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Abstract 12 

Large wildfires reduce vegetation cover and soil moisture, leaving the temporally degraded 13 

landscapes an emergent source of dust emission. However, the global extent of post-fire dust 14 

events and their influencing factors remain unexplored. Using satellite measurements of active 15 

fires, aerosol abundance, vegetation cover and soil moisture from 2003 to 2020, here we show 16 

that 54% of the examined ~150,000 global large wildfires are followed by enhanced dust 17 

emission, producing significant dust loadings for days to weeks over normally dust-free regions. 18 

The occurrence and duration of post-fire dust emission is primarily controlled by the extent of 19 

precedent wildfires and resultant vegetation anomalies, and secondarily modulated by pre-fire 20 

drought conditions. The intensifying wildfires and drying soils during the studying period have 21 

made post-fire dust events one day longer, especially over extratropical forests and grasslands. 22 

With the predicted intensification of regional wildfires and concurrent droughts in the upcoming 23 

decades, our results indicate a future enhancement of sequential fire and dust extremes and their 24 

societal and ecological impacts. 25 
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Main 32 

Wildfires represent a major ecosystem disturbance and aerosol emission source, affecting the 33 

global carbon budget, climate, and human life1,2. Short-term influences of wildfires include 34 

damaged infrastructures, degraded air quality, and nutrient redistribution caused by the emission 35 

of smoke aerosols3,4. In situ and remote sensing measurements have also suggested the presence 36 

of mineral dust in smoke plumes3,5, caused by pyroconvective updraft from nearby burning6. 37 

Longer-term influences of wildfires primarily involve vegetation disturbances and resultant 38 

changes in ecosystem, hydroclimate, and geomorphology7,8. Among the natural consequences of 39 

the destroyed vegetation, especially the short species such as grasses and shrubs8, is the 40 

expansion of bare ground that is particularly susceptible to wind erosion9—the detachment of 41 

soil particles from the ground, and dust storms in an extreme condition10. The intensity of wind 42 

erosion and resultant dust emission depends on wind friction velocity11, vegetation structure12, 43 

and soil properties10. In addition to the clearance of vegetation and biocrusts cover, several 44 

additional features of wildfires may exacerbate the occurrence of post-fire dust storms. First, the 45 

fire-induced reduction in vegetation leads to an expanded vegetation canopy gap and reduced 46 

vegetation height, aerodynamically intensifying the severity of wind erosion12. Second, large 47 

wildfires are often associated with climate-driven, dry fuels and accompanying dry soils13, which 48 

favor dust emission. Moreover, fires may alter the physical and chemical properties of soils and 49 

disrupt the wet-bonding forces14, thereby further promoting the occurrence of wind erosion from 50 

these burned landscapes.  51 

 52 

In situ observations and modeling studies have confirmed dust emission from post-fire 53 

landscapes mostly in North America5,15–17; yet, post-fire dust emission has not yet been globally 54 

examined using observational data. To fill this knowledge gap, the current study aims to (1) 55 

identify global hotspots of post-fire dust emission from a suite of satellite observations, (2) test 56 

the hypothesized driving mechanisms of dust emission after wildfires with observational data 57 

sets, and (3) diagnose the observed recent trends in the intensity and duration of post-fire dust 58 

emission.  59 

 60 

Here we analyze a spectrum of satellite measurements of active fires, aerosol abundance and 61 

characteristics, vegetation cover, and soil moisture, as well as reanalysis wind for the period 62 
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2003–2020. This collection of global observational data sets well captures the dust emissions 63 

after wildfires during the 2010 and 2012 burning seasons in western United States, as reported by 64 

previous in situ observations and modeling studies15,16 (Extended Data Fig. 1). Based on these 65 

observational datasets, we first identify large fire events with more than 20 active fires occurring 66 

within each 10 km pixel in consecutive seven day, and then search for significant vegetation 67 

reduction and accompanying enhanced dust load during the subsequent 60 days since the end of 68 

each large fire event (see Methods). To demonstrate the capability of currently applied satellite 69 

measurements in charactering post-fire dust events, we first show extreme dust emission from 70 

the burned areas during the 2019–2020 Australian bushfires. Statistical assessments of post-fire 71 

dust events across the entire globe are shown afterwards. 72 

 73 

Dust emission after 2019–2020 Australian bushfires  74 

Following the long-lasting drought conditions18, a series of large wildfires burned a historic 75 

186,000 km2 across eastern Australia during the 2019–2020 bushfire season19. Satellite 76 

observations indicate a record-breaking low vegetation cover [represented by extremely low 77 

Enhanced Vegetation Index (EVI), a semi-quantitative measurement for the amount of 78 

vegetation, Figure 1c] and high dust concentration [represented by extremely high Dust Optical 79 

Depth (DOD), an approximate measure of columnar dust mass, Figure 1d and Supplementary 80 

Fig. 1] across the burned regions during December 2019 to February 2020. Indeed, the 2019–81 

2020 bushfire season receives more than doubled dust loading, compared with an average year 82 

during the past two decades for this region20. Such a massive amount of dust particles is mainly 83 

emitted from the burned regions that witness the most severe vegetation damage. For example, 84 

the savannahs (around 27.8˚S, 152.3˚E) to the west of Brisbane experience a substantial 85 

reduction in vegetation cover (EVI drops from about 0.25 to 0.17, compared with a long-term 86 

average of 0.35) after the extensive fires during November 7–13, 2019 (Figure 1b). Following 87 

the persistent vegetation disturbances and abnormally dry soils, extreme DOD episodes are 88 

observed in December 2019 (Figure 1a, b). These post-fire dust episodes in eastern Australia are 89 

also captured by spaceborne lidar (Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) 90 

measurements of total backscatter and depolarization ratio, as well as derived aerosol type 91 

information (Extended Data Fig. 2). 92 

 93 
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Global occurrence of post-fire dust emission 94 

Based on the analyzed satellite measurements of fire, vegetation, and aerosols during the 18 95 

years of 2003–2020 (see Methods), we identify 151,727 large wildfire events with more than 20 96 

active fires detected in a 0.1˚ ´ 0.1˚ pixel during consecutive seven days. Among the analyzed 97 

large fire events, 91% and 54% are followed by significant EVI reduction and consequent dust 98 

events, respectively, during the subsequent 60 days. These 87,400 post-fire dust emission events 99 

are distributed across 36,386 0.1˚ pixels in the fire-prone regions of tropical savannahs in Africa, 100 

South America, and northern and eastern Australia, shrublands in western Australia, grasslands 101 

and croplands in central Asia, and various landscapes in western North America (Figure 2a). 102 

Among different landscapes, global savannahs contribute 66% of the currently identified large 103 

fire events, 59% of consequent significant EVI reduction, and 51% of post-fire dust events 104 

(Figure 2b).  105 

 106 

The post-fire dust events typically last for 1–25 days and the maximum DOD ranges between 0.2 107 

to 1.8 (Figure 2c); the intensity and duration of post-fire dust events vary by land cover type 108 

