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Abstract—This paper continues an overview of the validation
of operational profile retrievals from the Suomi National Polar-
orbiting Partnership ( SNPP), with focus here given to the infrared
(IR) ozone profile environmental data record (EDR) product. The
SNPP IR ozone profile EDR is retrieved using the Cross-track
Infrared Sounder (CrIS), a Fourier transform spectrometer that
measures high resolution IR Earth radiance spectra containing
atmospheric state information, namely vertical profiles of tem-
perature, moisture and trace gas constituents. TheSNPP CrIS
serves as the U.S. low earth orbit (LEO) satellite IR sounding
system and will be featured on future Joint Polar Satellite System
LEO satellites. The operational sounding algorithm is the NOAA-
Unique Combined Atmospheric Processing System (NUCAPS), a
legacy sounder science team algorithm that retrieves atmospheric
profile EDR products, including ozone and carbon trace-gases,
with optimal vertical resolution under non-precipitating (clear to
partly cloudy) conditions. The NUCAPS ozone profile product is
assessed in this paper using extensive globalin situ truth datasets,
namely ozonesonde observations launched from ground-based
networks and from ocean-based intensive field campaigns, along
with numerical weather prediction model output. Based upon
rigorous statistical analyses using these datasets, the NUCAPS
ozone profile EDRs are determined to meet the JPSS Level 1
global performance requirements.

Index Terms—atmospheric measurements, algorithms, geo-
physical measurements, infrared measurements, measurement
errors, ozone, radiosondes, remote sensing, satellite applications

I. I NTRODUCTION

The operational U.S. Suomi National Polar-orbiting Part-
nership (SNPP) satellite features the hyperspectral infrared
(IR) Cross-track Infrared Sounder (CrIS) and Advanced Tech-
nology Microwave Sounder (ATMS) sounding system. The
follow-on Joint Polar Satellite System (JPSS) is a U.S.
National Oceanic and Atmospheric Administration (NOAA)
operational satellite mission will feature CrIS/ATMS sounders
onboard four satellites launched in the same orbit over the next
two decades beginning in late 2017. The CrIS instrument is an
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advanced Fourier transform spectrometer (FTS) that measures
well-calibrated sensor data records (SDRs) consisting of high-
resolution IR spectra in 1305 channels over three bands
spanningν ≈ [650, 2550] cm−1. The CrIS spectra allow for
retrieval of atmospheric vertical profile environmental data
records (EDRs) with the highest possible vertical resolution
(≈ 2–5 km) comparable to predecessor sounding systems,
namely theMetOp-A and -B Infrared Atmospheric Sounding
Interferometer (IASI) [1], [2] and theEOS-Aqua Atmospheric
Infrared Sounder (AIRS) [3], [4].

Although sounder SDRs (radiances) have come to be di-
rectly assimilated into global numerical weather prediction
(NWP) models via variational analysis schemes, they con-
tinue to be directly inverted operationally to retrieve orbital
atmospheric profile EDRs in near-realtime, as originally en-
visioned by satellite sounding pioneers [5]–[7] and [8]–[10].
One advantage of direct inversion is the ready capability of
inverting for numerous state parameters beyond atmospheric
vertical temperature and moisture profiles (AVTP and AVMP),
namely trace gases, clouds, aerosols, surface emissivity, among
others.

The operational EDR retrieval algorithm for CrIS/ATMS is
the NOAA-Unique Combined Atmospheric Processing System
(NUCAPS) [11], [12]. The NUCAPS algorithm is based upon
the heritage methodology developed for theEOS-Aqua AIRS
and is a modular implementation of the multi-step AIRS
Science Team retrieval algorithm Version 5 [13], [14]. For
more details on the NUCAPS algorithm, the reader may refer
to [12], [13] or the Algorithm Theoretical Basis Document
(ATBD) available online. The multi-step NUCAPS physical
retrieval module retrieves individual parameters in a step-by-
step fashion, using only channels rigorously determined to be
sensitive to that parameter [15], beginning with temperature
and water vapor profiles, followed by ozone (O3) and trace
gases, with the result output on the radiative transfer algorithm
(RTA) 100 layers (AVTP is output on layer boundaries).
The NUCAPS IR ozone profile EDR is currently used by
the NOAA Total Ozone Analysis using SBUV/2 and TOVS
(TOAST), as well as in basic science applications.

