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1. Abstract  15 
Internal variability in the climate system confounds assessment of human-induced climate 16 
change and imposes irreducible limits on the accuracy of climate change projections, especially 17 
at regional and decadal scales. A new collection of initial-condition large ensembles performed 18 
with seven Earth System Models under historical and future radiative forcing scenarios provides 19 
new insights into uncertainties due to internal variability vs. model differences. These data 20 
enhance the assessment of climate change risks including extreme events. In addition, they offer 21 
a powerful testbed for new methodologies aimed at separating forced signals from internal 22 
variability in the observational record. Opportunities and challenges confronting the design and 23 
dissemination of future large ensembles, including consideration of increased spatial resolution 24 
and model complexity along with emerging earth system applications, are discussed.  25 
 26 
2. Introduction 27 
Identifying anthropogenic influences on weather and climate amidst the background of internal 28 
variability, and providing projections of future changes, are central scientific challenges with 29 
practical implications1–6. Since the inception of the Coupled Model Intercomparison Project 30 
(CMIP) nearly two decades ago, substantial progress has been made on quantifying sources of 31 
uncertainty in climate projections (e.g., ref7–9). However, such multimodel archives confound 32 
uncertainties arising from differences in model formulation (i.e., structural uncertainty) with 33 
those generated by internal variability (variability arising from processes intrinsic to the coupled 34 
ocean-atmosphere-land-biosphere-cryosphere system). This distinction is important, because 35 
the former is potentially reducible as models improve, whereas the latter is an intrinsic property 36 
of each model and is largely irreducible after the memory of initial conditions is lost, typically 37 
after less than a few years over land10. This key distinction is often not widely appreciated and 38 
communicated to stakeholder groups11. Indeed, internal variability accounts for approximately 39 
half of the inter-model spread within the CMIP archive for projected changes in near surface air 40 
temperature, precipitation and runoff across North America and Europe over the next 50 years 41 
5,8,9,12–14. 42 
 43 
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One way to isolate the contribution of uncertainty due to internal variability is to perform an 44 
ensemble of simulations with a single fully-coupled global climate model under a particular 45 
radiative forcing scenario, applying perturbations to the initial conditions of each member in 46 
order to create diverging weather and climate trajectories, causing ensemble spread (e.g., 47 
ref12,15–17). Since the resulting sequences of unpredictable internal variability are randomly 48 
phased between the individual ensemble members, the forced response can be estimated by 49 
averaging over a sufficient number of members. The definition of “sufficient” depends on the 50 
quantity of interest, location, spatial scale, temporal scale, and time horizon, often on the order 51 
of 10-100 members (e.g., ref12). Such “initial-condition Large Ensembles” conducted with fully-52 
coupled global models (hereafter referred to as “LEs”) are a relatively new development in 53 
climate sciences, with the first efforts employing CMIP3-era models12,18. 54 
 55 
The past few years have witnessed an explosion of LEs with newer-generation CMIP5-class Earth 56 
System Models (ESMs; Table 1). Each LE required substantial high performance computing 57 
resources to produce, and generated hundreds of terabytes of output. For example, the CESM1 58 
LE used 21 million CPU hours and produced over 600 terabytes of model output (for comparison, 59 
the entire CESM1 contribution to CMIP5 was 170 terabytes).  Making these “big data” projects 60 
accessible to a wide range of users is challenging. Yet, their ease-of-use for different types of 61 
analysis work-flows has a substantial impact on the scientific value gained from their production. 62 
A case in point is the NCAR CESM1-LE Project19, which from the outset had an explicit goal of 63 
serving a broad research community by responding to user needs to provide easy access to the 64 
output and stable on-disk access. This project has resulted in more than 750 peer-reviewed 65 
studies to date, with approximately 400,000 data files downloaded from spinning disk. Remaining 66 
nimble to new workflows and users is important, as is following the recommended “big data” 67 
practice of “bringing your analysis to your data”. Following these principles, the CESM1-LE was 68 
made freely available as a public dataset on the Amazon Web Services cloud in autumn 2019.  69 
Access on the commercial cloud demonstrates strong interest in LEs from industry and scientific 70 
communities well beyond typical climate researchers that have historically used climate models.  71 
Such scrutiny and widespread use attests to the enormous value of LEs for a range of applications: 72 
truly a “sea-change” for climate and related sciences.  73 
 74 
3. Strength in Numbers: a Multi-Model Large Ensemble Archive 75 
While a single model LE has enormous utility, a multimodel collection of LEs can be leveraged for 76 
robust comparison of the forced response on regional/decadal scales across models, as well as 77 
of the characteristics of internal variability across models. It can also advance model evaluation 78 
by providing more complete information on biases in internal variability vs. those in the forced 79 
response. Unlike CMIP, a multimodel archive of LEs allows for direct separation of projection 80 
uncertainty into a structural component due to model differences and an internal variability 81 
component. Despite these advantages, most analyses to date have been limited to one or at most 82 
two LEs  (with a few exceptions, e.g., refs20,21), in part because of the burdensome task of 83 
accessing large volumes of data from disparate sources.  To fill this gap, we have produced a 84 
centralized data repository of LEs conducted with seven different CMIP5-class ESMs under 85 
historical and future emissions scenarios (hereafter referred to as the “Multi-Model Large 86 
Ensemble Archive” or MMLEA; Table 1). This repository includes gridded fields of key variables at 87 
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daily and monthly resolution, and is easily accessible via the NCAR Climate Data Gateway 88 
(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.html).  89 
 90 
This Perspective seeks to illustrate some of the new insights that can be gained from the MMLEA, 91 
with the aim of widening its usage and stimulating new research directions including emerging 92 
Earth system applications. We also look to the future of initial-condition LEs, in particular the 93 
opportunities and challenges that confront their design and facilitate their accessibility to the 94 
broad user community. In this regard, we offer a path forward that balances demands for 95 
increased spatial resolution and model complexity against ensemble size. We encourage future 96 
phases of CMIP to take on a greater role in the design of LE simulations and in coordinating their 97 
data storage and access. 98 
 99 
4. New insights on separating sources of uncertainties  100 
Individual LEs have been crucial to show that internal variability needs to be considered alongside       101 
forced trends in past and future climate change at continental and smaller spatial scales (i.e., 102 
refs10,12,14,19,22–30). The MMLEA expands on this view by providing new insights on the relative 103 
roles of internal variability and model structural differences -- two sources of projection 104 
uncertainty in addition to radiative forcing scenario. The MMLEA shows that both factors can 105 
