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Assessment of Air Quality Monitoring Stations Locations 

Based on Satellite Observations 

Abstract 

Optimal locations of air quality monitoring stations have great significance in 

providing high quality data for regional air pollution monitoring. To assess the 

rationalization of locations for current air quality monitoring stations, in this paper, we 

proposed a new method which was based on satellite observations data with the 

stratified sampling approach. Unlike the traditional method which relied on the spatial 

distribution of air pollutants from the simulated dispersion models, we obtained the 

sampling population through observations from remote sensing. Firstly, the spatial 

distribution of aggregated air quality was obtained based on ground concentrations of 

PM10, PM2.5, NO2 and SO2 derived from satellite observations. Secondly, 

rationalization of locations of air quality monitoring stations was assessed by using the 

method of stratified sampling. Results of paper indicated that combing remote sensing 

data with the stratified sampling approach have great potential in assessing 

rationalization of locations for air quality monitoring stations. 
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1 Introduction 
 

Optimal location of air quality monitoring stations is very important for both 

monitoring and protecting ambient air quality (Benis and Fatehifar 2015). The data 

observed by ambient air quality monitoring stations have not only widely applied in 

evaluating air quality, but also in some other areas such as studying the dynamic 

behavior of air pollutants, verifying dispersion models and assessing human heath 

impact caused by air pollution (Elkamel et al. 2008; Maji, Dikshit, and Deshpande 

http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/rationalisation/#keyfrom=E2Ctranslation
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2014). Therefore, monitoring data with good quality is essential for these applications. 

But, the current distribution of air quality monitoring stations in China tended to be 

clustered in areas with poor air quality, such as in street canyons and city centers. As a 

result, the observations are spatially less representative, especially in areas with 

complex terrains and in the vicinity of pollution sources (Andrews, 2008; Rohde and 

Muller, 2015). In general, the coverage of the representative area is small, and the 

monitoring data is also under-represented. Therefore, re-assessing the locations for air 

quality monitoring stations in China has important implications in improving the 

quality of the monitoring data. 

Assessing and optimizing locations for air quality monitoring stations are one of the 

most important and indispensable research topics in designing air monitoring networks. 

Principal component analysis, cluster analysis (Pires et al. 2008; Lu, He, and Dong 

2011), geostatistical modeling (Haas 1992; Kanaroglou et al. 2005) and fuzzy set theory 

(Maji, Dikshit, and Deshpande 2014) were all applied to locating stations and 

evaluating the predictive error in previous researches. In addition, some economic and 

social factors, such as population density, land-use, and the city scale were all taken 

into account to determine the optimum number and location of monitoring stations in 

some multi-objective optimization approach (Sarigiannis and Saisana 2008; Pope and 

Wu 2014) and genetic algorithm (Tseng and Chang 2001; Wang et al. 2015). Some 

studies (Henne et al. 2010; Duyzer et al. 2015) focused on evaluating and comparing 

the effectiveness of parameters to describe the representativeness. While the others (Lu, 

He, and Dong 2011; Mofarrah and Husain 2010) put emphasis on the impact of multiple 

air pollutants when designing the monitoring network, and proposed some optimization 

methodology based on the distribution of particulate matter, sulfur dioxide and nitrogen 

dioxide. 

 Some gaps still exist among those approaches as described in above sections. 

The one of the most obvious is the difficulty in obtaining the overall regional air quality. 

The spatial distribution and concentration of air pollutants were mostly obtained from 

simulated air dispersion models in previous studies (Zheng et al. 2011; Duyzer et al. 

