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Abstract Tropical lands play an important role in the global carbon cycle yet their contribution remains
uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO,) have greatly
increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial
fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO, flux inversions
over northern tropical Africa (NTA), spanning 0-24°N, remains large. Satellite-based estimates of an annual
source of 0.8-1.45 PgC yr~! challenge our understanding of tropical and global carbon cycling. Here, we
compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory
2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne
observations made over the tropical Atlantic Ocean by the National Aeronautics and Space Administration
(NASA) Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints

on tropical African CO, fluxes using flux-concentration relationships defined by the model suite. We find an
annual flux of 0.14 + 0.39 PgC yr~! (mean and standard deviation) for NTA, 2016-2018. The satellite-based
flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land
in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative
to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season
than the in-situ inversion estimates.

Plain Language Summary Satellite carbon dioxide (CO,) observations over land imply a major

revision to our understanding of the global carbon cycle linked to large emissions from northern tropical Africa
(NTA) during the dry season, from October to May. We use aircraft observations made over the Atlantic Ocean
in four seasons to evaluate flux models driven by a range of ground and satellite observations. Our results show
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that models using satellite observations over land overestimate annual emissions from NTA by approximately
1 PgC yr~!, concentrated in the dry season. At other times of year, satellite CO, observations provide improved
estimates of NTA exchange, with a stronger CO, uptake during the wet season.

1. Introduction

Tropical terrestrial ecosystems are an important component of the global carbon cycle as both a strong source
of atmospheric carbon dioxide (CO,) from land-use emissions (e.g., Hong et al., 2021) and a strong sink in
intact forests, most likely owing to the CO, fertilization effect on photosynthesis (Lewis et al., 2009; Schimel
et al., 2015). African ecosystems are estimated to be large contributors to the uncertain positive climate-carbon
cycle feedback under increased soil and plant respiration associated with hotter, drier conditions (Arora
et al., 2020; Cox et al., 2013; Friedlingstein et al., 2006, 2010; Wang et al., 2014). Atmospheric inverse models
constrained with in-situ observations estimate that the sum of land carbon fluxes from the tropics and south-
ern extratropics has been near-neutral since the 2000s (Gaubert et al., 2019). The Global Carbon Budget 2021
(Friedlingstein et al., 2022) also estimates a near-balanced budget (excluding fossil fuel) in the tropics during the
past decade that is derived from both process models and a set of atmospheric inversions.

CO, biomass burning emissions from sub-Saharan Africa show a marked seasonal cycle with large sources during
the dry season, from October to May in the northern hemisphere (e.g., Roberts et al., 2009). Satellite observations
from the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (Orbiting
Carbon Observatory 2 (OCO-2)) indicate a strong and rapid increase in column CO, that coincides with the
biomass burning season of northern hemispheric sub-Saharan Africa (Crisp et al., 2022; Eldering et al., 2017).
Inversions of OCO-2 land nadir and land glint (LNLG) data (version B7.1) suggested that northern tropical
Africa (NTA, 0-24°N, Figure 1) net biosphere exchange was a carbon source of approximately 1.5 PgC yr~!
to the atmosphere in 2015 and 2016 (Crowell et al., 2019; Palmer et al., 2019). OCO-2 LNLG inversions from
version 9 of the OCO-2 Model Intercomparison Project (vO MIP, using version B9.1 OCO-2 data) also estimate a
large source of carbon (1.26 + 0.58 PgC yr~!) over NTA, for the 4-year period of 2015-2019 (Peiro et al., 2022).
This contrasts with the far less constrained in-situ set of vO MIP inversion results for NTA, which provide a mean
value of 0.23 + 0.4 PgC yr~!. Interannual variability in these in-situ inversions ranges between an NTA sink of
0.2 PgC yr~!in 2018 and a source of 0.6 PgC yr~! in 2016, during the 2015-2016 El Nifio (Peiro et al., 2022).

In addition to the large uncertainties in the net budget, the component processes responsible for the large source
indicated by OCO-2 observations have yet to be corroborated. Conceptually, net carbon exchange results from the
balance of varying gross fluxes, including photosynthetic responses to drought, changes to plant and soil respi-
ration, and direct effects of land use. Specific proposed mechanisms include soil emissions due to sustained land
degradation (Palmer et al., 2019) and increased ecosystem respiration due to high surface temperature anomalies
during the 2015-2016 El Nifio (J. Liu et al., 2017). Another possibility is biases in the satellite measurements.
Generating accurate OCO-2 CO, retrievals remains a challenge despite continuous improvements in the bias
correction procedure (O’Dell et al., 2018). CO, retrieval biases can result from spectroscopic errors (Connor
et al., 2008), aerosols and clouds over northern Africa (Nelson & O’Dell, 2019; O’Dell et al., 2018) and from
surface pressure errors that are maximal over the tropics (Kiel et al., 2019). The empirically derived bias correc-
tion to OCO-2 data has an isolated maximum over NTA that is approximately +0.6 ppm higher than the global
average. This is illustrated in Figure S1 in Supporting Information S1 and in Figure 4 of Taylor et al. (2023).
Fires play an important role in the African carbon cycle, but are thought to be compensated by CO, uptake during
the growing season (Valentini et al., 2014). The sub-Saharan region is dominated by shifting agriculture that is
characterized by small and human-induced fires (Curtis et al., 2018). Emission estimates for this type of fire
are uncertain and likely to be underestimated because global-scale fire emission models are typically based on
satellite-derived burned area from relatively coarse-resolution sensors that are unable to detect most small fires
(Ichoku et al., 2016; T. Liu et al., 2020; Randerson et al., 2012; Roteta et al., 2019). For 2016, a recent study
(Ramo et al., 2021) used Sentinel-2 enhanced spatial resolution images to estimate burned area, and calculated for
the African continent an increase of 31% in fire carbon emissions compared to the Global Fire Emissions Data-
base with small fires GFED4s (van der Werf et al., 2017). Estimates of annual-mean CO, emissions (Figure S3
in Supporting Information S1) from fires range from 0.29 to 0.55 PgC/yr for 2016. Despite large uncertainties, an
increase in 30%—-50% in fire emissions does not suffice to explain the discrepancies in inversion results (Crowell
et al., 2019; Palmer et al., 2019).

GAUBERT ET AL.