play a first-order role in the magnitude and pattern of warming at continental scales. As an 106 
example, Fig. 1 show the distributions of trends in North American air temperatures over the last 107 
60 years from each of the seven LEs (Methods). While they all encompass the observed trend 108 
value, they clearly differ in the strength of the forced trend (given by the ensemble mean) and in 109 
the shape and width of the distribution of trends, which emerges due to the influence of internal 110 
variability. This information on model-dependence of both the forced trend and the range of 111 
trends due to internal variability is unique to the MMLEA, and could not have been deduced 112 
directly from the CMIP archives. It is important to note that a LE that is centered on the single 113 
observed trend value does not constitute evidence that this particular model is more realistic 114 
than any other model (see further discussion in Section 6). 115 
 116 
The distribution of North American temperature trends based on the 40 models in the CMIP5 117 
archive (Methods) is only slightly wider than that based on an individual LE, and is due to both      118 
model differences and internal variability (see gray shaded PDF in Fig. 1). Moreover, the MMLEA 119 
as a whole spans a wider range than CMIP5, suggesting that CMIP5 under-samples internal 120 
variability at regional scales. This highlights the importance of evaluating the realism of models’ 121 
internal variability of trends, since a model with unrealistically large trend variability (i.e., a broad 122 
distribution) can encompass the observed trend for the wrong reason and would also inflate 123 
uncertainty in future projections. Approaches to address this challenge are discussed in Section 124 
6. 125 
 126 
Just as North American temperature trends vary across the individual members of a LE, the 127 
geographical pattern of trends can also be strikingly different (row of maps at the bottom of Fig. 128 
1). This can confound comparisons of individual simulations from different models and lead to 129 
erroneous interpretations, since internal variability might be mistaken for structural differences. 130 
With enough members, the spatial pattern of the forced response emerges for each model, 131 
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allowing for a direct comparison between models. Models may show similar forced patterns of 132 
poleward-amplified warming but different overall amplitudes (top left and right maps in Fig. 1), 133 
a conclusion that would have been difficult to discern without an MMLEA. Similar issues confront 134 
the study of trends observed in the real world (middle map in the top row of Fig. 1), since these 135 
are also just one realization of many that could have happened (see Section 6).  136 
 137 
Quantifying model uncertainty requires knowledge of the forced response in each model – but 138 
most models in past and current CMIPs do not have enough ensemble members to allow for a 139 
robust estimate of its forced response. Instead, low-frequency statistical fits to a single ensemble 140 
member are often used to estimate the forced response (e.g., refs8,9). Consequently, internal 141 
variability has to be estimated either from the residual of this fit or from long pre-industrial 142 
control simulations. From these approaches it is often not easy or possible to robustly estimate 143 
systematic changes to internal variability under increasing radiative forcing. The availability of an 144 
MMLEA circumvents these limitations and assumptions. More importantly, it allows one to 145 
separate the sources of uncertainty at smaller spatial and temporal scales, and for quantities that 146 
are notoriously variable such as precipitation and extremes.  147 
 148 
5. Decision-making and risk assessment in a highly variable climate system 149 
LEs are increasingly proving their utility in the context of real-world decision-making31 where full 150 
assessment of changing climate risks is needed, including variability and extremes. In particular, 151 
discerning changes in variability and extremes requires large sample sizes32–36, the hallmark of 152 
LEs. Moreover, the MMLEA is critical for evaluating the extent to which projected changes in 153 
variability and extremes are model dependent.  154 
 155 
The Upper Colorado River basin – which feeds the largest reservoirs in the US – is a clear example 156 
of where changes in mean and variability can produce a wide range of climate risks for water 157 
managers. This basin is located at a latitude where projected changes in precipitation are 158 
notoriously uncertain – the transition zone between the expected drying in the subtropics and 159 
the wetting at high latitudes2,37–39. The MMLEA shows divergent outcomes regarding how 160 
decadal mean precipitation will change in this region under a high-emissions scenario (Fig. 2a). 161 
However, decadal variability of precipitation is projected to increase, on average by about 10% 162 
of the magnitude of the forced change (Fig. 2b). This result by itself suggests a heightened hazard 163 
of prolonged droughts and pluvials, and could, in the absence of consistent projections of 164 
changes in the mean, provide useful  information for refining water management strategies.  165 
 166 
To illustrate the challenge of projecting extreme events, we use an example of daily summer heat 167 
extremes for a location in the south-central United States centered on Dallas, Texas (Methods). 168 
As expected under global warming, daily July heat extremes at Dallas are projected to increase 169 
over the 21st century; however, their evolution is far from monotonic in any single ensemble 170 
member, and their rate and degree of increase varies considerably across different realizations 171 
of future internal variability in the same model (Fig. 3a). For instance, historical daily heat records 172 
could be broken almost continuously starting in the late 2060s, or their occurrence could be more 173 
punctuated, with some decades even as late as the 2090s spared from any days of record heat, 174 
depending on how internal variability happens to unfold (Fig. 3a). The variety of temporal 175 
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expressions of historical heat extreme exceedances across the different members of an LE should 176 
be a cautionary note on the enormous impact of internal variability on rare events (see also refs 177 
30 and 31). Results also differ between models, as differences in the amount of warming and in 178 
the magnitude of variability combine into an uncertain future risk of exceeding a given threshold 179 
(Fig. 3b). Validating not only a model’s climatology or mean trend, but also its variability, emerges 180 
thus again as an important step when investigating, and ultimately constraining, future 181 
projections, in this case of extreme events40.  182 
 183 
Attribution-focused large ensembles differ from those in the MMLEA in that they often rely on 184 
regional, or high resolution global, atmosphere-land models in order to capture the small spatial 185 
scales of specific extreme events34–36,41,42 and may prescribe additional boundary conditions such 186 
as the large-scale atmospheric circulation43,44. Nevertheless, these types of ensemble highlight 187 
the large number of simulations required to identify significant shifts in the probability of certain 188 
events. We note that LEs can also serve these alternate types of ensemble by providing lateral 189 
boundary conditions to more specialized regional climate models45, and oceanic boundary 190 
conditions to higher-resolution global atmosphere-land models. 191 
 192 
6. Multi-model LEs as methodological testbeds with application to an ‘Observational’ LE 193 
Another key usage of LEs is to test methods suitable for application to the observational record, 194 
for example those aimed at separating the signals of internal variability and forced climate 195 