(Figure 2d). The post-fire maximum DODs are on average 351% (192% –578%, 10th– 90th 109 

percentiles of the relative increment among all pixels) larger than the local average DOD. Global 110 

savannahs see the most intensive (average DOD of 0.62, and 10th – 90th percentiles of 0.21–1.56) 111 

and long-lasting (median duration of 3.5 days, and 10th–90th percentiles of 1–10 days) post-fire 112 

dust events, compared with other landscapes (Figure 2d). Regionally, the most severe and long-113 

lasting post-fire dust events are observed over savannahs in West Africa and tropical Africa to 114 

the north and south of the Congo rainforest, where maximum DOD after large fires reaches 1.8, 115 

about three folds of the local 95th percentile of monthly DOD and close to that over the global 116 

leading dust sources, such as the Bodélé Depression in Chad21,22 (Extended Data Fig. 3b). 117 

Moreover, the moderate-to-high DODs above 0.5 are widely seen over the normally dust-free 118 

regions, such as the boreal regions in North America and eastern Asia and mid-to-high latitudes 119 

in the Southern Hemispheric (Figure 2c). Indeed, among the 36,386 pixels where post-fire dust 120 

emissions are identified here, only 8% have ever experienced a DOD exceeding 0.2 that cannot 121 

be attributed to antecedent large wildfires during the study years. 122 
 123 
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Post-fire dust events occur episodically during weeks after large fires, due to the long-lasting, 124 

pre-fire dry soils and post-fire vegetation disturbances (Extended Data Fig. 4). The currently 125 

examined large wildfires cause a reduction in vegetation, represented by a shift in the probability 126 

distribution towards lower EVI during the first week after burning; this vegetation disturbance 127 

typically lasts for several months, accompanied by persistent dry soils (Extended Data Figure 128 

4b, c). Corresponding to the anomalies in vegetation and soil moisture, the probability 129 

distribution of DOD shifts toward higher values, with the probability of DOD exceeding the 130 

long-term 90th percentile between 21% to 40% during the first eight weeks after large wildfires 131 

(Extended Data Figure 4a). Unlike the long-lasting EVI and soil moisture anomalies, elevated 132 

surface wind speed mainly occurs during the extensive wildfire events and decays afterwards 133 

(Extended Data Fig. 4d).  134 

 135 

The occurrence and duration of post-fire dust emission largely depends on the temporal and 136 

spatial extent of precedent wildfires (Figure 3). As the extent of wildfires increases, the posterior 137 

vegetation cover lowers, weakening its physical protecting and aerodynamical sheltering effects 138 

on soils. Consequently, the probability of less vegetation, more dusty situations elevate after the 139 

occurrence of large wildfires, and further enhances with the increment of precedent fire counts 140 

(Figure 3a). Specifically, the probability of extremely low monthly EVI (lower than long-term 141 

10th percentile) increases from 39% after a moderate fire event (with the occurrence of 21–30 142 

fires) to 78% after a severe fire event (with more than 100 fires). The intensified precedent fires 143 

are also accompanied by generally lower soil moisture (Extended Data Fig 5a), either due to 144 

large-scale climate variations that favor dryer conditions for burning or due to fire-induced soil 145 

moisture depletion, which further favors dust emission. As a result, the probability of extremely 146 

high monthly DOD (exceeding the long-term 90th percentile) increases from 28% after a 147 

moderate fire event to 84% after a severe fire event (Figure 3a); and the median duration of 148 

post-fire dust events increases from one day (10th – 90th percentiles of 1–6 days) after a moderate 149 

fire event to 10 days (10th – 90th percentiles of 8–16 days) after a severe fire event (Figure 3b). 150 

Corresponding to this dependence of post-fire dust emission on the extent of burning, the 151 

seasonal peak of post-fire dust emission occurs simultaneously with or shortly after the seasonal 152 

peak of active fires across the majority of global post-fire dust emission hotspots (Extended 153 

Data Fig. 6).  154 
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 155 

The long-lasting (>5 days) post-fire dust events are mainly present over all land cover types 156 

when post-fire EVI falls below 0.20 (Figure 3b and Extended Data Fig. 7), a typical EVI value 157 

over the active arid and semi-arid dust sources, such as the Sahara Desert (Extended Data Fig. 158 

3a). This relationship between post-fire EVI and post-fire dust event duration could serve as the 159 

basis for early warning of extreme post-fire dust activity. Noticeably, a large portion of the long-160 

lasting post-fire dust events occur after a moderate fire event (Figure 3b). These long-lasting 161 

post-fire dust events after moderate fires are mostly observed over savannahs, mainly in Africa 162 

(Extended Data Fig. 7c), where transported dust from nearby dust sources21 (e.g. Sahara, Sahel, 163 

and Middle East) are likely mixed with locally emitted dust from burned areas, thereby 164 

obscuring the accurate duration of these post-fire dust events. 165 

 166 

The occurrence and intensity of post-fire dust events is also modulated by pre-fire drought 167 

conditions, as represented by soil moisture anomalies before the occurrence of fires (Extended 168 

Data Figs. 8 and 9). Over the semi-arid regions included in this analysis, drought conditions are 169 

favorable for dust emission from the sub-grid bare-soil areas, as reflected by the probability 170 

distribution of DOD towards higher values during dry periods even without fires, compared with 171 

wet periods (Extended Data Fig. 8). This difference in DOD probability distribution between 172 

relatively wet and dry periods partially diminishes after fires, indicating the primary role of fires 173 

on determining the occurrence and severity of post-fire dust events (Extended Data Fig. 8). 174 

Nevertheless, pre-fire drought conditions favor elevated occurrence and intensity of post-fire 175 

dust events (Extended Data Fig. 9). 176 

 177 

Recent trends in post-fire dust emissions 178 

While forest ecoregions have experienced a positive trend of 87.6 cases per decade in post-fire 179 

dust emission events (Figure 4a), other ecoregions have exhibited minimal changes in 180 

occurrence.  However, the duration of these events has been increasing significantly (all p-values 181 

< 0.05, based on the Mann-Kendall monotonic trend test) over all landscapes, with a positive 182 

trend of 0.82, 0.54, 0.28, 1.05, and 0.80 days per decade over forests, shrublands, savannahs, 183 

grasslands, and croplands during 2003–2020 (Figure 4b). Indeed, the most long-lasting dust 184 

emission events are widely seen in either 2019 or 2020 over 4,699 pixels out of the 36,386 185 
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examined pixels (Figure 4c), such as those during the 2019–2020 Australian bushfire season 186 

(Figure 1) and 2020 western United States extreme fire season (Extended Data Fig. 10). This 187 

recent elongation of post-fire dust emission is attributed here to the increased extent of wildfires, 188 

as indicated by the positive trends in active fire counts (Figure 4b). For the forest, shrubland, 189 

savannah, grassland, and cropland pixels examined here, the averaged fire counts per 0.1˚ pixel 190 

per event increase by 3.50, 0.56, 0.37, 1.12, and 0.24 per decade, respectively, with all p-values 191 