20f 19



Aru g
AUV
ADVANCING EARTH

AND SPACE SCIENCES

Global Biogeochemical Cycles 10.1029/2023GB007804

NTA (TransCom 05b)

S

e~ 7

o Abml e Alom-3: )
o Am2 o Abm-4 __po S

T

L
e d

b
S

2N f

0o b e NN N

20°W 0° 20°E 40°E

Figure 1. The TransCom 05b or northern tropical Africa (NTA) region. The NTA region encompasses various ecoregions
including tropical forests, sub-humid savanna, semi-arid savanna, desert to semidesert, and shrubland areas. The four
Atmospheric Tomography flight tracks are also displayed.

The atmospheric transport pathways exporting emissions from the African continent have been thoroughly stud-
ied by monitoring plumes over the Atlantic ocean using satellite remote sensing observations to track desert dust,
smoke aerosols, and trace gases such as carbon monoxide (CO) (e.g., Adams et al., 2012; Barkley et al., 2019;
Edwards et al., 2006; Prospero, 1999). Given the sparsity of other CO, observations downwind of tropical Africa,
the NASA airborne Atmospheric Tomography (ATom) Mission (ATom) provides a unique opportunity to assess
the ability of CO, inverse models to reproduce the atmospheric signatures of tropical African carbon fluxes
over the Atlantic basin. The ATom campaign utilized the fully instrumented NASA DC-8 research aircraft to
survey the chemical environment of the remote atmosphere around the world (Thompson et al., 2022). The ATom
payload included three in situ CO, instruments and two whole air samplers with CO, measurements. ATom
sampled vertical profiles along meridional transects of the Pacific and Atlantic Ocean basins (Figure 1) during
four month-long campaigns between August 2016 and May 2018.

In this study we use 54 OCO-2 v10 MIP inversions (Byrne et al., 2023) in the form of 14 inverse models running
five experiments assimilating different sets of observations. We apply an emergent-constraint approach (e.g.,
Cox,2019; M. S. Williamson et al., 2021) in which we develop relationships between posterior CO, concentrations
over the Atlantic and net biosphere fluxes from NTA (Figure 1), and then use these to derive new flux estimates
by comparison to the aircraft observations. The NTA region (TransCom 05b) is a subregion of the TransCom 05
region defined in the original TransCom experiment (Gurney & Denning, 2008; Gurney et al., 2002), spanning
0-24°N. The NTA region includes the Sahara desert and the CO, fluxes are primarily confined south of ~18°N,
across various ecoregions including tropical forests, sub-humid savanna, and semi-arid savanna.

2. Materials and Methods
2.1. Methods Overview

We use airborne CO, observations from four ATom deployments over the Atlantic Ocean, downwind of NTA, to
develop an emergent constraint on NTA CO, fluxes. The inverse model result being evaluated here is the posterior
fluxes from the inversions. Our evaluation then uses simulations of atmospheric CO, generated by propagating
these posterior fluxes back through the same transport model used in each inversion. Thus, the full model—
numerical representation of nature—that we evaluate includes atmospheric transport and the posterior fluxes,
which themselves are sensitive to transport biases, assumed flux priors, systematic errors in satellite retrievals,
and inversion methods.

The specific property of the full models we constrain is NTA flux. The property of the models that we observe is
the atmospheric CO, concentration for a downwind region over the Atlantic Ocean. We find an emergent relation-
ship between these two properties and use concentration measurements to constrain more accurate NTA fluxes
for each of the months corresponding to a campaign. We then employ a temporal-sampling bias correction as a
second step to translate these four flux estimates into a 3-year mean flux estimate, with propagated uncertainties.
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Figure 2. National Oceanic and Atmospheric Administration Marine Boundary Layer (MBL) reference carbon dioxide
concentrations used to define ACO, for each Atmospheric Tomography campaign. We also show the experiment average
posterior MBL references estimated by the inversions. We use model-specific reference curves in the model posterior ACO,
calculation.

The emergent constraint approach has been widely used in the prognostic climate modeling community to constrain
future climate projections based on observations of the current system and emergent relationships from Earth system
model ensembles (e.g., Cox, 2019; Hall et al., 2019; Simpson et al., 2021; M. S. Williamson et al., 2021). It has also
been used by the global carbon cycle, oceanography, and atmospheric chemistry communities to constrain, often the
magnitude and spatial distribution rather than a projection, of greenhouse gas fluxes, ocean heat transports, oxidation
rates, ecosystem carbon stocks, etc (e.g., Bian et al., 2023; W. Li et al., 2017; Loechli et al., 2023; Long et al., 2021;
Patra et al., 2014; Resplandy et al., 2016; Stephens et al., 2007). Our approach is consistent with this latter group.

While each step of the analysis is described in detail in the following sections, here we provide a summary of the
approach developed in this study:

1. Subtract the Marine Boundary Layer (MBL) Reference from the ATom observations and corresponding
model outputs over the Atlantic Ocean to calculate concentration anomalies (Section 2.3 and Figures 2 and 5).
2. Test all possible latitude and altitude boxes to find the best correlation between monthly fluxes and concen-
tration anomalies (Section 2.4).
3. Use these correlations to define the ATom Emergent Constraint (ATom-EC) and use it to estimate NTA fluxes
and corresponding uncertainties for these months (Section 2.6, Figure 6).
4. Linearly fit these four monthly values with the mean seasonal cycle shape from the models to obtain a prelim-
inary 20162018 mean flux estimate.
5. Correct for temporal sampling biases
(a) Calculate the equivalent 20162018 flux estimates for all models using model fluxes from just the four
months of the ATom campaigns fit to the mean seasonal cycle (Section 3.3.2).
(b) Correlate these fluxes derived from four months to the true 2016-2018 fluxes from these models and use
this fit to correct our preliminary 2016-2018 flux estimate, with propagated uncertainties (Section 3.3.2,
Figure 8).
6. Compare our updated annual mean net 20162018 land CO, fluxes for NTA with OCO-2 MIP and other estimates.