change from a single realization (e.g., refs28,29,46–50). Using observations alone, it is difficult to 196 
assess the skill of such separation methods due to lack of true knowledge of the observed forced 197 
response or the full range of variability, including extremes. However, separation methods can 198 
be evaluated by applying the methodology to each LE ensemble member individually and 199 
comparing the results to the model’s forced response, estimated from the ensemble mean of the 200 
LE (Fig. 4). Application to the MMLEA will identify if the validation has a strong dependence on 201 
model structure.  202 
 203 
An additional testbed application of model LEs is the development of surrogate realizations of 204 
internal variability based on observations (Fig. 4). Although one cannot replay the “tape of 205 
history”51 with an initial-condition perturbation in the real world, the single observed trajectory 206 
is only one of many that could have plausibly occurred (under the same boundary conditions and 207 
forcing), had a different sequence of internal variability unfolded. This is the underlying premise 208 
of LEs: that internal variability can play out with a different (and largely unpredictable) 209 
chronology, thereby creating uncertainty in the estimate of trends that are calculated over a 210 
finite time interval. Can the sample of internal variability contained within the observational 211 
record be used to generate surrogate realizations whose statistical characteristics are largely 212 
unchanged, but whose temporal sequences are altered? If so, an observationally-based LE can 213 
be developed, wherein these surrogates are added to an estimate of the forced response 214 
(derived from models or empirical methods applied to observations) to produce an 215 
observationally-constrained range of outcomes (Fig. 4).  216 
 217 
Several methods for generating surrogate realizations that aim to preserve the temporal25 and 218 
spatio-temporal characteristics of observed internal variability have been proposed46,52–57. To 219 
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date, these techniques have been applied to terrestrial temperature and precipitation25,46, sea 220 
level pressure46, and sea-surface temperature52,54. These methods interact in two important ways 221 
with model LEs. First, model LEs can be used as methodological testbeds to ensure that the 222 
statistical ensembles have the desired properties (Fig. 4). Second, after the statistical ensembles 223 
are validated, they can then be used to validate the model LEs. We demonstrate this interplay 224 
with an example from the “Observational Large Ensemble” (Obs-LE) developed by ref46 225 
(Methods).  226 
 227 
Analogous to the approach mentioned above for estimating the forced trend, the Obs-LE 228 
methodology can be cleanly tested in the context of a model LE by creating a statistical ensemble 229 
based on a single member of the model LE, and assessing whether the spread of the statistical 230 
ensemble is consistent with that of the remaining ensemble members. This procedure can then 231 
be repeated for each ensemble member, and the resulting information pooled together to 232 
provide a robust estimate of the accuracy of the methodology (Fig. 4).  In the case of variability 233 
of annual temperature trends over the past 50 years on land, the fractional error of the Obs-LE 234 
methodology is generally less than 20% over most of the globe, with slightly larger errors in 235 
certain regions of the tropics (Fig. 5a). Assuming the properties of the real world are not 236 
drastically different from those of the model, this indicates that applying the same approach to 237 
generate a statistical ensemble from the single realization of the real world is valid.  238 
 239 
Having validated the Obs-LE approach, one can then assess the realism of internal variability 240 
simulated by each model LE by comparison with the Obs-LE. For the case of the CESM1-LE, the 241 
model overestimates variability of 50-year temperature trends by up to 50% in parts of western 242 
North America and northern Eurasia, and up to 100% in areas of high terrain in the tropics (Fig. 243 
5b). These model biases in variability are larger than the error of the Obs-LE methodology, 244 
indicating they are true model biases. Similar results are found for precipitation trend variability, 245 
which exhibits regions of both significant underestimation and overestimation in the CESM1-LE46. 246 
 247 
One can also apply the Obs- LE to evaluate the simulated distributions of temperature trends at 248 
specific locations. For example, the simulated temperature trend distributions for Dallas, Texas 249 
in the CESM1 and MPI LEs narrow considerably when the Obs-LE is used to estimate the internal 250 
variability (inset to Fig. 5b), consistent with the models’ significant overestimation of variability 251 
at this location. This brings the observed trend closer to the lower tail of the distributions. It is 252 
worth emphasizing that without an observationally-based LE, it would not have been possible to 253 
assess the width of the models’ temperature trend distributions, with important implications for 254 
constraining future projections. 255 
 256 
An important future challenge for the LE community is to develop effective means to evaluate 257 
and benchmark the internal variability generated by model LEs. Meeting this challenge requires       258 
taking advantage of historical and paleoclimate records, and developing suitable statistical 259 
emulation methods to construct observationally-based LEs for other components of the climate 260 
system. Statistical emulation of internal variability may also be advantageous in the context of 261 
ESMs when the cost of conducting a sufficiently large LE is prohibitive, for example, in the case 262 
of models with increased spatial resolution and/or complexity (discussed further below).  These 263 
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statistical emulation methods will need to take into account any projected changes in internal 264 
variability58.  265 
 266 
7. Looking to the future of initial-condition LEs 267 
a) Considerations on LE design 268 
The existing LEs have been designed and created independently, with different choices of time 269 
period, radiative forcing scenario, number of members and method of initialization (Table 1). In 270 
addition, they employ different protocols for data output, storage and access. These differences 271 
must be considered when comparing LEs across models, as each has ramifications.  272 
 273 
Initialization 274 
In some LEs, the initial conditions are created by introducing miniscule (at the level of round-off 275 
error or 10-14 K) perturbations into the atmosphere only (“micro perturbation”15). The rapid 276 
growth of atmospheric perturbations makes this technique well suited for studies involving 277 
atmospheric variability and trends. However, for phenomena with long persistence involving 278 
oceanic or terrestrial processes, such as sea level, ocean heat content,  biogeochemistry, and soil 279 
moisture, it may be more desirable to start each member from completely different initial 280 
conditions in the ocean and other components  (“macro perturbations”) to more fully sample 281 
different possible climate trajectories. Macro perturbations can increase the ensemble utility, 282 
but can introduce complications related to subsurface ocean drift in the control simulation that 283 
can influence ocean initial conditions, and thus require long and quasi-equilibrated control 284 
simulations to choose initial conditions from59. A combination of micro and macro perturbations 285 
could have the most scientific benefit, but the issue of ensemble initialization clearly needs close 286 
examination, and potential coordination between multiple LE projects. 287 
 288 
Length of simulation and ensemble size  289 
