
In our nested cross-validation procedure, we first separate those documents which were drawn at random 589 
from the population of documents identified by the query from the remaining unrepresentative 590 
documents. Only randomly selected documents are used in validation and test sets, in order to ensure that 591 
the estimation of the performance of the classifier on the whole dataset is not biased. In the outer fold of 592 
the cross-validation loop, a separate test set is drawn from the randomly selected documents for each fold, 593 
k, and all other documents are assigned to the test set. The inner CV loop draws k inner validation sets 594 
from the remaining random documents in the training set, and allocates all other documents in the training 595 
set to an inner training set. The inner loop is used to optimise hyperparameters for each model using grid 596 
search: a model is initialised with each combination of hyperparameters and fit on each inner training set 597 
and evaluated on each inner validation set. The combination of hyperparameters with the best mean F1 598 
score across inner folds is selected as the best model. This model is fit with the training data from the 599 
outer CV and evaluated with the test data. The outer CV thus returns k scores for each metric, which we 600 
report below. We note that our cross-validation approach, while transparent, robust and thorough, is 601 
computationally expensive - and that alternative procedures such as random search may provide similar 602 
results at lower computational cost, or minor improvements at the same cost52. In principle, additional 603 
improvements to the model may also be generated through additional pre-training53 using the unlabelled 604 
corpus of climate-relevant abstracts. Pre-training BERT-like models on climate science corpora remains 605 
an area for future investigation. 606 
 607 
We evaluated our binary inclusion/exclusion classifiers with 5 inner and outer folds. DistilBERT clearly 608 
outperformed SVM across all metrics, achieving an average F1 score of 0.71, and an average ROC AUC 609 
score of 0.92 (Extended Fig. 3). A final DistilBERT model configuration was chosen using the same 610 
procedure on the outer folds. Each combination of parameter settings was tested on each outer fold, and 611 
the combination of parameter settings with the highest mean F1 score was selected.  612 
 613 
This final model was used to predict the relevance of all remaining documents. To create a confidence 614 
interval for each prediction, 5 versions of the final model were trained on 5 folds of the data. Upper and 615 
lower estimates for each document are given by the mean plus or minus one standard deviation. All 616 
documents where the lower estimate was below 0.5 were excluded from the study. 617 
 618 
We then trained multilabel classifiers to predict the impact category and the driver category of included 619 
documents. Classifiers parameters were optimised and classifiers evaluated with the same nested cross-620 
validation method, using only those labelled documents which were included. Because documents 621 
selected for screening using the active learning process are broadly representative of the documents to 622 
which the multilabel classifiers are applied, all documents selected in this manner are also used for 623 
validation. Due to the lower number of documents, and lower number of documents drawn from a random 624 
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sample in this set, we used a smaller k value of 3 for cross-validation. We treat each class equally and 625 
optimise using the macro F1 score. For the prediction of impact categories, DistilBERT outperforms 626 
SVM, achieving a macro-averaged F1 score of 0.84 and a macro-averaged ROC AUC score of 0.95 627 
(Extended Fig. 4.). For classification of climate drivers, we optimise for the macro-averaged F1 score for 628 
the categories temperature and precipitation. DistilBERT outperforms SVM, achieving an average F1 629 
score of 0.79 and an average ROC AUC score of 0.86. Where no individual class has a prediction larger 630 
than 0.5, documents are classes as “Other systems”. 631 

Detection and Attribution 632 

To put our database of impact studies in context, we match studies with grid cell level detection and 633 
attribution of temperature and precipitation trends to human influence on the climate. 634 

