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Assessment of Air Quality Monitoring Stations Locations

Based on Satellite Observations

Abstract

Optimal locations of air quality monitoring stations have great significance in
providing high quality data for regional air pollution monitoring. To assess the
rationalization of locations for current air quality monitoring stations, in this paper, we
proposed a new method which was based on satellite observations data with the
stratified sampling approach. Unlike the traditional method which relied on the spatial
distribution of air pollutants from the simulated dispersion models, we obtained the
sampling population through observations from remote sensing. Firstly, the spatial
distribution of aggregated air quality was obtained based on ground concentrations of
PMip, PMzs, NO; and SO, derived from satellite observations. Secondly,
rationalization of locations of air quality monitoring stations was assessed by using the
method of stratified sampling. Results of paper indicated that combing remote sensing
data with the stratified sampling approach have great potential in assessing
rationalization of locations for air quality monitoring stations.
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1 Introduction

Optimal location of air quality monitoring stations is very important for both
monitoring and protecting ambient air quality (Benis and Fatehifar 2015). The data
observed by ambient air quality monitoring stations have not only widely applied in
evaluating air quality, but also in some other areas such as studying the dynamic
behavior of air pollutants, verifying dispersion models and assessing human heath

impact caused by air pollution (Elkamel et al. 2008; Maji, Dikshit, and Deshpande


http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation

2014). Therefore, monitoring data with good quality is essential for these applications.
But, the current distribution of air quality monitoring stations in China tended to be
clustered in areas with poor air quality, such as in street canyons and city centers. As a
result, the observations are spatially less representative, especially in areas with
complex terrains and in the vicinity of pollution sources (Andrews, 2008; Rohde and
Muller, 2015). In general, the coverage of the representative area is small, and the
monitoring data is also under-represented. Therefore, re-assessing the locations for air
quality monitoring stations in China has important implications in improving the
quality of the monitoring data.

Assessing and optimizing locations for air quality monitoring stations are one of the
most important and indispensable research topics in designing air monitoring networks.
Principal component analysis, cluster analysis (Pires et al. 2008; Lu, He, and Dong
2011), geostatistical modeling (Haas 1992; Kanaroglou et al. 2005) and fuzzy set theory
(Maji, Dikshit, and Deshpande 2014) were all applied to locating stations and
evaluating the predictive error in previous researches. In addition, some economic and
social factors, such as population density, land-use, and the city scale were all taken
into account to determine the optimum number and location of monitoring stations in
some multi-objective optimization approach (Sarigiannis and Saisana 2008; Pope and
Wu 2014) and genetic algorithm (Tseng and Chang 2001; Wang et al. 2015). Some
studies (Henne et al. 2010; Duyzer et al. 2015) focused on evaluating and comparing
the effectiveness of parameters to describe the representativeness. While the others (Lu,
He, and Dong 2011; Mofarrah and Husain 2010) put emphasis on the impact of multiple
air pollutants when designing the monitoring network, and proposed some optimization
methodology based on the distribution of particulate matter, sulfur dioxide and nitrogen
dioxide.

Some gaps still exist among those approaches as described in above sections.
The one of the most obvious is the difficulty in obtaining the overall regional air quality.
The spatial distribution and concentration of air pollutants were mostly obtained from
simulated air dispersion models in previous studies (Zheng et al. 2011; Duyzer et al.

2015), these models were constrained by physiochemical processes, changeable
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meteorological conditions, and the data quality of the sampling stations, therefore, may
not be representative, especially in complex terrain areas (Hertel et al. 2001; Wang et
al. 2015). It 1s difficult to evaluate the representativeness when the sampling population,
1.e., overall regional air pollutants concentration, is not preferable. To this end, an
approach to evaluate the rationalization of locations for air quality monitoring stations
by using satellite observations data to estimate air quality has more advantages and was
proposed in our research. First of all, the spatial distribution of air pollutants were
derived from satellite-based data, this could provide a better spatial coverage. Satellite
observation of surface air quality has evolved dramatically in recent years. Regional
and global observations are now available for many air pollutants. And many retrieval
methods and products have been developed, such as MODIS aerosols, GOME
tropospheric NO; and SO» columns, SCTAMACHY CO columns (Martin, 2008). Use
of satellite data could provide some information about location of peak concentrations,
the concentration gradients among surface monitoring stations and the transport of air
pollutants (Engel-Cox et al., 2004). Second, considering that overall air quality was not
only determined by the dominant pollutant, but also determined by the second pollutant
and some other pollutant, the Aggregate Air Quality Index (AAQI) (Kyrkilis,
Chaloulakou, and Kassomenos 2007) was adopted to evaluate the aggregated effects of
four kinds of air pollutants, i.e., PMio, PM2s5, NO2, and SO». Finally, the stratified
sampling method was used to evaluate the rationality of the spatial distribution of the
air quality monitoring stations.