For a given amount of computer time, a choice has to be made between the length of the 290 
simulations versus the number of ensemble members. For example, is it better (for some 291 
purposes) to have a 100-member ensemble covering the period 1981-2040 or a 50-member 292 
ensemble extending over 1981-2100? Furthermore, if higher spatial-resolution is critical, such as 293 
for the simulation of some climate extremes, this usually comes at the expense of the total 294 
number of ensemble members that can be run. The optimal balance between ensemble size and 295 
spatial resolution will depend on the specific purposes of the LE (see also ref60).  296 
 297 
Radiative forcing scenario 298 
The choice of forcing scenario may impact the characteristics of internal variability. Is it better to 299 
run more members using a single choice of a forcing scenario, or multiple smaller ensembles with 300 
differing scenarios? Even single scenarios are normally comprised of individual forcing 301 
components (e.g. greenhouse gases and aerosols), and for the important but otherwise elusive 302 
goal of attribution, the use of ensembles with a single radiative forcing (for example, only 303 
changing aerosols) can provide critical insights into the mechanistic drivers61,62.  304 
 305 
Data output, storage and access 306 
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As the scientific foci of LE applications expand to encompass a broader set of resolved timescales 307 
(diurnal to centuries), practical limitations arise not only from the computational burden but also 308 
from the storage requirements to maintain and make available hundreds of terabytes of data for 309 
analysis. At present, some LEs only provide monthly-averaged output, while others provide daily 310 
averages but only for select fields. In general, practical storage limitations require a compromise 311 
between ensemble size and choice of output fields. Model fields can also be in formats that are 312 
not intuitive to use for users, limiting accessibility. Careful consideration should be given not only 313 
to data storage, enabling workflows that bring analysis to the data, but also to format. We 314 
recommend single variable time series. We also recommend that given that ocean model grids 315 
are in general non-uniform, meeting growing user demand should also prompt modeling centers 316 
to provide some LE output interpolated onto conventional grid structures and/or the tools 317 
necessary to accomplish the regridding. 318 
 319 
b) Accommodating increased model complexity and spatial resolution  320 
High resolution regional climate projections can also benefit from the “strength in numbers” of 321 
MMLEs. As mentioned above, dynamical downscaling techniques can help resolve processes at 322 
spatial scales that are not well resolved by global ESMs, and statistical downscaling can be used 323 
to map from large to small spatial scales. Currently, such efforts are still limited by the classic 324 
trade-off between ensemble size and spatial resolution, with most studies performing 325 
downscaling from only one LE and for only part of the globe (e.g., ref45,63). An alternative 326 
approach is to select events of interest from an MMLE, such as particular extremes (e.g., ref64) or 327 
ENSO events (e.g., refs65,66), and perform regional downscaling to better understand their 328 
dynamics and predictability. Finally, we note that other ensemble methodologies could benefit 329 
from incorporating the information from initial-condition LEs into their design. For example, 330 
perturbed parameter ensembles (ref67) can be a useful approach to probe the uncertainties 331 
arising from the lack of constraint on uncertain model parameters. However, they will only serve 332 
their purpose if, for each parameter combination, a sufficient number of ensemble members is 333 
performed to allow for the isolation of that parameter influence amidst the internal variability.   334 
 335 
The above findings and discussion provide a powerful argument for the importance and utility of 336 
LEs with multiple ESMs for the climate science and climate impacts communities. However, the 337 
ever-growing need for more ensembles using higher spatial resolution68 and more 338 
comprehensive representations of the Earth System poses an enormous computational 339 
challenge, especially balanced against other demands for resources in the use and continued 340 
development of climate models, such as refining spatial resolution, improving numerical 341 
methods, incorporating more realistic and comprehensive physical and biophysical processes, 342 
and saving ever-expanding volumes of data.  343 
 344 
One potential pathway out of this dilemma is to take a two-pronged approach. The first is the 345 
continuation of the current path, creating and extending large ensembles with current and newly 346 
developed models. These data sets have yet to be fully mined and will continue to provide critical 347 
insights. The second pathway is to focus on developing new techniques that can create efficient 348 
statistical descriptions of the complete distribution from large ensembles, including extreme 349 
events46,55–57. These efficient emulation techniques would allow the generation of arbitrarily 350 
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large ensembles at a fraction of the computational cost associated with the traditional large 351 
ensembles. This would require a focused effort to develop and validate these new techniques, 352 
taking advantage of existing large ensembles as testbeds for the fidelity of the new techniques. 353 
If this capability were successfully developed, computational resources could be focused on 354 
limited sets of ensembles employing very high resolution, comprehensive Earth System Models 355 
– the types of models that many applications are now demanding. After training on the new 356 
“super” data sets produced by these models, the goal would be for the new emulation techniques 357 
to allow the efficient production of arbitrarily large ensembles that are indistinguishable from 358 
ensembles from the underlying models. One could envision a paradigm in which the required 359 
ensemble size for the most comprehensive high-resolution models would be the smallest number 360 
that is able to both (a) satisfactorily characterize the model’s response to radiative forcing 361 
changes, and (b) provide a sufficient data set for training the emulators. A community discussion 362 
on how to optimize the scientific return on computational investment from LEs while continuing 363 
to advance climate modeling along multiple pathways would be of great value.  364 
 365 
8. Emerging Earth System Applications 366 
Several communities have developed approaches to balance the trade-offs between increasing 367 
complexity and their computational costs.  In some cases, raw, bias-corrected or downscaled 368 
meteorological fields archived from climate models are used to drive offline models that include 369 
more complexity (e.g., atmospheric composition, air quality, hydrologic models) or to conduct 370 
impact assessments (health burdens, economic valuations, reservoir operations)69–71. While 371 
these trade-offs will continue as next-generation developments in atmospheric chemistry, 372 
hydrology, resource management, and integrated assessment approaches continue to expand in 373 
complexity, the development of LEs and MMLEs represent a new research frontier for these 374 
applications.  Below, we highlight some climate subfields where advances should be possible with 375 
the existing climate-focused MMLEs as well as examples where LEs with more complexity are 376 
already advancing scientific knowledge (ocean biogeochemistry) and where a single LE has yet to 377 
be generated (atmospheric chemistry). We also discuss applications of LEs that apply broadly 378 
across the Earth System.  379 
  380 
Several stakeholder communities may be well-positioned to immediately tap the power of the 381 