2015), these models were constrained by physiochemical processes, changeable 

http://dict.youdao.com/w/put/
http://dict.youdao.com/w/emphasis/
http://dict.youdao.com/w/on/
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meteorological conditions, and the data quality of the sampling stations, therefore, may 

not be representative, especially in complex terrain areas (Hertel et al. 2001; Wang et 

al. 2015). It is difficult to evaluate the representativeness when the sampling population, 

i.e., overall regional air pollutants concentration, is not preferable. To this end, an 

approach to evaluate the rationalization of locations for air quality monitoring stations 

by using satellite observations data to estimate air quality has more advantages and was 

proposed in our research. First of all, the spatial distribution of air pollutants were 

derived from satellite-based data, this could provide a better spatial coverage. Satellite 

observation of surface air quality has evolved dramatically in recent years. Regional 

and global observations are now available for many air pollutants. And many retrieval 

methods and products have been developed, such as MODIS aerosols, GOME 

tropospheric NO2 and SO2 columns, SCIAMACHY CO columns (Martin, 2008). Use 

of satellite data could provide some information about location of peak concentrations, 

the concentration gradients among surface monitoring stations and the transport of air 

pollutants (Engel-Cox et al., 2004). Second, considering that overall air quality was not 

only determined by the dominant pollutant, but also determined by the second pollutant 

and some other pollutant, the Aggregate Air Quality Index (AAQI) (Kyrkilis, 

Chaloulakou, and Kassomenos 2007) was adopted to evaluate the aggregated effects of 

four kinds of air pollutants, i.e., PM10, PM2.5, NO2, and SO2. Finally, the stratified 

sampling method was used to evaluate the rationality of the spatial distribution of the 

air quality monitoring stations. 

In this paper, using Beijng-Tianjin-Hebei area of China as the case area, locations 

of the air quality monitoring stations was assessed. This paper consists of four parts. In 

the first part, the spatial distribution of ground PM10, PM2.5, NO2, and SO2 were 

obtained from satellite observation data. In the second part, the comprehensive air 

quality was by assessed by using the AAQI. In the third part, using the AAQI value in 

study area as the sample frame, locations of air quality monitoring stations was further 

assessed with stratified sampling approach. In the last part, the accuracy of satellite 

observations data in estimating ground air pollutant concentrations was analyzed, and 

the advantages of using remote sensing data in assessing air quality monitoring stations 
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locations were discussed. 

 

2 Data and methods 

2.1 Study area 

Beijing-Tianjin-Hebei, notorious for its air quality, having high and frequent PM10, 

PM2.5, NO2 and SO2 pollutions, especially particulate matter (PM) pollutions (Xin et al. 

2014), is located in northern China. Mountains, plateaus, basins and plains are all 

distributed in this area, therefore, making the terrain over this area very complex. And 

the government funding of air quality monitoring and protection is relatively 

independent in this area. To monitor air quality and to study the dynamic behavior of 

air pollutants, a network consisting of 169 air quality monitoring stations were 

constructed and distributed over this area in recent years. Although the functions and 

tasks of these stations are different, all of them have the ability to monitor the 

concentrations of PM10, PM2.5, NO2 and SO2. The location of Beijing-Tianjin-Hebei 

area and the distribution of these air quality monitoring stations are shown in Figure 1. 

It is clearly seen that air quality monitoring stations are mostly concentrated in city 

centers. The number of stations is much less in northern, northwestern mountainous 

regions, and southern rural regions. 

[Figure 1 near here]  

2.2 Data collection and processing 

Satellite data  

In this study, daily Level-2 OMI/Aura Near UV Aerosol Optical Depth 

(OMAERUV) products over the time period from 2009 to 2013 were used to estimate 

ground PM10 and PM2.5 concentrations. The aerosol optical depth (AOD) products were 

generated by the OMAERUV algorithm with the spatial resolution of 0.125°×0.125°. 

These products showed an good quality by comparing to Aerosol Robotic Network 

(AERONET) observations, with correlation coefficient, slope and intercept in the range 

0.79-0.92, 0.63-0.92, and 0.08-0.18, respectively (NASA 2012).  Monthly average 
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AOD was calculated from the daily AOD products.  