< 0.05 except for the croplands, according to the Mann-Kendall test. Meanwhile, the analyzed 192 

forest, grassland, and cropland pixels exhibit moderately significant reduction (p < 0.1, based on 193 

the Mann-Kendall test) in pre-fire soil moisture during 2003 to 2020. 194 

 195 

Discussion 196 

Our findings have direct implications on the ecological and societal impacts of intensifying 197 

droughts and wildfires over certain landscapes. In addition to the instantaneous societal 198 

disruptions and health risks, drought and resultant wildfires set the stage for dust storms even 199 

weeks after burning. Our findings are further supported by recent in-situ observations23 reporting 200 

that wildfires reduce soil biocrusts by 50%, which may also enhance dust emissions24. These 201 

post-fire dust storms could be as intensive as those observed in arid to semi-arid lands (Figure 2 202 

and Extended Data Fig. 3b) and cause similar infrastructure damages and air quality declines25. 203 

Compared with the dryland dust storms, the post-fire dust storms may cause even larger 204 

socioeconomic and health impacts, due to their closer location to populated areas and possible 205 

mixing of harmful combustion residuals into the post-fire dust storms. The emitted soil particles 206 

from these disturbed lands may enter the global dust cycle, altering the radiation budget26, cloud 207 

and precipitation patterns27, as well as oceanic3 and terrestrial biogeochemistry28. For example, 208 

dust particles from Australia are key suppliers of iron, a bio-essential trace metal, to the iron-209 

limited ecosystems of Southern Ocean. The recently uncovered widespread phytoplankton 210 

blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia29 211 

could be a result of the post-fire dust emission triggered by the 2019-2020 Australian bushfires 212 

(Figure 1, Extended Data Fig. 2, and Supplementary Fig. 1). On the other hand, the high-213 

latitude post-fire dust emissions (Figure 2a, c) may provide an additional source for light-214 

absorbing aerosols, beyond transported dust and smoke, that may accelerate snow darkening and 215 

melting with warming30. Furthermore, the currently identified role of drought and fires on post-216 
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fire dust emission (Figure 3, Extended Data Figs. 8 and 9) will potentially become more 217 

interactive and complicated in the upcoming decades, given the complex response in drought31 218 

and wildfires32–35 to anthropogenic activity and global warming. Overall, our study calls for 219 

adaptation and/or mitigation strategies for this compound drought-fire-dust hazard, which is 220 

likely to become more frequent and severe with ongoing environmental change.  221 

 222 

The uncertainty of our study mainly derives from the quality of the currently analyzed satellite 223 

data, especially retrieval difficulties. First, transported dust provides inevitable uncertainty for 224 

quantifying the intensity and duration of post-fire dust emissions, particularly over the African 225 

savannahs that are close to dry-land dust hotspots. Although we focus on coarse-mode dust 226 

optical depth as the metric for dust abundance to minimize the impacts of transported, smaller-227 

sized dust particles on our results (see Methods), the retrieval of coarse-mode dust optical depth 228 

involves errors too36,37. A sensitivity test that addresses possibly non-local–originated high 229 

DODs suggests that transported dust may cause an overestimation of post-fire dust duration by 230 

0–3 days (10th – 90th percentiles of all pixels from both regions) and maximum post-fire DOD by 231 

0-7% in North Africa (Supplementary Fig. 2) and Australia (Supplementary Fig. 3). Second, 232 

deposited combustion ash from the burned vegetation could be lifted by strong winds along with 233 

mineral dust. Ash (typically 0 – 50 mm thick above surface) consists of mineral materials and 234 

charred organic components with a wide range of particle size, shape, and optical properties that 235 

partially overlap with dust38; therefore, the currently identified post-fire dust events, especially 236 

those shortly after burning, may contain a mixture of co-emitted dust and deposited ash. Here we 237 

perform a qualitative test that assumes pure dust emission only occurs after the first day of post-238 

fire high DOD. This test confirms similar peak intensity of post-fire pure dust emissions versus 239 

potential dust-ash-mixture emissions (Supplementary Fig. 4). Nevertheless, a dust-ash-mixture 240 

storm can cause similar socioeconomic and health problems as a pure dust storm. With 241 

development of higher-quality satellite and ground observations, especially the hyperspectral and 242 

mineralogical information of dust and ash emitted from specific geographic locations, we will 243 

continue to quantify regional and global post-fire dust emissions. Based on this post-fire dust 244 

emission inventory, future observational and modeling studies should characterize the dynamical 245 

and optical properties of post-fire dust emissions, quantify their climatic impacts, and compare 246 

with regular dust emissions from dry lands.  247 
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 266 
Figure 1 Extreme dust activity associated with vegetation disturbances caused by the 2019-267 

2020 Australian bushfires. a. True color image of aerosol plumes originating from the active 268 

fires and burned areas in southeastern Australia on December 22, 2019, captured by the 269 

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra 270 

satellite that overpasses in local morning time. The red dots indicate active fires detected by 271 

MODIS onboard both the Terra and Aqua satellites, both day and night. b. Time series of active 272 

fire count (orange bars, referring to the left y-axis), enhanced vegetation index (EVI, green line, 273 

referring to rightmost y-axis), and daily maximum dust optical depth (DOD, black dots, referring 274 

to the inter right y-axis) within ±0.05˚ of 27.8˚S, 152.3˚E (location indicated in panel a). The 275 

blue squares indicate dates with abnormally dry soil (below long-term 10th percentile). The green 276 

and grey shadings represent the long-term 10th–90th percentiles in the daily EVI and DOD, 277 

respectively. The large and small black dots represent time series of DOD; large dots indicate 278 

situations with relatively small amount of biomass burning aerosols, represented by below-279 

average coincident fine-mode optical depth (FOD). c. Anomaly in EVI during December 2019 to 280 

February 2020, compared to the long-term average during December to February of 2000–2020. 281 
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d. Anomaly in DOD during December 2019 to February 2020, compared to the long-term 282 

average during December to February of 2000–2020. In c and d, only the EVI anomalies and 283 

DOD anomalies more extreme than the long-term 10th–90th percentiles are shown in color. In c 284 

and d, the stitches and slashes indicate 0.1˚ pixels with more than 30 and 100, respectively, 285 

active fires during the December 2019 to February 2020 Australian bushfire season. Satellite 286 

image from NASA Earth Observatory. Figure created using NCL39. 287 

 288 
Figure 2 Global distribution of post-fire dust events. a. Occurrence of post-fire dust events 289 

during 2003–2020 indicated by the size of dots, with color representing the dominant land cover 290 

type. The land cover types are identified by the Moderate Resolution Imaging Spectroradiometer 291 

(MODIS) Terra+Aqua Combined Land Cover product following the International Geosphere 292 

Biosphere Programme (IGBP) scheme for the period 2003–2020. b. Total occurrence of large 293 

wildfire events (orange bars), significant Enhanced Vegetation Index (EVI) reduction (green 294 

bars), and dust emission (grey bars) by land cover type (see Methods). c. Maximum Dust Optical 295 

