

1 **Charging El Niño with off-equatorial westerly wind events**

2 Shayne McGregor<sup>1,2</sup>, Axel Timmermann<sup>3,4</sup>, Fei-Fei Jin<sup>5</sup> and William S. Kessler<sup>6</sup>

3

4 <sup>1</sup>School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia.

5 <sup>2</sup>ARC Centre of Excellence for Climate System Science, University of New South Wales,  
6 Sydney, Australia.

7 <sup>3</sup>International Pacific Research Center, SOEST, University of Hawaii, Honolulu, USA.

8 <sup>4</sup>Department of Oceanography, SOEST, University of Hawaii, Honolulu, USA.

9 <sup>5</sup>Department of Meteorology, SOEST, University of Hawaii, Honolulu, USA.

10 <sup>6</sup>Pacific Marine Environmental Laboratory, NOAA, Seattle, Washington, USA.

11

12 Correspondence to shayne.mcgregor@monash.edu

13

14

15

16 Submitted to Climate Dynamics on 24<sup>th</sup> April 2015

17 Revised on the 9<sup>th</sup> October 2015

18

19

20 **Abstract**

21 The buildup of the warm water in the equatorial Pacific prior to an El Niño event is considered a  
22 necessary precondition for event development, while the event initiation is thought to be  
23 triggered by bursts of westerly wind. However, in contrast to the view that warm water slowly  
24 builds up years before an El Niño event, the volume of warm water in the equatorial Pacific  
25 doubled in the first few months of 2014 reaching values that were consistent with the warm  
26 water buildup prior to the extreme 1997/1998 El Niño. It is notable that this dramatic warm  
27 water buildup coincided with a series of westerly wind bursts in the western tropical Pacific.  
28 This study uses linear wave theory to determine the effect of equatorial and off-equatorial  
29 westerly wind events on the Warm Water Volume (WWV) of the Pacific. It is found that  
30 westerly wind events have a significant impact on equatorial WWV with all events initially  
31 acting to increase WWV, which highlights why WWEs are so effective at exciting ENSO. In  
32 fact, our results suggest that the single westerly wind burst, which peaked in the first few days of  
33 March in 2014, was largely responsible for the coincident dramatic observed increase in WWV.  
34 How long the equatorial region remains charged, however, depends on the latitude of the  
35 westerly wind event. For instance, a single equatorially symmetric westerly wind event  
36 ultimately acts to discharge WWV via the reflection of upwelling Rossby waves, which makes it  
37 difficult to more gradually build WWV given multiple WWEs. In contrast, when the wind events  
38 occur off the equator, the subsequent discharge is significantly damped and in some cases the  
39 equatorial region can hold the heat charge for up to 9 months. As such, off-equatorial WWEs can  
40 not only charge equatorial region WWV in the short term, but are also a mechanism to more  
41 gradually build equatorial region WWV in the longer term. Given that these off-equatorial  
42 WWEs have a relatively small projection onto the equatorial Kelvin wave, we argue these events  
43 can be considered as a mechanism to modulate the background state in which ENSO operates.

44 **1. Introduction**

45 The tropical Pacific Ocean is home to Earth's largest source of interannual climate variability:  
46 the El Niño-Southern Oscillation (ENSO). ENSO refers to an interannually recurring warming  
47 (El Niño) and cooling (La Niña) of the eastern and central tropical Pacific Ocean Sea Surface  
48 Temperature (SST), and a related large-scale seesaw in atmospheric sea level pressure between  
49 the Australia-Indonesian region and the south-central tropical Pacific, known as the Southern  
50 Oscillation. This overlying atmospheric feature is largely seen as a positive feedback, known as  
51 the Bjerknes feedback (Bjerknes 1969), which creates ENSO events as it acts to amplify  
52 disturbances in eastern equatorial Pacific SST. ENSO exerts profound worldwide effects (e.g.,  
53 McPhaden et al. 2006) and while our understanding of ENSO has significantly increased over  
54 the last three decades (McPhaden et al., 2006; Chang et al., 2006), its irregular behaviour and  
55 predictability continues to challenge scientists.

56

57 Our improved understanding of ENSO is highlighted by the success of theories such as the  
58 Recharge/Discharge Oscillator (RDO) of Jin (1997). Jin's (1997) theory summarizes the  
59 established relationship between ENSO and the warm water volume (WWV) of the tropical  
60 Pacific (e.g., Wyrtki 1985; Cane and Zebiak 1985; Zebiak 1989). For instance, mass exchanges  
61 between the equatorial and off-equatorial regions indicate that warm water, which slowly builds  
62 in the equatorial Pacific prior to El Niño (Wyrtki 1985), is transported out of the equatorial  
63 region during El Niño (Fig. 1). In the RDO, this wind-stress curl-driven meridional transport  
64 results from a quasi-equilibrium equatorial Sverdrup balance. It is this discharge of WWV and  
65 heat during an El Niño that sets up the conditions that tend to terminate the event (e.g., Meinen  
66 and McPhaden 2000). Recent research has extended Jin's (1997) theory, doubling the variance of  
67 modeled WWV changes during events, by adding the WWV changes due to the meridional  
68 movement of ENSO's zonal winds (McGregor et al. 2012, 2013, 2014).

69

70 While the RDO was originally proposed to explain ENSO as a slow and symmetric cycle,  
71 observations suggest that strong El Niño events are event-like disturbances that operate around a  
72 stable basic state, and that the onset of an event requires an initiating trigger which is separate  
73 from the dynamics of the cycle itself (e.g., Kessler 2002; Federov et al. 2014). These initiating  
74 impulses are thought to be largely due to high frequency wind variability, in particular Westerly  
75 Wind Events (WWEs) over the western/central tropical Pacific (e.g., Giese and Harrison 1990,  
76 1991; Harrison and Vecchi, 1997), which are also modulated by ENSO induced changes in  
77 underlying SST (e.g., Kessler 2001; Kessler et al. 1995, Kessler and Kleeman 2000; Eisenman et  
78 al., 2005). For example, the 1997/98 El Niño, which has been referred to as the “El Niño of the  
79 (last) century” due to the extremely large magnitude of its preceding anomalies of WWV and the  
80 resulting SSTA, was shown to be excited by three sequential bursts of WWEs (McPhaden 1999;  
81 McPhaden and Yu 1999; Vialard et al. 2001).

82

83 Even if El Niño is event-like rather than cyclic, growth and termination is largely consistent with  
84 the RDO (e.g., Meinen and McPhaden 2000; Hasegawa and Hanawa 2003; Bosc and Delcroix  
85 2008). As such, the buildup of the WWV in the equatorial Pacific prior to the El Niño event is  
86 still considered a necessary precondition for the development of an El Niño (Wyrtki 1985;  
87 Meinen and McPhaden 2000; An and Kang 2001). In fact McPhaden (2012) WWV anomalies in  
88 the 1980s and 1990s provided a reliable indicator for peak SST anomalies some nine months  
89 later. It is also interesting to note, however, that anomalies of WWV since ~2000 CE only  
90 provide a indication of peak east Pacific SST anomalies some three months later (McPhaden  
91 2012).

92

93 The high Pacific WWV of early 2014 (Figure 1) and the two relatively strong WWEs that  
94 occurred in the western Pacific in February and March led climate scientists to wonder if the  
95 resulting El Niño would rival the catastrophic 1997–1998 El Niño event (e.g., Tollefson, 2014).  
96 However the predictions for a strong 2014 El Niño event did not materialize. In retrospect one  
97 can argue that this situation is not completely without precedent as not all strong WWE  
98 sequences resulted in the development of extreme El Niño events (e.g., Lengaigne et al., 2004;  
99 Fedorov et al., 2014; Lian et al., 2014). The recent study of Menkes et al. (2014) suggests that  
100 the absence of WWEs between April-June limited the growth of anomalies through 2014. While  
101 not specifically investigating the evolution of 2014, the studies of Fedorov et al., (2014) and Lian  
102 et al., (2014) suggest that event type and magnitude are strongly dependent on the phase of the  
103 WWV at the time of the WWE.

104

105 Here we focus on the fact that equatorial Pacific WWV doubled in the first few months of 2014,  
106 concurrent with the observed strong WWVs; this differs from the view of a slow buildup (Fig.  
107 2). This co-occurrence suggests that the WWEs, which are thought to trigger El Niño events,  
108 could also be responsible for the buildup of equatorial Pacific WWV prior to the event largely  
109 through the generation of downwelling Kelvin waves. It is also interesting that higher than  
110 normal WWV has persisted in the equatorial Pacific for the last 14-months (from February 2014  
111 to March 2015). Thus, the purpose of this paper is to understand these peculiar observational  
112 features and reconcile them with existing ENSO theories. We will systematically examine the  
113 response of the equatorial Pacific's WWV to single and multiple idealized WWEs situated in  
114 different regions of the western Pacific in an effort to better understand the cause of the rapid  
115 WWV increase observed in early 2014 along with the persistence of WWV changes (Fig 1b and  
116 2c). These WWV changes and their underlying dynamical cause will be elucidated largely using  
117 linear equatorially trapped wave theory. The remainder of the paper is organized as follows.

118 Section 2 discusses details of observed WWEs. Section 3 reviews the linear low frequency ocean  
119 response to a wind stress perturbation, while the WWV response to equatorially symmetric and  
120 asymmetric WWEs is presented in Section 4. Links with the observations are detailed in Section  
121 5, while a discussion and conclusion is provided in Section 6.

122

## 123 **2. WWE in the observations**

124 In order to systematically identify and analyze *observed* WWEs, we largely follow the criteria of  
125 Harrison and Vecchi (1997) and divide the western central Pacific up into 8 regions. The  
126 Northwest (NW) [5°N-15°N, 120°E-150°E], North (N) [5°N-15°N, 150°E-180°E], Northeast  
127 (NE) [5°N-15°N, 180°E-210°E], West (W) [5°S-5°N, 130°E-155°E], Central (C) [5°S-5°N,  
128 155°E-180°E], East (E) [5°S-5°N, 180°E-210°E], South (S) [15°S-5°S, 150°E-180°E], and  
129 Southeast (SE) [15°S-5°S, 180°E-210°E] regions. However, rather than using a minimum 10m  
130 zonal wind speed anomaly, we follow Chiodi and Harrison (2015) and instead use an area  
131 averaged minimum zonal surface wind stress anomaly. To this end, we utilize daily average  
132 ERA-interim surface winds for the period 1979-2014. These winds are converted to wind  
133 stresses using the quadratic stress law:  $(\tau_x, \tau_y) = \rho_a C_d (U_{10}, V_{10}) W$ , where  $\rho_a$  is the density of air  
134 (kg/m<sup>3</sup>),  $C_d$  is a dimensionless drag coefficient,  $U_{10}$  and  $V_{10}$  are the zonal and meridional 10m  
135 surface winds, while  $W$  is the wind speed given by  $W = (U_{10}^2 + V_{10}^2)^{0.5}$ . The long-term mean and  
136 annual cycle was removed to form daily anomalies of surface wind stress.

137

138 The minimum zonal wind stress speed was set to 0.04 Nm-2. This is equivalent to the area  
139 average of an idealized WWE, following the analytical model of Harrison and Vecchi (1997)  
140 (detailed here in Section 4 by Eqn 10-11), with a zonal wind speed of 7 m s<sup>-1</sup> and all other  
141 parameter values set to approximately the average value of all eight regions identified by  
142 Harrison and Vecchi (1997). The wind speed of 7 m s<sup>-1</sup>, which is stricter than the low cutoff (2 m

143  $\text{s}^{-1}$ ) used by utilized by Harrison and Vecchi (1997), is utilized to focus on the larger WWEs.  
144 This value of  $7 \text{ m s}^{-1}$ , however, is consistent with the work of Eisenman et al. (2005).

145  
146 Thus, here WWEs are defined as any period of 3 or more days for which the zonal wind stress  
147 anomaly, averaged over one of the eight regions and smoothed by a three-point triangle filter in  
148 time, exceeds  $0.04 \text{ Nm}^{-2}$ . To label and organize the events, an event's center day was defined to  
149 be the day for which the zonal wind anomaly, averaged over the region, was greatest. With these  
150 classification criteria, we identified our full list of WWEs, by region (type) and center date. The  
151 event peak was identified as day of the maximum zonal stresses, while the duration was  
152 calculated as the number of days the zonal wind speed remained above the  $0.04 \text{ Nm}^{-2}$  threshold.  
153 As in Harrison and Vecchi, we also added an additional subclassification of WWEs from our full  
154 list into overlapping and nonoverlapping events. Overlapping events are defined as those events  
155 that were identified in two adjacent regions and whose center dates were within 3 days of each  
156 other.