existing MMLEs. By providing large sample sizes, LEs enable construction of probabilistic 382 
frameworks for risk assessment.  For example, the existing MMLE archive may offer opportunities 383 
to flesh out the tails of probability distributions of future public health burdens, crop yields, or 384 
fisheries catch. That is, to the extent that the probabilistic occurrence of complex extreme 385 
phenomena can be assessed using commonly simulated meteorological variables (e.g., refs72–74), 386 
a MMLEA offers the ability to independently assess the contributions role of internal variability, 387 
anthropogenic climate change, and model uncertainty to projected changes. By design, such 388 
statistical approaches inherently assume the key drivers are meteorological and neglect 389 
feedbacks with, e.g. the biosphere, that can be included in more specialized ESMs, e.g., Coupled 390 
Chemistry Models.  The power of LEs – even without additional complexity – as tools to 391 
investigate mean state biases75, extreme events and their impacts on ecosystems, food security, 392 
and public health remains largely unexplored.  393 
 394 
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A growing collection of ocean biogeochemistry studies have highlighted the utility of single-395 
model LEs for quantifying the time of emergence for important biogeochemical variables such as 396 
air-sea carbon dioxide fluxes23, interior ocean oxygen concentration24, marine ecosystem 397 
drivers76, and interior ocean carbon cycling77. Additional work with single-model LEs has been 398 
used to quantify the role of internal variability in projection uncertainty for air-sea carbon dioxide 399 
fluxes78 and ecosystem stressors79, to identify avoidable impacts in the future evolution of 400 
phytoplankton net primary production with anthropogenic climate change80, and to quantify the 401 
number of ensemble members needed to detect decadal trends in air-sea CO2 flux81. While 402 
changes in phenology under future climate perturbations have been examined in a single LE for 403 
a terrestrial ecosystem82, we anticipate much broader future applications to both terrestrial and 404 
oceanic ecosystems as there are clear implications for ecosystem behavior and resource 405 
management.  406 
 407 
Due to the computational expense of simulating atmospheric chemistry within fully coupled 408 
ESMs, atmospheric composition and air quality have not yet been explored within a single LE, 409 
even though it is well established that atmospheric constituents vary with weather and climate. 410 
Changes in pollution events and public health burdens have been investigated through dynamical 411 
downscaling (e.g., refs70,83) of a limited period from global climate models, or directly from coarse 412 
resolution global chemistry-climate models (e.g., ref84). To date, these projections of future 413 
composition and air quality have not sufficiently separated internal variability from the forced 414 
signal as they rely on small ensembles from a single model (e.g., refs71,85) or multi-model time-415 
slice ensembles (e.g., refs86,87). Nevertheless, a small ensemble from one chemistry-climate 416 
model demonstrates the need to account for internal variability when detecting future changes 417 
in air quality (or, by extension, atmospheric composition) resulting from anthropogenic climate 418 
and emission changes88,89. A single LE with full atmospheric chemistry would enable pursuit of 419 
new research questions paralleling those tackled within the climate community.  The future 420 
development of MMLEs with full atmospheric chemistry would enable exploration of model 421 
structural uncertainty separately from internal variability. 422 
 423 
While LEs alone enable one to quantify variations in some variable of interest, in some 424 
applications, a set of companion simulations further enhance their utility for decision-425 
making.  For example, air quality planners would like to understand not just the role of climate 426 
change and variability, but also the influence of air pollutant emission pathways on future 427 
projections.  One path to address this need could be to follow the approach discussed above for 428 
extreme events in which high-frequency time fields are saved for use in dynamical downscaling. 429 
Archiving fields needed to drive air quality models would open up the possibility for multiple 430 
sensitivity simulations focused on a target time period and region, or even single pollution event, 431 
of interest.  Another example involves resource managers who are interested in near-term 432 
prediction (1-10 year time scales).  The CESM-LE, when paired with the CESM Decadal Prediction 433 
Large Ensemble (CESM-DPLE90) has been shown to provide a significant advance in deepening 434 
our understanding of near-term predictability and its origin90.  435 
 436 
Part of the promise offered by LEs is in informing optimization of observing system design and 437 
duration. For example, in fields where observations are notoriously sparse (e.g., ocean 438 
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biogeochemistry), LEs offer a powerful approach to assess where future measurements can most 439 
readily detect trends driven by anthropogenic forcing (e.g., where signal-to-noise is largest). In 440 
turn, LEs are useful for interpreting limited observational datasets in the context of internal 441 
variability.  Internal variability could vary strongly with anthropogenic forcing in non-linear 442 
systems, such as ocean carbonate or atmospheric chemistry, but without an LE, this signal is 443 
challenging to identify.  The development of MMLEs in these fields would further allow 444 
investigation of model structural uncertainty separately from internal variability.  445 
 446 
9. Next steps: Fostering effective LE design and implementation, and incorporating LEs into 447 
CMIP7 448 
Enabling discovery and advances for a broad community is key to justifying the substantial human 449 
and computing resources required for effective LE projects. Designing LE experiments with useful 450 
outputs and bringing diverse workflows to these large datasets is challenging. How do we foster 451 
effective LE design and implementation? The experience of this author list in generating and 452 
sharing data, including especially the most widely used LE project to date - NCAR CESM1-LE 453 
Project19 - provides several lessons. First, open and free access to useful variables from a wide 454 
range of components (ocean, atmosphere, land, ice) is critical. Involvement of a broad 455 
community of users at the outset is essential to define the variables to save including their 456 
temporal frequency, as well as to determine other aspects of the project such as ensemble size, 457 
temporal duration, radiative forcing scenario, and method of initialization. Second, data formats 458 
matter. Data should be distributed in a format that is easily ingested into user workflows. The 459 
current gold standard data format is single variable time series in a self-documenting format (e.g., 460 
netcdf) on a uniform latitude-longitude grid. Third, documentation matters. Developing well 461 
written documentation that enables users to scope out and realize the potential for their 462 
applications is necessary. As is well known from CMIP and previous LE efforts, documentation 463 
and communication about climate modeling projects requires dedicated human resources. 464 
Updates must be continuous, easily accessed, and responsive to user concerns and questions. 465 
While easy-to-use data formats and effective documentation will be enough for experienced 466 
users, help for new communities who are not the traditional users of climate model output is 467 
also needed. Targeted tutorials and example analysis workflows will enable more users to 468 
become involved and increase the knowledge gained through the production of LE datasets. 469 