Depth (DOD, color of dots), representing the columnar dust loading associated with the most 296 

intensive post-fire dust emission, and mean duration (days, size of dots) of post-fire dust events. 297 

d. Boxplot (thin lines: 10th – 90th percentiles, thick lines: 25th – 75th percentiles, intersection: 298 
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median of both metrics) of maximum DOD and duration of post-fire dust events, by land cover 299 

type. 300 

 301 
Figure 3 Severity of post-fire dust events regulated by the extent of precedent wildfires and 302 

vegetation disturbance. a. Probability distribution of post-fire, 30-day average (top) DOD and 303 

(bottom) EVI as a function of number of precedent fires. The probability distribution is 304 

represented by the frequency (%) of DOD and EVI below the long-term 2.5th percentile, between 305 

the 2.5th–5th, 5th–10th, 10th–25th, 25th–50th, 50th–75th, 75th–90th, 90th–95th, 95th–97.5th percentiles, 306 

and above the 97.5th percentile. b. Scatterplot of post-fire minimum EVI (referring to the left y-307 

axis) and number of precedent fires. Each dot in b corresponds to a post-fire dust event, with the 308 

color representing the duration (days) of this event. The boxes in b indicate the 10th, 25th, 50th, 309 

75th, and 90th percentiles of post-fire dust event duration (days, referring to the right y-axis) with 310 

precedent fires ranging between 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, 81–90, 91–100, and 311 

above 100 during the burning period. 312 
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 313 
Figure 4 Observed evolution of the occurrence and duration of post-fire dust events during 314 

2003–2020. a–b. Time series of the a. occurrence and b. mean duration (days) of post-fire dust 315 

events for each dominant land cover type during 2003–2020. In b., the sizes of dots are 316 

proportional to the average fire counts per large wildfire event for each land cover type and year. 317 

The thicknesses of the lines are proportional to the total occurrence of post-fire dust emission for 318 

each land cover type during 2003-2020. The vertical lines indicate the 10th to 90th percentiles of 319 

duration among all post-fire dust events for each land cover type and year. c. Year of the longest-320 

duration post-fire dust event. 321 
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Methods 322 

Satellite-based measurements of wildfire intensity 323 

To assess the intensity of wildfires, we analyze the active fires reported by the Moderate 324 

Resolution Imaging Spectroradiometer (MODIS) onboard the polar-orbiting Terra and Aqua 325 

satellites. The collection 6.1 MODIS active fire product detects fires in 1-km pixels that burn at 326 

the time of overpass under relatively cloud-free conditions using a contextual algorithm. The 327 

detection algorithm uses native (i.e., unprojected swath) 4-, 11-, and 12-μm brightness 328 

temperatures derived from the corresponding1-km MODIS channels, and, for daytime 329 

observations, 0.65-, 0.86-, and 2.1-μm reflectance, aggregated to 1-km spatial resolution40. Daily 330 

wildfire intensity is examined here as the total active fire counts from both the day-time and 331 

night-time MODIS measurements.  332 

 333 

The relatively coarse-resolution satellite measurements of active fires at about 1 km resolution 334 

may miss nearly half of the burned area in Africa detected by higher resolution satellite 335 

measurements (about 20 m resolution) in a given year41. The underrepresentation of small fires 336 

may lead to underestimation of small fire-induced dust emission. 337 

 338 

Satellite-based measurements of dust and other aerosols 339 

Dust Optical Depth (DOD) is a column-integration of extinction coefficient by mineral particles. 340 

The current study examines DOD from MODIS onboard the Terra and Aqua satellites and the 341 

non-spherical aerosol optical depth (nsAOD) from the Multiangle Imaging SpectroRadiometer 342 

(MISR) instrument42 on Terra, during 2003-2020. 343 

 344 

MODIS DOD represents the optical depth of absorbing, coarse-mode aerosols that are often dust 345 

over bare ground or sparsely vegetated regions. Following Pu et al. (2020)43, daily MODIS DOD 346 

is retrieved from collection 6.1, level 2 MODIS Deep Blue aerosol products44,45, including 347 

aerosol optical depth (AOD), single-scattering albedo (ω), and the Ångström exponent (α). All 348 

the daily variables are first interpolated to a 0.1˚ ´ 0.1˚ grid using the algorithm described by 349 

Ginoux et al. (2010)46. To account for dust’s absorption of solar radiation and separate dust from 350 

scattering aerosols, such as sea salt, we require the single-scattering albedo at 470 nm to be less 351 

than 0.99 for the retrieval of DOD. Based on the size distribution of dust towards the coarse 352 
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range and to separate it from fine particles, DOD is retrieved as a continuous function of AOD 353 

and Ångström exponent:  354 

DOD = AOD ´ (0.98 – 0.5089α + 0.051α2).                                                            (1) 355 

 356 

This retrieval of DOD is on the basis of Ångström exponent’s sensitivity to particle size, with 357 

smaller values of Ångström exponent indicating larger particles47, and the previously established 358 

relationship between Ångström exponent and fine-mode AOD48. Details about the retrieval 359 

process and estimated errors are summarized by Pu and Ginoux (2018)37. MODIS DOD products 360 

have been widely used for the identification and characterization of dust sources21,49,50, as well as 361 

examination of variations in regional and global dustiness37,43,51,52.  362 

 363 

Following the recommendation from Baddock et al. (2016)50 and previous applications of 364 

MODIS DOD37,43,51,52, here we use DOD with a low-quality flag of QA = 1, under the 365 

assumptions that 1) dust sources are better detected using DOD with a low-quality flag, and 2) 366 

retrieved aerosol products are poorly flagged over dust source regions. For example, when the 367 

standard deviation of AOD between 10´10 pixels is greater than 0.18, the retrieval algorithm 368 

considers the scene as cloudy although intense dust plumes over dust sources could easily reach 369 

such value50. Indeed, the comparison with the Aerosol Robotic Network (AERONET) DOD 370 

shows drastically decreased sample size but minimally enhanced consistency for any land cover 371 

type after applying a higher quality flag (Supplemental Figs. 5–6).  372 

 373 

The residual of total aerosol optical depth after subtracting DOD, namely fine-mode optical 374 

depth (FOD), represents the abundance of other aerosol species, which is primarily smoke 375 

aerosols over active fires. In short, DOD and FOD represent the atmospheric abundance of 376 

particles that are relatively coarse and fine, respectively, mainly reflecting dust and carbonaceous 377 

aerosols, over burned and active burning areas. Overall, the optimal spatial and temporal 378 

coverage of MODIS aerosol products with over 20 years’ record warrant its application for 379 

studying the day-to-day variations and environmental drivers of global aerosol loads. 380 