Because of the multistep retrieval method, the quality of
the ozone profile retrieval (and the other trace gases) will
depend to some extent on the quality of the AVTP and
AVMP retrievals. Thus the performances of the temperature
and moisture EDRs were first overviewed in the Part 1



IEEE TRANSACTIONS OF GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXXX 2017 2

companion paper [16], where it was demonstrated that the
operationalSNPP NUCAPS AVTP and AVMP EDRs comply
with JPSS Level 1 requirements (and declared validated as
of September 2014). In this paper the profile EDR validation
is extended to theSNPP NUCAPS IR ozone profile EDR
using ozonesonde collocations from land-based networks and
ocean-based dedicated launches, along with numerical model
comparisons.

II. NUCAPS IR OZONE PROFILE EDR OVERVIEW

As mentioned above, users of the NUCAPS IR ozone profile
EDR include the NOAA Total Ozone Analysis using SBUV/2
and TOVS (TOAST), in addition to science users interested
in atmospheric chemistry and air quality [17], [18]. Satellite
sounder EDR datasets are generally invaluable for numer-
ous global environmental research studies [19]. To illustrate,
Figure 1 shows NUCAPS ozone retrievals for the 30 hPa
RTA layer for 22 June and 22 September 2016, these being
roughly the southern hemisphere (SH) winter solstice and
spring equinox, respectively. As will be seen in Section III,
the CrIS sensor has very good sensitivity to this layer, and as
a result, the seasonal depletion of ozone from SH winter to
spring, commonly referred to as the Antarctic “ozone hole”
[20], is clearly observed by the NUCAPS ozone soundings.

Fig. 1. NUCAPS retrieved 30 hPa layer ozone for ascending and descending
orbits on 22 June 2016 (top plots) and 22 September 2016 (bottom plots)
illustrating the seasonal depletion of ozone from SH winter to SH spring.

As also mentioned above, the NUCAPS physical retrieval
algorithm utilizes information contained within the CrIS-
measured IR Earth radiance spectra to retrieve ozone. The
NUCAPS ozone retrieval step applies an optimal estimation
(OE) method to retrieve ozone using sensitive channels [15]
(see Figure 2, top) and ana priori background state consisting
of a tropopause-based climatology [21].

Retrieval sensitivity to state parameters (e.g., ozone con-
centration) can be inferred from the averaging kernels (AKs)
defined by [22]–[24]

∂x̂
A ≡ , (1)

∂x

Fig. 2. Hamming apodized CrIS longwave IR brightness temperature spec-
trum (unapodized nominal spectral-resolution 0.625 cm−1) for a marine
nighttime case (10:22 UTC 9 June 2015, 6.5◦N, 130.0◦W) showing ozone
channels (red circles) used in the NUCAPS multi-step physical retrieval.