157  
158 In this 36-year period of ERA-interim we identify 1318 western to central Pacific WWEs in the  
159 36 years, and 948 ( $>71\%$ ) of these occur in the off-equatorial region (the NW, N, NE, S and SE  
160 regions) (see Table 1). This result suggests that roughly 26 off-equatorial (10 equatorial) large  
161 WWE occur each year, which is one per fortnight. However, there are clearly WWEs with  
162 amplitudes significantly larger than our cut off (Fig. 3). For instance, there are 216 WWEs (6 per  
163 year) that have maximum area average wind stress magnitudes that are double that used the  
164 average parameter idealized experiments of Section 3.1, and 31 WWEs (just less than 1 per year)  
165 that have maximum area average wind stress magnitudes that are three times larger than that  
166 used the average parameter idealized experiments of Section 3.1. For further illustration we show  
167 some examples of large observed equatorial and off-equatorial WWEs in Fig. 4.

168

169 **3. Linear ocean response**

170 To study the effect of meridionally displaced WWEs on WWV, we use a simplified linear two-  
171 layer ocean model. The active model upper layer is separated from the underlying motionless  
172 lower layer by an interface that represents the tropical thermocline. The dynamics and thickness  
173 of the upper layer are modeled by the linear shallow water equations with the equatorial  $\beta$  plane  
174 approximation ( $f = \beta y$ ). The non-dimensionalized equations are:

$$u_t - yv + \eta_x = X \quad [1.1]$$

$$175 \quad \zeta^2 v_t + yu + \eta_y = Y \quad [1.2]$$

$$\eta_t + \eta_x + \eta_y = 0 \quad [1.3]$$

176 where the subscripts indicate partial derivatives. Here,  $u$  and  $v$  are the upper layers zonal and  
177 meridional currents, respectively,  $\eta$  is the model thermocline depth,  $x$  and  $y$  are zonal and  
178 meridional distances and  $t$  is time. The equations were nondimensionalised by using  $u^* = uc$ ;  $v^*$   
179  $= v(\lambda/L)c$ ;  $x^* = xL$ ;  $y^* = y\lambda$ ;  $t^* = t(L/c)$ ;  $\eta^* = H\eta$ ; and  $(X^*, Y^*) = (X, Y)(c^2/L)$ , where the wind  
180 stress forcing  $(X^*, Y^*) = (\tau^x, \tau^y)(\rho H)^{-1}$  is applied as a body force which acts over the entire layer;  $L$   
181 is the basin zonal width ( $L \sim 15.5 \times 10^6$ );  $c = (g'H)^{1/2}$ ;  $\lambda = (c/\beta)^{1/2}$ ; and  $\zeta = \lambda/L$ . The density,  $\rho$ , =  
182  $1000 \text{ kg/m}^3$ , while the reduced gravity parameter,  $g'$ , =  $0.0263 \text{ m s}^{-2}$ , and the mean depth of the  
183 upper layer,  $H$ , =  $300 \text{ m}$ , giving a gravity wave speed of  $2.8 \text{ m s}^{-1}$ , consistent with observational  
184 estimates (Chelton et al. 1998).

185

186 In the limit as  $\zeta$  approaches 0, which approximately occurs here since the zonal length scale is  
187 much larger than the meridional length scale, only the long low frequency waves remain. This  
188 low frequency response (with  $v_t = 0$  and  $Y = 0$  in equation 1.2, also known as the longwave  
189 approximation) of the unforced shallow water equations is described by linear theory as the sum  
190 of long equatorial Kelvin waves and long equatorial Rossby waves (e.g., Matsuno 1966). Thus,

191 we expect, and numerous studies and texts have shown (ref ; Clarke 2007), that equation (2)  
 192 represents the solution to the forced shallow water equations (1).

$$\eta(x, t) = q_0(x, t)\psi_0 + \sum_{n=1}^{\infty} q_n(x, t) \left[ \frac{\psi_{n+1}}{\sqrt{n+1}} + \frac{\psi_{n-1}}{\sqrt{n}} \right] \quad [2.1]$$

$$u(x, t) = q_0(x, t)\psi_0 + \sum_{n=1}^{\infty} q_n(x, t) \left[ \frac{\psi_{n+1}}{\sqrt{n+1}} - \frac{\psi_{n-1}}{\sqrt{n}} \right] \quad [2.2]$$

$$v(x, t) = \sum_{n=0}^{\infty} v_n(x, t)\psi_n \quad [2.3]$$

193 where the Hermite functions  $\psi_n$ , provide the meridional structure of the response and are given  
 194 by,

$$195 \quad \psi_n = \frac{e^{\frac{-y^2}{2}} H_n(y)}{(2^n n! \pi^{1/2})^{1/2}} \quad [3]$$

196 with  $H_n(y)$  being the Hermite Polynomials of order  $n$ . Here,  $q_0$  represents the amplitude of the  
 197 forced Kelvin wave, while  $q_n$  ( $n = 1, 2, \dots$ ) represents the amplitude of the forced  $n^{\text{th}}$  meridional  
 198 Rossby mode. As in the unforced solutions, Kelvin waves propagate eastward with a speed of  $c$ ,  
 199 while the  $n^{\text{th}}$  order Rossby waves propagate westward with a speed of  $-c/(2n+1)$ .

200

201 Thus, the only remaining component to understand the forced response is to calculate the  
 202 amplitude ( $q$ ) of the resulting Kelvin and Rossby waves. To this end, we follow Clarke (2007)  
 203 and add (1.1) and (1.3) and subtract (1.3) from (1.1), giving:

$$(\eta + u)_t + (\eta + u)_x - yv + v_y = X \quad [4.1]$$

$$(u - \eta)_t + (\eta - u)_x - yv - v_y = X \quad [4.2]$$

204 Substituting (2) into (4.1), multiplying by  $\psi_0$  and integrating from  $y = -\infty$  to  $\infty$  gives the equation  
 205 for the amplitude of the forced Kelvin wave:

$$q_{0t} + q_{0x} = \frac{1}{2} \int_{-\infty}^{\infty} X \psi_0 \, dy \quad [5]$$

206 Moving onto the forced amplitude of Rossby waves, we substitute (2) into (4.1), multiply by  $\psi_{l+1}$   
 207 ( $l = 1, 2, \dots$ ) and integrate from  $y = -\infty$  to  $\infty$  giving:

$$\frac{2(q_{nt} + q_{nx})}{(n+1)^{\frac{1}{2}}} - \sqrt{2} \sqrt{n+1} v_n = \int_{-\infty}^{\infty} X\psi_{n+1} dy \quad (n = 1, 2, \dots) \quad [6.1]$$

208 Further, substituting (2) into (4.2), multiplying by  $\psi_{l-1}$  ( $l = 1, 2, \dots$ ) and integrating from  $y = -\infty$   
 209 to  $\infty$  gives:

$$\frac{2(q_{nx} - q_{nt})}{(n)^{\frac{1}{2}}} - \sqrt{2} \sqrt{n} v_n = \int_{-\infty}^{\infty} X\psi_{n-1} dy \quad (n = 1, 2, \dots) \quad [6.2]$$

210 Subtracting (6.2) from (6.1) to eliminate  $v_n$  then leads to the equation for the amplitude of the  
 211 forced  $n^{\text{th}}$  order Rossby wave:

$$(2n+1)q_{nt} - q_{nx} = \frac{1}{2} \int_{-\infty}^{\infty} \sqrt{n+1} (n)X\psi_{n+1} - \sqrt{n} (n+1)X\psi_{n-1} dy \quad (n = 1, 2, \dots) \quad [7]$$

212 Thus, by specifying the temporal and spatial structure of any given wind anomaly we can use the  
 213 method of characteristics to solve for the amplitude of the forced oceanic Rossby and Kelvin  
 214 wave response ( $q$ ) (e.g., Clarke 2007). Note, throughout this paper we will refer to these  
 215 amplitudes as projection coefficients as they are calculated by projecting the surface wind stress  
 216 forcing onto the various Hermite functions ( $\psi_n$ ).

217

218 Here we model the Pacific Ocean is essentially infinite in latitude and has a zonal domain  
 219 between  $140^{\circ}\text{E}$  and  $280^{\circ}\text{E}$ . Utilizing the longwave approximation (Cane and Sarachik 1977), the  
 220 western boundary condition becomes:

$$\int_{-\infty}^{\infty} u dy = 0 \quad (\text{at } x=140^{\circ}\text{E}) \quad [8]$$

222 As the only eastward propagating waves available in this model are Kelvin waves, the western  
 223 boundary condition means that the Rossby wave mass transport at the western boundary must be  
 224 balanced by the Kelvin wave mass transport (e.g., Kessler 1991). At the eastern boundary, as  
 225 Rossby waves are the only westward propagating wave, they must satisfy the boundary condition

226 of  $u=0$  at  $x=280^\circ\text{E}$  when a Kelvin impinges on the boundary. The amplitude of the Rossby waves  
227 reflected from the eastern boundary follows Battisti (1988), and is calculated as:

228 
$$q_1 = q_0 \left(\frac{1}{2}\right)^{1/2} \quad [9.1]$$

229 for the  $n=1$  Rossby wave and:

230 
$$q_{n+1} = q_{n-1} \left(\frac{n}{n+1}\right)^{1/2} \quad [9.2]$$

231 for the higher order symmetric Rossby waves ( $n=2,4,6,\dots$ ).

232

233 As we are interested in the WWV of the Pacific along with the response of individual waves, it  
234 interesting to calculate the WWV (defined as the volume of water above the model thermocline  
235 between  $5^\circ\text{S}$  and  $5^\circ\text{N}$ ) along a small strip with a zonal extent of  $dx \sim 27 \text{ km}$  ( $0.25^\circ$  horizontal grid  
236 spacing) of Rossby and Kelvin waves with the amplitude set to unity ( $q = 1$ ) (Fig. 5a). This is  
237 calculated from equation (2.1) for each of the waves separately by fixing  $x$  and  $t$  (so a single  
238 longitude and time), setting  $q = 1$ , using the scaling  $\eta = H\eta$ , then integrating in the  $y$  direction  
239 over the equatorial region (i.e., between  $5^\circ\text{S}$  and  $5^\circ\text{N}$ ) and multiplying by  $dx$ . It is clear that if  
240 each modes had similar wave lengths (zonal extents), only the equatorial Kelvin wave and the  
241  $n=1$  Rossby wave have a significant impact on the equatorial WWV. This means that although  
242 here we solve for the projection coefficients (or amplitudes) of the first 19 Rossby modes, a large  
243 component of the presentation of this studies results will focus on the Kelvin and  $n=1$  Rossby  
244 wave response.

245

246

247 **4. Idealized WWB response**

248 Here, we use linear shallow water wave theory described above to examine the extent to which  
249 different types of WWS and in particular their latitudinal position can modulate the equatorial  
250 Pacific WWV. To characterize the WWS in a simple manner, we utilize the analytical model of

251 Harrison and Vecchi (1997), shown here:

$$U(t, x, y) = U_o \exp \left[ - \left( \frac{x - X_o + c_x t}{L_x} \right)^2 \right] \exp \left[ - \left( \frac{y - Y_o + c_y t}{L_y} \right)^2 \right] \exp \left[ - \left( \frac{t}{T_e} \right)^2 \right] \quad [10]$$

252 This produces WWEs which are Gaussian in time (t), latitude (y) and longitude (x). This  
253 parameterization can capture the evolution of composited WWEs in the western/central Pacific  
254 (Harrison and Vecchi 1997). U is the modeled zonal wind anomaly field,  $U_o$  is the maximum  
255 point anomaly,  $(X_o, Y_o)$  is the geographic center,  $(c_x, c_y)$  is the translational velocity (which is set  
256 to zero here),  $(L_x, L_y)$  are the spatial  $e$ -folding scales,  $T_e$  is the temporal  $e$ -folding scale. The  
257 modeled surface wind anomalies are converted to stresses using the linear stress law:

$$\tau_x = \rho_a C_D \gamma U \quad [11]$$

258 where,  $\rho_a$  is the density of air,  $C_D$  is the dimensionless drag coefficient, and, as in Zavala-Garay  
259 et al. (2003),  $\gamma$ , represents the mean wind speed ( $6 \text{ m s}^{-1}$  in this study).

260

#### 261 *4.1 Average parameter experiment*

262 In this initial set of experiments using (10-11) as forcing, we set  $e$ -folding time scale ( $T = 3$   
263 days), maximum point anomaly ( $U_o = 21 \text{ m/s}$ ), latitudinal ( $L_y = 0.7 \times 10^6 \text{ m}$ ) and longitudinal ( $L_x$   
264 =  $1.85 \times 10^6 \text{ m}$ )  $e$ -folding scales to approximately the average value of all eight regions  
265 identified by Harrison and Vecchi (1997). Setting  $U_o$  to 21 m/s gives an area average wind stress  
266 of  $0.12 \text{ N m}^{-2}$  around the peak of the WWE, which is near the upper bounds of the observational  
267 range. The translational velocities are set to zero, so the applied WWB does not propagate. We  
268 also fix  $X_0$  to  $190^\circ\text{E}$ , and vary  $Y_0$  from  $0^\circ$  to  $14^\circ$  latitude, with a spacing of  $2^\circ$  latitude, giving  
269 eight simulations within the experiment set. This choice of coefficients ensures that the applied  
270 WWBs have a consistent structure, magnitude and temporal evolution, with the only difference  
271 being the latitude that the WWBs are applied (i.e., the geographic center).