2.2. Orbiting Carbon Observatory 2 v10 Model Intercomparison Project

The OCO-2 v10 Model Intercomparison Project (v10 MIP) consists of a large ensemble of atmospheric inver-
sions from 14 modeling groups using primarily five combinations of in situ and OCO-2 satellite observations
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(Byrne et al., 2023). The models have different unoptimized prior flux distributions, model transport, and data
assimilation techniques. Byrne et al. (2023) presented a description of the participating inverse models and of
the assimilated datasets used in the OCO-2 v10 MIP. One notable difference to the preceding v9 MIP (Peiro
et al., 2022) is that the OCO-2 v10 MIP uses OCO-2 observations over a longer time period and from a new
XCO, retrieval, that is, the B10 version (Taylor et al., 2023) of the Atmospheric Carbon Observations from Space
(ACOS) column-averaged dry air mole fraction of atmospheric CO, (XCO,) retrieval (Byrne et al., 2023; Kiel
et al., 2019; O’Dell et al., 2018). The post-retrieval data processing also includes a quality filtering and a bias
correction procedure (Kiel et al., 2019). The atmospheric inversions were conducted following a formal protocol
with regard to the set of assimilated observations and their treatment. Five experiments were defined to inves-
tigate the impact of OCO-2 assimilation across viewing modes and to compare to the assimilation of baseline
in-situ network observations. The experiments consist of: (a) in situ (IS), (b) OCO-2 LNLG, (c¢) OCO-2 ocean
glint (OG), (d) joint LNLG with IS (LNLGIS) and (e) a combination of all in situ and satellite data (LNLGO-
GIS). There were 12 participating inversion systems that provided outputs at the ATom locations, but not for
all experiments for all of the simulations. The outputs at ATom locations were obtained by performing forward
simulations driven by the posterior fluxes. We included the LoFI simulation in only the IS group. We include all
of the available submissions when calculating an experiment average, which are 10 for LNLG, 11 for IS when
including LoFI, and 11 for OG, LNLGIS, and LNLGOGIS.

2.3. Observations

We first merge the 10-s ATom dataset (Wofsy et al., 2021) and the ObsPack (Masarie et al., 2014) formatted
posterior concentration files provided by the OCO-2 v10 MIP. Only airborne measurements along the northbound
Atlantic transects were considered by selecting measurements made at longitudes between 70°W and 15°E. We
excluded the last 15 min of the ATom-4 flight arriving in Recife, Brazil and the first 60 s of the flight departing to
avoid local pollution influences. All of the data were then bin averaged on a 5° latitude by 50 hPa pressure grid.
We define the difference ACO, (Equation 1) by subtracting from the ATom observations and inversion posterior
CO, the National Oceanic and Atmospheric Administration (NOAA) Greenhouse Gas Marine Boundary Layer
(MBL) Reference surface (Dlugokencky et al., 2019) as defined by observations for ATom and as defined by the
respective posterior CO, simulated at surface stations for the inversions.

ACO, = CO;™™ — COY™* (1

The NOAA MBL reference product is derived from atmospheric CO, mole fraction measurements from the
NOAA Earth System Research Laboratories (ESRL) Carbon Cycle Cooperative Global Air Sampling Network
(Dlugokencky et al., 2019). In order to generate a consistent MBL reference for both the model and observations,
we ran the Python version of the curve fitting and smoothing algorithm developed by Thoning et al. (1989) over
the period 2015-2020 using the subset of stations available during this time. We linearly interpolate the MBL
reference values to our 5° latitude bins. We use the weekly values that are closest in time to the ATom measure-
ments, 16 August 2016 (ATom-1), 15 February 2017 (ATom-2), 16 October 2017 (ATom-3), and 17 May 2018
(ATom-4). Figure 2 shows the selected MBL reference values used to define ACO, for the observations and as
averaged for each experiment. The experiment mean posterior MBL gradients diverge up to 1 ppm from the
observations. Thus, subtracting reference values specific to each model and experiment is an important step to
isolate NTA signals from those originating elsewhere.

2.4. Averaging Box Selection

We identified optimal pressure and latitude bounded boxes by maximizing the across-inversion correlation coef-
ficient between ACO, averaged over a given ATom box and fluxes for the same month from the NTA TransCom
region. This results in a correlation calculation across 54 data pairs. Note that the ATom Atlantic flights all
generally occurred in the middle of the month (Table 1) leading to our use of monthly mean fluxes. Also, back
trajectories indicate that NTA had a strong influence on the measurements over the preceding several weeks
(Figure 3). We imposed that the boxes have a minimum width of 15° in latitude and a minimum height of 200 hPa,
to avoid spurious correlations. We then calculated correlation coefficients for all different possible configurations
spanning 40°S to 40°N in latitude and from the surface to 200 hPa. While significant relationships (with p-value
lower than 0.05) are found for many different boundary options (Figure S4 in Supporting Information S1), we
select the box that provides the greatest correlation coefficient (Table 1). Given transport differences across
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Table 1

Optimized Box Boundaries (Latitude in °N and Pressure in hPa), Flight Dates Intersecting Boxes, Correlation Coefficients
Between the Northern Tropical Africa (NTA) Fluxes and Posterior ACO, in the Corresponding Box Estimated by the v10
MIP Ensemble, Observed ACO, Plus Uncertainty, and Estimated NTA Flux Plus Uncertainty

ATom-EC #+ Unc.

ATom Date Lat min/max  Pressure max/min r Obs + Unc. (ppm) (PgC yr™)
ATom-1 17 August 2016 10725 850/650 0.74 —0.65 + 0.25 —2.81+0.6
ATom-2 15 February 2017 —5/10 950/500 0.77 1.9+0.24 3.15+0.6
ATom-3  17-20 October 2017 =5/10 600/400 0.77 —1.11 £ 0.26 —2.22 +0.48
ATom-4 14 May 2018 -5/10 650/450 0.65 -0.71 £ 0.1 —0.26 + 0.37

models, we interpret these regions as having the greatest agreement across models as to where NTA fluxes
influence the observed concentrations. Table 1 includes the boundaries of the optimized boxes and the Pearson
correlation coefficient between the posterior ACO, box average and the respective TransCom subregion monthly
net land fluxes.