Monthly average Level-2 OMI tropospheric NO2 columns, which were derived 

from satellite observations based on slant column retrievals with the differential optical 

absorption spectroscopy (DOAS) technique, were used to calculate ground NO2 

concentrations over the time period from 2009 to 2013 in study area. These data had a 

spatial resolution of 0.125°× 0.125°, and the valid range varied from 0 to 20 (1015 

molecule/cm2). The fitting error in the NO2 slant column was estimated to be 0.3-1x1015 

cm–2 (NASA 2012; Celarier et al. 2011).  

The ground SO2 concentrations used in this study for the time period from 2009 to 

2013 were derived from monthly Level 2 OMI SO2 tropospheric columns data. They 

were derived with DOAS technique, had a spatial resolution of 0.125°×0.125°. The 

standard deviation was only 1.2DU-1.5 DU (NASA 2012; Yang et al. 2007), indicating 

that the derived SO2 tropospheric columns were in good quality. 

Ground level field Data 

Ground measurement of PM10, NO2 and SO2 concentrations from 2009 to 2013 in 

11 cities of Beijing-Tianjin-Hebei were collected. These records in each city were from 

the air monitoring stations in both urban and suburban areas. And these data were 

recorded daily and published by the environmental protection bureau in these cities. 

Monthly data were obtained by averaging the daily air pollutants concentrations. Since 

PM2.5 concentrations were not included in the air quality standard until February 2012 

in China (MEPC and GAQSIQ 2012), ground measured PM2.5 concentrations were only 

collected in 2013 in these cities. 

2.3 Methodology 

The aggregated air quality was assessed by using the aggregated air quality index. 

To do this, the spatial distribution of ground PM10, PM2.5, NO2, SO2 were firstly derived 

from satellite observations. Then locations of air quality monitoring stations were 

assessed by stratified sampling. 
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2.3.1 Assessing air quality by aggregated air quality index 

Considering that traditional air quality index (AQI) is determined mostly by the 

main air pollutant, this type of index does not take fully into account the possible 

adverse effects associated with the coexistence of multi-pollutants (Kyrkilis, 

Chaloulakou, and Kassomenos 2007). Therefore, they could not reflect the overall air 

pollution level. In this paper, we adopted the aggregated air quality index (AAQI) based 

on the concentrations of four kinds of air pollutant  to evaluate the combined effects 

of the multiple air pollutants. PM10，PM2.5，NO2，SO2 are the four main air pollutants 

in China, and are included in the air monitoring standard (MEPC and GAQSIQ, 2012), 

so these four kinds air pollutants are selected in this study when assessing the 

aggregated air quality in this study. The concentration of each air pollutant could be 

expressed as the ratio of the concentration to standard concentration (Kyrkilis, 

Chaloulakou, and Kassomenos 2007): 

                    𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠(𝑞𝑞
𝑞𝑞𝑠𝑠

)                      (1) 

Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖   is the sub-index of the i-th air pollutant, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠  is the scaling 

coefficient, 𝑞𝑞 is the measured concentration of the i-th air pollutant, which could be 

estimated from the remote sensing data. 𝑞𝑞𝑠𝑠 is the standard concentration, which means 

the highest concentration that is harmless to human beings. Table 1 shows the standards 

of these four pollutants recommended by World Health Organization (WHO) (WHO 

2006). 

[Table 1 near here]  

Then a power function model was adopted to describe the overall air quality index 

(Swamee and Tyagi, 1999): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)𝜌𝜌𝑛𝑛
𝑖𝑖=1 )

1
𝜌𝜌                  (2) 

Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the aggregated air quality index, 𝜌𝜌 is a constant set to be 2.5 in this 

paper. 
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2.3.2 Estimating ground air pollutants from remote sensing data 

AOD is the integration of the extinction coefficient along the vertical direction. The 

direct correlation between satellite-based AOD and the surface concentrations of 

particulate matter is usually relatively low. To connect AOD with ground concentrations 

of particulate matter, the relationship between AOD and surface aerosol extinction 

coefficient should be considered (Chu et al. 2013). In addition, due to impacts of the 

hydroscopic growth of aerosols, relative humidity (RH) should be taken into account to 

improve the accuracy when estimating surface PM10 and PM2.5 concentrations from 

satellite observations. We adopted the method proposed by Lin et al. (2015) and Yu et 

al. (2016) to eliminate the impact of RH and aerosol scaling height in this study. 