where the AK matrixA is dimensionedm×m (m being the
number of RTA layers), andx̂ andx denote the retrieved and
true states, respectively. The NUCAPS algorithm computes
“effective” AKs, Ae, for each retrieval that account for the
trapezoidal basis functions used in the physical retrieval, the
details of which can be found in [25]. Figure 3 shows zonal-
mean NUCAPS profiles taken from a global Focus Day 17
February 2015 for the tropics, northern and southern hemi-
sphere (NH and SH) midlatitude, and polar zones. The left
plot shows the RTA layer-averaged mean effective AKs for
the ozone channels shown in Figure 2, where it can be seen
that the layer and magnitude of peak sensitivity increases from
the poles to the tropics. Polar sensitivity peaks at around 100
hPa, whereas midlatitude and tropical sensitivity peak higher
in the upper troposphere to lower stratosphere (UT/LS),≈50
hPa, with a sharper peak exhibited in the tropics along with a
secondary peak below the tropopause (middle plot) at around
300 hPa, which when combined with the primary peak shows
UT/LS sensitivity of the NUCAPS ozone product over the
tropics [21]. The greater sensitivity seen in the NH polar cap
(60–90◦N) versus the SH is related to the relatively higher
ambient LS ozone concentration found in the NH over the
SH (right plot) during late boreal winter. The ability of the
CrIS to provide information about the ozone profile is also
demonstrated by considering the NUCAPS algorithm degrees-
of-freedom (DoF) for the ozone retrieval, which are shown
for the 17 February 2015 Focus Day in Figure 4. Generally
speaking, DoF greater than unity is an indicator that more
than one independent piece of information is contained within
the measurements, thus enabling the retrieval to contribute
vertical profile information to thea priori. In Figure 4 it can
be seen that NUCAPS ozone DoF are generally& 1 globally
speaking, with larger values& 2 found in midlatitude to polar
zones, and smaller values≈1 in regions of the tropics (possibly
associated with deep convective clouds within the intertropical
convergence zone, ITCZ) as well as over central Antarctica.

III. IR O ZONE PROFILE EDR PERFORMANCE

ASSESSMENT

The JPSS Level 1 requirements for the CrIS IR ozone
profile EDR are given in Table I, which are defined for
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Fig. 3. Zonal-mean NUCAPS profiles calculated from a global Focus Day,
17 February 2015 (n = 2686 granules): (a) RTA layer-averaged effective
averaging kernelsAe for nominal spectral-resolution CrIS ozone channels
shown in Figure 2, (b) atmospheric vertical temperature profile retrievals, and
(c) IR ozone profile retrievals (log-log plot). The solid lines are tropics (30◦S
to 30◦N), dotted lines are midlatitudes (30–60◦S and◦N) and dashed lines
are polar (60–90◦S and◦N).

global, non-precipitating cases on broad atmospheric layers
made up of coarse layers. In the case of ozone, there is only 1
tropospheric layer (a consequence of the CrIS ozone sensitivity
as evidenced in the AKs) and 6 spanning from the upper
troposphere to the stratosphere) that are to be computed as
the average of coarse statistical layers. As described in [26],
to avoid undesirable skewing of the sample distribution we
weight each deviation by the ozone layer mass abundance
squared (i.e., W2 weighting) in the computation of coarse-layer
root mean-square error (RMSE), bias (mean) and standard
deviation (σ).

A. CrIS Nominal Spectral Resolution (NSR)

The operational NUCAPS algorithm (Version 1.5) has run
on nominal spectral-resolution (NSR) CrIS SDRs at∆ν ≈

0.625 cm−1, 1.25 cm−1 and 2.5 cm−1 for the longwave,
midwave and shortwave IR bands, respectively [27], [28]. This
subsection presents the validation of the operational ozone
profile EDR based upon an offline v1.5 emulation.

1) Data: Validation of the operational ozone profile EDR is
primarily based upon collocations of truth datasets consisting
of in situ ozone soundings obtained from electrochemical
concentration cell (ECC) ozonesondes along with global out-
put from the European Centre for Medium-Range Weather
Forecasts (ECMWF) NWP model. Ozonesondes used in the
analyses were acquired from land-based World Ozone and
Ultraviolet Radiation Data Centre (WOUDC) and Southern
Hemisphere Additional Ozonesonde (SHADOZ) [29] network
sites, along with uniqueSNPP-dedicated ECC ozonesondes
launched during ship-based intensive cal/val campaigns [16],
namely NOAA Aerosols and Ocean Science Expeditions

(a)

(b)

Fig. 4. NUCAPS ozone degrees-of-freedom (DoF) for the global Focus Day,
17 February 2015: (a) ascending orbit, (b) descending orbit.

(AEROSE) [17], [30] and the 2015 CalWater ARM Cloud
Aerosol Precipitation Experiment (ACAPEX) [31]–[33]. We
have accumulated ozonesonde truth datasets collocated with
SNPP CrIS spanning the period of early-2012 through 2015;
the locations of these sites are shown in Figure 5.