In this paper, using Beijng-Tianjin-Hebei area of China as the case area, locations
of the air quality monitoring stations was assessed. This paper consists of four parts. In
the first part, the spatial distribution of ground PMio, PM>2s, NO,, and SO> were
obtained from satellite observation data. In the second part, the comprehensive air
quality was by assessed by using the AAQI. In the third part, using the AAQI value in
study area as the sample frame, locations of air quality monitoring stations was further
assessed with stratified sampling approach. In the last part, the accuracy of satellite
observations data in estimating ground air pollutant concentrations was analyzed, and

the advantages of using remote sensing data in assessing air quality monitoring stations
3



locations were discussed.

2 Data and methods

2.1 Study area

Beijing-Tianjin-Hebei, notorious for its air quality, having high and frequent PM,,
PM> 5, NO; and SO; pollutions, especially particulate matter (PM) pollutions (Xin et al.
2014), i1s located in northern China. Mountains, plateaus, basins and plains are all
distributed in this area, therefore, making the terrain over this area very complex. And
the government funding of air quality monitoring and protection is relatively
independent in this area. To monitor air quality and to study the dynamic behavior of
air pollutants, a network consisting of 169 air quality monitoring stations were
constructed and distributed over this area in recent years. Although the functions and
tasks of these stations are different, all of them have the ability to monitor the
concentrations of PMjo, PMa2s, NO> and SO,. The location of Beijing-Tianjin-Hebei
area and the distribution of these air quality monitoring stations are shown in Figure 1.
It is clearly seen that air quality monitoring stations are mostly concentrated in city
centers. The number of stations is much less in northern, northwestern mountainous
regions, and southern rural regions.

[Figure 1 near here]

2.2 Data collection and processing

Satellite data

In this study, daily Level-2 OMI/Aura Near UV Aerosol Optical Depth
(OMAERUYV) products over the time period from 2009 to 2013 were used to estimate
ground PMo and PM> 5 concentrations. The aerosol optical depth (AOD) products were
generated by the OMAERUYV algorithm with the spatial resolution of 0.125°x0.125°.
These products showed an good quality by comparing to Aerosol Robotic Network
(AERONET) observations, with correlation coefficient, slope and intercept in the range

0.79-0.92, 0.63-0.92, and 0.08-0.18, respectively (NASA 2012). Monthly average
4



AOD was calculated from the daily AOD products.

Monthly average Level-2 OMI tropospheric NO> columns, which were derived
from satellite observations based on slant column retrievals with the differential optical
absorption spectroscopy (DOAS) technique, were used to calculate ground NO»
concentrations over the time period from 2009 to 2013 in study area. These data had a
spatial resolution of 0.125°%0.125°, and the valid range varied from 0 to 20 (103
molecule/cm?). The fitting error in the NO; slant column was estimated to be 0.3-1x10"3
cm 2 (NASA 2012; Celarier et al. 2011).

The ground SO: concentrations used in this study for the time period from 2009 to
2013 were derived from monthly Level 2 OMI SO; tropospheric columns data. They
were derived with DOAS technique, had a spatial resolution of 0.125°x0.125°. The
standard deviation was only 1.2DU-1.5 DU (NASA 2012; Yang et al. 2007), indicating
that the derived SO» tropospheric columns were in good quality.