272

273 Analyzing the resulting WWV changes from these eight initial WWE forced simulations (Fig.  
274 6a) reveals two large differences amongst the members: i) the closer to the equator the WWE is  
275 the larger the initial WWV increase/recharge; and ii) the experiments with the larger initial  
276 WWV increase leave the equatorial region in a discharged state after about 100 days, while those  
277 with more modest changes in WWV, driven by off-equatorial WWEs are largely maintained  
278 right through the 180 day simulation. Further analysis reveals that the changes in WWV are  
279 made up of three main components:

280 (i) The first component is the initial build up of WWV, which has magnitudes consistent  
281 with Ekman convergence, and it is clear that the WWEs that are centered on (symmetric about)  
282 the equator are the most effective at generating these initial WWV changes (Fig. 6a, b). As only  
283 the equatorial Kelvin wave and the  $n=1$  Rossby wave have significant equatorial WWV signals  
284 (Fig. 5), these WWV increases are largely seen as increases in the projected sum of the Kelvin  
285 and the  $n=1$  Rossby wave (Fig. 6). The differences in the magnitude of the WWV increase  
286 between these simulations come about as the more equatorially symmetric WWEs generate an  
287 equatorward Ekman transport in both hemispheres, while those with off-equatorial WWEs only  
288 generate an equatorward Ekman transport in one hemisphere.

289 (ii) The second component of this WWV change is the persistence of this initial WWV  
290 anomaly ( $\sim 50$  days, or  $\sim 40$  days after the forcing peak), which is largely governed by the time  
291 that it takes the forced equatorial Kelvin wave to reach the Pacific's eastern boundary. This wave  
292 acts to transfer mass from the WWE forcing region to the east at  $\sim 2.8 \text{ m s}^{-1}$ , and upon reaching  
293 the eastern boundary the impinging equatorial Kelvin wave generates coastal Kelvin waves that  
294 propagate polewards along this boundary generating Rossby waves which shed off the eastern  
295 boundary (Moore and Philander 1977). The volume of the reflected  $n=1$  Rossby wave is largely  
296 maintained within the equatorial region, while the volume carried by coastal Kelvin waves and  
297 higher mode ( $n>1$ ) Rossby waves is effectively drained from the equatorial region (Fig. 6b).

298 Given that the reflected  $n=1$  Rossby wave amplitude is set at  $1/\sqrt{2}$  of the incoming Kelvin wave  
299 (Eq. 9) the equatorial region retains (loses) approximately 25% (75%) of its Kelvin wave volume  
300 at the eastern boundary.

301 (iii) The third component of the WWV change is due to Rossby waves (Fig. 6c). In all of  
302 these experiments the wind-generated Rossby waves, which also have a WWV signal (Fig. 5),  
303 slowly propagate westward, and upon impinging on the western boundary these Rossby waves  
304 efficiently generate an equatorial Kelvin wave to satisfy the boundary condition. Despite the  
305 smaller amplitude of the resulting Kelvin wave (e.g., Kessler 1991), the WWV signal of these  
306 impinging Rossby waves is enhanced by the western boundary reflection as the resulting Kelvin  
307 wave propagates three times faster away from the boundary than the impinging Rossby waves  
308 (Section 3).

309

310 The difference between the experiments, however, is the magnitude and sign of the  $n=1$  Rossby  
311 wave projection (Fig 7b). For WWE close to the equator (latitudes  $\leq 6^\circ$ ) the WWV increase of  
312 the forced downwelling Kelvin wave basically comes from the upwelling equatorial Rossby  
313 waves straddling the equator. As the  $n=1$  Rossby waves have a strong WWV projection (Fig.  
314 5b), the upwelling Rossby wave signal offsets the Kelvin wave WWV increase. When roughly  
315 3/4 of the Kelvin wave mass is transferred to the off-equatorial region after impinging on the  
316 eastern boundary, the  $n=1$  Rossby wave volume decrease becomes the dominant structure in the  
317 equatorial region WWV changes. As discussed above, this equatorial region WWV decrease is  
318 enhanced further when the Rossby wave impinges on the western boundary. This final state is  
319 consistent with the Sverdrup balance at  $5^\circ$  latitude, which suggests the response to an  
320 equatorially symmetric wind burst is to transport mass polewards, effectively discharging WWV.

321

322 For the WWE at  $8^{\circ}$  latitude, the WWV decrease of the small negative  $n=1$  Rossby wave  
323 projection and its reflected Kelvin wave is not large enough to cancel out the WWV increase of  
324 the  $n=1$  Rossby waves reflected from the eastern boundary. Thus, the equatorial region maintains  
325 a small increase in WWV for the entirety of the simulation with these WWEs.

326

327 For WWE at or polewards of  $10^{\circ}$  latitude, on the other hand, the Kelvin wave and  $n=1$  Rossby  
328 waves (for  $L_y=2$  Rossby radius of deformation) are both downwelling waves (Fig. 7). Therefore,  
329 even after the Kelvin waves eastern boundary volume loss, the equatorial regions remaining  
330 WWV increase is made up of the forced  $n=1$  Rossby wave, the resulting Kelvin wave reflected  
331 from the western boundary, and the eastern boundary reflected  $n=1$  Rossby wave, all of which  
332 are downwelling waves. The differences in the persistence of the original WWV between the  
333 equatorial to off-equatorial WWE is largely due to its projection onto the  $n=1$  Rossby waves.  
334 This off-equatorial WWE does generate an upwelling Rossby wave, but it is centered polewards  
335 of the maximum wind speed ( $\sim 10^{\circ}$  latitude), which due to the slow propagation speeds and poor  
336 boundary reflection of these higher order Rossby waves (Kessler 1991) does not have a  
337 significant impact on the equatorial region WWV in our simulations. Thus, the adjusted state is  
338 consistent with the Sverdrup transport at  $5^{\circ}$  latitude, which suggests that WWE transports mass  
339 equatorward acting to recharge equatorial region WWV. This suggests that off-equatorial  
340 WWEs, those centered at or poleward of  $8^{\circ}$  latitude, provide an additional mechanism to  
341 recharge and maintain residual WWV for the entire duration of the simulations (180 days).

342

#### 343 *4.2 Multiple average parameter experiment*

344 Here we carry out an additional three sets of experiments using (10-11) for forcing, each of  
345 which utilize the parameters selected in Section 3.1. What is different between these three  
346 experiment sets and the previous set (described in Section 3.1), is the number and timing of

347 WWE applied, with the first experiment set being forced with two WWE events (one WWE  
348 every 60 days), the second experiment set being forced with three distinct WWE events (one  
349 WWE every 40 days), while the second experiment is forced with six back to back WWE events  
350 (one WWE every 20 days). Moreover, each of these experiments is run with eight different  
351 WWE forcing latitudes (from 0-14°). We know from the earlier work of Meinen and McPhaden  
352 (2000) and McPhaden (2012), that the WWV buildup prior to an El Niño event is related to the  
353 peak magnitude of eastern Pacific SSTA during the event. Thus, here these experiments are  
354 designed to better understand whether multiple WWEs can be used to build equatorial region  
355 WWV.

356

357 Focusing on the WWV response of equatorially or near equatorially symmetric WWE (lat < 5°)  
358 from each experiment set (Fig. 8), we find that after the wave pulses of the initial WWE reach  
359 the eastern and western boundaries, the recharging effect of subsequent WWEs is not large  
360 enough to offset the long-term WWV boundary discharging. Thus, the peak WWV is reached  
361 sometime prior to the first generated equatorial Kelvin wave reaching the eastern boundary (<50  
362 days). On the other hand, as a proportion of the WWV increase of an off-equatorial WWEs (lat >  
363 6°) is maintained for the duration of these simulations (180 days), the induced equatorial  
364 convergence of multiple WWEs acts to build (recharges) WWV in a step like manner (Fig. 8).

365

366 We note that the experiments are relatively simple and we have not considered the changing  
367 magnitude of the WWEs or WWEs with the central latitude evolving over time. However, these  
368 results suggest that it would be very difficult to build WWV larger than that produced by an  
369 initial WWE with equatorially or near equatorially symmetric WWEs alone, while multiple off-  
370 equatorial wind bursts act to gradually build the Pacific WWV (Fig. 8).

371

372 4.3 Sensitivity to parameter choice

373 We also examined the sensitivity of the WWV changes to the changes in the analytical WWB  
374 model parameters,  $U_o$ ,  $T_e$ ,  $L_x$ , and  $L_y$ , as what we have been using up until this stage is considered  
375 as the average WWE. We examine  $U_o$  for the range between 7 to 28  $m s^{-1}$  (giving area average  
376 wind stress anomalies within the observed range of 0.04 to 0.16  $N m^{-2}$ , Fig. 3),  $T_e$  for the range  
377 between 1.5 and 6 days,  $L_x$  between  $1.15 \times 10^6 m$  (3.3) and  $2.55 \times 10^6 m$  (7.3) and  $L_y$  between 0.1  
378  $\times 10^6 m$  (0.29) and  $1.3 \times 10^6 m$  (3.7), where the bracketed numbers are non-dimensionalized  
379 quantities.

380

381 Due to the linearity of the model we find the dynamical interpretation of the results presented  
382 above to be relatively robust. Changes in  $U_o$ ,  $T_e$ , and  $L_x$  simply lead to changes in the amplitude  
383 of the WWV changes that can be largely represented by multiplying the original WWV changes  
384 reported above (Fig. 6a) by a constant (not shown). For instance, the response of the WWV  
385 doubles as we go from  $U_o=7 m/s$  to  $U_o=14 m/s$ . The only subtlety that needs mentioning is for  
386 the  $L_x$  case. The differing length scales of the WWE in this scenario leads to slightly different  
387 arrival times of the generated Rossby and Kelvin waves at the western and eastern boundaries  
388 respectively, which culminates in slight variations of the phase of WWV around these boundary  
389 arrival times.

390

391 As expected from the role of Sverdrup balance in controlling WWV, changes in  $L_y$ , on the other  
392 hand, lead to some interesting dynamical changes (Fig. 9). Considering that the equatorial region  
393 WWV only has significant contributions from the Kelvin and  $n=1$  Rossby waves (Fig. 5b), the  
394 initial WWV can be thought of as the sum of the basin wide forced Kelvin and  $n=1$  Rossby wave  
395 projection coefficients (Fig. 7). Note, the basin wide projection coefficients of each of the waves  
396 is calculated by summing the wave amplitudes ( $q_o$ ,  $q_I$ ) from equation (2.1) over the entire basin

397 width ( $x$ ), at  $t \sim 30$ . The actual WWV contribution of each of the waves can be calculated by  
398 simply multiplying the summed amplitudes by the respective dimensionalised WWV of the  
399 mode (Fig. 5b).

400

401 Now, lets consider the initial WWV of the equatorially centered WWE case of the  $L_y$  sensitivity  
402 experiments. Increasing  $L_y$  leads to an increasing Kelvin wave amplitude, it is noted that the  
403 Kelvin wave amplitude appears to be reaching its maximum value at  $\max L_y$  (Fig. 7a). The  
404 maximum projection onto the  $n=1$  Rossby wave, on the other hand, occurs between  $L_y=1,2$   
405 Rossby radii of deformation and decreases for values greater than (less than) the latter (former)  
406 (Fig. 7b). For length scales longer than two, the equatorial WWEs increasingly project onto the  
407 higher order even Hermite functions, and thus Rossby waves (not shown), of which the  $n=2$   
408 Hermite projection acts to decrease the  $n=1$  Rossby wave projection (see equation (7)). For  
409 length scales less than one, the  $n=0$  Hermite function (Fig. 7a) and thus  $n=1$  Rossby wave  
410 projection simply decreases (Fig. 7b), and as the Rossby wave has a larger WWV signal (Fig.  
411 5b) there is a reduction in WWV. This combines to mean that the initial increase in equatorial  
412 Pacific WWV to an equatorially symmetric WWE increases as  $L_y$  increases (Fig. 9a). The  
413 discharge of WWV of the equatorially centered WWE case, after the WWE induced Kelvin and  
414 Rossby waves impinge respectively on the eastern and western boundaries, and the uneven  
415 projection of the WWE onto the Kelvin wave and  $n=1$  Rossby wave signal ensure that the  
416 discharge is less for larger  $L_y$  for values of  $L_y>1$ . The discharge of WWV also decreases as  $L_y$   
417 decreases for values of  $L_y<1$  as the  $n=1$  Rossby wave projection also gets smaller (Fig. 7b and  
418 9).