ECC ozonesondes typically measure ozone partial pressure
in mPa with high vertical resolution (e.g., 1 second). These
must be converted to fine layer abundances (molecules/cm2)
and then reduced to 100 RTA layer abundances to yield correl-
ative data for the NUCAPS ozone retrieval [26]. Ozonesonde
partial pressures are first converted to number densitiesNx

(molecules/cm3) using the formula (in centimeter-gram-second
units)

N (p , T ) = 10−2
p

x x,ℓ ℓ

(

x,ℓ

k Tℓ

)

, (2)

wherepx,ℓ is the partial pressure (in mPa) for constituentx ≡

O3 at ozonesonde levelℓ, Tℓ is the radiosonde temperature at
level ℓ, k is the Boltzmann constant (ergs), and the factor10−2

converts partial pressure from mPa to dPa. Equation (2) is then
integrated from the balloon burst level down and interpolated
to RTA layer boundaries (i.e., “levels”) to enable calculation
of RTA layer abundances [26].
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TABLE I
JPSS LEVEL 1 REQUIREMENTS∗ FOR IR OZONE PROFILE EDR

IR Ozone Profile (CrIS) Layer Average Proportional Error

Atmospheric Broad-Layer Threshold Objective

Precision (random error, σ)

Surface to 260 hPa 20% 10%
(6 statistic layers)

260 hPa to 4 hPa 20% 10%
(1 statistic layer)

Accuracy (systematic error, bias)

Surface to 260 hPa ±10% ±5%
(6 statistic layers)

260 hPa to 4 hPa ±10% ±5%
(1 statistic layer)

Combined Uncertainty (RMSE)

Surface to 260 hPa 25% 15%
(6 statistic layers)

260 hPa to 4 hPa 25% 15%
(1 statistic layer)

*Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements
Supplement — Final, Version 2.9, 27 June 2013, NOAA/NESDIS, p. 49.

SNPP NUCAPS Cal/Val Ozonesonde Sites (2012-2015)
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Fig. 5. Ozonesonde truth sites used forSNPP NUCAPS IR ozone profile
EDR cal/val over the sampling period 2012–2015. Magenta circles denote
SHADOZ sites, red triangles denote WOUDC sites, and blue +, red×, gold�
and purple * denote SNPP-dedicated ozonesondes launched from ship-based
intensive campaigns (AEROSE and CalWater/ACAPEX). Map projection is
equal-area.

Although the NUCAPS effective-AKs (discussed in§II) can
be applied to “smooth” the correlative truth data and remove
null-space source error implicit to the retrieval algorithm (thus
yielding improved statistics), the primary focus of the current
paper is to evaluate the product’s performance against the
metrics defined by the JPSS Level 1 requirements summarized
in Table I. The JPSS requirements are applicable to the
total system error, which includes the null-space error, thus
precluding the use of AKs in demonstrating the product meets
requirements. Thus, a more detailed breakdown of algorithm
error sources, including null-space error using AKs, falls
outside the scope of the current effort and will be the subject
of future work (e.g., theJPSS-1 NUCAPS validation effort).

2) Error Analysis: As in the collocation methodology de-
scribed in Part 1 [16], we have imposed space-time collocation

criteria to the NUCAPS-ozonesonde collocation dataset, strik-
ing a balance between collocation mismatch uncertainty and
sample size. In this case FORs are included withinδx ≤ 125
km radius and−240 < δt < +120 min of launches (note
that the selected ozonesonde sites, including the dedicated
ozonesonde launches, favored ozonesondes being launched
prior to overpasses). Figure 6 shows the corresponding ge-
ographic histogram of the distribution of the ozonesonde
collocation sample on an equal-area map projection, where
it can be seen that the combination of the ozonesonde sites
described above provide adequate representation of global
climate zones (tropics, midlatitudes and polar) along with land
and ocean surfaces.
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Fig. 6. Geographic histogram ofSNPP NUCAPS FOR-ozonesonde col-
location data used in the global land/sea statistical error analysis. Circle
sizes depict the relativeSNPP-ozonesonde collocation sample sizes for each
ozonesonde launch location. Map projection is equal area.