The main sources of NO2 and SO2 are emissions from fossil fuels combustion and 

biomass burning, therefore, NO2 and SO2 in the air are mainly distributed below the 

planetary boundary layer (PBL), and columns above the top of PBL could be ignored 

(Boersma et al 2008).  Therefore, we could assume that mixing volume ratios of NO2 

and SO2 are consistent from the ground-level to the top of mixing layer, and the 

concentrations are zero above the height of mixing level (Boersma et al 2009). In this 

study, we adopted the method proposed by Yu et al. (2016) to estimate the surface 

concentrations of NO2 and SO2. 

2.3.3 Assessing air monitoring locations by stratified sampling 

Stratified sampling is the most suitable method when the data population shows 

gradient features, such as the air quality in study area, which contains large spatial 

variability and hierarchical characteristics due to the complex terrains. Therefore, 

stratified sampling approach was adopted to study the location and representativeness 

of the air quality monitoring stations.  

AAQI value based on the satellite-derived concentrations of four types of air 

pollutant was regarded as the sampling frame. The cumulative square root method was 

used to stratify the population. This method was introduced as a fast method to 

determine the optimal stratum boundaries by Dalenius and Hodges (1959). The 
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auxiliary variable 𝑥𝑥 , which represented AAQI value in each grid, was arranged in 

ascending order. Then 𝑓𝑓(𝑥𝑥) , which was the frequency of 𝑥𝑥  was calculated. The 

method was to form the cumulative of �𝑓𝑓(𝑥𝑥)  and chose the stratified point 𝑥𝑥ℎ which 

divided the summation by the number of strata equally.  

Neyman allocation was then employed to determine the value of sample sizes 𝑛𝑛ℎ 

in respective stratum. If the relative error limit 𝑟𝑟 was given under a given confidence 

level of 1− 𝛼𝛼 , the total sample size could be determined. If we defined 𝑁𝑁 as the 

total number of units, 𝑌𝑌� as the population mean, 𝑊𝑊ℎ as the stratum weight, 𝑆𝑆ℎ2 as 

the population variance of stratum ℎ, then the estimator of total sample size could be 

expressed as follows:  

𝑛𝑛 =  (∑𝑊𝑊ℎ𝑆𝑆ℎ)2
(𝑟𝑟𝑌𝑌�)2

(𝑢𝑢𝛼𝛼/2)2
+1
𝑁𝑁
∑𝑊𝑊ℎ𝑆𝑆ℎ

2
                            (3) 

The sample sizes in stratum ℎ could then be calculated as: 

    𝑛𝑛ℎ = 𝑛𝑛 𝑊𝑊ℎ𝑆𝑆ℎ
∑𝑊𝑊ℎ𝑆𝑆ℎ

                               (4) 

After the sample size within each stratum was determined, a simple random sample 

was taken in each stratum independently. Then the estimator of the statistical population 

could be formulated as below: 

    𝑋𝑋� = N𝑥̅𝑥𝑠𝑠𝑠𝑠 = ∑ 𝑁𝑁ℎ𝑥̅𝑥ℎ𝐿𝐿
ℎ=1                           (5) 

where 𝑥̅𝑥ℎ = ∑ 𝑥𝑥ℎ𝑖𝑖
𝑛𝑛ℎ
𝑖𝑖=1  . According to the characteristics of Neyman allocation, this 

variance was defined as a minimum variance. 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚�𝑋𝑋�� = 𝑁𝑁2 �1
𝑛𝑛

(∑ 𝑊𝑊ℎ𝑠𝑠ℎ𝐿𝐿
ℎ=1 )2 − 1

𝑁𝑁
∑ 𝑊𝑊ℎ𝑠𝑠ℎ2𝐿𝐿
ℎ=1 �            (6) 

Although the whole process of stratified sampling is based on statistical basis, the 

strata have some physical meaning. Specially, the first stratum is related to areas with 

the minimum AAQI, where the quality is the best. While the last stratum is related to 

areas with the maximum AAQI, where the air pollution is most serious.   