Finally, on the computational side, it is necessary to consider not only the computational needs 470 
for producing LE data, but also the long-term storage and computational needs to make these 471 
data usable, free, and accessible over a long period of time. Long-term data storage and bringing 472 
diverse user workflows to the dataset are key. In addition, users should be able to complete off-473 
shoot experiments that build on the foundation of the original LE, something that is only possible 474 
if the original code is maintained and distributed publicly and required restart files are provided. 475 
Future LE projects should consider the best way to follow the big data mantra of bringing the 476 
analysis to the data for a large number of users. Moving away from workflows where individual 477 
users download LE datasets to work on their own computers is advised. Identifying efficient 478 
storage and workflow options at the onset that will enable LE data to be most efficiently used is 479 
essential. Along these lines, the potential of the commercial cloud is certainly worth further 480 
exploring, while also being aware of intellectual property, who will pay, and other concerns that 481 
may arise. Careful thought and resources to address these above four considerations 482 
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undoubtedly contributed to the widespread use and success of the CESM1-LE, and are currently 483 
informing the design of the next-generation LEs. Experience shows that choices made in the 484 
design and implementation of an LE have substantial implications for its scientific utility.   485 
 486 
While much success has been found with LE experiments outside of official CMIP coordination, 487 
we recommend increased integration and assessment of LE experiments within CMIP7. 488 
Integration of LEs within the next phase of CMIP will characterize internal variability within the 489 
context of a large computational experiment already being coordinated and conducted 490 
internationally. Incorporating LE design and knowledge into CMIP will directly address challenges 491 
noted above with regard to partitioning projection uncertainty into structural and internal 492 
variability components. Toward this end, for CMIP7 we recommend that modeling centers have 493 
a strategy to incorporate quantification of internal climate variability into all of their MIP 494 
contributions.  Without such a strategy, we are concerned that internal climate variability will at 495 
times continue to be impossible to differentiate from model uncertainty and/or forcing 496 
uncertainty. Moving forward, it is critical that the science and policy communities have the 497 
capacity to assess internal variability contributions to future climate projections. 498 
 499 
10. Final remarks  500 
Models form much of the scientific basis for future climate change projections. While the 501 
scientific and policy community has focused on projections in the multi-model archives produced 502 
by CMIP, CMIP experiments often confound structural uncertainty (i.e., differences in model 503 
formulation including physics, parameterizations, resolution, etc.) with internal variability. With 504 
the continuously growing MMLE archive introduced here, identifying anthropogenic influences 505 
on climate amidst the “noise” of internal variability from a multi-model perspective is finally 506 
possible. Scrutiny of this newly available MMLE archive is very much needed, as are answers to 507 
the question ‘is a model’s internal variability realistic?’.  Separating signal from noise is a grand 508 
challenge for all areas of climate science and one that spans all components of the Earth 509 
system. Pairing the long-term statistics of the internally driven noise of the climate system 510 
provided by LEs with, for example, high resolution simulations, provides a viable path forward to 511 
improve understanding of both the statistics and processes underlying extremes. Looking 512 
forward, a broad community from computational scientists to stakeholders must be engaged to 513 
maximize scientific return on the computing and human investment in new LE efforts. 514 
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METHODS 760 
 761 
Fig. 1. Trends in annual mean temperature over 1951-2010 are calculated as an ordinary least 762 
squares linear fit at each grid cell. The PDFs show the trend in spatially-averaged temperature. 763 
Distributions are computed by fitting a kernel density estimate (using Matlab’s ‘ksdensity’) to the 764 
histograms of trends from each LE and from CMIP5. From CMIP5, a set of available model 765 
simulations with historical and rcp85 forcing were used, ranging between one and eleven 766 
ensemble members per model, totalling 123 simulations. Observations are from the Berkeley 767 
Earth Surface Temperature data set59.  768 
 769 
Fig. 3. We define a heat extreme as the 99.9th percentile of daily-mean temperatures during July 770 
over the historical period 1950-1999 for each model, pooling all members of its LE for a robust 771 
definition. 772 
 773 
Table 1. LE initialization method. The term “micro perturbation”13 denotes that the LE members 774 
begin from slight perturbations to a single initial atmospheric state. The term “macro 775 
perturbation”13 denotes that the LE members begin from a variety of coupled model states (for 776 
example, from different years in a long control simulation). CanESM2 consists of a hybrid 777 
approach, with 10 micro ensemble members for each 5 macro ensemble members.  778 
 779 
The Observational LE 780 
A brief description of the method used to construct the Observational Large Ensemble (Obs-LE) 781 
is given here; further details are available in McKinnon and Deser (2018). The Obs-LE provides 782 
surrogate realizations of internal variability that could have happened in the real world, while 783 
largely preserving the full spatio-temporal characteristics of the actual observational record. 784 
Internal variability in the Obs-LE is the sum of two pieces: a component that captures variability 785 
linearly related to the three dominant ocean-atmosphere modes in the climate system (ENSO, 786 
Pacific Decadal Oscillation91, and the Atlantic Multidecadal Oscillation92, and a component 787 
termed residual “climate noise”, which primarily emerges from unpredictable atmospheric 788 
variability. Both pieces are estimated using monthly mean temperatures from Berkeley Earth 789 
Surface Temperature (BEST) over the period 1920-2015 after an empirical removal of the forced 790 
trend following ref93. The spread across the ensemble is a result of the inherent randomness of 791 
both the mode time series and the residual climate noise; both components contribute 792 
approximately equally to the spread, although one may be more dominant than another in a 793 
given location (see Fig. 8 in McKinnon and Deser, 2018). The mode-component is computed first, 794 
and then subtracted from the total internal variability to obtain the residual component. 795 
Specifically, the Obs-LE is created through: (1) generating new time series of the three modes 796 
that share the same autocorrelation and distributions as the observed ones but have different 797 
temporal phasing and multiplying them by the spatial pattern of temperature sensitivity to each 798 
mode; and (2) applying a two-year block bootstrap in time to the residual climate noise 799 
component. The choice of a two-year block to perform the bootstrapping provides a suitable 800 
balance between accommodating any remaining temporal autocorrelation in the residual noise 801 
component and number of independent samples in the record. The approach makes a key 802 
assumption that the internal variability, including teleconnection patterns, of monthly 803 
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temperature has not changed over the period used to fit the model -- and, if used for projections, 804 
will not change in the future period.  805 