2.5. Observation Uncertainty

We use CO, measurements made by three in-situ analyzers: the NOAA Picarro instrument, the Harvard quantum
cascade laser spectrometer (QCLS, Santoni et al., 2014), and the National Science Foundation National Center
for Atmospheric Research (NSF NCAR) airborne oxygen instrument (AO2, Stephens et al., 2021). We also use
CO, measured in flasks collected by the NSF NCAR/Scripps Medusa whole-air sampler (Stephens et al., 2021)
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Figure 3. Relative contributions from the northern tropical Africa region (first row) and the rest of world (second row) to the Atlantic Atmospheric Tomography
(ATom) observations, based on 14-day back-trajectories. Distribution of the U zonal wind speed (third row) and hydrogen cyanide (fourth row) over the Atlantic for all
four ATom campaigns. In these plots solid blue lines show the optimized boxes. Bins containing no flight data are white.
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Figure 4. Terra/Measurement of Pollution in the Troposphere V9J level 3 monthly average total column of carbon monoxide for months corresponding to the
Atmospheric Tomography (ATom) campaigns, and ATom flight tracks. The ATom observations in purple correspond to the optimize boxes.

and NOAA Programmable Flask Packages (PFP) (Sweeney et al., 2015). The ACO, values used in the emergent
constraint have been calculated using the NOAA Picarro data as it is most closely tied to the World Meteorological
Organization CO, scale, has the greatest data coverage, and is the record the models used for reporting matched
posterior concentrations. To assess uncertainty in these observations, we compare ACO, estimates among all five
in-situ measurement or sampling systems. More specifically, to allow for different periods of missing data for
each instrument owing to in-flight calibrations and the reduced coverage of the flask systems, we first calculate
sensor-sensor differences using the NOAA Picarro data as the common reference and then calculate box averages
of these differences. We then use the standard deviation of these four differences, also including zero for the
NOAA Picarro minus itself, as the observational uncertainty on box-averaged ACO, for each campaign (Table 1).

2.6. Emergent Constraints

We use weighted orthogonal distance regression (ODR) (Boggs & Rogers, 1990), a method which accounts for
errors in both the explanatory and response variables, to construct emergent constraints between ACO, (here
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Figure 5. Latitude and altitude distribution of ACO, observations made over the Atlantic basin for the four Atmospheric Tomography (ATom) deployments. ACO, is
defined by subtracting the observed or modeled National Oceanic and Atmospheric Administration Marine Boundary Layer Reference (Dlugokencky et al., 2019) at
corresponding latitudes and times from the ATom carbon dioxide observations or inverse models, respectively. The second and third rows show the IS and land nadir
and land glint experiment mean bias, respectively. The optimized NTA-influenced boxes are delineating by solid blue lines. Bins containing no flight data are white.
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Figure 6. Emergent constraints on northern tropical African carbon dioxide fluxes during Atmospheric Tomography. The relationships represent the sensitivity of
airborne posterior ACO, to NTA land fluxes (excluding fossil fuel emissions). Each point shows results for a single model within one of four experiments (colors).
Fluxes are averaged over the month of each campaign and the NTA TransCom subregion. The orthogonal distance regression fits are plotted as an orange line with a
brown shading indicating 1o prediction intervals. The vertical line in each panel represents the observed ACO,, averaged over the optimized boxes shown in Figure 5.
Shading around the observation lines represents 1o observation uncertainty (2). Note the different axis ranges between panels. The same figure with simulations colored
by inverse models can be found in the supplement (Figure S6 in Supporting Information S1).
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the explanatory variable) and NTA flux (here the response variable). Weighted ODR requires knowledge of the
variances of the errors associated with each variable. As scaling factor for the flux errors we use the empirical
standard deviation of the flux estimates, while for the ACO, errors we use the empirical standard deviation of the
ACO, values. The linear fit and its associated coefficient uncertainty depend only on the ratio of these scaling
factors, so we are implicitly assuming that the signal-to-noise ratio (defined as the variance of the data divided by
the variance of the associated errors) of the fluxes is the same as that of ACO,. In the absence of more information
about the sources of variation in the errors, this is a reasonable assumption.

Recent comparisons of different statistical methods for estimating emergent constraints found broadly consistent
results (Renoult et al., 2020; Simpson et al., 2021). The emergent constraints developed here are based on an
ensemble with overall good structural diversity, thanks to the assimilation of various kinds of observations and
using a range of transport models. The goal is to narrow the range of contemporary NTA flux estimates without
constraining any terrestrial ecosystem models directly. Also, there are no attempts to quantify a range of projected
responses from our ensemble, which can be a problem when assessing Earth system response to a forcing or the
strength of a feedback (Sanderson et al., 2021). However, it remains important to accurately quantify uncertain-
ties (e.g., K. W. Bowman et al., 2018; D. B. Williamson & Sansom, 2019).

‘We account for uncertainties in both ATom observations and the MIP results through the following. First, we draw
a sample of the regression line using the error covariance matrix of the estimated regression parameters, as well as
a sample from the ATom ACO, observation error distribution (as derived in the previous section). Second, we find
the corresponding flux estimate using this sampled regression line and the sampled ATom ACO, measurement.
Third, a sample from the flux error distribution assumed by the ODR method is added onto this flux estimate; this
is assumed to be a normal distribution with mean zero and variance equal to the empirical variance of the resid-
uals from the ODR fit. We repeat this process 5,000 times and then take the empirical standard deviation of the
flux samples as the 1o uncertainty of the ATom-EC flux. This method accounts for uncertainty associated with
the emergent constraint fit and the ATom CO, measurement uncertainty, but not for the uncertainty arising from
the choice of the altitude-latitude box; we discuss this form of uncertainty in Section 3.3.2 and in the Supporting
Information S1. The resulting four monthly ATom-EC values with their uncertainties are reported in Table 1.

2.7. Source Contributions and Ancillary Measurements

For qualitative assessment of sampled air origins, backward particle trajectories were computed using the Traj3D
model (K. P. Bowman, 1993; K. P. Bowman & Carrie, 2002). Model trajectories were initialized at receptors
spaced 1 min apart along the ATom flight tracks, and followed backwards for 30 days (Gonzalez et al., 2021;
Ray, 2022). From these trajectories, we calculated for each receptor point the surface influence functions over
land only. These footprints (Figure S5 in Supporting Information S1) are in units of concentration mole fraction
per emission flux or ppm/(umol m~2 s~!). We define the relative contribution of the NTA TransCom subregion
and the rest of the world (ROW) to the ATom tropical Atlantic measurements. The footprints, either for NTA or
ROW, are summed and divided by the global total footprints. We show the contributions for 14-day back trajec-
tories for each 5° latitude by 50 hPa pressure grid bin (Figure 3). The regions of strong NTA influence are large
for all ATom missions. While these back trajectories were not used in the determination of the boxes, there is a
good correspondence with a majority of the air in our optimized boxes strongly influenced by fluxes from the
NTA TransCom subregion (Figure 3, Figure S4 in Supporting Information S1).

Figure 3 shows two additional ATom measurements, the eastward (U) wind speed component and hydrogen
cyanide (HCN) concentration measured by the Chemical Ionization Mass Spectrometer (CIT-CIMS) instrument.
HCN is an excellent biomass burning tracer (Crounse et al., 2009; Q. Li et al., 2003).