 381 

It should be noted that limited by the spatial resolution of MODIS aerosol products, our study is 382 

conducted at 0.1˚ latitude and longitude resolution (about 10 km near the equator), which may 383 
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not be ideal for accurate representation of fire, dust, and environmental structures over complex 384 

landscapes.  385 

 386 

Benefiting from its multiangle observations, MISR data can be used to directly retrieve AOD and 387 

particle properties42. In the current study, Version 23, Level 2, daily MISR 550‐nm nonspherical 388 

AOD (nsAOD) at 4.4-km resolution53 is compared with MODIS DOD. The MISR nonspherical 389 

AOD fraction is often referred to as “fraction of total AOD due to dust”, as dust is the primary 390 

nonspherical aerosol particle in the atmosphere, especially over sparsely vegetated regions54. The 391 

MISR nsAOD has been used to examine variations in dustiness in North Africa and the Middle 392 

East22,55–57. Similar to our use of MODIS DOD with a low-quality flag, here we analyze the raw 393 

MISR nsAOD retrieval without quality filtering. MISR nsAOD data is also interpolated to a 0.1˚ 394 

´ 0.1˚ grid using the algorithm described by Ginoux et al. (2010)46. Due to its relatively narrow 395 

swath of ~380 km, MISR samples the study region about every 2-16 days. The sparse sampling 396 

of MISR limits its application in understanding day-to-day variations of aerosols, such as in our 397 

current study; but MISR’s capability at distinguishing dust particles from other aerosol species 398 

provides useful benchmark for evaluating other satellite-based approximate measurements of 399 

dust abundance. The correlation between temporally (both onboard the Terra satellite) and 400 

spatially (within 0.1˚ pixels) collocated MISR nsAOD and MODIS DOD measurements during 401 

2019 to 2020 suggests a generally high consistency between the two measurements of dust mass 402 

loading (Supplementary Fig. 7). Correlation exceeding 0.7 is widely seen over the identified 403 

hotspot regions for post-fire dust emission (e.g. in Figure 2), such as tropical savannahs in 404 

Africa, South America, and northern and eastern Australia, shrublands in western Australia, 405 

grasslands and croplands in central Asia, and various landscapes in western North America 406 

(Supplementary Fig. 7), ensuring the reliability of MODIS DOD in the current analysis.  407 

 408 

The Version 3, level 2 (cloud screened and quality assured), sub-daily AERONET coarse-mode 409 

AOD (DOD) and fine-mode AOD (FOD) at 500 nm obtained from the 205 sun photometers 410 

across the globe58 and retrieved by the Spectral Deconvolution Algorithm (SDA) 59 are analyzed 411 

here to evaluate the accuracy of spatially and temporally collocated MODIS DOD and FOD, 412 

especially for various land cover types. Here a “collocated observation” is identified when there 413 

is available MODIS DOD and FOD over the 0.1˚ grid covering the AERONET site within ± 0.5 414 
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hour of the corresponding AERONET site observation. This definition results in a total of 64,390 415 

collocated observations between AERONET and MODIS. The comparison shows acceptable 416 

consistency between MODIS and AERONET in both DOD (Supplementary Fig. 5) and FOD 417 

(Supplementary Fig. 8) across the major landscapes. Highest correlation and lowest root-mean 418 

square error (RMSE) between MODIS and AERONET DOD is seen over forests and savannahs, 419 

respectively (Supplementary Fig. 5). Highest correlation and lowest RMSE between MODIS 420 

and AERONET FOD are both seen over savannahs (Supplementary Fig. 8). Higher accuracy of 421 

MODIS DOD and FOD is particularly present for high DOD and FOD (Supplementary Figs. 5, 422 

8).  423 

 424 

Total attenuated backscatter and depolarization ratio at 532 nm, as well as aerosol subtype 425 

information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 4.20 426 

(V4) Level 2 aerosol products are analyzed to confirm episodic dust emission from post-fire 427 

landscapes in eastern Australian during the 2019–2020 bushfire season. The spaceborne lidar 428 

instruments, such as CALIOP aboard the Cloud Aerosol Lidar and Infrared Pathfinder Satellite 429 

Observation (CALIPSO) spacecraft60, are able to provide vertical structure of aerosol and clouds. 430 

Despite CALIOP’s limited spatial coverage (with a diameter of 70 m on Earth surface), the 431 

vertical distribution of aerosol abundance (reflected by total attenuated backscatter), aerosol 432 

shape (reflected by depolarization ratio, with a typical value of 0.2–0.3 for dust61), and aerosol 433 

subtypes (identified from altitude, location, surface type, estimated particulate depolarization 434 

ratio, integrated attenuated backscatter62) is particularly useful for identifying post-fire dust 435 

emission during selected events. Data for four nighttime overpasses on November 5, 2019, 436 

December 22, 2019, January 4, 2020, and January 22, 2020 are shown in Extended Data Fig. 2. 437 

These overpasses capture near-surface dust-smoke mixtures during active burning and pure dust 438 

after burning over the burned land in eastern Australia.  439 

 440 

Satellite-based measurements of vegetation cover 441 

Collection 6, MODIS Enhanced Vegetation Index (EVI) derived from atmospherically corrected 442 

reflectance in the red, near-infrared, and blue wavebands63 is analyzed here for vegetation 443 

disturbances caused by wildfires. EVI and another vegetation index, the Normalized Difference 444 

Vegetation Index (NDVI), effectively characterize the global range of vegetation states and 445 
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processes and have been successfully applied in various ecosystem, climate, and natural 446 

resources management studies64,65. Compared with NDVI, EVI minimizes canopy-soil variations 447 

and improves sensitivity over dense vegetation conditions. The VI's use a MODIS-specific 448 

compositing method based on product quality assurance metrics to remove low quality pixels. 449 

From the remaining good quality VI values, a constrained view angle approach then selects a 450 

pixel to represent the compositing period (from the two highest NDVI values it selects the pixel 451 

that is closest-to-nadir). Benefiting from the MODIS sensors aboard both Terra and Aqua 452 

satellites, here we analyze 16-day EVI composite eight days apart from both satellites, thereby 453 

obtaining a higher temporal resolution (8-day) product by combining both data records. 454 

Corresponding to the spatial resolution of analyzed aerosol data, the original 1-km EVI data is 455 

also interpolated to a 0.1˚ ´ 0.1˚ grid using the algorithm described by Ginoux et al. (2010)46. 456 

 457 

Identification of dust emission after wildfires 458 

The identification of post-fire dust events follows these steps: (1) We screen the daily 0.1˚ active 459 

fire count data to identify the location and time of the occurrence of large fires, namely more 460 

than 20 fires in consecutive seven days. Each location-time combination is defined as a large 461 

wildfire event. We choose 20 fires as the threshold for identifying large fires because of the 462 

minor change in the probability distributions of EVI and DOD after the occurrence of 1-20 fires 463 

during the antecedent burning week (Figure 3a). (2) Among these large wildfire events, we 464 

identify those with significant EVI reduction, i.e. any 8-day EVI that falls below the 10th 465 

percentile of the long-term spread, during the subsequent 60 days after the end of burning. The 466 

long-term spread for a specific 0.1˚ pixel on a specific date of year is obtained by aggregating all 467 