Ground level field Data

Ground measurement of PM;jo, NO> and SO; concentrations from 2009 to 2013 in
11 cities of Beijing-Tianjin-Hebei were collected. These records in each city were from
the air monitoring stations in both urban and suburban areas. And these data were
recorded daily and published by the environmental protection bureau in these cities.
Monthly data were obtained by averaging the daily air pollutants concentrations. Since
PM; 5 concentrations were not included in the air quality standard until February 2012
in China (MEPC and GAQSIQ 2012), ground measured PM> 5 concentrations were only

collected in 2013 in these cities.
2.3 Methodology

The aggregated air quality was assessed by using the aggregated air quality index.
To do this, the spatial distribution of ground PMio, PM2.s, NO2, SO2 were firstly derived
from satellite observations. Then locations of air quality monitoring stations were

assessed by stratified sampling.



2.3.1 Assessing air quality by aggregated air quality index

Considering that traditional air quality index (AQI) is determined mostly by the
main air pollutant, this type of index does not take fully into account the possible
adverse effects associated with the coexistence of multi-pollutants (Kyrkilis,
Chaloulakou, and Kassomenos 2007). Therefore, they could not reflect the overall air
pollution level. In this paper, we adopted the aggregated air quality index (AAQI) based
on the concentrations of four kinds of air pollutant to evaluate the combined effects
of the multiple air pollutants. PMio, PMas, NOz, SOsare the four main air pollutants
in China, and are included in the air monitoring standard (MEPC and GAQSIQ, 2012),
so these four kinds air pollutants are selected in this study when assessing the
aggregated air quality in this study. The concentration of each air pollutant could be
expressed as the ratio of the concentration to standard concentration (Kyrkilis,

Chaloulakou, and Kassomenos 2007):

AAQL; = AAQIL() (1

Where AAQI; is the sub-index of the i-th air pollutant, AAQI; is the scaling
coefficient, q is the measured concentration of the i-th air pollutant, which could be
estimated from the remote sensing data. g, is the standard concentration, which means
the highest concentration that is harmless to human beings. Table 1 shows the standards
of these four pollutants recommended by World Health Organization (WHO) (WHO
20006).
[Table 1 near here]
Then a power function model was adopted to describe the overall air quality index

(Swamee and Tyagi, 1999):

1
AAQI = (Xi=1(AAQI)P)P 2)
Where AAQI is the aggregated air quality index, p is a constant set to be 2.5 in this

paper.



2.3.2 Estimating ground air pollutants from remote sensing data

AOD is the integration of the extinction coefficient along the vertical direction. The
direct correlation between satellite-based AOD and the surface concentrations of
particulate matter is usually relatively low. To connect AOD with ground concentrations
of particulate matter, the relationship between AOD and surface aerosol extinction
coefticient should be considered (Chu et al. 2013). In addition, due to impacts of the
hydroscopic growth of aerosols, relative humidity (RH) should be taken into account to
improve the accuracy when estimating surface PMio and PM> s concentrations from
satellite observations. We adopted the method proposed by Lin et al. (2015) and Yu et
al. (2016) to eliminate the impact of RH and aerosol scaling height in this study.

The main sources of NO> and SO; are emissions from fossil fuels combustion and
biomass burning, therefore, NO> and SO; in the air are mainly distributed below the
planetary boundary layer (PBL), and columns above the top of PBL could be ignored
(Boersma et al 2008). Therefore, we could assume that mixing volume ratios of NO»
and SO are consistent from the ground-level to the top of mixing layer, and the
concentrations are zero above the height of mixing level (Boersma et al 2009). In this
study, we adopted the method proposed by Yu et al. (2016) to estimate the surface

concentrations of NO; and SO..

2.3.3 Assessing air monitoring locations by stratified sampling

Stratified sampling is the most suitable method when the data population shows
gradient features, such as the air quality in study area, which contains large spatial
variability and hierarchical characteristics due to the complex terrains. Therefore,
stratified sampling approach was adopted to study the location and representativeness
of the air quality monitoring stations.

AAQI value based on the satellite-derived concentrations of four types of air
pollutant was regarded as the sampling frame. The cumulative square root method was
used to stratify the population. This method was introduced as a fast method to

determine the optimal stratum boundaries by Dalenius and Hodges (1959). The
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auxiliary variable x, which represented AAQI value in each grid, was arranged in

ascending order. Then f(x), which was the frequency of x was calculated. The

method was to form the cumulative of ./f(x) and chose the stratified point x; which

divided the summation by the number of strata equally.