3 Results 
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3.1 Distribution of air pollutants 

In general, air pollution is mainly concentrated in southern and southeastern areas 

in Beijing-Tianjin-Hebei area, as shown in Figure 2. It is seen that air pollution in cities 

is heavier than those in suburbs, rural areas and mountain areas as a result of the 

emissions from the heavy industry and the large number of vehicles. More specifically, 

the highest PM concentrations, with the average concentration of PM10 higher than 120 

µg/m3 and the average concentration of PM2.5 higher than 85µg/m3, are located at 

Beijing, Tianjin, Shijiazhuang and Handan. Since the main sources of troposphere NO2 

and SO2 are emissions from fossil fuels combustion, biomass burning and the vehicle 

exhaust emissions (Liang et al. 1998), the most heavy NO2 and SO2 pollution 

concentrate over heavy industry cities in the southern and southeastern cities, such as 

Handan, Xingtai and Shijiazhuang, with the average concentration of NO2 from 2009 

to 2013 is about 65 µg/m3, and the average concentration of SO2 is about 50 µg/m3. It 

is worth noting that PM10, PM2.5 and NO2 pollution are all very serious in Beijing, but 

SO2 pollution is much more less. This is due to the heavy industry, which is the main 

source of SO2 pollution, had moved out of Beijing since the Olympic Games in 2008. 

In northern and northwestern areas, there is less air pollution, benefited from high 

forest coverage rate and less heavy industry and vehicles. In this region, concentrations 

of PM10, PM2.5, NO2 and SO2 are less than 50 µg/m3, 35 µg/m3, 20 µg/m3 and 15 µg/m3, 

respectively. 

 [Figure 2 near here]  

3.2 Validation of satellite derived air pollutant concentrations 

The uncertainties of the satellite-derived air pollutant concentrations lead to the 

uncertainties of AAQI. To estimate the accuracy of the satellite derived air pollutant 

concentrations, we compared the satellite derived air pollutant concentrations with the 

ground measured concentrations, as shown in Figure 3. In general, a good linear 

relationship exists between the satellite derived air pollutant concentrations and the 

ground measured concentrations. Coefficient of determination between surface 

http://dict.youdao.com/w/forest/
http://dict.youdao.com/w/coverage/
http://dict.youdao.com/w/rate/
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measurement PM10, PM2.5, NO2, SO2 concentrations and corresponding satellite derived 

concentrations can be as high as 0.68, 0.66, 0.72 and 0.72, respectively. While root 

mean square error (RMSE) is about 20.33, 16.45, 7.94 and 10.91, respectively. 

According to equation (2), corresponding transferred bias for AAQI was less than 13. 

The small bias of satellite derived air pollutions and AAQI demonstrate that estimating 

ground air pollutant concentrations using satellite observations data is reliable. 

 [Figure 3 near here]  

3.3 Distribution of aggregated air quality index 

According to equation (2), we obtained the spatial distribution of AAQI in Beijing-

Tianjin-Hebei area, shown in Figure 4. Since the PM10 and PM2.5 pollution is very heavy, 

the spatial distribution of AAQI is just like the distribution of PM10 and PM2.5 generally. 

High AAQI value is mainly located in the southern and southeastern cities, while low 

AAQI value is concentrated in the northern mountainous areas. AAQI value in all cities, 

except for Zhangjiakou, Chengde and Qinhuangdao in the northern areas, are higher 

than 100, indicating a serious threat and great risk to the life of the citizen. Especially, 

Beijing, Tianjin and Handan, with the highest PM10, PM2.5 and NO2 concentrations, 

AAQI value can be as high as 220. Followed by Xingtai, Hengshui, Cangzhou, 

Tangshan and Baoding, which all are cities with heavy industry with AAQI value about 

170. Chengde, Zhangjiakou and Qinhuangdao, AAQI is less than 80, which means the 

air quality is good and suitable to live.   