16-day EVI measurements from both MODIS-Terra and MODIS-Aqua within ±15 days of that 468 

date for that pixel during 2003-2020. (3) Among those large wildfire events that trigger 469 

significant EVI reduction, we then examine DOD and FOD measurements during the 60 days 470 

after the end of burning. A day with significant DOD increase, i.e., exceeding the 90th percentile 471 

of long-term spread, from either morning or afternoon measurements and concurrent moderate-472 

to-low FOD, i.e. below the 50th percentile of long-term spread, from both the morning and 473 

afternoon measurements is defined as a post-fire dust emission day. The reason for excluding 474 

high FOD situations is to minimize contamination of flying ash and smoke aerosols over active 475 

fires on the DOD signal, as flying ash and smoke aerosols are mostly smaller particles compared 476 
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with dust66,67. The long-term spread of DOD and FOD for a specific date of year and 0.1˚ pixel 477 

are aggregated from both MODIS-Terra and MODIS-Aqua within ±15 days of that date for that 478 

pixel during 2003-2020. The duration of a post-fire dust event is defined as the total number of 479 

post-fire dust emission days within 60 days of the end of burning. The maximum DOD of a post-480 

fire dust event is defined as the maximum DOD among the post-fire dust emission days.   481 

 482 

Note that the identification of post-fire dust events depends on the thresholds for significant EVI 483 

reduction and DOD increase. Among the analyzed 151,727 large fire events (52% of all week-484 

pixel combinations that experienced at least one active fire), 91% and 78% are followed by any 485 

8-day EVI falling below long-term 10th percentile and 5th percentile, respectively, during the 486 

subsequent 60 days; 54% and 37% are followed by any daily DOD reaching long-term 90th (with 487 

EVI below 10th percentile) and 95th (with EVI below 5th percentile) percentiles, respectively, 488 

during the subsequent 60 days. 489 

 490 

Statistics of post-fire dust events for different land cover types 491 

Number of large wildfire events, those with significant EVI reduction, and with post-fire dust 492 

emission events are reported for different land cover types, along with the distribution of the 493 

duration and maximum DOD of post-fire dust emissions. The land cover data is obtained from 494 

the collection 6 MODIS Terra+Aqua Combined Land Cover product68. We examine the primary 495 

land cover scheme that identifies 17 classes defined by the International Geosphere-Biosphere 496 

Programme (IGBP), including 11 natural vegetation classes, three human-altered classes, and 497 

three non-vegetated classes. The yearly land cover fraction data for the 17 classes originally at 498 

0.05˚ latitude and longitude are first regridded to the same 0.1˚ grid as the aerosol data, following 499 

Ginoux et al. (2010). All global 0.1˚ pixels are then grouped to five dominant land cover types, 500 

namely forests (Evergreen needleleaf forests, Evergreen broadleaf forests, Deciduous needleleaf 501 

forests, Deciduous broadleaf forests, and mixed forests), shrublands (closed and open 502 

shrublands), savannahs (woody savannahs and savannahs), grasslands, and croplands (croplands 503 

and cropland/natural vegetation mosaics), using the 18-year average land cover fractions. Note 504 

that the uncertainty of the MODIS land cover data, such as the unrealistic savannahs in the 505 

boreal region (Figure 2a), may complicate the land cover-specific interpretation of current 506 

results69. 507 
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 508 

Soil moisture and wind observations  509 

To explore additional drivers of dust emission after wildfires, we analyze daily soil moisture at 510 

0.1˚ spatial resolution from European Space Agency (ESA) Climate Change Initiative (CCI) soil 511 

moisture data70 and hourly 10-m wind speed at 0.1˚ spatial resolution from European Centre for 512 

Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)71. The ESA CCI soil 513 

moisture combines various single-sensor active and passive microwave soil moisture products 514 

into three harmonized products: a merged ACTIVE, a merged PASSIVE, and a COMBINED 515 

active + passive microwave product. Here we analyze the version 06.1 break-adjusted 516 

COMBINED daily soil moisture for the top layer72. This product involves several algorithm 517 

updates and represents the most accurate ESA CCI global soil moisture data from 1978-2020. 518 

ERA5 is the latest reanalysis from ECMWF covering the period of 1950 to near real time and 519 

assimilates various observations in the upper air and near surface. Regional evaluation of ERA5 520 

hourly 10-m wind speed show vastly improved accuracy of ERA5 wind data compared with its 521 

older version ERA-Interim, but relatively large discrepancy with in situ observations remains 522 

over complex terrains73,74. In this study, we focus on daily maximum 10-m wind speed, which is 523 

directly related to dust emission75 and obtained from the original hourly ERA5 reanalysis data. 524 

We obtain collocated daily soil moisture and daily maximum wind speed with observed dust at 525 

the nearest pixel of their original grid to the corresponding location of dust pixel. 526 

 527 

Understanding post-fire dust emissions through examination of aerosols, EVI, soil moisture, 528 

and wind speed responses to large wildfires 529 

To assess the temporal evolution of environmental responses to large wildfires, weekly averaged 530 

EVI, soil moisture, and aerosol, as well as weekly maximum wind speed, are examined in their 531 

probability distribution, i.e. the frequency of these variables falling below the long-term 2.5th 532 

percentile, between the 2.5th–5th, 5th–10th, 10th–25th, 25th–50th, 50th–75th, 75th–90th, 90th–95th, 533 

95th–97.5th percentiles, and above the 97.5th percentile. For example, a frequency of certain 534 

variable falling below the long-term 2.5th percentile that exceeds 2.5% indicates a higher 535 

probability of extremely low value of this variable after the occurrence of large fires. The long-536 

term percentiles of these variables for a specific week of year and 0.1˚ are aggregated from that 537 

week and ±1 week of the year for that pixel during 2003-2020. 538 
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 539 

To assess the response of aerosols, EVI, soil moisture, and wind speed to intensifying precedent 540 

fires, we examine 30-day average DOD, 30-day average and minimum EVI and 30-day 541 

minimum soil moisture, as well as and 30-day upper decile wind speed, either in their probability 542 

distribution or actual value, as a function of active fires during the antecedent week. In the 543 

probability distribution analysis, the long-term percentiles of each variable at 0.1˚ for a specific 544 

30-day period of a year is constructed from 30-day running averages during ±30 days, 545 

respectively, of the center date of the year. Trend analysis of the occurrence and intensity of 546 

post-fire dust events, active fire accounts, and soil moisture involves the application of the 547 

Mann-Kendall nonparametric test for monotonic trend and Theil-Sen robust estimate of linear 548 

trend76. A monotonic upward (downward) trend means that the variable consistently increases 549 

(decreases) through time, but the trend may or may not be linear; thus the Mann-Kendall test is a 550 

more general approach than linear regression-based tests for identifying any upward or 551 

downward trend. 552 

 553 

Data Availability  554 

The datasets for conducting the analysis presented here are all publicly available, including: the  555 