419

420 Secondly, lets consider WWE occurring at  $6^{\circ}$  latitude as this latitude has the largest WWV  
421 anomalies for  $L_y<2$  after 30-days (Fig. 9a). Increasing  $L_y$  leads to an increasing Kelvin wave

422 amplitude, and it does not appear to be reaching a horizontal asymptote at the maximum  $L_y$  (Fig.  
423 7a). In terms of the  $n=1$  Rossby wave projection, for  $L_y \sim < 1.5$  there is a positive projection of the  
424 WWE, while for  $L_y$  greater than this there is a negative projection (Fig. 7b). This change in the  
425  $n=1$  Rossby wave projection leads to a dramatic change in the persistence of WWV anomalies.  
426 The positive  $n=1$  Rossby wave projection is similar to the situation described in Section 3.1 for  
427 WWE located at  $10^\circ$  latitude, and as seen in Figure 6 there and Figure 9 here, the initial increase  
428 in WWV is largely maintained right through the 180 day simulation. For values of  $L_y > 2$ , the  
429 persistence of the WWV anomaly is basically a competition between the magnitudes of the  
430 western boundary reflected upwelling Kelvin wave and eastern boundary reflected  $n=1$   
431 downwelling Rossby wave, where for  $L_y \sim 2$  they are roughly even, while for  $L_y > 2$  the reflected  
432 upwelling Kelvin wave dominates (Fig. 9).

433

434 In fact, if we only wanted to find the optimal latitude a WWE with a given  $L_y$  needed to be  
435 located to have a positive WWV anomaly that is maintained throughout the entire 180 day  
436 simulation, it is clear that the latitude increases as  $L_y$  increases (Fig. 9b, c and d). The persistence  
437 of WWV can be thought of in terms of the weighted (i.e., where the projection coefficients are  
438 weighted according to the reflective properties of the meridional boundaries) Kelvin wave and  
439  $n=1$  Rossby wave projection coefficients. As discussed above, a Kelvin wave impinging on the  
440 eastern boundary loses roughly  $\frac{3}{4}$  of its equatorial region WWV, while an  $n=1$  Rossby wave  
441 imping on the western boundary increases the equatorial region WWV by 70%. Thus, in the  
442 absence of damping, the forced equatorial WWV response after the initial eastern and western  
443 boundary reflection ( $\sim 90$ -120 days) is given by sum of the forced  $n=1$  Rossby wave and Kelvin  
444 wave projection coefficients, where the former (later) is weighted by 1.7 (0.25) to reflect the  
445 effects of western (eastern) boundary reflection. The changing  $n=1$  Rossby wave projection is  
446 best described in terms of Sverdrup transports. As  $L_y$  increases, the latitude of the WWE must

447 also increase in order to maintain the strongest wind stress curl (Sverdrup transport) at the  
448 meridional boundary of the equatorial region. In terms of the wave projections, when a WWE  
449 projects positively onto the Kelvin wave (the  $n=0$  Hermite function, Eqn 3), it also projects  
450 negatively onto the  $n=1$  Rossby wave (the  $n=1$  Hermite function in Eqn 7). Thus, in order for a  
451 WWE to project positively onto the  $n=1$  Rossby wave the WWE must have a stronger projection  
452 onto the  $n=2$  Hermite Function (the  $n+1$  term in equation (7)) than onto the  $n=0$  Hermite function  
453 (the  $n-1$  term in equation (7)).

454

## 455 **5. The effect of observed WWEs on WWV**

456 We have shown so far that WWE events can generate large changes in WWV, and those WWE  
457 that have their maximum wind speeds centered around the equator have the largest initial impact  
458 on WWV through a projection on the equatorial Kelvin wave ( $\psi_0$ ), but ultimately end up  
459 discharging WWV through the  $n=1$  Rossby mode ( $\psi_1$ ). On the other hand, those WWE with their  
460 maximum wind speeds centered polewards of  $6^{\circ}$  latitude have less of an initial impact on WWV,  
461 but the initial charging of WWV can persist for the entire duration of the integrations. While the  
462 magnitude of the idealized experiments presented in Section 4.1 are roughly one third of the  
463 observed WWV increase of  $0.89 \times 10^{14}$  between January and April of 2014, considering the  
464 maximum values of the parameters  $U_0$ ,  $L_x$  and  $T_e$  (Section 4.3) allows the WWV of the idealized  
465 simulations to equal the WWV changes observed in 2014. However, due to the idealized nature  
466 of our experiments to date, the question as to whether the spatial structure and amplitude of the  
467 observed WWEs have a significant impact on the observed longterm WWV, even in the absence  
468 of positive air-sea coupling, still remains.

469

470 Thus, here we intend to analyze the SWM response of each of the 216 WWEs that have  
471 maximum area average wind stress magnitudes  $>0.08 \text{ Nm}^{-2}$  (Section 2). To this end, we project

472 the Pacific basin zonal wind stresses of each of these observed WWEs onto the Kelvin (equation  
473 (5)) and Rossby (equation (7)) waves for the duration of the event. We then analyse the resulting  
474 Kelvin wave and n=1 Rossby wave projection in order to understand the initial WWV (at  $\sim$ 20  
475 days) and the adjusted WWV (e.g., after  $\sim$ 90-120 days). Here, we neglect damping and estimate  
476 the adjusted WWV (e.g., after 90-120 days) as the weighted sum of these two equatorial modes  
477 where the Kelvin wave projection is reduced ( $\sim$ 25% weighting) and the n=1 Rossby wave  
478 projection is amplified ( $\sim$ 170% weighting). This weighting of the projection coefficients reflects  
479 the effect of eastern and western boundary reflections on the equatorial region WWV, where  
480 75% of the mass is lost via the eastern boundary reflection of a Kelvin wave while the n=1  
481 Rossby wave WWV is amplified by 70% via the western boundary reflection.

482

483 Figure 10a displays the adjusted WWV (weighted sum of projection coefficients), plotted against  
484 the initial WWV (sum of the projection coefficients) for each of the observed WWEs. We also  
485 generate a similar plot for the idealized experiments carried out in Section 4a for comparison  
486 (Fig. 10b). What is clear from this plot of the observed WWE experiments, is that the observed  
487 events produce initial WWV changes that can be larger than the observed WWV increase of  
488 2014 (Fig. 2). Further to this, both the equatorial and off-equatorial WWEs have the potential to  
489 dramatically increase observed equatorial region WWV in the space of a couple of weeks (i.e.,  
490 the duration of the WWE).

491

492 We also find that equatorial WWE have the potential to produce an adjusted (after 90-120 days)  
493 discharged state that is twice as large as the original WWV recharge, but the linear relationship  
494 between the two states suggests that on average the adjusted state is roughly the mirror of the  
495 initial response (Fig. 10a and b). Consistent with the findings of our idealized experiments, off-  
496 equatorial WWEs have a much weaker projection onto the n=1 Rossby wave, than equatorial

497 WVEs (Fig. 9). Thus, on average the adjusted discharged state (after 90-120 days) is much  
498 smaller than that of an equatorial WVE with an equivalent initial WWV change. This is  
499 summarized by the linear regression between the two states, as seen in Figure 10. There is also  
500 the potential for a positive projection of the off-equatorial WVEs onto the n=1 Rossby wave  
501 with 12% (19) of the 157 off-equatorial WVEs projecting positively onto both the Kelvin and  
502 n=1 Rossby waves. Meaning that, outside of any additional forcing, a portion of the induced  
503 equatorial region positive WWV change will persist for more than 180 days.

504

505 In regards to the WVEs of 2014, we find that there were 5 events from the full list that have  
506 peak area averaged magnitudes that are greater than  $0.08 \text{ Nm}^{-2}$  and all of these events occurred  
507 prior to the end of March 2014 (Fig. 11). However, three of these events are considered to be  
508 overlapping. These are the events that peak on the 1<sup>st</sup>, 4<sup>th</sup> and 6<sup>th</sup> of March, in the W, NW and N  
509 regions respectively. Highlighting the adjusted (weighted sum of projection coefficients) and  
510 initial (sum of the projection coefficients) WWV of these three non-overlapping wind bursts (the  
511 overlapping events are considered as one long event) we can see that the early March WVE had  
512 the most dramatic effect on equatorial region WWV (Fig. 10a). In fact, the initial response of the  
513 WWV is an increase of  $0.52 \times 10^{14} \text{ m}^3$ , which is quite similar to the observed WWV increase of  
514  $0.89 \times 10^{14}$  between January and April of 2014 (Fig. 1b). In terms of the adjusted response to this  
515 particular 2014 WVE, the projection coefficients suggest that there would be minimal  
516 discharging due to the relatively small n=1 Rossby wave projection of this WVE. Thus, the  
517 WWV would return to a similar place to where it started from after roughly 100 days, which is  
518 also remarkably similar to what was observed.

519

520 **5. Discussion and conclusions**

521 In this study we used linear equatorial wave theory to examine the response of the equatorial  
522 Pacific's WWV to single and multiple idealized WWEs in the western Pacific where the latitude  
523 of the maximum wind speed is also varied. We also investigated the WWV response to 216 of  
524 the equatorial Pacific basins largest WWEs. This was carried out using linear equatorially  
525 trapped wave theory in an effort to better understand the causes of the dramatic WWV increase  
526 observed in early 2014, and its relationship to the series of accompanying WWEs. These simple  
527 models are known to represent the large scale ocean dynamics of El Niño events relatively well,  
528 however, it is currently unclear how much impact unresolved features like the high-shear  
529 equatorial currents and detailed bathymetric features at the boundaries can impact the results  
530 presented here.

531

532 We find that both equatorial and off-equatorial WWEs can significantly increase the equatorial  
533 Pacific WWV, with our results suggesting that a single large WWE can increase the equatorial  
534 Pacific WWV by more than  $1.0 \times 10^{14}$ , which is larger than the average WWV preceding El Niño  
535 events. In fact, our results suggest that the single observed WWE that occurred at the beginning  
536 of March 2014 was solely responsible for doubling the equatorial Pacific WWV observed around  
537 this time, in contrast to the slow-recharging concepts paraphrased in various ENSO theories. We  
538 also show that the initial WWV increase, which is consistent with the Ekman convergence into  
539 the equatorial region, can be thought of as the sum of the Kelvin and  $n=1$  Rossby wave  
540 projection as these are the only two modes that have a significant equatorial region WWV signal.  
541 The adjusted state (after both the eastern and western boundary reflection which is roughly 100-  
542 days after initialization), on the other hand, can be estimated by the weighted sum of these two  
543 equatorial modes where the Kelvin wave projection is reduced (~25% weighting) and the  $n=1$   
544 Rossby wave projection is amplified (~170% weighting). This weighting of the projection  
545 coefficients neglects the effects of damping and is obtained by calculating the effect of eastern

546 and western boundary reflections on the equatorial region WWV, where the Kelvin wave WWV  
547 signal is decreased by 75% via its eastern boundary reflection while the n=1 Rossby wave WWV  
548 signal is increased by 70% via its western boundary reflection.

549

550 We find that equatorial WWE (i.e., those that have their maximum wind speeds within 5°  
551 latitude of the equator) are most efficient in generating initial changes in equatorial region  
552 WWV. This is largely because they have the biggest projection onto the equatorial Kelvin wave,  
553 and are thus most effective at triggering changes in eastern equatorial Pacific SST and the onset  
554 of an El Niño event, if their effect on eastern equatorial Pacific SST can be further amplified by  
555 the seasonal air-sea instability, which occurs in boreal summer. This is consistent with the study  
556 of Giese and Harrison (1991) and highlights why WWEs are so effective at exciting ENSO.  
557 However, these same WWEs project negatively onto the n=1 Rossby wave, which in the absence  
558 of a seasonal air-sea instability of the Bjerkness feedback, ultimately leaves the equatorial region  
559 in a discharged state after roughly 100-days. This discharge is largely consistent with that  
560 expected from the RDO. Extending the earlier work of Lengaigne et al. (2004) whose results  
561 suggest that not all large WWEs lead to El Niño events, our results suggest that poorly timed  
562 WWE's (i.e., one that occurs when the eastern Pacific is weakly coupled with the overlying  
563 atmosphere) may even be detrimental to the development of an El Niño due to the resulting  
564 discharged state of the Pacific Ocean. Further to this, the fact the each equatorial WWE  
565 ultimately leaves the equatorial region WWV in a discharged state also makes it difficult to more  
566 gradually build WWV given multiple WWEs, which is an interesting aside given that peak El  
567 Niño anomalies have been linked with the magnitude of WWV preceding the event.