 [Figure 4 near here]  

3.4 Assessment of air quality monitoring stations locations 

AAQI value based on satellite-derived concentrations of four type of air pollutant 

was regarded as the sampling frame. According to the sampling approach proposed in 

section 2.3.3, we compared the existing air quality monitoring stations number with the 

sample size in stratified sampling, as shown in Table 2. In most cases, the existing air 

quality monitoring stations numbers are less than the sample numbers in 
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stratified sampling in the first and second stratum. While the first and second stratum 

represents the areas with good air quality. It is indicated that the number of air quality 

monitoring stations is insufficient in areas with good air quality, such as Zhangjiakou, 

Chengde and Qinhuangdao in study area. The existing air quality monitoring stations 

numbers are much more than the needed sample numbers in stratified sampling in the 

last stratum. The last stratum represents the areas with heavily polluted air. It is clear 

that the number of air quality monitoring stations is too much in areas with bad air 

quality.  

[Figure 5 near here]  

[Table 2 near here]  

Based on the above studies, the optimized locations of air quality monitoring 

stations were given, shown in Figure 5.  It is clear that the existing air quality 

monitoring stations are mostly located in the inner of cities, such as Beijing, Tianjin 

and Shijiazhuang, while in the suburb areas, northern mountainous areas, number of air 

quality monitoring stations is too few to be representative. Table 3 demonstrates the 

precision of optimization for air monitoring stations locations. With the increasing of 

the stratum, the minimum variance and relative error (RE) is decreasing, demonstrating 

that representativeness of the air monitoring stations is increasing. When stratum 

number is 6, air quality in study area could be calculated with the minimum variance 

and RE from optimized air monitoring stations. When stratum number is 5, RE is only 

6.77%, and the minimum variance is only 1420.20. At this time, just 16 stations need 

to be set except existing stations. And the air quality in study area could be estimated 

with small RE. As the difference of air pollutants concentrations is small in a pixel, the 

monitoring stations could be set at anywhere in the pixel. 

 

[Table 3 near here]  
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4 Discussion 

4.1 Advantages of using remote sensing data in assessing air quality 

monitoring stations locations 

Some advantages exist when assessing locations of air quality monitoring stations 

using satellite observations data. To compare the method proposed in this paper with 

the method which relied on the simulated air dispersion models to obtain the data 

population, we optimized the locations of air quality monitoring stations by applying 

the method of fuzzy set theory (Maji, Dikshit, and Deshpande 2014). Then we 

compared the optimal locations of air quality monitoring stations between using this 

method and the method proposed in our paper. The results are given in Figure 6. It is 

clearly shown that the number of proposed stations is larger in northern areas with good 

air quality based on method proposed in this paper. In addition, method proposed in our 

research suggested some stations located in southeastern areas, while no stations are 

given from fuzzy set theory. The total number of proposed stations by fuzzy set theory 

is 61, while the number of proposed stations by our research is only 40. The relative 

error of the optimized stations based on fuzzy set theory is about 15.52%, much large 

than the relative errors 7.65% in this paper.  

 [Figure 6 near here]  

In this paper, sampling population with high precision was obtained by using 

concentrations of air pollutants derived from satellite observations. As the population, 

i.e., the overall air quality of the region, was not easy to obtain, it is a difficult thing to 

assess the representativeness of data from air quality monitoring stations. Compared 

with methods relied on simulated air dispersion models to obtain the data population 

(Mofarrah and Husain 2010; Zheng et al. 2011), which were constrained by changeable 

meteorological conditions and terrains, especially in mountainous areas, the method 

proposed in our research has great advantage in obtaining the spatial distribution of the 

air pollutants. Air pollutant concentrations derived from satellite observations data 

provided better spatial coverage, therefore, overcame the shortcoming of the dispersion 
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models. Above all, some simulated air dispersion models depended on samplings of air 

pollutants concentration, locations of these samplings, i.e., the air quality monitoring 

stations, had influence on the accuracy of the dispersion models. 