Figure 3 also shows the optimized boxes. We also show on Figure 4 maps of the monthly mean CO total column from
the VOJ Measurement of Pollution in the Troposphere (MOPITT) product (Deeter et al., 2022). The biomass burning
plumes characterized by enhanced CO column and in-situ HCN can clearly be identified. These features correspond
to plumes from NTA on ATom-2 and ATom-4, and from southern tropical Africa on ATom-1 and ATom-3.

3. Results
3.1. NASA ATom Concentrations

The four ATom campaigns observed both elevated and depleted CO, over the tropical Atlantic relative to the
NOAA Marine Boundary Layer (MBL, Figure 2) Reference (Dlugokencky et al., 2019). These ACO, anomalies
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are defined by subtracting the NOAA MBL Reference at corresponding latitudes and times from the ATom CO,
observations (Figure 5). We qualitatively attribute these CO, variations to biomass burning or net ecosystem
exchange in tropical Africa guided by observed winds, modeled back-trajectories, satellite CO observations, and
coincident in situ measurements of biomass burning tracers (Figures 3 and 4).

The ATom-1 deployment occurred in August 2016. Typically at this time of year, the western African monsoon
brings rain over western Africa, inducing a convection-driven upward and westward atmospheric pattern, which
is strongest near the Inter-Tropical Convergence Zone (Rodriguez et al., 2015). As a result of the NTA grow-
ing season CO, uptake, ATom-1 observed negative ACO, throughout the troposphere north of 15°N and more
broadly in the upper troposphere (Figure 5). The mean values from the IS experiment tends to overestimate ACO,
in these negative CO, anomaly regions, suggesting an underestimated uptake.

ATom-2 occurred in February 2017 during the NTA dry season and sampled biomass burning plumes from the
region (Figures 3 and 5). During ATom-2, large positive ACO, values were found centered around the equator,
between 950 hPa and 500 hPa. The LNLG experiment mean strongly overestimates ACO, within and adjacent
to this observed positive anomaly, whereas the IS experiment mean slightly underestimates concentrations in the
plume.

ATom-3 occurred in October 2017 during the NTA wet-to-dry transition season. The negative ACO, values
during ATom-3, located north of the Equator, between 600 and 400 hPa in the mid-troposphere, appear to origi-
nate from eastern NTA (Figure S5 in Supporting Information S1). South of the Equator between 600 and 800 hPa
ATom-3 intercepted a biomass burning plume that originated from southern tropical Africa (Figure 3). The IS
mean experiment strongly underestimates ACO, in this biomass burning plume, but overestimates ACO, in the
negative anomaly regions. The LNLG experiment mean performs better for both positive and negative anomalies
during ATom-3.

ATom-4 measurements were made in May 2018 during the dry-to-wet transition season for NTA. Negative ACO,
values can be found over the optimized box between —5°N and 10°N and 450-650 hPa. It is located just above a
region of positive ACO, values that correlate with elevated HCN in the ATom data (Figure 3). This enhancement
in ACO, is slightly underestimated by both the IS and LNLG inversion means.

3.2. Emergent Constraints

Emergent constraints are powerful tools to reduce model spread and narrow uncertainty (e.g., K. W. Bowman
et al., 2018; Eyring et al., 2019; Simpson et al., 2021; M. S. Williamson et al., 2021). They offer a promising way
to further improve the quantification of carbon fluxes and the overall scientific understanding of the carbon cycle
(e.g., Barkhordarian et al., 2021; Cox, 2019; Keenan et al., 2023; Long et al., 2021; Stephens et al., 2007). Over-
all, our approach here is to take advantage of the large model spread to derive robust relationships between the
airborne observations and land fluxes. We utilize CO, gradients (ACO,) observed during ATom as a measurable
variable (predictor) to obtain a constrained estimate of net land fluxes from NTA. For each ATom deployment,
we use the v10 MIP ensemble to determine an altitude-latitude box boundary within the airborne transects that
best correlates with NTA fluxes (Figure 5). We also tried defining boxes centered on the observed biomass
burning plumes and on the basis of back-trajectories (Figure 3). The former only captured strong positive emis-
sions while ignoring uptake signals, and the latter showed worse correlations most likely owing to differences in
transport between the back trajectory model and the inversions. Thus we chose to optimize the boxes based on
empirical correlations, which to some extent can allow for differences among the transport models by expanding
the boxes. We calculated the Pearson correlation coefficient between model ACO, and NTA fluxes The opti-
mized Pearson correlation coefficients range from » = 0.65 for ATom-4 to r = 0.77 for ATom-2. We consider the
true relationship to be unknown and we expect scatter of the v10 MIP points about the true relationship because
of transport differences and other sources of errors between inversions. We also do not expect the correlations to
reach one because of variations in contributions to CO, within the boxes from regions other than NTA.

Figure 6 shows the relationships between the NTA land fluxes (excluding fossil fuel emissions) and ACO, aver-
aged over the respective ATom box (Table 1, Figure 5). We use these emergent relationships to estimate NTA
fluxes for all four ATom periods. The fit slopes in Figure 6 represent the sensitivity of concentrations to fluxes,
as defined by this v10 MIP collection of models. We plot the dependent concentration variable on the x-axis to
be consistent with the emergent constraint predictor convention. We estimate fluxes in the months corresponding
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Figure 7. Monthly mean northern tropical Africa net land carbon dioxide fluxes for the different Orbiting Carbon Observatory 2 Model Intercomparison Project
experiments compared to the observational estimates. Lines represent means across all models within each experiment. The Atmospheric Tomography emergent
constraint (ATom-EC) is plotted in black with each 1o prediction interval as an error bar. We also show the mean prior fluxes used in the inversions and biomass
burning fluxes from GFED4s (v4.1) (van der Werf et al., 2017), used as prior fire fluxes by three out of 12 inversion models.

to each campaign as the intersection of the observation and fit lines shown in Figure 6. We estimate the obser-
vation error by comparing the five different CO, observing systems aboard the DC-8, three in situ and two flask
samplers. We estimate 1o flux uncertainty by propagating the observation error onto the fit prediction interval
(see Section 2).