  806 
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 807 
 808 
 809 
Figure 1. Internal variability and model differences in continental temperature trends. The 810 
distribution of 60-year annual temperature trends (1951-2010) over North America from 7 ESM 811 
Large Ensembles (LEs; thin curves), 40 different CMIP5 models (gray shading), and observations 812 
(Berkeley Earth Surface Temperature; vertical black line). The maps show the associated patterns 813 
of temperature trends: (top row) observed and the ensemble means (EM) from two LEs (CESM1 814 
in green and MPI in purple); (bottom row) individual ensemble members from CESM1 (green) 815 
and MPI (purple) with the weakest (“coldest”) and strongest (“warmest”) trends. Note that the 816 
EM maps show the forced component of trends, while the individual member maps show the 817 
total (forced-plus-internal) trends in the model LEs. Observed trends are analogous to an 818 
individual ensemble member in that they reflect forced and internal contributions.   819 
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 820 
 821 
Figure 2.  Decision-making under uncertainty: Changes in mean and variability. (a) 10-yr running 822 
mean annual precipitation anomalies (mm day-1) over the Upper Colorado River Basin 823 
(approximated as a spatial average over 38.75-41.25°N and 111.25-106.25°W) relative to the 824 
reference period 1971-2000 from each of the 7 model LEs. Solid lines show the ensemble means, 825 
and color shading the 5-95% range across ensemble members. (b) Moving average of the change 826 
in standard deviation of 10-year mean precipitation (relative to 1971-2000), calculated across the 827 
individual ensemble members of each model LE. The thick black curve shows the mean and gray 828 
shading shows the 5-95% range across the 7 models. Note the order-of-magnitude smaller range 829 
in the y-axis in (b) compared to (a). 830 
  831 
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 832 
 833 
Figure 3.  Decision-making under uncertainty: Changes in extremes. (a) Vertical bars mark the 834 
occurrence of July days which meet or exceed the historical (1950-1999) 99.9th temperature 835 
percentile for the grid box containing Dallas, Texas in five members of the CESM1-LE under 836 
historical and future (RCP8.5) radiative forcing. The 99.9th percentile is defined as the average of 837 
the 99.9th percentile values calculated for each ensemble member. (b) Probability of exceeding 838 
the historical (1950-1999) 99.9th percentile of daily temperature in July at Dallas, Texas for 6 839 
model LEs. Thick colored lines show the probability in each LE calculated across all ensemble 840 
members, and color shading shows the 5-95th percentile when the probability is calculated for 841 
each ensemble member separately. Open circles and vertical bars show those same values for 842 
every other decade from 1970 onwards, with models plotted in a staggered fashion centered on 843 
year 5 of a given decade. Note that the time axis shown in (b) also applies to (a). 844 
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 845 
Figure 4. Schematic showing the how model Large Ensembles can be used to test methods 846 
suitable for application to the single observational record, for example those aimed at 847 
separating forced climate change from internal variability. A method (MF) for estimating the 848 
forced response (Fest) can be validated using a model LE by applying it to each ensemble member 849 
individually and comparing the results to the model ensemble mean (FLE) using a skill score. 850 
Similarly, a method (MI) for developing surrogate realizations of internal variability (Iest) can be 851 
validated using a model LE by applying it to each ensemble member individually and comparing 852 
the results to the full range of internal variability across the model LE (ILE). Various methods MF 853 
and MI are listed (see text for references). After validating the methods,  they can be applied to 854 
the observational record to construct an observationally-based Large Ensemble (see text for 855 
details).    856 