568

569 We also analyse the response to off-equatorial WWEs, these are the WWEs that have their  
570 maximum wind speeds between 5° and 15° latitude. These off-equatorial WWEs have been

571 shown in the past literature to not be that important for eastern Pacific SST due to the reduced  
572 magnitude of their Kelvin wave contribution (Giese and Harrison 1991), which our results  
573 support. However, our results show that these off-equatorial WWEs are an effective mechanism  
574 to “charge” the equatorial region. For instance, the average initial (~ after 30days) WWV change  
575 of the 140 off-equatorial WWEs (those with area average wind stress magnitudes greater than  
576  $0.08 \text{ Nm}^{-2}$ ) observed since 1979 is roughly 33% of the dramatic WWV increase observed in  
577 early 2014 ( $0.89 \times 10^{14}$ ). Based on the results discussed above we prefer to use the terminology  
578 “charge”, rather than “recharging”, as these off-equatorial WWE do not have to be related to a  
579 cool central/eastern Pacific SSTs like the equatorially symmetric easterly wind stress anomalies  
580 that act to recharge equatorial WWV during an La Niña event.

581

582 Perhaps the most interesting aspect of the off-equatorial WWEs is their projection onto the  $n=1$   
583 Rossby wave, which ranges from a relatively small negative projection through to a relatively  
584 small positive projection. It is this smaller projection, relative to the Kelvin wave projection, that  
585 allows the off-equatorial WWEs to produce significant WWV. The sign of the projection,  
586 however, is important due to its western boundary amplification and hence its dominant  
587 weighting in the WWV after 100-days. As such, a small negative projection ensures that the  
588 equator is not substantially discharged after adjustment, which implies that if an event is not  
589 triggered by the Kelvin wave component of the WWE then the system still remains in a neutral  
590 state which has the potential to still support El Niño event initiation. A positive  $n=1$  Rossby  
591 wave projection, on the other hand, results in the equatorial Pacific remaining charged for some  
592 time after the WWE, which is a state, that according to our experiments, can accumulate WWV  
593 with further off-equatorial WWEs in a step like manner. As such, off-equatorial WWEs must be  
594 considered a viable mechanism to not only charge equatorial region WWV in the short term, but  
595 also as a mechanism to more gradually build equatorial region WWV in the longer term.

596

597 In the context of Jin's (1997) RDO theory, the transport associated with an off-equatorial WWE  
598 with a small negative  $n=1$  Rossby wave projection can be considered an unbalanced, as the net  
599 WWV after the initial wave adjustment is close to zero. On the other hand, off-equatorial WWEs  
600 with a positive  $n=1$  Rossby wave projection can essentially be considered a balanced transport as  
601 the adjusted impact is consistent with Sverdrup theory. Given the relatively minimal impact of  
602 these off-equatorial WWEs on equatorial region winds, it is fair to say that both of these events  
603 would not be incorporated in current ENSO theories. Further to this, given that these off-  
604 equatorial WWEs also have the potential to modulate equatorial WWV with a relatively small  
605 projection onto the equatorial Kelvin wave, and thus a relatively small likelihood of triggering an  
606 El Niño event, these events can be considered as a mechanism to modulate the background state  
607 in which ENSO operates and they may also be related to the peak amplitude of El Niño events.

608

## 609 **Acknowledgements**

610 SM would like to thank Niklas Schneider, Leela Frankhome and Matthew. H. England for  
611 helpful discussions. We would also like to acknowledge the use of data from TAO Project Office  
612 of NOAA/PMEL.

613

## 614 **References**

615 An, S.-I., and I.-S. Kang (2001), Tropical Pacific basin-wide adjustment and oceanic waves.  
616 Geophysical Research Letters, 28: 3975–3978. doi: 10.1029/2001GL013363.  
617 Battisti, D. S., (1988), The Dynamics and Thermodynamics of a Warming Event in a Coupled  
618 Tropical Atmosphere/Ocean Model. J. Atmos. Sci., 45, 2889-2919.

619 Bjerknes, J., (1969), Atmospheric Teleconnections from the Equatorial Pacific, *Mon. Wea. Rev.*,  
620 **97**, 163–172, doi: [http://dx.doi.org/10.1175/1520-0493\(1969\)097<0163:ATFTEP>2.3.CO;2](http://dx.doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2)

621

622 Bosc, C., and T. Delcroix (2008), Observed equatorial Rossby waves and ENSO-related warm  
623 water volume changes in the equatorial Pacific Ocean. *J. Geophys. Res.*, 113, C06003,  
624 doi:10.1029/2007JC004613.

625 Cane, M. A., and E. S. Sarachik (1977), Forced baroclinic ocean motions. Part II: the linear  
626 bounded case. *Journal of Marine Research*, 35, 395-432.

627 Cane, M. A., and S. E. Zebiak (1985), A Theory for El Niño and the Southern Oscillation,  
628 *Science*, 228 (4703), 1085-1087, DOI:10.1126/science.228.4703.1085.

629 Chang, P., T. Yamagata, P. Schopf, S. K. Behera, J. Carton, W. S. Kessler, G. Meyers, T. Qu, F.  
630 Schott, S. Shetye, and S.-P. Xie (2006), Climate fluctuations of tropical coupled systems—  
631 The role of ocean dynamics. *J. Climate*, **19**, 5122–5174.

632 Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke and M. G. Schlax (1998),  
633 Satellite microwave SST observations of transequatorial tropical instability waves.  
634 *Geophys. Res. Lett.*, 27, 1239-1242, 2000.

635 Chiodi, A.M. and D.E. Harrison (2015), Equatorial Pacific easterly wind surges and the onset of  
636 La Nina events. *J. Climate* , 28, 776-792, doi: 10.1175/JCLI-D-14-00227.1.

637 Clarke, A. J., (2007), An introduction to the dynamics of El Niño & the Southern Oscillation,  
638 Academic Press, 308pp, ISBN: 978-0-12-088548-0.

639 Eisenman, I., L. Yu, and E. Tziperman (2005), Westerly wind bursts: ENSO's tail rather than the  
640 dog?, *Journal of Climate*, 18, 5224–5238.

641 Fedorov, A. V., Hu, S., Lengaigne, M., and E. Guilyardi, 2014: The impact of westerly wind  
642 bursts and ocean initial state on the development, and diversity of El Niño events. *Climate*  
643 *Dynamics*, 1-21.

644 Geise, B. S., and D. E. Harrison, 1990: Aspects of the Kelvin wave response to episodic wind  
645 forcing. *J. Geophys. Res.*, 95, 7289–7312.

646 Geise, B. S., and D. E. Harrison, 1991: Eastern equatorial Pacific response to three composite  
647 westerly wind types. *J. Geophys. Res.*, 96, 3239–3248.

648 Harrison DE, Vecchi GA (1997), Surface westerly wind events in the tropical Pacific 1986-1995.  
649 *J Climate*, 10, 3131-3156.

650 Hasegawa, T. and Hanawa, K. (2003), Decadal-scale variability of upper ocean heat content in  
651 the tropical Pacific. *Geophysical Research Letters* 30: doi: 10.1029/2002GL016843.

652 Hayashi, M., and M. Watanabe (2015), Importance of Background Seasonality in a Coupled  
653 Atmosphere-Ocean Response to Westerly Wind Events, *Journal of Climate* (submitted).

654 Jin, F.-F., (1997), An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model.  
655 *Journal of Atmospheric Science*, 54, 811–829.

656 Kessler, W.S. (1991), Can reflected extra-equatorial Rossby waves drive ENSO?.  
657 *J.Phys.Oceanogr.*, 21(3), 444-452.

658 Kessler, W. S. (2001), EOF representations of the Madden-Julian Oscillation and its connection  
659 with ENSO. *J. Clim*, 14, 3055-3061.

660 Kessler, W. S., (2002), Is ENSO a cycle or a series of events? *Geophysical Research Letters*,  
661 29(23), 2125, doi:10:1029/2002GL015924.

662 Kessler, W. S., M. J. McPhaden and K. M. Weickmann (1995), Forcing of intraseasonal Kelvin  
663 waves in the equatorial Pacific, *J. Geophys. Res.*, 100, 10613-10631.

664 Kessler, W.S. and R. Kleeman (2000), Rectification of the Madden-Julian Oscillation into the  
665 ENSO cycle, *J. Climate*, 13, 3560-3575.

666 Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole and J.  
667 Slingo (2004), Triggering of El Nino by westerly wind events in a coupled general  
668 circulation model, *Climate Dynamics*, 23, 601-620.

669 Lian, T., D. Chen, Y. Tang, and Q. Wu (2014), Effects of westerly wind bursts on El Niño: A  
670 new perspective, *Geophys. Res. Lett.*, 41, 3522–3527, doi:10.1002/2014GL059989.

671 Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. *J. Meteor. Soc. Japan*, 44,  
672 25–43.

673 McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker and M. H. England 2012a: The  
674 effect of the South Pacific Convergence Zone on the termination of El Niño events and the  
675 meridional asymmetry of ENSO. *Journal of Climate*, **25**, 5566-5586, doi:10.1175/JCLI-D-  
676 11-00332.1.

677 McGregor, S., N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013:  
678 Meridional movement of wind anomalies during ENSO events and their role in event  
679 termination. *Geophysical Research Letters*, **40**. doi:10.1002/grl.50136.

680 McGregor, S., P. Spence, F. U. Schwarzkopf, M. H. England, A. Santoso, W. S. Kessler, A.  
681 Timmermann, and C. W. Böning (2014), ENSO driven interhemispheric Pacific mass  
682 transports, *Journal of Geophysical Research: Oceans*, 119, doi:10.1002/2014JC010286.

683 McPhaden, M.J., 1999: Genesis and evolution of the 1997–98 El Niño. *Science*, 283, 950–954.

684 McPhaden, M. J., 2012: A 21st Century Shift in the Relationship between ENSO SST and Warm  
685 Water Volume Anomalies, *Geophys. Res. Lett.*, 39, L09706, doi:10.1029/2012GL051826.

686 McPhaden, M.J. and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. *Geophys. Res.*  
687 *Lett.*, 26, 2961–2964.

688 McPhaden, M. J., S. E. Zebiak and M. H. Glantz, 2006: ENSO as an Integrating Concept in  
689 Earth Science, *Science*, **314**, 1740, DOI: 10.1126/science.1132588.

690 Meinen, C. S. and M. J. McPhaden, 2000: Observations of Warm Water Volume changes in the  
691 equatorial Pacific and their relationship to El Niño and La Niña. *J. Climate*, **13**, 3551–  
692 3559.

693 Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon  
694 (2014), About the role of Westerly Wind Events in the possible development of an El Niño  
695 in 2014, *Geophys. Res. Lett.*, 41, 6476–6483, doi:10.1002/2014GL061186.

696 Moore, D.W., and S. G. H. Philander (1977), Modeling of the tropical oceanic circulation. *The*  
697 *Sea*, Vol. 6.

698 Tollefson, J. (2014), El Niño tests forecasters, *Nature*, 508(7494), 20–21, doi:10.1038/508020a.

699 Vialard, J., Menkes, C., Boulanger, J.-P., Delecluse, E, P., Guilyardi, E., McPhaden, M. J. and  
700 Madec, G. (2001), A model study of oceanic mechanisms affecting Equatorial Pacific sea  
701 surface temperature during the 1997-98 El Niño. *Journal of Physical Oceanography*, 31  
702 (7), 1649-1675.

703 Wyrtki, K., 1985. Water displacements in the Pacific and the genesis of El Niño cycles, *J.*  
704 *Geophys. Res.-Oceans*, **90**, 7129-7132.

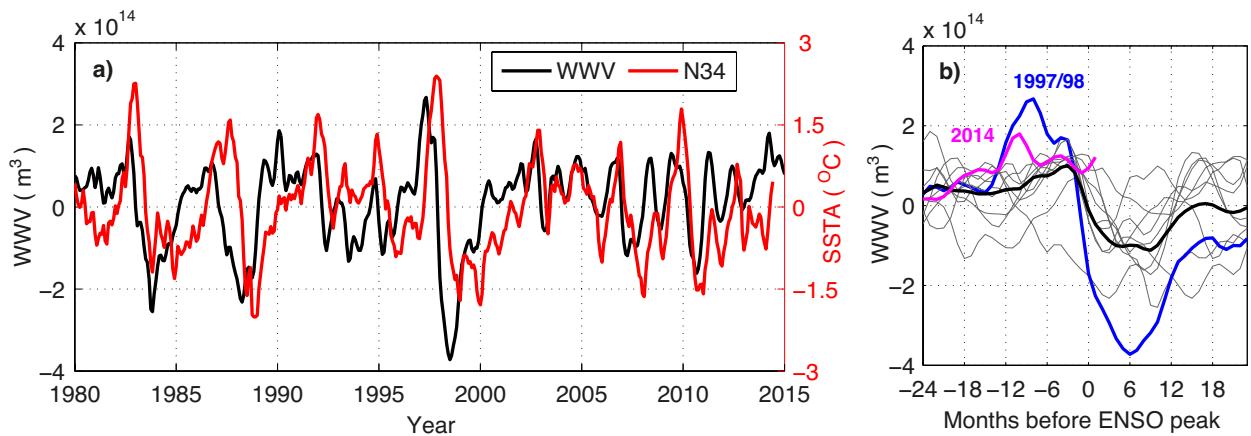
705 Zavala-Garay, J., A. M. Moore, and C. L. Perez, 2003: The response of a coupled model of  
706 ENSO to observed estimates of stochastic forcing. *J. Climate*, 16, 2827–2842.