Neyman allocation was then employed to determine the value of sample sizes ny
in respective stratum. If the relative error limit r was given under a given confidence
level of 1 — a , the total sample size could be determined. If we defined N as the
total number of units, Y as the population mean, W), as the stratum weight, SZ as
the population variance of stratum h, then the estimator of total sample size could be

expressed as follows:

Y Wy Sp)?
( h h) (3)

o2 1
(ua/z)z +ﬁ2 WhSﬁ

n =

The sample sizes in stratum h could then be calculated as:

n, = WhSh
h X WhSh

4

After the sample size within each stratum was determined, a simple random sample
was taken in each stratum independently. Then the estimator of the statistical population
could be formulated as below:

X = Nxg = Xy NpXy, (5)
where X, = Z?jl Xp; - According to the characteristics of Neyman allocation, this
variance was defined as a minimum variance.

Vmin(X) = N2 (5 (Thoy Wisn)? = % Zhoy Was?) (6)
Although the whole process of stratified sampling is based on statistical basis, the
strata have some physical meaning. Specially, the first stratum is related to areas with

the minimum AAQI, where the quality is the best. While the last stratum is related to

areas with the maximum AAQI, where the air pollution is most serious.

3 Results



3.1 Distribution of air pollutants

In general, air pollution is mainly concentrated in southern and southeastern areas
in Beijing-Tianjin-Hebei area, as shown in Figure 2. It is seen that air pollution in cities
1s heavier than those in suburbs, rural areas and mountain areas as a result of the
emissions from the heavy industry and the large number of vehicles. More specifically,
the highest PM concentrations, with the average concentration of PMjo higher than 120
pg/m? and the average concentration of PMazs higher than 85ug/m3, are located at
Beijing, Tianjin, Shijiazhuang and Handan. Since the main sources of troposphere NO>
and SO; are emissions from fossil fuels combustion, biomass burning and the vehicle
exhaust emissions (Liang et al. 1998), the most heavy NO> and SO; pollution
concentrate over heavy industry cities in the southern and southeastern cities, such as
Handan, Xingtai and Shijiazhuang, with the average concentration of NO; from 2009
to 2013 is about 65 pg/m?, and the average concentration of SO; is about 50 pg/m?. It
is worth noting that PMio, PM> 5 and NO» pollution are all very serious in Beijing, but
SO, pollution is much more less. This is due to the heavy industry, which is the main
source of SO; pollution, had moved out of Beijing since the Olympic Games in 2008.
In northern and northwestern areas, there is less air pollution, benefited from high
forest coverage rate and less heavy industry and vehicles. In this region, concentrations
of PMio, PM2s5, NO; and SO are less than 50 pg/m?, 35 pg/m?3, 20 ug/m? and 15 pg/m?,
respectively.

[Figure 2 near here]

3.2 Validation of satellite derived air pollutant concentrations

The uncertainties of the satellite-derived air pollutant concentrations lead to the
uncertainties of AAQI. To estimate the accuracy of the satellite derived air pollutant
concentrations, we compared the satellite derived air pollutant concentrations with the
ground measured concentrations, as shown in Figure 3. In general, a good linear
relationship exists between the satellite derived air pollutant concentrations and the

ground measured concentrations. Coefficient of determination between surface
9
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measurement PMjo, PM; 5, NO», SO2 concentrations and corresponding satellite derived
concentrations can be as high as 0.68, 0.66, 0.72 and 0.72, respectively. While root
mean square error (RMSE) is about 20.33, 16.45, 7.94 and 10.91, respectively.
According to equation (2), corresponding transferred bias for AAQI was less than 13.
The small bias of satellite derived air pollutions and AAQI demonstrate that estimating
ground air pollutant concentrations using satellite observations data is reliable.

[Figure 3 near here]

3.3 Distribution of aggregated air quality index

According to equation (2), we obtained the spatial distribution of AAQI in Beijing-
Tianjin-Hebei area, shown in Figure 4. Since the PMoand PM> 5 pollution is very heavy,
the spatial distribution of AAQI is just like the distribution of PM19 and PM> s generally.
High AAQI value is mainly located in the southern and southeastern cities, while low
AAQI value is concentrated in the northern mountainous areas. AAQI value in all cities,
except for Zhangjiakou, Chengde and Qinhuangdao in the northern areas, are higher
than 100, indicating a serious threat and great risk to the life of the citizen. Especially,
Beijing, Tianjin and Handan, with the highest PMio, PM>s and NO; concentrations,
AAQI value can be as high as 220. Followed by Xingtai, Hengshui, Cangzhou,
Tangshan and Baoding, which all are cities with heavy industry with AAQI value about
170. Chengde, Zhangjiakou and Qinhuangdao, AAQI is less than 80, which means the
air quality is good and suitable to live.