Updating attribution of temperature and precipitation trends 635 

We followed a previously published methodology22,23 used to attribute observed temperature and 636 
precipitation trends to human influence around the globe, at the level of typical climate model grid cells 637 
(5 degree grid boxes for temperature and 2.5 degree grid boxes for precipitation). The different 638 
resolutions are based on the available observed datasets, which we did not regrid for our project. The 639 
method relies on a comparison of gridbox-scale trends in observational datasets for temperature 640 
(HadCRUT4 version 4.654) and precipitation (GPCC v2018, obtainable from 641 
https://psl.noaa.gov/data/gridded/data.gpcc.html), with those produced in climate model runs from 642 
CMIP655.  The CMIP6 runs simulate climate changes over the historical period under the influence of 643 
either all forcings (i.e., both natural and anthropogenic, referred to as “ALL”) or natural forcings only 644 
(referred to as “NAT”). 645 
 646 
We analysed the outputs of these simulations from 10 CMIP6 models, namely MIROC6, IPSL-CM6A-647 
LR, CanESM5, HadGEM3-GC31-LL, CNRM-CM6-1,GFDL-ESM4, CCESS-ESM1-5, BCC-CSM2-648 
MR, NorESM2-LM and CESM2 . The model selection was based on the availability of ALL, NAT as 649 
well as “piControl” runs (simulating internal climate variations in the absence of external forcings, apart 650 
from a constant solar forcing).  The analysis provides a test of the ability of the corresponding ALL 651 
simulations to reproduce the regional trends in annual mean temperature and precipitation against 652 
observational data56. For some models the ALL simulations were not available after 2014, in which case 653 
we combined them with the first few years of the ssp585 simulations of future climate conditions in order 654 
to match the length of the observational data. 655 
 656 
Linear trends over the 1951-2018 (for temperature) and 1951-2016 periods (for precipitation) were 657 
computed over each grid cell with adequate data for each observational dataset, following the criteria of 658 
ref. 7 and 8 (see Extended Figures 6a&b). For temperature we computed a linear trend for each ensemble 659 
member of the HadCRUT4 dataset, from which observed trend distributions were derived. Precipitation 660 
trends were not computed over grid cells where less than 20% of data was available for the first or last 661 
10% of the observed time series or where the entire time series had less than 70% of data available. For 662 
temperature, we divide the trend period into five roughly equal periods and require that each period has at 663 