707 Zebiak, 1989: Oceanic Heat Content Variability and El Niño Cycles. *J. Phys. Oceanogr.*, **19**,  
708 475–486.

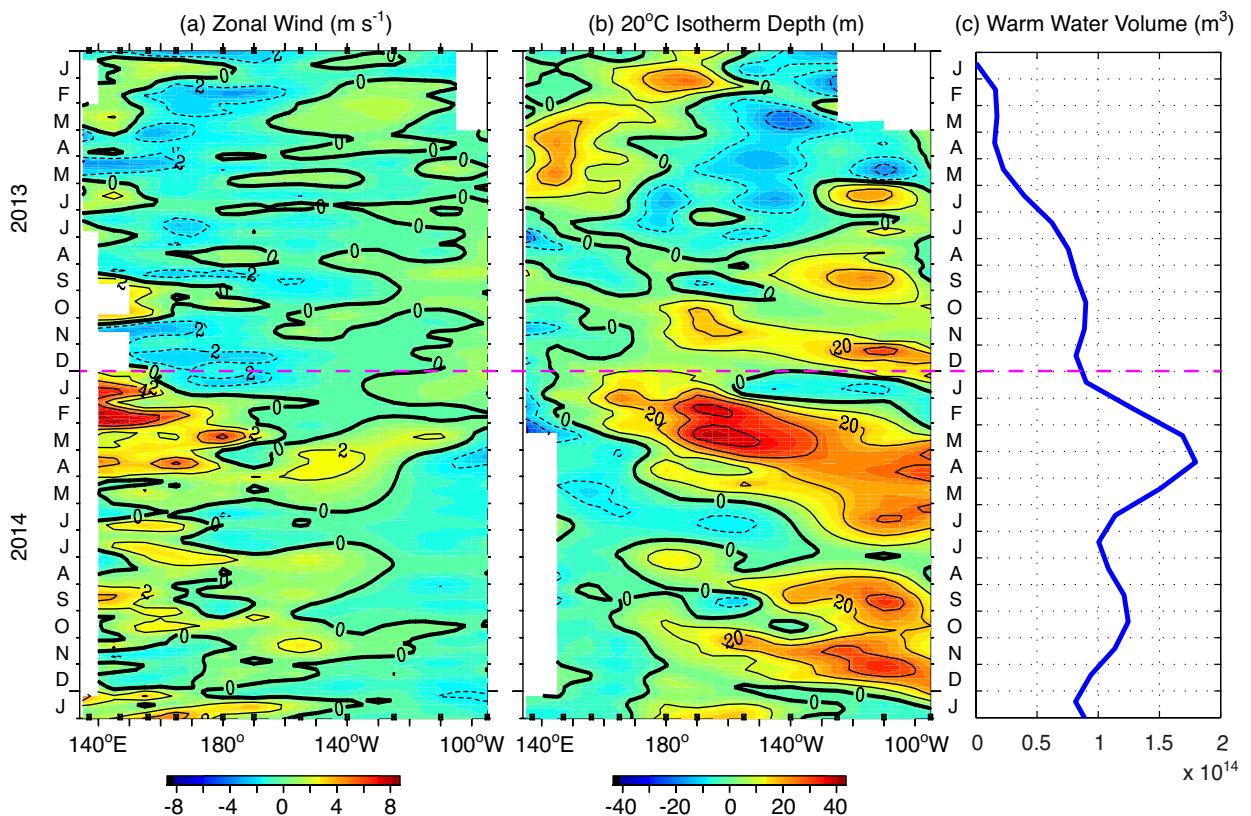
709

710

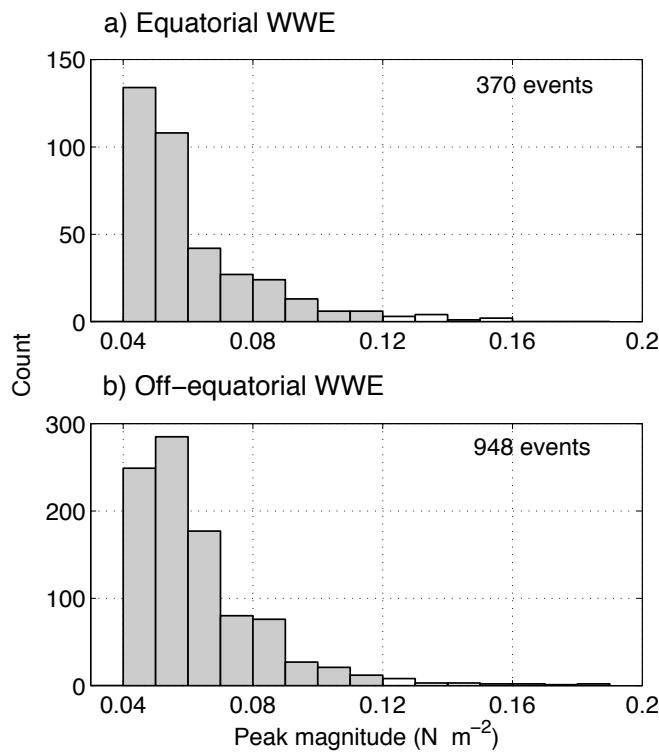
711 **Table 1:** The number of WWS identified during 1979–2014, in each of  
712 the classifying regions, for the complete list and for the nonoverlapping  
713 list (see Section 2).


714

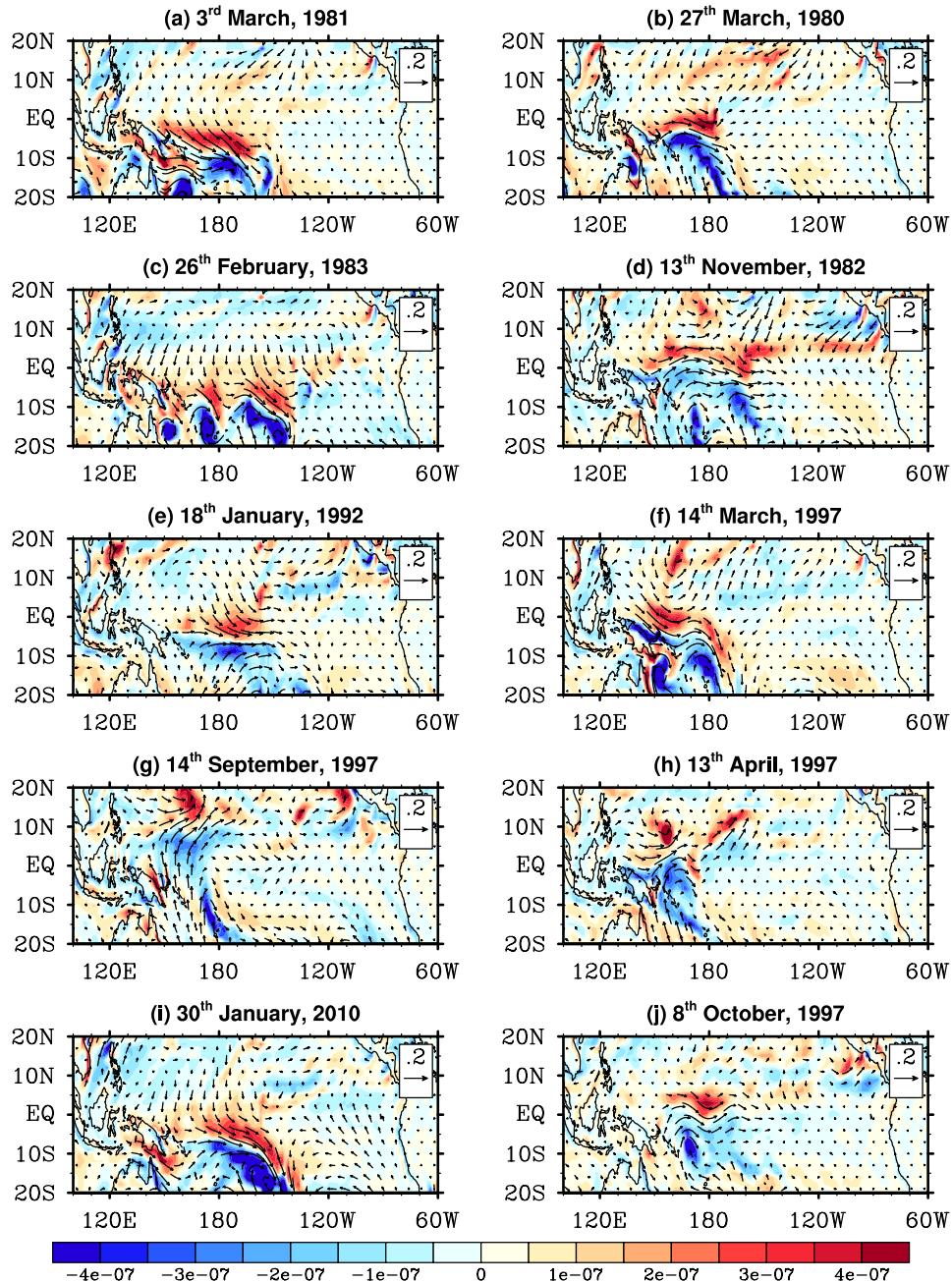
715


716

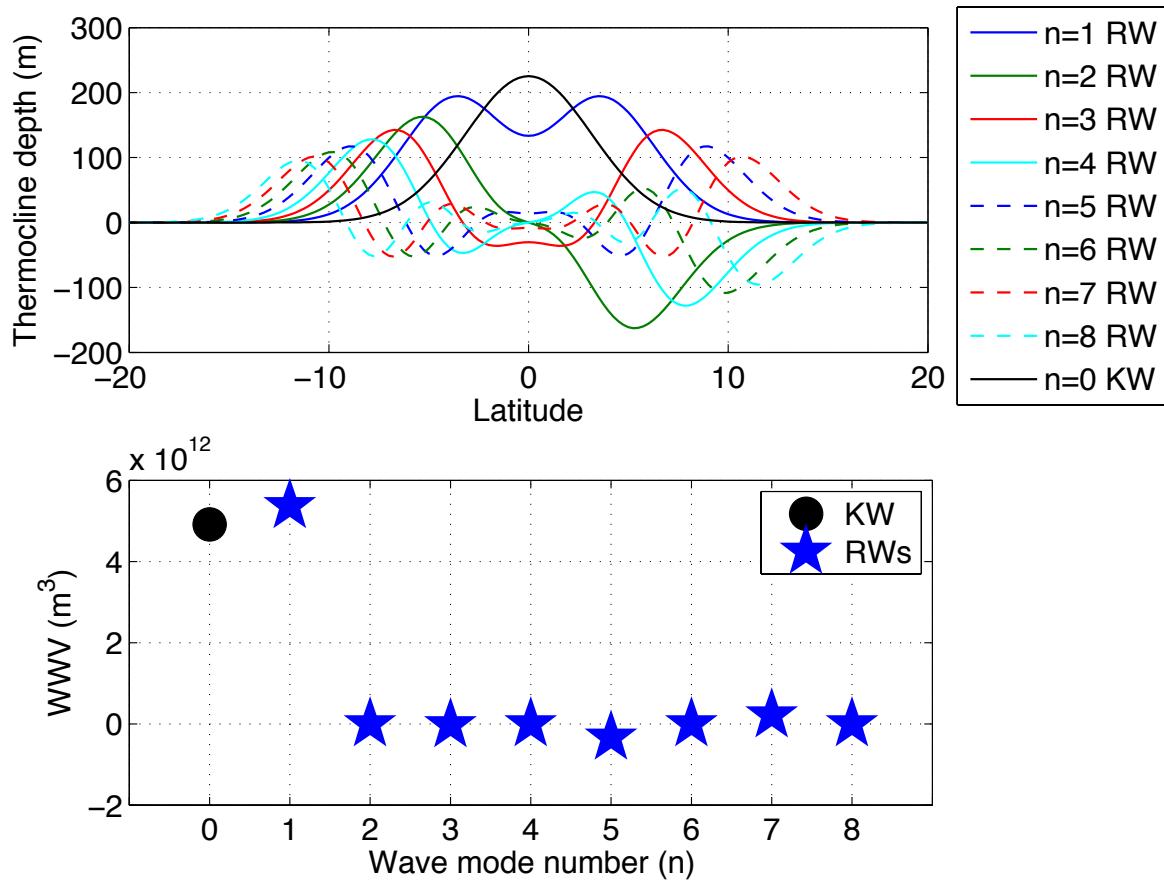
|                      | NW  | N   | NE  | W  | C   | E   | S   | SE  |
|----------------------|-----|-----|-----|----|-----|-----|-----|-----|
| Complete list        | 194 | 197 | 219 | 85 | 142 | 143 | 175 | 163 |
| Non-overlapping list | 186 | 182 | 200 | 76 | 139 | 127 | 166 | 144 |