[Figure 4 near here]

3.4 Assessment of air quality monitoring stations locations

AAQI value based on satellite-derived concentrations of four type of air pollutant
was regarded as the sampling frame. According to the sampling approach proposed in
section 2.3.3, we compared the existing air quality monitoring stations number with the
sample size in stratified sampling, as shown in Table 2. In most cases, the existing air

quality monitoring stations numbers are less than the sample numbers in
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stratified sampling in the first and second stratum. While the first and second stratum
represents the areas with good air quality. It is indicated that the number of air quality
monitoring stations is insufficient in areas with good air quality, such as Zhangjiakou,
Chengde and Qinhuangdao in study area. The existing air quality monitoring stations
numbers are much more than the needed sample numbers in stratified sampling in the
last stratum. The last stratum represents the areas with heavily polluted air. It is clear
that the number of air quality monitoring stations is too much in areas with bad air
quality.

[Figure 5 near here]

[Table 2 near here]

Based on the above studies, the optimized locations of air quality monitoring
stations were given, shown in Figure 5. It is clear that the existing air quality
monitoring stations are mostly located in the inner of cities, such as Beijing, Tianjin
and Shijiazhuang, while in the suburb areas, northern mountainous areas, number of air
quality monitoring stations is too few to be representative. Table 3 demonstrates the
precision of optimization for air monitoring stations locations. With the increasing of
the stratum, the minimum variance and relative error (RE) is decreasing, demonstrating
that representativeness of the air monitoring stations is increasing. When stratum
number is 6, air quality in study area could be calculated with the minimum variance
and RE from optimized air monitoring stations. When stratum number is 5, RE is only
6.77%, and the minimum variance is only 1420.20. At this time, just 16 stations need
to be set except existing stations. And the air quality in study area could be estimated
with small RE. As the difference of air pollutants concentrations is small in a pixel, the

monitoring stations could be set at anywhere in the pixel.

[Table 3 near here]
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4 Discussion

4.1 Advantages of using remote sensing data in assessing air quality

monitoring stations locations

Some advantages exist when assessing locations of air quality monitoring stations
using satellite observations data. To compare the method proposed in this paper with
the method which relied on the simulated air dispersion models to obtain the data
population, we optimized the locations of air quality monitoring stations by applying
the method of fuzzy set theory (Maji, Dikshit, and Deshpande 2014). Then we
compared the optimal locations of air quality monitoring stations between using this
method and the method proposed in our paper. The results are given in Figure 6. It is
clearly shown that the number of proposed stations is larger in northern areas with good
air quality based on method proposed in this paper. In addition, method proposed in our
research suggested some stations located in southeastern areas, while no stations are
given from fuzzy set theory. The total number of proposed stations by fuzzy set theory
is 61, while the number of proposed stations by our research is only 40. The relative
error of the optimized stations based on fuzzy set theory is about 15.52%, much large
than the relative errors 7.65% in this paper.

[Figure 6 near here]

In this paper, sampling population with high precision was obtained by using
concentrations of air pollutants derived from satellite observations. As the population,
i.e., the overall air quality of the region, was not easy to obtain, it is a difficult thing to
assess the representativeness of data from air quality monitoring stations. Compared
with methods relied on simulated air dispersion models to obtain the data population
(Mofarrah and Husain 2010; Zheng et al. 2011), which were constrained by changeable
meteorological conditions and terrains, especially in mountainous areas, the method
proposed in our research has great advantage in obtaining the spatial distribution of the
air pollutants. Air pollutant concentrations derived from satellite observations data

provided better spatial coverage, therefore, overcame the shortcoming of the dispersion

12



models. Above all, some simulated air dispersion models depended on samplings of air
pollutants concentration, locations of these samplings, i.e., the air quality monitoring

stations, had influence on the accuracy of the dispersion models.