https://psl.noaa.gov/data/gridded/data.gpcc.html
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least 20% temporal coverage for annual means. We consider an annual mean as available if at least 40% 664 
of the months are available for the year. 665 
 666 
To be compared with the observational data, for each model the data from  both the ALL and NAT runs 667 
were first re-gridded onto the observational grids (5° × 5° for temperature and 2.5° x 2.5° for 668 
precipitation), excluding times and grid locations where observed data were missing, before linear trends 669 
were computed over each grid cell in which adequate temporal coverage was available (see Extended 670 
Figures 6c&d). For each model, we then assessed the potential effect of internal variability by computing 671 
trends of the length being investigated in 50 random samples of the corresponding piControl runs from 672 
each model.  The model control runs had beforehand been corrected for any long-term drift, and the 673 
anomaly series adjusted by a factor to ensure consistency of low-frequency variability between model 674 
control runs and estimated internal variability from observations (further discussed below). We then 675 
combined the resulting trend distributions from the piControl runs with the trends computed in the 676 
ensemble mean of ALL and NAT runs. Following previous studies22,23, the final trend distribution for 677 
temperature was based on an aggregate distribution of all constructed model trend distributions (and thus 678 
included the spread of different model ensemble means) whereas for precipitation, an average distribution 679 
of model trends across the ensemble was used (i.e., the distribution had the average characteristics of the 680 
10 CMIP6 models).  681 
 682 
Attribution categories were assigned to grid cells (Extended Fig. 6 e,f) based on where their observed 683 
trend (or trend distribution in the case of temperature) lay relative to the final trend distributions derived 684 
from the ALL  and NAT runs. Over the grid cells where an observed trend was in the same direction 685 
(sign) as the mean of the  ALL trend distribution and was outside the trend distribution 5th-95th 686 
percentile  range for the NAT simulations, the observed trend was categorized as -3 (+3), -2 (+2) or -1 687 
(+1) depending on whether it was significantly stronger, the same or weaker than the simulated decrease 688 
(increase). Categories -3 (+3) and -2 (+2) are defined as decreases (increases) that are detectable and at 689 
least partially attributable to anthropogenic forcing, according to our methodology.  Categories -1 (+1) are 690 
detectable but not attributable. If the observed trend was significantly different from the NAT distribution, 691 
but was in the opposite direction to the mean of the All-Forcing distribution, it was categorized as -4 692 
(observed decrease, modeled increase) or +4 (observed increase, modeled decrease).  All observed trends 693 
(or trend distributions, in the case of temperature) that intersected with the 5th-95th percentile range of 694 
the corresponding trend distributions derived from the NAT runs were categorized as non-detectable, or 695 
indistinguishable from natural variability (i.e. category 0). Note that for cases where observed trends or 696 
trend distributions had a different sign of the mean trend from that of the trend distribution derived from 697 
the ALL runs, but were within the range of the Nat run distribution, the corresponding grid cells were also 698 
categorised as non-detectable (category 0).  699 
 700 
Once the grid cells were categorised, in the case of temperature the results were re-gridded to a 2.5° x 701 
2.5° grid to allow superposition with the categories obtained for precipitation. 702 
 703 
Our analysis requires the internal variability for each grid location and variable to be estimated via model 704 
control runs.  To compare observed estimated internal variability and trends with those generated by the 705 
model control runs, Extended Figs. 7 and 8 show fractional difference maps for estimated internal low-706 
frequency variability (model vs. observed) for each model individually and for the ensemble mean of the 707 
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modeled variability (the latter being most relevant for our analysis, which is based on combined estimated 708 
variability across the models).  The observed low-frequency internal variability is estimated by 709 
subtracting the multi-model ensemble All-Forcing change from the observations and computing the 710 
standard deviation of the annual residuals, after application of a 7-year running mean filter.  For models, 711 
we use the simulated variability from the various control runs, again smoothed with the 7-year running 712 
mean smoother.  The averaged internal low-frequency variability comparison plot for precipitation 713 
(Extended Fig. 7, top panel) shows reds in most regions indicating that by this measure of internal low-714 
frequency variability, the CMIP6 models actually tend to overestimate observed variability levels.  So our 715 
detection results for precipitation will tend to be conservative, while conversely, the ability of All-Forcing 716 
to be consistent with observations will tend to be liberal, because the modeled spread is relatively wide.   717 
However, blue regions are evident in Extended Fig. 7 in some tropical regions, including over Africa and 718 
South America, indicating an undersimulation of internal low-frequency variability there.  We took the 719 
internal variability comparisons vs. observed estimated internal variability in Extended Fig. 7 and 720 
adjusted the control run variability and trends by the ratio [Obs. stdev / Model stdev] prior to computing 721 
our assessment categories.  Results without this variability adjustment (not shown) are broadly similar but 722 
show more category -4 (unexplained trends of incorrect sign) over Africa, where internal low-frequency 723 
variability appears to be underestimated in models according to this analysis; unadjusted results show 724 
slightly less detectable human influence in middle and high latitudes, where internal variability is 725 
apparently overestimated in models.    726 
 727 
For surface temperature (extended Fig. 8) the internal variability comparison results vs. observed 728 
estimates are similar to those of Knutson et al. 2013 for CMIP3 and CMIP5 with a mixture of results:  729 
models tend to simulate more internal variability than the observed estimate in northern mid to high 730 
latitudes, typically less than observed over most other ocean regions at lower latitudes, and mixed results 731 
over land regions.  Whether we include the gridpoint-scale adjustment of simulated internal variability in 732 
our detection/attribution analysis or not, the results are similar (unadjusted control run-based assessment 733 
not shown).  For the assessment of 1951-2018 observed trends (Extended Fig. 6), there are some 734 
additional regions with detectable anthropogenic warming compared to Knutson et al. (2013), but that is 735 
as expected, since the Knutson et al. analysis only examined trends through 2010.  With the termination 736 
of the ‘global warming hiatus’ around 2014, the additional recent years have been adding to an ongoing 737 
strengthening warming signal and leading to even greater assessed area with detectable anthropogenic 738 
warming. In Extended Fig. 6 and elsewhere in the study, we use the adjusted control run results for our 739 
assessments for both temperature and precipitation.   740 
 741 