MODIS Collection 6 Active Fire Detections (MCD14ML) acquired from  556 

NASA Fire Information for Research Management System (https://earthdata.nasa.gov/firms); the 557 

MODIS Deep Blue aerosol products acquired from the Level-1 and Atmosphere Archive and 558 

Distribution System (LAADS) Distributed Active Archive Center (DAAC) 559 

(https://ladsweb.modaps.eosdis.nasa.gov/); the MISR aerosol products acquired from the NASA 560 

Langley Research Center Atmospheric Science Data Center (https://l0dup05.larc.nasa.gov/cgi-561 

bin/MISR/main.cgi); the AERONET coarse-mode aerosol optical depth data downloaded 562 

from https://aeronet.gsfc.nasa.gov; the ESACCI soil moisture data download from https://www.esa-563 

soilmoisture-cci.org/node/238; the ERA-5 hourly climate data provided by ECMWF 564 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5); the MODIS MCD12Q1v006 565 

Landcover Type 1 product (https://lpdaac.usgs.gov/products/mcd12q1v006/); and the MODIS L3 566 

EVI (MOD13C1 and MYD13C1) from DAAC (https://lpdaac.usgs.gov/products/mod13c1v006/). 567 

We generate a list of all identified dust emission cases following large fires available at 568 

https://doi.org/10.6084/m9.figshare.2064805577. 569 
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 570 

Code Availability 571 

The code to carry out the current analyses is available from the corresponding author upon 572 

request. 573 

 574 

References 575 

1. Bowman, D. M. J. S. et al. Fire in the earth system. Science (80-. ). 324, 481–484 (2009). 576 

2. Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire 577 

events. Nat. Ecol. Evol. 1, 1–6 (2017). 578 

3. Hamilton, D. S. et al. Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and 579 

Impacts on Ocean Biogeochemistry. Ann. Rev. Mar. Sci. 14, 303–330 (2022). 580 

4. Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus 581 

deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. 582 

Sci. U. S. A. 116, 16216–16221 (2019). 583 

5. Schlosser, J. S. et al. Analysis of aerosol composition data for western United States 584 

wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced 585 

aerosol constituents. J. Geophys. Res. Atmos. 122, 8951–8966 (2017). 586 

6. Wagner, R., Schepanski, K. & Klose, M. The Dust Emission Potential of Agricultural-587 

Like Fires — Theoretical Estimates From Two Conceptually Different Dust Emission 588 

Parameterizations. J. Geophys. Res.  Atmos. 126, e2020JD034355 (2017). 589 

7. Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in 590 

Northern sub-Saharan Africa. Environ. Res. Lett. 11, (2016). 591 

8. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 592 

1, 500–515 (2020). 593 

9. Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, 594 

consequences, and solutions in a changing world. Ecosphere 10, (2019). 595 

10. Okin, G. S., Gillette, D. A. & Herrick, J. E. Multi-scale controls on and consequences of 596 

aeolian processes in landscape change in arid and semi-arid environments. J. Arid Environ. 597 

65, 253–275 (2006). 598 

11. Raupach, M. R. Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60, 599 

375–395 (1992). 600 



 23 

12. Webb, N. P. et al. Vegetation Canopy Gap Size and Height: Critical Indicators for Wind 601 

Erosion Monitoring and Management. Rangel. Ecol. Manag. 76, 78–83 (2021). 602 

13. Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global 603 

increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Chang. Biol. 604 

28, 1544–1559 (2022). 605 

14. Ravi, S. et al. Aeolian processes and the biosphere. Rev. Geophys. 49, 1–45 (2011). 606 

15. Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R. & Foltz, R. B. Wind 607 

erosion from a sagebrush steppe burned by wildfire: Measurements of PM10 and total 608 

horizontal sediment flux. Aeolian Res. 10, 25–36 (2013). 609 

16. Wagenbrenner, N. S. A large source of dust missing in Particulate Matter emission 610 

inventories? Wind erosion of post-fire landscapes. Elem Sci Anth 5, (2017). 611 

17. Jeanneau, A. C., Ostendorf, B. & Herrmann, T. Relative spatial differences in sediment 612 

transport in fire-affected agricultural landscapes: A field study. Aeolian Res. 39, 13–22 613 

(2019). 614 

18. Deb, P. et al. Causes of the Widespread 2019–2020 Australian Bushfire Season. Earth’s 615 

Futur. 8, (2020). 616 

19. Nogrady, B. & Nicky, B. the Climate Link To Australia’s Fires. Nature 577, (2020). 617 

20. Yu, Y. & Ginoux, P. Assessing the contribution of the ENSO and MJO to Australian dust 618 

activity based on satellite- And ground-based observations. Atmos. Chem. Phys. 21, 8511–619 

8530 (2021). 620 

21. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of 621 

anthropogenic and natural dust sources and their emission rates based on MODIS Deep 622 

Blue aerosol products. Rev. Geophys. 50, RG3005 (2012). 623 

22. Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H. & Notaro, M. Identification and 624 

Characterization of Dust Source Regions Across North Africa and the Middle East Using 625 

MISR Satellite Observations. Geophys. Res. Lett. 45, 6690–6701 (2018). 626 

23. Brianne, P., Rebecca, H. & David, L. The fate of biological soil crusts after fire: A meta-627 

analysis. Glob. Ecol. Conserv. 24, e01380 (2020). 628 

24. Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust 629 

controlled by biological soil crusts. Nat. Geosci. (2022). doi:10.1038/s41561-022-00942-1 630 

25. Goudie, A. S. & Middleton, N. J. Desert dust in the global system. (Springer, 2006). 631 



 24 

26. Ginoux, P. Atmospheric chemistry: Warming or cooling dust? Nature Geoscience 10, 632 

246–247 (2017). 633 

27. DeMott, P. J. et al. Predicting global atmospheric ice nuclei distributions and their impacts 634 

on climate. Proc. Natl. Acad. Sci. 107, 11217–11222 (2010). 635 

28. Yu, H. et al. The fertilizing role of African dust in the Amazon rainforest: A first 636 

multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder 637 

Satellite Observations. Geophys. Res. Lett. 42, 1984–1991 (2015). 638 

29. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian 639 

wildfires. Nature 597, 370–375 (2021). 640 

30. Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-641 

mountain Asia. Nat. Clim. Chang. 10, 1045–1051 (2020). 642 

31. Cook, B. I. et al. Twenty-First Century Drought Projections in the CMIP6 Forcing 643 

Scenarios. Earth’s Futur. 8, 1–20 (2020). 644 

32. Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. 645 

Sci. Adv. 7, (2021). 646 

33. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire 647 

across western US forests. Proc. Natl. Acad. Sci. U. S. A. 113, 11770–11775 (2016). 648 