The resulting global profile error statistics are given in
Figure 7, along with those separated by polar, midlatitude and
tropical zones given in Figures 8–10, respectively. In these
figures, blue lines show the results of the NUCAPS retrievals
(IR accepted cases, clear to partly cloudy) and magenta lines
show the results of thea priori (climatological background)
used in the physical retrieval. The left and right plots show the
coarse-layer RMSE and bias±1σ statistics, respectively. The
JPSS Level 1 global specification requirements (Table I) for
RMSE and bias are shown with dashed gray lines the plots.
The corresponding broad-layer averages for these statistics are
depicted with asterisks in the plots, with the global results
summarized in Table II. It should be noted that although we
have included the JPSS global requirement lines and broad-
layer averages in the zonal plots (Figures 8–10) for reference,
JPSS requirements are specified for global ensembles only;
thus, they do not have any direct bearing on results obtained
for any type of subsample binning (e.g., latitude zones).

A scatterplot of NUCAPS versus ozonesonde layer-averaged
O3 molecular abundances for the two broad atmospheric
layers is shown in Figure 11. The majority of the data falls
along the one-to-one line with the exception of a region
between the two layers, where a small number of NUCAPS
retrievals in the 260–4 hPa layer (red + symbols) are seen to
significantly overestimate the ozone concentration relative to
the ozonesondes. The region in question corresponds roughly
to the tropopause region, where two potential sources of error
would includea priori and null-space errors. Null-space errors
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TABLE II
VALIDATED GLOBAL IR OZONE PROFILE EDR MEASUREMENT

UNCERTAINTY

Atmospheric
Broad-Layer Observed Uncertainty

RMSE bias σ r p

Surface to 260 hPa 23.2% −9.4% 21.2% 0.69 0
260 hPa to 4 hPa 18.9% −1.8% 14.3% 0.77 0

result from the limitations in the CrIS instrument’s vertical
resolution and sensitivity (e.g., Figure 3); this issue will be
explored using the NUCAPS effective AKs in a future paper.
The correlation coefficients,r, along with correspondingp-
values, are included in Table II, where it is seen that the
broad-layer correlations between NUCAPS and ozonesondes
is ' +0.7.

In discussing further the results presented in Figures 7–10, it
is first recalled that the NUCAPS ozone physical retrieval step
uses an OE method that relies on a formala priori derived
based upon a climatological background state [21]. These
figures demonstrate the ability of the retrieval (blue lines) to
move thea priori state (magenta lines) toward the ozonesonde-
observed state as evidenced by the significantly reducedσ and
RMSE for layers where the CrIS channels have sensitivity
(Figure 3a). Because thea priori (magenta) is based upon
climatology, it is not surprising that it exhibits very little
bias, making further improvement from the retrieval difficult
to achieve (righthand plots). Thus, the value of the IR spectral
information manifested in the NUCAPS OE ozone retrieval
is the ability to measure deviations from thea priori (i.e.,
mean) state, resulting in the reduction of random errors (σ

and RMSE), but not necessarily the systematic error.
We find that the global ozone profile EDR meets the JPSS

requirements, with the only exception being the precision (σ)
for the tropospheric broad-layer (surface to 260 hPa), which
falls somewhat outside of the 20% requirement for this layer.
However, referring back to the AKs shown in Figure 3, it is
noted that the CrIS instrument possesses little sensitivity in
the troposphere, thereby requiring the algorithm to relax to
thea priori. The overall results forSNPP NUCAPS presented
here are comparable to those reported previously for theAqua
AIRS Version 5 ozone product [34]. Therefore, based on our
findings (Figure 7 and Table II), it is concluded that the
NUCAPS ozone profile EDR generally meets the JPSS Level
1 requirements.