Spatial resolution of studies 742 

 743 
In order to match this data with the finest-scale resolution of our database, we resolved each study to the 744 
set of 2.5 degree grid cells contained by the smallest geographical entity extracted from each paper’s title 745 
and abstract using the geoparser Mordecai29. For each study, we calculated the proportion of the grid cells 746 
that this entity corresponds to in which an attributable trend for each variable can be found. For example, 747 
in Extended Figure 9, panels a. and b. show that 20 out of Sudan’s 27 grid cells show an attributable 748 
anthropogenic warming trend, so each study referring to Sudan and documenting impacts predicted to be 749 
driven by temperature receives a precipitation trend proportion value of 20/27. Such a study would 750 
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therefore add towards the dark red bars in Fig. 3, which count studies where an attributable temperature 751 
trend can be demonstrated for more than 50% of the grid cells the study refers to. 752 
 753 
We also calculate a weighted number of studies for each grid cell by adding 1 divided by the number of 754 
grid cells a study refers to each of those grid cells, and repeating this procedure for all identified relevant 755 
studies. Extended Figures 9c. and d. show 11 studies which refer to impacts predicted to be driven by 756 
temperature trends in Sudan, where Sudan is the smallest geographical entity mentioned. Each gridcell in 757 
Sudan therefore receives 11/27 weighted studies. Given that some geographical entities were too small to 758 
hold one 2.5 degree grid cell, their longitude-latitude values were interpolated to the nearest grid cell 759 
instead and the grouped studies apportioned to that one grid cell. Because 4 additional studies refer to 760 
Khartoum, we add 4/1 to the weighted studies value in the grid cell containing Khartoum. 761 
 762 
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Figure Legends 793 

 794 
Fig. 1| Results of the machine-assisted literature review. All results shown are based on our search 795 
queries and subsequent classification by the machine learning pipeline. a. Growth in the scientific 796 
literature relevant to observed climate impacts over the last 30 years (cumulative totals for IPCC 797 
assessment periods are highlighted for reference). Inset: numbers of documents considered in the total 798 
query and in the IPCC AR5 WGII Tables 18.5-18.9. b-c. The estimated number of studies for each impact 799 
category and continent in our database (note that uncertainty bars take into account uncertainty over 800 
relevance as well as impact category). ES = ecosystem. 801 
 802 
Fig. 2| Potential attribution of impact studies to regional anthropogenic temperature and 803 
precipitation trends. Model-based assessment of the attribution of regional temperature (a, timespan 804 
1951-2018) and precipitation trends (b,timespan 1951-2016) to human influence. Cooling/warming or 805 
drying/wetting trends in the regions marked as categories -/+2 and -/+3 are assessed as attributable in part 806 
to human influence (see Methods). c, Global map of area-weighted studies coloured by the existence of 807 
attributable trends (purple for attributable trends in at least one variable, cross-hatched for attributable 808 
trends in both variables, grey for no attributable trends) and indicating the localised evidence density 809 
(Low: <5 weighted studies, Robust: >5 weighted studies, High: >20 weighted studies). d, the proportion 810 
of land area and population with each grid cell type, grouped by country income category. 811 
 812 
Fig 3| A global density map of climate impact evidence. Map colouring denotes the number of 813 
weighted studies per grid cell for all evidence on climate impacts (N=77,785). Bar charts show the 814 
number of studies per continent and impact category. Bars are coloured by the climate variable predicted 815 
to drive impacts. Colour intensity indicates the percentage of cells a study refers to where a trend in the 816 
climate variable can be attributed (partially attributable: >0% of grid cells, mostly attributable: >50% of 817 
grid cells).  818 
 819 
 820 