34. Abram, N. J. et al. Connections of climate change and variability to large and extreme 649 

forest fires in southeast Australia. Commun. Earth Environ. 2, (2021). 650 

35. Yu, Y. et al. Machine learning–based observation-constrained projections reveal elevated 651 

global socioeconomic risks from wildfire. Nat. Commun. 13, 1–11 (2022). 652 

36. Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth ? 653 

Atmos. Chem. Phys. 18, 12491–12510 (2018). 654 

37. Pu, B. & Ginoux, P. Climatic factors contributing to long-term variations in surface fine 655 

dust concentration in the United States. Atmos. Chem. Phys. 18, 4201–4215 (2018). 656 

38. Bodí, M. B. et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic 657 

effects. Earth-Science Rev. 130, 103–127 (2014). 658 

39. UCAR/NCAR/CISL/TDD. The NCAR Command Language (Version 6.6.2) [Software]. 659 

(2019). doi:http://dx.doi.org/10.5065/D6WD3XH5 660 

40. Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection 661 

algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016). 662 



 25 

41. Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by 663 

small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. U. S. A. 664 

118, 1–7 (2021). 665 

42. Diner, D. J. et al. Multi-angle Imaging SpectroRadiometer (MISR) instrument description 666 

and experiment overview. in IEEE Transactions on Geoscience and Remote Sensing 36, 667 

1072–1087 (1998). 668 

43. Pu, B. et al. Retrieving the global distribution of the threshold of wind erosion from 669 

satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land-670 

atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 20, 55–81 (2020). 671 

44. Sayer, A. M., Hsu, N. C., Bettenhausen, C. & Jeong, M. J. Validation and uncertainty 672 

estimates for MODIS Collection 6 ‘deep Blue’ aerosol data. J. Geophys. Res. Atmos. 118, 673 

7864–7872 (2013). 674 

45. Hsu, N. C. et al. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. 675 

J. Geophys. Res. Atmos. 118, 9296–9315 (2013). 676 

46. Ginoux, P., Garbuzov, D. & Hsu, N. C. Identification of anthropogenic and natural dust 677 

sources using moderate resolution imaging spectroradiometer (MODIS) deep blue level 2 678 

data. J. Geophys. Res. 115, 1–10 (2010). 679 

47. Eck, T. F. et al. Wavelength dependence of the optical depth of biomass burning, urban, 680 

and desert dust aerosols. J. Geophys. Res. Atmos. 104, 31333–31349 (1999). 681 

48. Anderson, T. L. et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction. 682 

J. Geophys. Res. 110, 1–16 (2005). 683 

49. Baddock, M. C., Bullard, J. E. & Bryant, R. G. Dust source identification using MODIS: 684 

A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. 685 

Environ. 113, 1511–1528 (2009). 686 

50. Baddock, M. C., Ginoux, P., Bullard, J. E. & Gill, T. E. Do MODIS-defined dust sources 687 

have a geomorphological signature? Geophys. Res. Lett. 43, 2606–2613 (2016). 688 

51. Pu, B. & Ginoux, P. Projection of American dustiness in the late 21st century due to 689 

climate change. Sci. Rep. 7, 1–10 (2017). 690 

52. Pu, B., Ginoux, P., Kapnick, S. B. & Yang, X. Seasonal Prediction Potential for 691 

Springtime Dustiness in the United States. Geophys. Res. Lett. 46, 9163–9173 (2019). 692 

53. Garay, M. J. et al. Introducing the 4.4 km spatial resolution Multi-Angle Imaging 693 



 26 

SpectroRadiometer (MISR) aerosol product. Atmos. Meas. Tech. 13, 593–628 (2020). 694 

54. Kalashnikova, O. V., Kahn, R., Sokolik, I. N. & Li, W.-H. Ability of multiangle remote 695 

sensing observations to identify and distinguish mineral dust types: Optical models and 696 

retrievals of optically thick plumes. J. Geophys. Res. 110, D18S14 (2005). 697 

55. Yu, Y. et al. Assessing temporal and spatial variations in atmospheric dust over Saudi 698 

Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos. 118, 699 

13253–13264 (2013). 700 

56. Yu, Y., Notaro, M., Kalashnikova, O. V. & Garay, M. J. Climatology of summer Shamal 701 

wind in the Middle East. J. Geophys. Res.  Atmos. 121, 289–305 (2016). 702 

57. Yu, Y. et al. Disproving the Bodélé Depression as the Primary Source of Dust Fertilizing 703 

the Amazon Rainforest. Geophys. Res. Lett. 47, 1–12 (2020). 704 

58. Giles, D. M. et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 705 

database - Automated near-real-time quality control algorithm with improved cloud 706 

screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. 707 

Tech. 12, 169–209 (2019). 708 

59. O’Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N. & Thulasiraman, S. Spectral 709 

discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 108, 1–15 710 

(2003). 711 

60. Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing 712 

algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009). 713 

61. Esselborn, M. et al. Spatial distribution and optical properties of Saharan dust observed by 714 

airborne high spectral resolution lidar during SAMUM 2006. Tellus, Ser. B Chem. Phys. 715 

Meteorol. 61, 131–143 (2009). 716 

62. Kim, M. H. et al. The CALIPSO version 4 automated aerosol classification and lidar ratio 717 

selection algorithm. Atmos. Meas. Tech. 11, 6107–6135 (2018). 718 

63. Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User ’s Guide 719 

(Collection 6). (2015). 720 

64. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of 721 

global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016). 722 

65. Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). 723 

66. Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M. & McNamara, D. 724 



 27 

Biomass burning aerosol size distribution and modeled optical properties. J. Geophys. Res. 725 

Atmos. 103, 31879–31891 (1998). 726 

67. Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the 727 

radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 728 

(1996). 729 

68. Friedl, M. A. & Sulla-Menashe, D. User Guide to Collection 6 MODIS Land Cover 730 

(MCD12Q1 and MCD12C1) Product. 6, (2018). 731 

69. Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping 732 

of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover 733 

product. Remote Sens. Environ. 222, 183–194 (2019). 734 

70. Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-735 

of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017). 736 

71. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 737 

(2020). 738 

72. Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of 739 

Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data 740 

Record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021). 741 

73. Minola, L. et al. Near-surface mean and gust wind speeds in ERA5 across Sweden: 742 

towards an improved gust parametrization. Clim. Dyn. 55, 887–907 (2020). 743 

74. Molina, M. O., Gutiérrez, C. & Sánchez, E. Comparison of ERA5 surface wind speed 744 

climatologies over Europe with observations from the HadISD dataset. Int. J. Climatol. 41, 745 

4864–4878 (2021). 746 

75. Klose, M. et al. Mineral dust cycle in the Multiscale Online Nonhydrostatic Atmosphere 747 

Chemistry model (MONARCH) version 2.0. Geosci. Model Dev. 14, 6403–6444 (2021). 748 

76. Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall Trend Analysis By Mann-Kendall 749 

Test: a Case Study of North-Eastern Part of Cuttack District, Orissa. Int. J. Geol. Earth 750 

Environ. Sci. 2, 2277–208170 (2012). 751 

77. Yu, Y. & Ginoux, P. Dust emission following large wildfires. Figshare (2022). 752 

doi:10.6084/m9.figshare.20648055.v2 753 

 754 