ATom-2 was characterized by a strong source as measured by a ACO, of around 2 ppm (Table 1). Yet, the LNLG
and LNLGIS experiments show a strong overestimation of this signal, with almost all inversions simulating a
ACO, higher than observations. The IS models exhibit the largest spread of all experiments, but generally show a
positive bias during ATom-1 and ATom-3 during the wet season and wet-to-dry season transition and a negative
bias during ATom-4 during the dry season. During ATom-3, the IS group overestimates ACO, with biases up to 2
ppm. Even though ATom-3 occurred at the end of the wet season, some inversions indicate a land source of CO,
for NTA at this time. There was no clear ranking for inversion performance between experiments as their skills
were not consistent across the four campaigns (Figure 6).

Although we present experiment means in Figure 7 for visual clarity, Figure 6 suggests that experiment means do
not necessarily reflect best estimates. It is also not clear that any particular models perform better or worse than
others across all four campaigns. Thus, we do not evaluate individual models, but do provide a version of Figure 6
colored by model in the supplement (Figure S6 in Supporting Information S1).

3.3. Northern Tropical African Land Fluxes
3.3.1. Monthly Time Series

Figure 7 shows the monthly average land fluxes averaged for each experiment, from 2016 to 2018, along with our
ATom-EC estimates for the four ATom missions. The ATom-1 emergent constraint suggests a strong wet-season
land sink that is more closely reproduced with the inversions that assimilate OCO-2 LNLG data. During ATom-2,
which occurred during the dry season, all the experiments indicate a larger source than was predicted by the prior
fluxes. The spread between experiments is also maximal for ATom-2, with the LNLG and LNLGIS mean overes-
timating the ATom-EC and IS and OG slightly underestimating. The LNLGOGIS mean is closest to our ATom-2
estimate as it combines the LNLG overestimation and the IS/OG underestimation, as shown on Figure 6b. The
IS flux mean underestimates the magnitude of the seasonal cycle as it is positively biased during ATom 1 and 3
and negatively biased during ATom 2 and 4. During the shoulder seasons, the spread among the four experiment
means is smaller and the OCO-2 LNLG based inversion mean is in agreement with the ATom-EC for ATom-3
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Figure 8. Northern tropical Africa three-year mean correction: True modeled three-year means (2016-2018) versus
estimates based on model flux estimates corresponding to the four Atmospheric Tomography campaigns. The fit represents
the correction of the ATom-based estimates to the true three-year means (2016—-2018) for temporal sampling biases. The
orthogonal distance regression fit is plotted as an orange line with shading indicating the 1o prediction interval. The vertical
line represents the ATom-derived preliminary 3-year mean flux estimate. Shading around the observation line represents the
1o ATom Emergent Constraint mean flux uncertainty.

in showing a much lower flux. Our results indicate that the assimilation of OCO-2 data improves the inversions
for ATom-1 and ATom-3.

These campaign differences are related to seasonal patterns evident in the multi-year monthly mean fluxes. On
average, the inversions that assimilate OCO-2 land data (LNLG, LNLGIS, LNLGOGIS) have a stronger source
during the dry season (Figure S7 in Supporting Information S1). The LNLG and LNLGIS fluxes are higher than
the other experiments from January to May. However, the LNLG and LNLGIS inversion fluxes are more negative
than the IS fluxes in the wet season, from August to October. As a result, all the experiments using OCO-2 land
data have a stronger seasonal cycle than the IS experiment. This is in line with a recent study that found a stronger
seasonal amplitude when comparing the OCO-2 LNLG inversions with the IS inversion over South Asia (Philip
et al., 2022). The OG experiment fluxes are close to those of the IS experiment, but in 2018 higher than IS during
the dry season. With no data constraints over NTA, the IS and OG inversions remain close to the prior estimates.
It is important to note that for OG the land flux is estimated by data over the ocean only and also that potential
biases in OG observations may impact the posterior fluxes (Crowell et al., 2019; Peiro et al., 2022).

3.3.2. 2016-2018 Mean Flux Estimates

We derive an initial multi-year annual mean NTA flux estimate by scaling the inversion average climatological
seasonal flux cycle to optimally fit the four ATom-EC flux estimates (2016-2018). We fit the four ATom esti-
mates to the average seasonal cycle derived from all the inversions. We input the 1o uncertainty described above
to account for uncertainties in each ATom. To account for the assumption of a specified seasonal cycle shape,
we repeat the fit using all the individual modeled seasonal cycles and add the standard deviation in quadrature
to the fit error.

The optimally scaled seasonal cycle represents a preliminary 3-year annual mean flux estimate subject to poten-
tial seasonal and interannual sampling biases owing to the flights occurring at only select times of year and in
select years. To correct for this, we use the inversion suite to estimate the difference between the annual mean
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Figure 9. (a) Annual mean net land carbon dioxide fluxes for northern tropical Africa averaged for each Model
Intercomparison Project experiment and from the airborne observational constraint. The Atmospheric Tomography emergent
constraint (ATom-EC) is plotted in cyan with a shaded 1o error estimate. We also show the mean of five inversions for 2015
and four inversions for 2016 from Palmer et al. (2019). (b) 2016-2018 means for each inverse simulation (dots), and the
resulting boxplot (25th percentile, median and 75th percentile) by experiment, and also showing priors.

estimated in this way from the four ATom-EC and the true 3 year mean from each inversion. This approach
relies on the inversions, as internally consistent representations of seasonally and interannually varying fluxes
and concentrations, to predict our temporal sampling biases in estimating 3-year mean fluxes. We first calculate
3-year mean fluxes for each inversion using a linear fit of the average seasonal cycle to the four monthly fluxes
corresponding to the ATom months. We then compare these to the true mean fluxes (2016-2018) from each
inversion. Because the inversions suggest both an offset and slope component to this correction (Figure 8), we
use a linear fit to estimate the correction and its uncertainty. We calculate the relationship between the true 3-year
annual means and the 4-ATom estimate using the same method as for the individual campaign estimates, an ODR
fit with input uncertainties scaled according to the respective standard deviations (Figure 8). We estimate a slope
of 0.84 PgC yr~! per PgC yr~! with an intercept of 0.3 PgC yr~!, and a correlation coefficient of 0.87. We calcu-
late the corrected ATom-EC 2016-2018 mean estimate and its 1o uncertainty by propagating the uncertainty
errors using the same three step Monte-Carlo approach described in the previous section, using as inputs each
ATom-EC and its 1o uncertainty for the observation.

We obtain a corrected 3-year annual mean flux estimate of 0.14 PgC yr~! with a 1o uncertainty of 0.39 PgC yr~!
(Figure 9). It is important to note that this estimate and its relatively small uncertainty come not just from the four
ATom transects spread over three years but rather a combination of these transects and estimates of the underlying
seasonal and interannual variations from the suite of 54 models.