Observations

Forced Internal
Estimate the forced response 

in a single realization.

Methods (MF)
Regression on GMST
Empirical mode decomposition  
Dynamical adjustment
Optimal fingerprinting
Pattern recognition
Neural networks

Develop surrogate realizations 
of internal variability. 

Methods (MI)
Autoregressive modeling 
Principal component analysis 
Block bootstrapping
Linear inverse modeling

An Observationally-based Large Ensemble

Methodological Testbed 
Model Large Ensemble (LE) 

• MF = Method for estimating the forced response (Fest) 
in a single realization

• MF = Method for estimating internal variability (Iest)      
in a single realization 

• True forced response (FLE) = LE ensemble mean
• True internal variability (ILE) = LE full internal variability 

member 1 à Fest Iest
member 2 à Fest Iest
.
.
member n à Fest Iest

Compute skill score 
against FLE and ILE

La
rg

e E
ns

em
bl

e

Apply MF and MI to:

Test and refine MF and MI

Repeat on other model LEs

(Total – Forced)

MF MI



25 
 

 857 
 858 
Figure 5. Interplay between a Model LE and an Observational LE.  The schematic illustrates how 859 
a Model LE can be used to test the accuracy of a method for deriving surrogate realizations of 860 
internal variability based on the observational record to build an Observational LE (Obs-LE), and 861 
how an Observational LE can in turn be used to evaluate the model’s simulation of internal 862 
variability. (a) The fractional difference between the spread in 50-year trends of annual near-863 
surface air temperature in the CESM1-LE and the spread estimated from applying the 864 
methodology of McKinnon and Deser (2018) to individual members of the CESM1-LE.  (b) The 865 
fractional difference between the spread of 50-year trends (1965-2014) in CESM1-LE and Obs-LE 866 
(areas in gray indicate that the difference is not significant). After McKinnon and Deser (2018). 867 
(Inset to panel b): PDFs of 50-year annual temperature trends for the grid box containing Dallas, 868 
Texas from the CESM1-LE (green; solid curve shows the model results and dashed curve shows 869 
the results based on internal variability from the Obs-LE). The vertical black bar shows the 870 
observed 1965-2014 trend value from Berkeley Earth Surface Temperature. 871 