Similar performance patterns (both RMSE and bias) are
observed in the three climate zones, with overall profile
performances improving with latitude zone from the tropics to
the poles. The diminished performance in the tropics (Figure
10) is associated with what may potentially be a suboptimal
a priori (magenta lines) combined with reduced ozone DoF
(Figure 4) and ozone AK sensitivity at higher altitudes (Figure
3). The physical retrieval significantly improves thea priori in
UT/LS in both the polar and midlatitude zones (Figures 8
and 9, respectively), whereas the improvement is reduced, but
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Fig. 7. Coarse-layer statistical assessment of the NUCAPS IR ozone pro-
file EDR (offline v1.5 operational emulation, blue lines) versus collocated
ozonesondes for retrievals accepted by the quality flag within space-time
collocation criteria ofδx ≤ 125 km radius and−240 ≤ δt ≤ +120 minutes
of launches over a sampling period of 4 April 2012 to 12 December 2015.
The left and right plots show the RMSE and bias±1σ results, respectfully.
NUCAPS IR physical retrieval (under clear to partly cloudy conditions) and
a priori (climatological background) performances are given in blue and
magenta respectively, with collocation sample size for each coarse-layer given
in the right margins. The gray dashed lines designate the JPSS Level 1 global
performance requirements for two broad atmospheric layers defined in Table
I, with asterisks denoting the calculated broad-layer averages for the physical
retrievals.

0 20 40 60

RMSE (%)

4
5
6
7
8
9

10

100

200

300

400
500
600
700
800
900

1000

p
 (

hP
a)

Polar Ozone RMSE

0

1076

1711

1812

1846

1901

1924

physical retrieval

a priori

physical retrieval broad layer

-50 0 50

BIAS (%)  1 

4
5
6
7
8
9

10

100

200

300

400
500
600
700
800
900

1000

Polar Ozone Bias

0

1076

1711

1812

1846

1901

1924

Fig. 8. As Figure 7 except for NUCAPS retrievals collocated with ozoneson-
des in the NH and SH polar caps.

nevertheless still evident, for the tropical cases (Figure 10).
Global seasonal stability in the retrievals for three UT/LS
coarse-layers (23 hPa, 47 hPa and 93 hPa) over the ozonesonde
acquisition period is demonstrated in Figure 12. Weekly biases
generally fall within−20 to 0% for the 23 hPa layer,±20%
for the 47 hPa layer and−10 to +40% at 93 hPa, with very
little seasonal variability or long-term trends. Note that two
short acquisition periods at the beginning and ending of 2015
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Fig. 10. As Figure 7 except for NUCAPS retrievals collocated with ozoneson-
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correspond to dedicated ozonesondes acquired over ocean
during the 2015 CalWater/ACAPEX and AEROSE campaigns,
the former obtained under inclement weather conditions in the
Pacific [32], [33], the latter obtained over the tropical Atlantic
(see Figure 5).

B. CrIS Full Spectral Resolution (FSR)

As discussed in the Part 1 companion paper [16], the
operationalSNPP NUCAPS v1.5 has previously run on on
CrIS spectra with reduced resolution in the midwave and
shortwave bands due to truncated interferograms in those
bands during operational processing; these reduced-resolution
spectra have been referred to as “nominal resolution” as
this was the original (nominal) resolution of the operational
SDRs. However, offline production ofSNPP full spectral-
resolution (FSR) CrIS SDRs (∆ν ≈ 0.625 cm−1 in all
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hree bands) began in December 2014 [35], with operational
nterface Data Processing Segment (IDPS) production starting
n March 2017. Given that CrIS FSR SDRs will be produced
perationally going forward (i.e., for the remainder of the
NPP lifetime as well as the follow-on JPSS satellite series,
ith the JPSS-1 launch tentatively scheduled for Novemeber
017), a preliminary experimental offline NUCAPS version
as developed to run on CrIS FSR data for demonstration

tudies [36]. A completed version (v2.0.5), representing the
perational delivery of the NUCAPS system in FSR mode, was
emonstrated and delivered for operational implementation in
uly–August 2017.