717 **Figures**

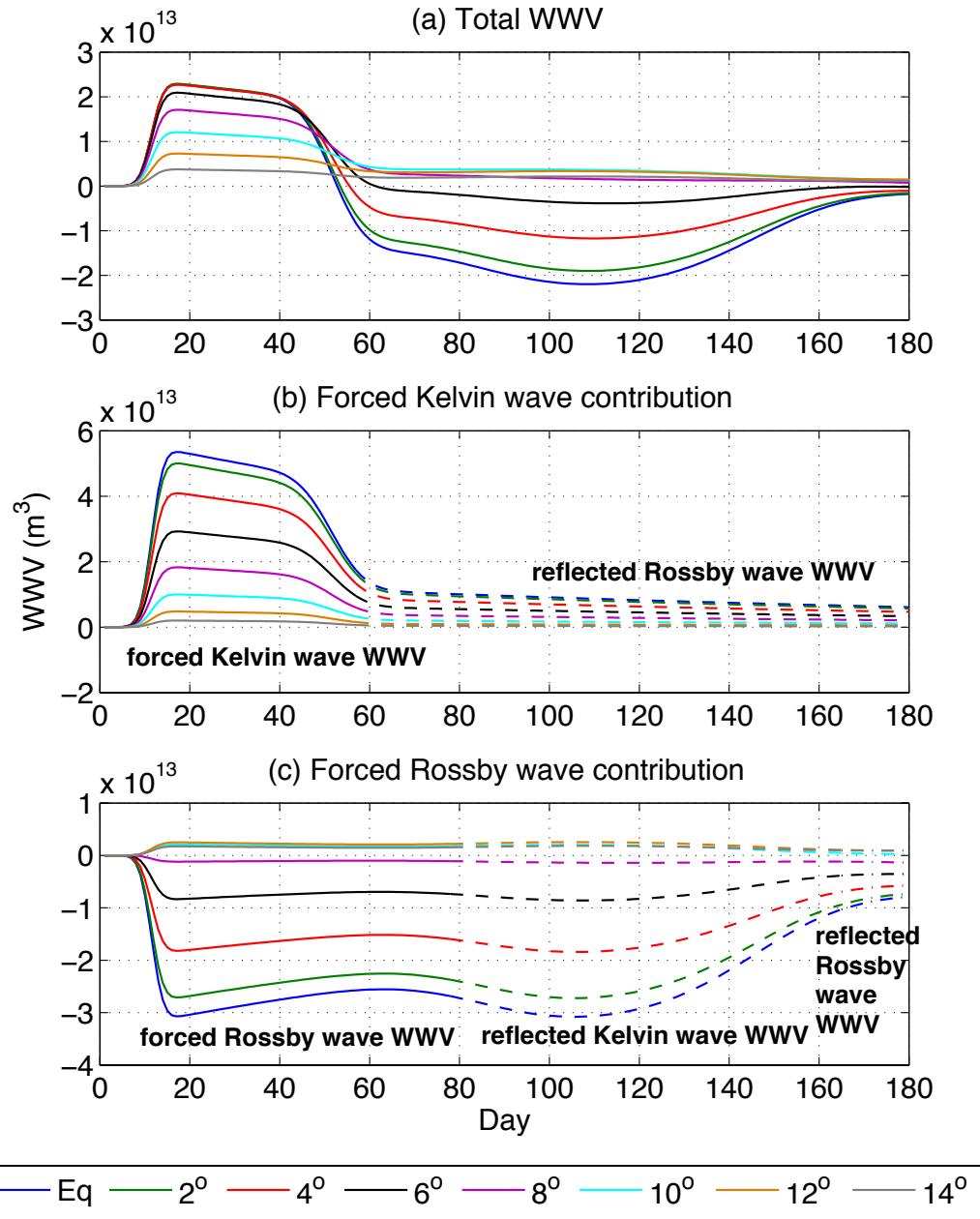



718  
 719 **Figure 1: (a) Equatorial Pacific WWV (5S-5S and 120E-80W) and Niño 3.4 region (N34) SSTA. The grey**  
 720 **721 lines in the panel (b) represent composites of WWV during the 10 El Niño events that have occurred since**  
 722 **1980, while the solid black line represent the composite mean. The additional blue and magenta lines**  
 723 **respectively highlight the 1997/98 El Niño event composite and the WWV of 2014.**

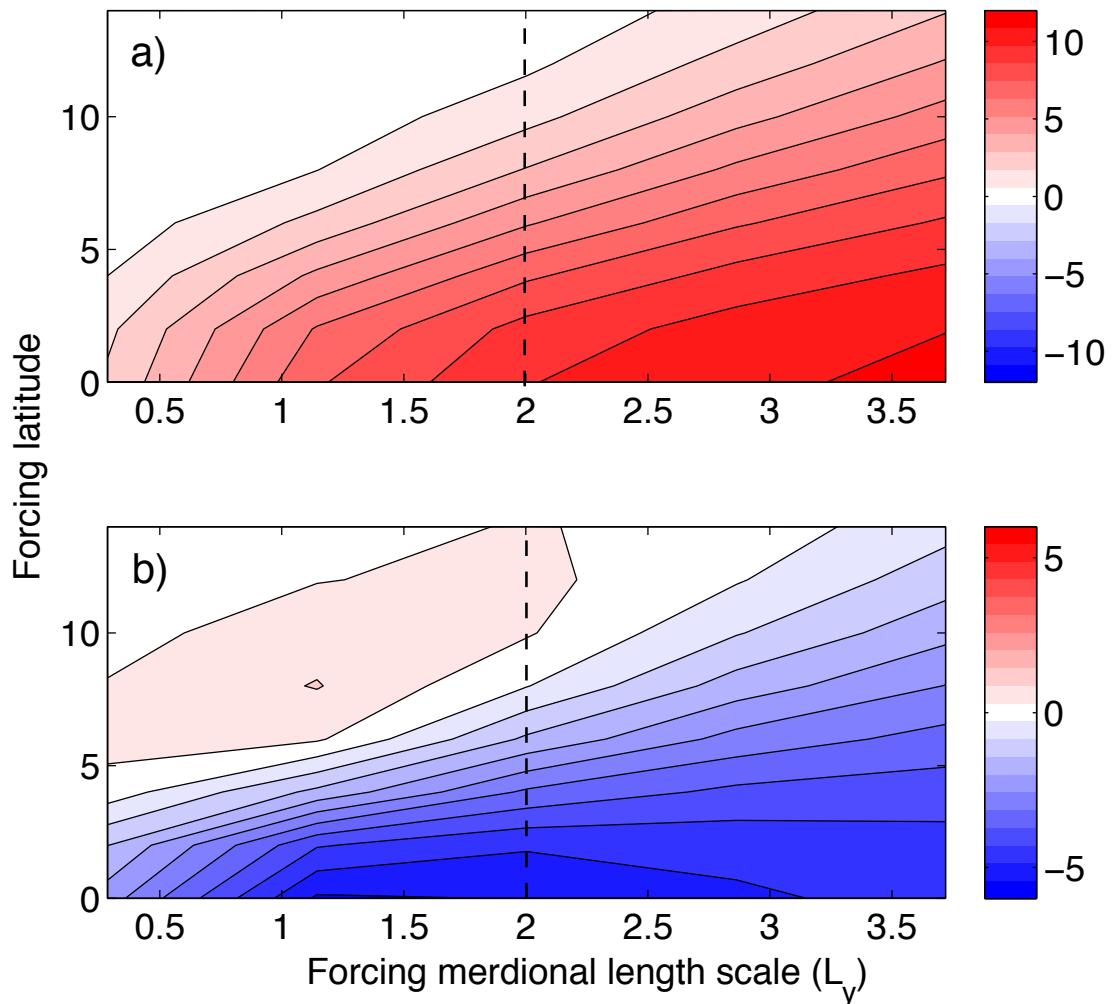



724  
725 **Figure 2: Longitude time plots of TAO-TRITON array observed (a) zonal wind anomalies, and, (b) 20°C  
726 isotherm depth anomalies, plotted alongside of (c) the equatorial Pacific WWV for the 2013-2014 period. The  
727 dashed magenta line is to mark the beginning of 2014 (data sourced from TAO Project Office of  
728 NOAA/PMEL).**  
729  
730

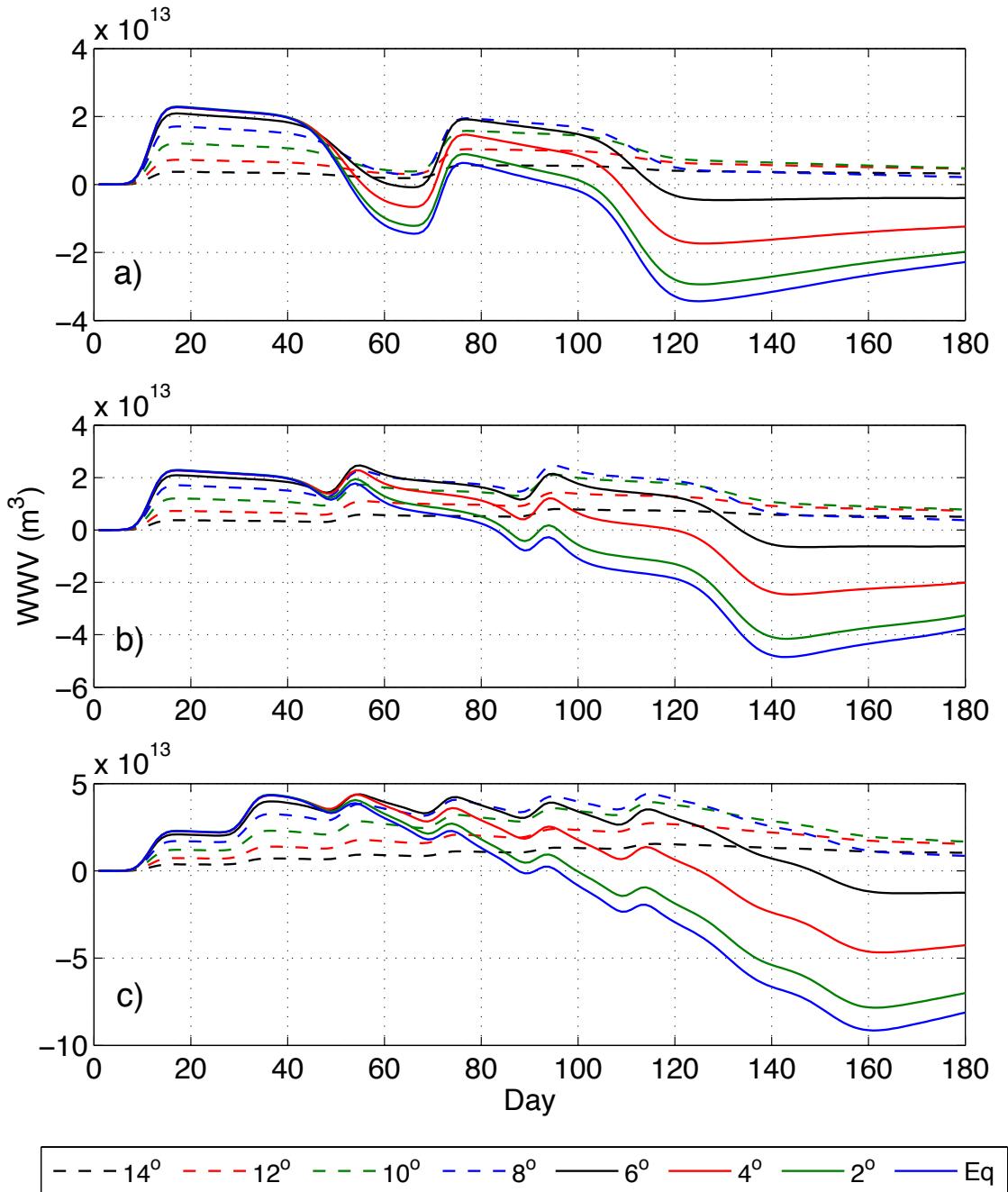



731  
 732  
 733 **Figure 3: Histograms of ERA-interim WWE peak magnitudes for the (a) equatorial (including the W, C, and**  
 734 **E regions), and (b) off-equatorial (including the NW, N, NE, S, and SE regions) regions calculated over the**  
 735 **period 1979-2014.**