We further evaluate the role of OCO-2 observations on this emergent constraint estimate. We redid the analysis
using the subset of 10 in-situ inversions and we obtain 0.08 + 0.33 PgC yr~! for the 2016-2018 annual mean net
2016-2018 land CO, fluxes for NTA. The similarity to our full estimate suggests that the 3-year annual mean
emergent constraint flux estimate is not driven by the OCO-2 observations.

Although for differing time periods, our estimate contrasts with the findings of Palmer et al. (2019) for 2015-2016,
based on the assimilation of land ACOS v7.1 retrievals of Greenhouse Gas Observing Satellite (GOSAT) and
0OCO-2, and of the v9 MIP LNLG experiment for 2015-2018 (Peiro et al., 2022) that are on average 1.6 and 1.25
PgC yr~!, respectively. For the v10 MIP, the mean NTA fluxes for the same 20162018 period are 1.03 + 0.38
PgC yr~! for the LNLG experiment.

The NTA fluxes for the v10 MIP IS and OG experiments are much weaker with 2016-2018 means of 0.31 and
0.42 PgC yr~!, respectively. All the v10 MIP experiments are consistent in showing an enhanced 2016 source,
likely due to the 2015-2016 El Nifio, and a ~0.5 PgC yr~! reduction of the source between 2016 and 2018
(Figure 9). The LNLGOGIS range (1.71 PgC yr~!) and that of IS (1.96 PgC yr~') are larger than other experi-
ments (Figure 9).
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To evaluate the impact of the choice of a single box to determine the emergent constraints, we repeated the entire
annual-mean calculation with alternate altitude-latitude boundaries for the boxes. We varied one box at a time
among the 12 highest correlated boxes for each ATom and calculated all different possibilities for 10* realiza-
tions. The resulting distribution of annual mean estimates is a normal distribution with a median and mean that
are both equal to the mean estimate using only our optimal four-box ATom-EC estimate. We add the standard
deviation of this distribution, 0.1 PgC yr~!, in quadrature with our uncertainty as an estimate of errors in the
choice of box boundaries, resulting in a final uncertainty of +0.39 PgC yr~!.

4. Discussion

Previous studies estimated a near neutral African CO, budget with photosynthesis being larger than the sum of
respiration, biomass burning and fossil fuel emissions combined (Ciais et al., 2009; Valentini et al., 2014). The
net biospheric carbon uptake is suggested to mainly occur in intact forests (Ciais et al., 2009; Lewis et al., 2009),
as estimated by vegetation models and forest inventory plots. The long-term inventory plots of the African Trop-
ical Rainforest Observatory Network, or AfriTRON, remained a live biomass carbon sink despite extreme envi-
ronmental conditions during the 2015-2016 El Nifio event (Bennett et al., 2021). This implies a strong uptake
in intact, old-growth, tropical forests in line with above-ground carbon storage estimates (Pan et al., 2011).
However, the 2015-2016 El Nifio (J. Liu et al., 2017) may have had long lasting impact with a slow recovery in
forest uptake. There may be other sources of CO, from unaccounted deforestation and degradation (Wigneron
et al., 2020).

Global CO, inverse models rely on prior fluxes provided for example, from model products, such as biosphere
models (Philip et al., 2019) and are subject to large-scale transport uncertainty, given their coarse horizontal
and vertical resolutions (e.g., Schuh et al., 2019). Knowing the importance of transport errors through diffu-
sive and convective vertical mixing in explaining the systematic differences between TM5 and GEOS-chem
(Schuh et al., 2019, 2022), we repeated our emergent constraint approach using only the subset of three TMS
(TM5-4DVAR, OU and CT) or the five GEOS-Chem (Ames, CMS-Flux, COLA, UT and WOMBAT) inver-
sions (Figure S6 in Supporting Information S1). A previous study on CO showed that we also expect the differ-
ences to be maximal in outflow pathways of large biomass burning sources (Ott et al., 2011). We found a 3-year
annual mean flux estimate of 0.27 + 0.36 (TM5) and 0.8 + 0.43 (GEOS-Chem) PgC yr~!. These uncertainty
estimates do not reflect the bias imposed by the choice of a single transport model. This reinforces the need for
emergent constraints using relationships derived by a diverse suite of models.

In addition, inversion algorithms are sensitive to the observations' spatial coverage and temporal frequency,
and with particular relevance for satellite CO, observations also to measurement biases (e.g., Basu et al., 2018;
Houweling et al., 2015). Inversion of SCTAMACHY (Kaminski et al., 2017), GOSAT and OCO-2 CO, retriev-
als over land suggest a source in the tropics, driven by NTA region emissions (Crowell et al., 2019; Houweling
et al., 2015; Palmer et al., 2019; Peiro et al., 2022). Mean estimates from previous GOSAT and OCO-2 studies
range between 1.25 and 1.6 PgC yr~!. The magnitude of these unexpected sources equates to approximately half
of the global net land carbon sink (Friedlingstein et al., 2022) and would require a major revision to our under-
standing of both the tropical and global carbon cycle. A large NTA source has not been seen in the most recent
IS inverse model synthesis studies (Crowell et al., 2019; Gaubert et al., 2019; Peiro et al., 2022). Overall the
larger CO, land source estimates are driven by satellite retrievals during the dry season (Figure 7), when there
is a high aerosol loading from biomass burning and dust which may increase biases (Figure S1 in Supporting
Information S1) in retrievals (O’Dell et al., 2018). The lack of ground-based observations over Africa makes it
challenging to verify these estimates. Thus, airborne measurements such as those from ATom are uniquely valu-
able in assessing the divergent inversion estimates. During ATom-2, the ATom-EC indicates a smaller source of
3.15 + 0.6 PgC yr~! (mean + 1o uncertainty), in February than the LNLG experiment with 4.6 + 0.74 PgC yr~!
(Table S1 in Supporting Information S1).