Because CrIS FSR SDRs were not operationally available

p
o
(

t
I
i
o
S
w
2
w
s
o
d
J



IEEE TRANSACTIONS OF GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. X, XXXX 2017 7

during the ozonesonde acquisition period, a preliminary as-
sessment of the NUCAPS FSR algorithm has been performed
versus numerical forecast model output (viz., ECMWF) for
a global Focus Day (17 February 2015) [26] where the
CrIS FSR SDRs were made available offline. As in Section
III-A2, Figure 13 shows the global results, with Figures 14–
16 show the breakdowns by latitude zones. In these figures
the red lines show the FSR v2.0.5 NUCAPS results with
blue lines showing the v1.5 NSR results for comparison.
The patterns are similar (but not identical) to those obtained
when using ozonesondes as the baseline (cf. Figures 7–
10), with improved performance occurring with latitude zone
from tropical (Figure 16) to midlatitude (Figure 15) to polar
zones (Figure 14). Of particular note, the NUCAPS v2.0.5
FSR algorithm demonstrates a significant improvement over
the v1.5 NSR algorithm in the IR+MW retrieval quality
acceptance yield, from 63.5% to 83.4%, while demonstrating
comparable performance. Rejected cases typically occur under
environmental conditions that present challenges to passive IR
retrievals but are otherwise of meteorological interest (e.g.,
cloudiness associated with convection). In spite of this, it
is seen that the NUCAPS FSR (v2.0.5) algorithm otherwise
performs comparably to the fully-validated NUCAPS NSR
(v1.5), with the broad-layer averages (denoted with asterisks)
generally meeting the JPSS Level 1 requirements relative to
ECMWF.
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Fig. 13. As Figure 7 except statistical assessment of offline NUCAPS
v2.0.5 (CrIS FSR, red lines) and v1.5 (CrIS nominal-resolution, blue lines)
IR physical retrievals versus collocated ECMWF model output (analysis or
forecast nearest in time, red lines) for retrievals accepted by the quality flag
for a global Focus Day, 17 February 2015. Global yields for v2.0.5 and
v1.5 accepted cases are 83.4% and 63.5%, respectively, indicating a marked
improvement in the v2.0.5 quality acceptance yield.

IV. SUMMARY AND FUTURE WORK

This work has presented the formal validation ofSNPP NU-
CAPS IR ozone profile EDR in continuation of the validation
of atmospheric vertical temperature and moisture profile EDRs
described in the Part 1 companion paper [16]. Based upon a
globally representative sample of collocated ozonesondes and
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Fig. 14. As Figure 13 except for NUCAPS retrievals collocated with ECMWF
within the NH and SH polar caps.
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Fig. 15. As Figure 13 except for NUCAPS retrievals collocated with ECMWF
within the midlatitude zones.

ECMWF model output, it has been shown that the NUCAPS
v1.5 IR ozone profile EDR (CrIS-FSR) meets JPSS Level 1
broad-layer global performance requirements (Tables I and II)
and has thus attained Validated Maturity. It is noted that the
ozonesonde sites used in this analysis (Figure 5) include those
from all global climate zones (tropical, midlatitude and polar),
as well as unique marine-based datasets obtained from ship
over both the Pacific and Atlantic Oceans (i.e., AEROSE and
CalWater/ACAPEX campaigns). The NUCAPS OE physical
retrieval was shown to improve upon the climatologicala
priori in UT/LS layers (Figures 7 and 13) where CrIS has
sensitivity (Figure 3). Results vary somewhat depending on
latitude zone (tropical, midlatitude and polar), with a general
improvement seen at higher latitudes as would be expected
given the variation in ozone DoF (Figure 4) and in vertical
sensitivity (Figure 3). The algorithm has been successfully
implemented forSNPP CrIS-FSR SDRs (v2.0.5), these being
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Fig. 16. As Figure 13 except for NUCAPS retrievals collocated with ECMWF
within the tropical zone.

produced for future JPSS satellites and operationally from
SNPP since March 2017, with increased yield and comparable
performance versus the validated NUCAPS v1.5 algorithm
(Figure 13). Full validation of theJPSS-1 NUCAPS-FSR
algorithm (including future upgrades) versus global ensembles
of collocated ozonesondes (including dedicated ozonesondes)
will be the subject of future work.
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