CAPTIONS FOR EXTENDED DATA FIGURES 821 
 822 
Extended Data Fig. 1 | A visual representation of the workflow of our machine learning assisted 823 
attribution map. Squares represent documents (not to scale), boxes represent the steps taken. Documents 824 
are screened by hand, and those labels are used to generate predictions and machine label documents. 825 
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These machine-labelled documents are matched by location with information from observations and 826 
climate models on the detection and attribution of trends in temperature and precipitation. 827 

Extended Data Fig. 2 | Nested cross validation (CV) procedure for the binary relevance classifier. 828 
Models are fit using training documents and evaluated on validation/test documents. The inner CV 829 
loop is used to search for optimal hyperparameter settings, which are then evaluated on the outer test sets. 830 

Extended Data Fig. 3 | Performance metrics for the binary inclusion/exclusion classifier. Each pair of 831 
dots represents the scores for a distinct cross-validation fold. Horizontal lines show the mean score 832 
across folds. 833 

Extended Data Fig. 4 | Receiver operating curve area under the curve scores (ROC AUC) and F1 scores 834 
for the classification of impact categories. Each pair of dots represents the scores for a distinct cross-835 
validation fold. Horizontal lines show the mean score across folds. 836 

Extended Data Fig. 5 | Receiver operating curves area under the curve scores (ROC AUC)(ROC) and F1 837 
scores for the classification of drivers. Each pair of dots represents the scores for a distinct cross-838 
validation fold. Horizontal lines show the mean score across folds. 839 

Extended Data Fig. 6 | Geographical distribution of surface trends. Temperature from 1951 to 2018 840 
(left) and precipitation trends from 1951 to 2016 (right) in (a),(b) observations and (c),(d) CMIP6 10-841 
model ensemble mean all-forcing runs. Bottom panels (e),(f) show observations categorised into 842 
attribution categories, following refs. 8,7, respectively. Observed cooling/warming or drying/wetting 843 
trends that–after accounting for internal climate variability–are inconsistent with the simulated 844 
response to natural forcings but consistent with the simulated response to both natural and 845 
anthropogenic forcings are indicated by categories -/+2. This is clearest case of changes that are at 846 
least partially attributable to anthropogenic forcing, according to the CMIP6 ensemble. Categories -847 
/+1 have detectable observed changes, but are not assessed as attributable to anthropogenic forcing 848 
because the observed changes are significantly less than those simulated in the average all-forcing 849 
runs. Categories -/+3 have detectable changes and are assessed as at least partly attributable 850 
anthropogenic forcing, although the observed changes are inconsistent with the all-forcing runs. That 851 
is, they are in the same direction as, but are significantly stronger than, the mean of the all-forcing 852 
runs. Categories -/+4 represents cooling/warming or drying/wetting trends that are inconsistent with 853 
the simulated response to natural forcings but whose sign is opposite to that of the average simulated 854 
all-forcing response; category 0 represents trends that are not distinguishable from natural 855 
variability alone. Categories -/+4 and 0 are considered to be examples of non-detectable trends). 856 

Extended Data Fig. 7 | Fractional difference between average CMIP6 modeled low-frequency standard 857 
deviation of annual mean precipitation vs observed precipitation. To estimate the internal low-frequency 858 
variability for both models and observations, the observed time series were detrended and low-pass 859 
filtered with a 7-year running mean filter prior to computing the standard deviations while for the 860 
models we used the full available control runs (7-yr running mean filtered) to estimate the internal low-861 
frequency variability for each model. The top panel shows the multi-model ensemble standard deviation 862 
comparison while the ten individual panels below it show the comparison for each individual CMIP6 863 
model used in the study. The fraction difference was computed as: [(Model st. dev. - Observed st. dev.) 864 
/ (Observed st. dev.)]. 865 