It is possible that remaining biases in version B10 OCO-2 measurements over NTA led to erroneous flux esti-
mates in inversions using these data. NTA during the dry season exhibits very high dust and smoke aerosol
loading (Figure S1d in Supporting Information S1), associated with Harmattan winds (Evan et al., 2006). The
OCO-2 retrievals undergo quality filtering based on multiple parameters, including aerosol optical depth (O’Dell
et al., 2018), and for NTA during the dry season typically less than 10% of retrievals pass this filter (Figure
S1b in Supporting Information S1). The OCO-2 retrievals also have a multi-parameter post-retrieval empirical
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bias correction applied (O’Dell et al., 2018), and this bias correction is largest over NTA, with adjustments of
approximately +2.7 ppm, or 0.6 ppm higher than the global average correction (Figure S1a in Supporting Infor-
mation S1). This large bias correction is tied primarily to two terms, one encompassing dust, water, and sea-salt
aerosol loading and a second related to the difference between retrieved surface pressure and that from meteoro-
logical reanalyses, which itself may result from aerosols (Kiel et al., 2019).

The positive dry season OCO-2 bias correction over NTA would have to be overestimated if it were to explain
the sign of the LNLG inversion versus ATom-EC differences we see. How large of an overestimate might be
required to explain our result? Given the many interacting constraints in global CO, inversions, and uncertain
atmospheric transport, it is difficult to quantitatively estimate the magnitude of biases necessary. For example,
the LNLG mean concentration bias in the ATom-2 optimized box is 0.88 ppm. However, we expect flux signals
to be more concentrated in these optimized boxes than in full column XCO, measurements because they only
represent partial columns, but also less concentrated because of lateral and vertical mixing between NTA and the
mid-Atlantic. Previous synthetic inversion work has demonstrated a high sensitivity of continental scale inverse
flux estimates to small biases in satellite XCO, measurements, on the order of 1 PgC yr~! per ppm (Chevallier
et al., 2007). We find a correlation between the dry season XCO, over NTA in posterior concentration fields and
NTA fluxes from the inversions with a slope of 4.16 PgC yr~! per ppm or 1.39 PgC/ppm for 4 months (DJFM)
(Figure S2 in Supporting Information S1). This implies that the disagreement we find between the 1.03 PgC yr~!
LNLG inversion experiment mean and our ATom-EC estimate of 0.14 PgC yr~! might potentially be explained by
a 4+0.64 ppm bias concentrated in Dec-Mar or just a +0.21 ppm bias if it persists throughout the year.

Despite the apparent overestimated source in the LNLG experiment, our ATom-EC estimate for ATom-2 still
shows a stronger NTA source than in previous and v10 MIP IS inversions. Biomass burning emissions could play
a role in the enhanced source, but need improved observational constraints. Recent studies have found that the
dry matter burned estimates and the number of active fire detections over Africa could be underestimated by the
500-m resolution MODerate resolution Imaging Spectroradiometer instrument (Ichoku et al., 2016; Nguyen &
Wooster, 2020; Roteta et al., 2019). The detection and inclusion of smaller fires detected by the higher-resolution
20-m Sentinel-2 multispectral instrument suggests an increase in burned area and net higher emissions as well as
a longer fire season (Ramo et al., 2021; Roteta et al., 2019). Overall, other reasons related to small-scale heter-
ogeneity can explain discrepancies in the modeling of small fire emissions (van Wees & van der Werf, 2019).

S. Summary

We evaluated inverse model calculations of northern tropical African CO, fluxes with aircraft measurements over
the Atlantic Ocean. This collection of models shows a large inter-model spread in mean land flux magnitudes and
temporal variability in sub-Saharan Africa. The posterior fluxes for NTA averaged over the 2016-2018 period
span from —0.2 PgC yr~! to more than 1.8 PgC yr~". For posterior CO, concentrations averaged over optimized
ATom boxes, that is, subregions of the ATom flight transect, the range is around 3 ppm, with a standard devi-
ation between 0.74 and 1 ppm for different campaigns. During the dry season, our ATom emergent constraint
indicates that NTA land fluxes are overestimated by the LNLG experiment and underestimated by the IS and OG
experiments. Inversion errors could be due to the lack of assimilated in-situ observations in the region, atmos-
pheric transport uncertainties, in particular arising from convection, and the difficulty of achieving accurate and
frequent satellite retrievals due to cloud obstruction during the wet season and aerosols during the dry season.
The comparison by models, that is, TM5 or GEOS-Chem, supports the important role of transport biases in the
spread of inversions results, which underscores the importance of the Model Intercomparison Project to assess
flux estimates. Based on the seasonal timing of the LNLG flux differences, we speculate that the high dust and
smoke aerosol loading during the dry season may lead to an overestimated bias correction in the v10 OCO-2 data
over NTA. Our results point to the need to better characterize the distribution and impact of biomass burning and
dust aerosols to further refine the OCO-2 retrieval or bias correction procedures.

Overall, we found an enhanced seasonal cycle relative to IS inversions, with a larger source during the dry
season and a stronger sink during the wet season (Figure S7 in Supporting Information S1). Outside of the dry
season, the OCO-2 based inversions agree reasonably well with the airborne estimates (Table S1 in Supporting
Information S1). The OCO-2 inversions and the ATom-1 and ATom-3 emergent constraints imply a stronger
sink during the NTA wet season. Our revised budget for NTA during 2016-2018 is an annual source of
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0.14 + 0.39 PgC yr~'. This is much smaller than the v10 MIP LNLG mean of 1.03 + 0.38 PgC yr~! (Table S1 in
Supporting Information S1).

Past studies and this study suggest the sensitivity of continental scale fluxes to biases in XCO, in inversions is
high, implying the magnitude of remaining biases in OCO-2 data over NTA may be relatively small and challeng-
ing to address. Furthermore, given the large spread in total emissions and seasonality of fire emission estimates,
the sensitivity of posterior CO, to the choice of prior fire flux should be assessed in future studies. Additional
constraints on fire fluxes could be obtained by the assimilation of satellite observations of chemical species
related to combustion such as CO (Gaubert et al., 2020; Zheng et al., 2018) and nitrogen dioxide and improved
burned area estimates (Zheng et al., 2021). For the individual months of the ATom campaigns, we obtain an
uncertainty reduction in NTA CO, fluxes of a factor of two compared to the full v10 MIP ensemble, highlighting
the potential benefit of future airborne observations over and downwind of Africa and other continents. A regular
ongoing program of global-scale airborne surveys would greatly improve our ability to resolve the global carbon
cycle and validate satellite emission estimates.

Data Availability Statement

The ATom data (Wofsy et al., 2021) is available as 10-s, NOAA PFP, and Medusa merge products. The OCO-2
v10 MIP model results are publicly available (Baker et al., 2023). The NOAA Greenhouse Gas Marine Boundary
Layer Reference (Dlugokencky et al., 2019) is publicly available, last accessed 17 August 2023).
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