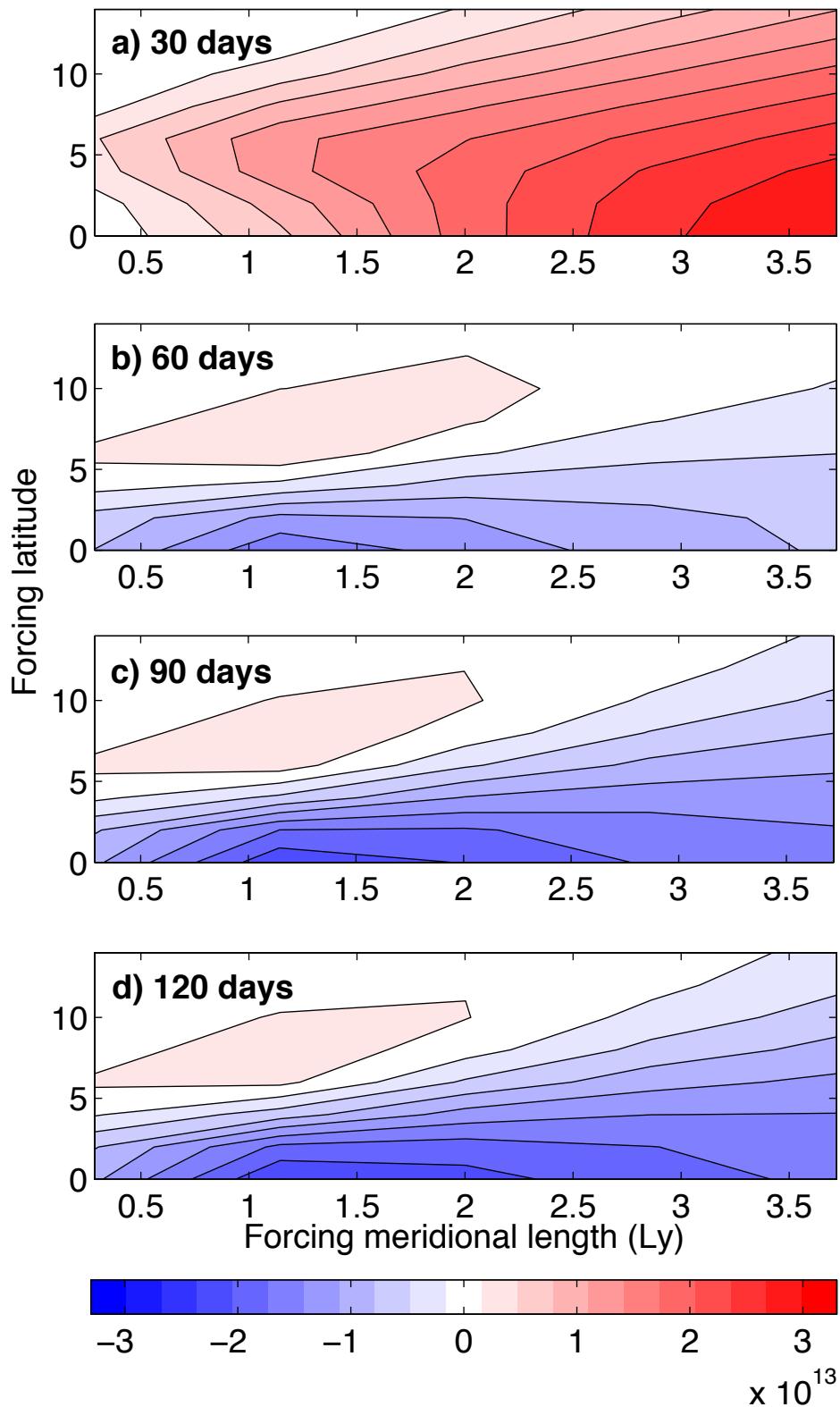

738  
739  
740 **Figure 4: Five of the largest observed off-equatorial WWE in (a), (c), (e), (g), and (i) (left column)**  
741 **and five of the largest observed off-equatorial WWE in (b) (d), (f), (h), and (j), where the vectors are the five day average**  
742 **(centered around the event peak) surface wind stresses ( $N m^{-2}$ ) and the background shading is its curl ( $N m^{-3}$ ),**  
743 **while event peak date is indicated the title of each panel.**



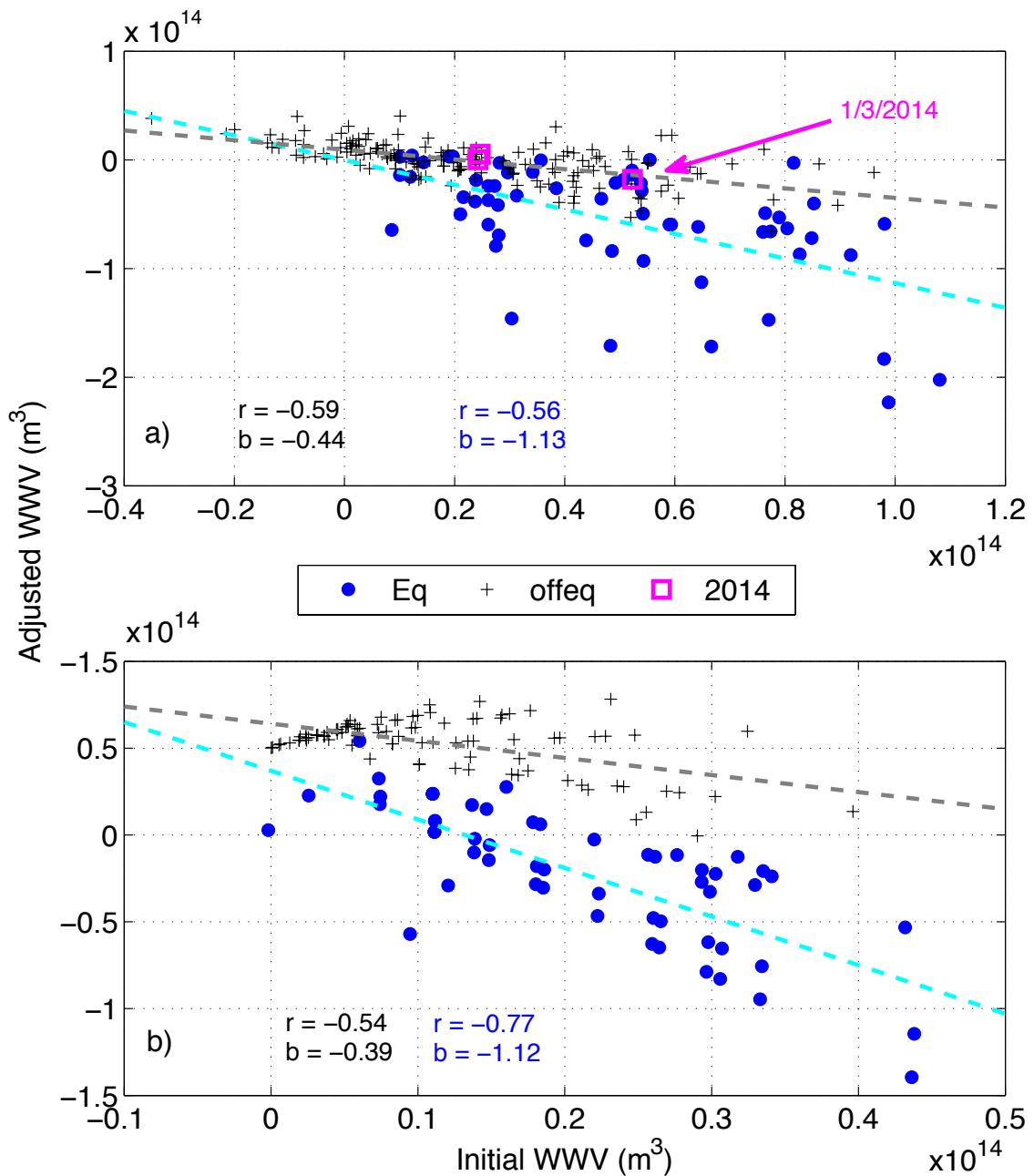

747  
 748 **Figure 5: (a) the meridional structure of the equatorial Kelvin wave (black line)**  
 749 **and the first eight Rossby**  
 750 **wave modes (see legend).** (b) presents the dimensionalised equatorial WWV along a single line of longitude  
 751 **(calculated on 0.25° longitudinal grid) for the equatorial Kelvin wave and the first eight Rossby waves.**  
 752  
 753



756  
757 **Figure 6:** (top) The time evolution of equatorial region WWV (m³) from the eight average parameter  
758 experiments, where the line color represents the latitude of the maximum WVE forcing (see legend). (middle)  
759 the WWV contributions of the forced equatorial Kelvin wave and its reflected Rossby waves. (bottom) the  
760 WWV contributions of the forced Rossby waves and their reflected equatorial Kelvin wave.

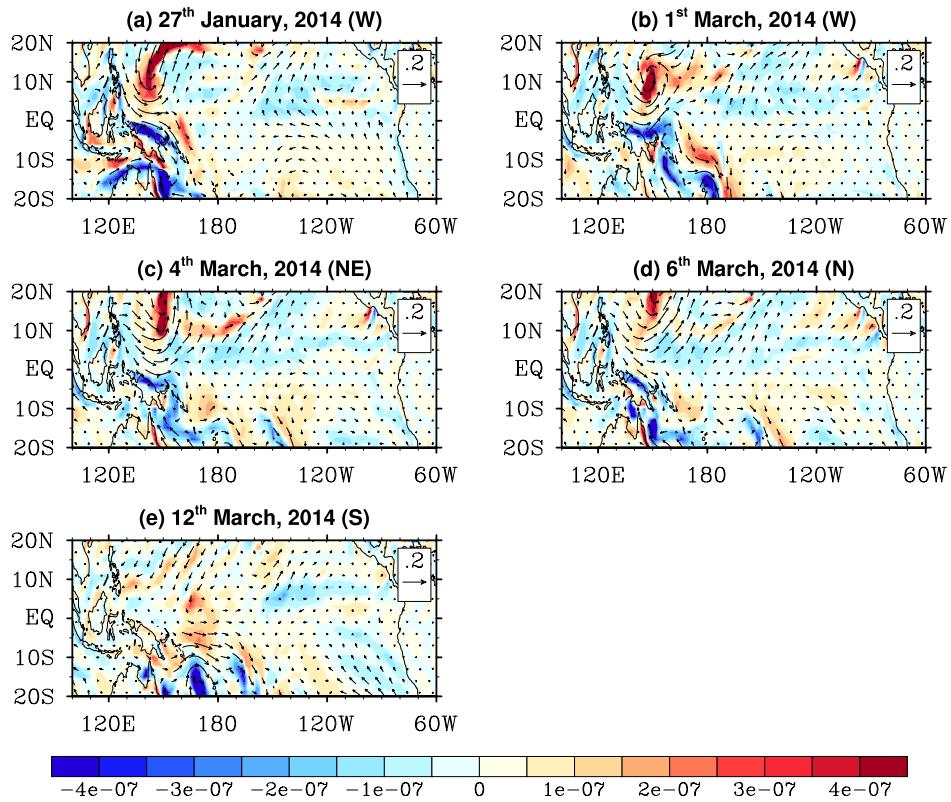



**Figure 7: The basin wide sum of projection coefficients (or wave amplitudes,  $q$ ) for the (a) equatorial Kelvin wave, and (b)  $n=1$  Rossby wave, after 20 days of the average parameter WVE plotted as a function of forcing meridional length in Rossby radii of deformation (x-axis) and forcing latitude (y-axis).**




772  
773  
774 **Figure 8: The time evolution of equatorial region WWV ( $\text{m}^3$ ) from the three multiple WVE experiments of**  
775 **Section 3.2, where WVEs are applied once every (a) 60-days, (b) 40-days, and (c) 20-days in the first 100**  
776 **days. The eight lines in each panel represent the latitude of the maximum WVE forcing (see legend).**

777  
778  
779  
780




781  
782  
783 **Figure 9: Modeled equatorial region WWV ( $\text{m}^3$ ) of the average parameter WWE experiment after (a) 30-  
784 days, (b) 60-days, (c) 90-days, and (d) 120-days, plotted as a function of forcing meridional length in Rossby  
785 radii of deformation (x-axis) and forcing latitude (y-axis).**  
786  
787



790  
 791 Figure 10: The initial equatorial region WWV (after 30-days) plotted against the adjusted WWV (after 90-  
 792 120 days, estimated from the weighted Kelvin and  $n=1$  Rossby wave projection coefficients) for the (a)  
 793 observed WVE experiments, and (b) idealized WVE experiments. The equatorial (off-equatorial) region  
 794 WVE are distinguished in each panel by blue dots (black plus signs), while the least squares line of best fit is  
 795 shown in cyan (gray). The non-overlapping 2014 WVE events are highlighted by magenta squares. The black  
 796 (blue) text is each panel represents the relationship between off-equatorial (equatorial) WVE induced initial  
 and adjusted WWV, where  $r$  is the correlation, and  $b$  is the linear regression slope.

797  
798  
799



800  
801 **Figure 11: The five large (area average magnitude  $> 0.8 \text{ N m}^{-2}$ ) WWEs of 2014. Wind stresses ( $\text{N m}^{-2}$ , vectors)**  
802 **and wind stress curl ( $\text{N m}^{-3}$ , shading) for the five day average around the event peak are displayed, while**  
803 **event peak date and region are indicated the title of each panel.**

804  
805  
806  
807