4.2 Future work

The method proposed by our study may has great potential in assessing and
optimizing air monitoring networks with the development of remote sensing. In the
future, some aspects of this research still need to be improved. First of all, images with
high spatial resolution will be used in the future, which could help improve the accuracy
of locations of the optimized air quality monitoring stations. Second, the location of
monitoring stations is a complex and exact matter. Some other considerations may be
also taken into account in future work when using statistical methods, for example land-

use, epidemiology and city planning.

5 Conclusions

In this study, concentrations of ground PMjo, PM>5, NO> and SO, were firstly
derived from satellite observations over Beijing-Tianjin-Hebei area of China. The
aggregated air quality was represented by using AAQI with the concentrations of four
main pollutants. The spatial distribution of air quality monitoring stations was then
assessed and optimized using the method of stratified sampling. Finally, the accuracy
of satellite derived air pollutant concentrations was discussed, and the advantages of
remote sensing in evaluating rationalization of air quality monitoring stations locations
were analyzed. Results of this paper demonstrated that air quality monitoring stations
were clustered in areas with heavily polluted air, while the number of air quality
monitoring stations was insufficient in areas with good air quality. After optimization,
the minimum relative error was only 6.77% and the minimum variance was only
1420.20. Compared with previous studies, the improvements in our study are shown in

two aspects. First, overall ground air quality was evaluated based on the air pollutant
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concentrations derived from satellite observations, which has the advantages of large
spatial coverage. Therefore, the accuracy of sampling population was higher compared
with the dispersion models which were constrained by meteorological conditions and
terrains. Second, the spatial distribution of air quality monitoring stations was
optimized using the method of stratified sampling. And, the representativeness of the

stations was evaluated according to sampling results.
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Tables with captions

Table 1 Annual air pollutants concentrations recommended by WHO

PMio(pg/m®)  PMas(ug/m’)  NOy(ug/m’)  SOx(pg/m’)

Annual average

. 20 10 40 20
concentration

Table 2 Comparison of existing air quality monitoring stations numbers and sample

numbers in stratified sampling

existing existing existing existing existing existing
Stratum number/  number/  number/  number/  number/  number/
number number number number number number
Number . . . . . .
inthe Ist  inthe2"  inthe3™  inthe 4t in the 5t in the 6t
stratum stratum stratum stratum stratum stratum
3 9/17 42/13 67/10 - - -
4 10/45 16/25 43/29 49/26 - -
5 3/40 15/41 16/28 44/38 40/27 -
6 3/52 9/40 15722 29/47 32727 30/14

Table 3 Accuracy of optimization for air quality monitoring stations locations

Stratum number ~ Sample size Estimator of Minimum Relative error
population variance
3 41 13432 1721.33 9.71%
4 125 131.80 1493.83 7.65%
5 185 130.72 1420.20 6.77%
6 210 12935 1229.46 5.65%
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Figure captions

Figure 1 Distribution of the existing air quality monitoring stations in Beijing-Tianjin-

Hebei area

Figure 2 Distribution of air pollutants in Beijing-Tianjin-Hebei area

Figure 3 Comparison of ground measured air pollutants concentrations and satellite

derived air pollutants concentrations

Figure 4 Distribution of AAQI in Beijing-Tianjin-Hebei area

Figure 5 Locations of the existing and proposed air quality monitoring stations (a:

stratum number is 3; b: stratum number is 4; C: stratum number is 5; d: stratum number is 6)

Figure 6 Comparison of locations of air quality monitoring stations (a: locations of

stations based on remote sensing; b: locations of stations based on fuzzy set theory)

19



	Abstract
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Data collection and processing
	2.3 Methodology
	2.3.1 Assessing air quality by aggregated air quality index
	2.3.2 Estimating ground air pollutants from remote sensing data
	2.3.3 Assessing air monitoring locations by stratified sampling


	3 Results
	3.1 Distribution of air pollutants
	3.2 Validation of satellite derived air pollutant concentrations
	3.3 Distribution of aggregated air quality index
	3.4 Assessment of air quality monitoring stations locations

	4 Discussion
	4.1 Advantages of using remote sensing data in assessing air quality monitoring stations locations
	4.2 Future work

	5 Conclusions
	Acknowledgements
	References