4.2 Future work 

The method proposed by our study may has great potential in assessing and 

optimizing air monitoring networks with the development of remote sensing. In the 

future, some aspects of this research still need to be improved. First of all, images with 

high spatial resolution will be used in the future, which could help improve the accuracy 

of locations of the optimized air quality monitoring stations. Second, the location of 

monitoring stations is a complex and exact matter. Some other considerations may be 

also taken into account in future work when using statistical methods, for example land-

use, epidemiology and city planning.  

5 Conclusions 

In this study, concentrations of ground PM10, PM2.5, NO2 and SO2 were firstly 

derived from satellite observations over Beijing-Tianjin-Hebei area of China. The 

aggregated air quality was represented by using AAQI with the concentrations of four 

main pollutants. The spatial distribution of air quality monitoring stations was then 

assessed and optimized using the method of stratified sampling. Finally, the accuracy 

of satellite derived air pollutant concentrations was discussed, and the advantages of 

remote sensing in evaluating rationalization of air quality monitoring stations locations 

were analyzed. Results of this paper demonstrated that air quality monitoring stations 

were clustered in areas with heavily polluted air, while the number of air quality 

monitoring stations was insufficient in areas with good air quality. After optimization, 

the minimum relative error was only 6.77% and the minimum variance was only 

1420.20. Compared with previous studies, the improvements in our study are shown in 

two aspects. First, overall ground air quality was evaluated based on the air pollutant 
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concentrations derived from satellite observations, which has the advantages of large 

spatial coverage. Therefore, the accuracy of sampling population was higher compared 

with the dispersion models which were constrained by meteorological conditions and 

terrains. Second, the spatial distribution of air quality monitoring stations was 

optimized using the method of stratified sampling. And, the representativeness of the 

stations was evaluated according to sampling results. 
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Tables with captions 

 

 

Table 1 Annual air pollutants concentrations recommended by WHO 
 PM10(µg/m3) PM2.5(µg/m3) NO2(µg/m3) SO2(µg/m3) 

Annual average 
concentration 

20 10 40 20 

 

 

Table 2 Comparison of existing air quality monitoring stations numbers and sample 

numbers in stratified sampling 

Stratum 
Number 

existing 
number/ 
number  
in the 1st 
stratum 

existing 
number/ 
number  

in the 2nd 
stratum 

existing 
number/ 
number  
in the 3rd 
stratum 

existing 
number/ 
number  
in the 4th 
stratum 

existing 
number/ 
number  
in the 5th 
stratum 

existing 
number/ 
number  
in the 6th 
stratum 

3 9/17 42/13 67/10 - - - 
4 10/45 16/25 43/29 49/26 - - 
5 3/40 15/41 16/28 44/38 40/27 - 
6 3/52 9/40 15/22 29/47 32/27 30/14 

 

 
Table 3 Accuracy of optimization for air quality monitoring stations locations 

Stratum number  Sample size Estimator of 
population 

Minimum 
variance 

Relative error 

3 41 134.32 1721.33 9.71% 
4 125 131.80 1493.83 7.65% 
5 185 130.72 1420.20 6.77% 
6 210 129.35 1229.46 5.65% 
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Figure captions 

Figure 1 Distribution of the existing air quality monitoring stations in Beijing-Tianjin-

Hebei area 

Figure 2 Distribution of air pollutants in Beijing-Tianjin-Hebei area 

Figure 3 Comparison of ground measured air pollutants concentrations and satellite 

derived air pollutants concentrations 

Figure 4 Distribution of AAQI in Beijing-Tianjin-Hebei area 

Figure 5 Locations of the existing and proposed air quality monitoring stations (a: 

stratum number is 3; b: stratum number is 4; c: stratum number is 5; d: stratum number is 6) 

Figure 6 Comparison of locations of air quality monitoring stations (a: locations of 

stations based on remote sensing; b: locations of stations based on fuzzy set theory) 
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