Extended Data Fig. 8 | Difference between average CMIP6 modeled low-frequency standard 866 
deviation (°C) of annual mean surface air temperature vs observed surface temperature. To 867 
estimate the internal low-frequency variability for both models and observations, the observed 868 
time series were detrended and low-pass filtered with a 7-year running mean filter prior to computing 869 
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the standard deviations while for the models we used the full available control runs (7-year running 870 
mean filtered) to estimate the internal low-frequency variability for each model. The top panel shows 871 
the multi-model ensemble standard deviation comparison while the ten individual panels below it 872 
show the comparison for each individual CMIP6 model used in the study. 873 

Extended Data Fig. 9 | An illustration of the spatial resolution and weighting methodology. Detection 874 
and attribution categories for temperature in East Africa; b. the number of grid cells of each type in 875 
Sudan; c. weighted studies for each grid cell in Sudan; d. The number of studies referring to each 876 
extracted geographical location in Sudan. 877 
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Figure 3. 917 
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Extended Data Fig. 2 929 
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Extended Data Fig. 3 933 
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Extended Data Fig. 4 939 
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Extended Data Fig. 5 943 

 944 
 945 
 946 
  947 



35 

Extended Data Fig. 6 948 
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 952 
 953 
 954 
  955 



36 

Extended Data Fig. 8 956 
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SUPPLEMENTARY INFORMATION FOR: 965 
 966 
AI based evidence and attribution mapping of 100,000 climate impact studies 967 
by Callaghan et al. 968 
 969 

Query 970 

 971 
(TS=("climate model" OR "elevated* temperatur" OR "ocean* warming" OR "saline* intrusion" OR 972 
"chang* climat" OR "environment* change" OR "climat* change" OR "climat* warm" OR "warming* 973 
climat" OR "climat* varia" OR "global* warming" OR "global* change" OR "greenhouse* effect" OR 974 
"snow cover" OR "extreme temperature" OR "cyclone" OR "ocean acidification" OR "anthropogen*" OR 975 
"sea* level" OR "precipitation variabil*" OR "precipitation change*" OR "temperature* impact" OR 976 
"environmental* variab" OR "weather* pattern" OR "weather* factor*" OR "climat*") OR TS=("change* 977 
NEAR/5 cryosphere" OR "increase* NEAR/3 temperatur*"))  978 
AND  979 
(TS=("migration" OR "impact*" OR "specie*" OR "mortality*" OR "health" OR "disease*" OR 980 
"ecosystem*" OR "mass balance" OR "flood*" OR "drought" OR "disease*" OR "adaptation" OR 981 
"malaria" OR "fire" OR "water scarcity" OR "water supply" OR "permafrost" OR "biological response" 982 
OR "food availability" OR "food security" OR "vegetation dynamic*" OR "cyclone*" OR "yield*" OR 983 
"gender" OR "indigenous" OR "conflict" OR "inequality" OR "snow water equival*" OR "surface 984 
temp*") OR TS=("glacier* NEAR/3 melt*" OR "glacier* NEAR/3 mass*" OR "erosion* NEAR/5 985 
coast*" OR "glacier* NEAR/5 retreat*" OR "rainfall* NEAR/5 reduc*" OR "coral* NEAR/5 stress*" OR 986 
"precip* NEAR/5 *crease*" OR "river NEAR/5 flow"))  987 
AND  988 
(TS=("recent" OR "current" OR "modern" OR "observ*" OR "evidence*" OR "past" OR "local" OR 989 
"region*" OR "significant" OR "driver*" OR "driving” OR "respon*" OR "were responsible" OR "was 990 
responsible" OR "exhibited" OR "witnessed" OR "attribut*" OR "has increased" OR "has decreased" OR 991 
"histor*" OR "correlation" OR "evaluation") ) 992 
 993 
 994 
Supplementary Figures 995 
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 996 
 997 
Supplementary Fig. 1: The number of papers published in each continent scaled by population. 998 
Bars show the estimated number of papers mentioning a location in each region, uncertainty bars are 999 
generated through bootstrapping (see methods). 1000 
 1001 
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