
Abstract We investigate the benefit of assimilating high spatial-temporal resolution nitrogen dioxide 
(NO2) measurements from a geostationary (GEO) instrument such as Tropospheric Emissions: Monitoring 
of Pollution (TEMPO) versus a low-earth orbit (LEO) platform like TROPOspheric Monitoring Instrument 
(TROPOMI) on the inverse modeling of nitrogen oxides (NOx) emissions. We generated synthetic TEMPO 
and TROPOMI NO2 measurements based on emissions from the COVID-19 lockdown period. Starting with 
emissions levels prior to the lockdown, we use the Weather Research and Forecasting Model coupled with 
Chemistry/Data Assimilation Research Testbed (WRF-Chem/DART) to assimilate these pseudo-observations in 
Observing System Simulation Experiments to adjust NOx emissions and quantify how well the assimilation of 
TEMPO versus TROPOMI measurements recovers the lockdown-induced emissions changes. We find that NOx 
emission biases can be ameliorated using half as many simulation days when assimilating GEO observations, 
and the estimated NOx emissions in 23 out of 29 major urban regions in the US are more accurate. The root 
mean square error and coefficient of determination of posterior NOx emissions are reduced by 12.5%–41.5% 
and 1.5%–17.1%, respectively, across different regions. We conduct sensitivity experiments that use different 
data assimilation (DA) configurations to assimilate synthetic GEO observations. Results demonstrate that the 
temporal width of the DA window introduces −10% to −20% biases in the emissions inversion and constraining 
both NOx concentrations and emissions simultaneously yields the most accurate NOx emissions estimates. Our 
work serves as a valuable reference on how to appropriately assimilate GEO observations for constraining NOx 
emissions in future studies.

Plain Language Summary Nitrogen oxides (NOx) are major air pollutants and precursors to 
tropospheric ozone and secondary inorganic aerosols. The diverse natural and anthropogenic sources of NOx 
pose a challenge for NOx emissions estimates. Inverse modeling techniques which use observations to infer 
emissions can be applied to improve our understanding of anthropogenic NOx emissions. This study aims 
to compare the ability of the new geostationary (GEO) instrument Tropospheric Emissions: Monitoring 
of Pollution (TEMPO) and the existing low-earth orbit instrument TROPOspheric Monitoring Instrument 
(TROPOMI) to constrain NOx emissions. Synthetic TEMPO and TROPOMI NO2 measurements are generated 
and assimilated to constrain NOx emissions in an idealized experiment in which the “true” emissions are 
known. The results show the true NOx emissions can be retrieved using half as many simulation days when 
assimilating GEO NO2 observations. Moreover, the experiment that assimilates GEO NO2 observations 
improves the accuracy of estimated NOx emissions by 12.5%–41.5% and 1.5%–17.1% in terms of root mean 
square error and coefficient of determination, respectively, across different air quality regions. The NOx 
emissions in most urban regions are better constrained when assimilating GEO NO2 data. We also propose best 
practices for assimilating GEO NO2 observations, which can serve as reference for future research.
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Key Points:
•  True NOx emissions can be recovered 
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Tropospheric Emissions: Monitoring 
of Pollution (TEMPO) observations 
rather than TROPOspheric 
Monitoring Instrument

•  Assimilating synthetic TEMPO 
observations improve emissions 
inversion accuracy by 13%–42% 
across different regions of US

•  The best estimates of NOx emissions 
are achieved by using short data 
assimilation window (e.g., 30 min) 
and updating concentrations/emissions 
jointly
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1. Introduction
Nitrogen oxides (NOx = NO + NO2) are important air pollutants, and they contribute to the formation of trop-
ospheric ozone (O3) and aerosols (Seinfeld & Pandis, 2012) which degrade air quality and lead to premature 
mortality (Jerrett et  al., 2009; Pope et  al., 2009). Current estimates of O3 and fine particulate matter (PM2.5) 
health impacts in the US are 20,000 and 45,000 premature deaths per year, respectively (Dedoussi et al., 2020). 
To formulate effective policies for reducing this problem, it is critical to identify the main sources of NOx contrib-
uting to air pollution and to evaluate trends in NOx emissions stemming from existing emission mitigation poli-
cies. Sources of NOx in the contiguous United States (CONUS) consist mainly of fossil-fuel combustion such 
as mobile source engines, energy generation, and industrial processes (EPA,  2020). Other activities such as 
wildfires (Wiedinmyer et al., 2011), lightning (Nault et al., 2017), and microbes in soil (Vinken et al., 2014) are 
also important emitters of NOx in specific seasons and regions. The diverse and dynamically evolving natural 
and anthropogenic sources of NOx pose a challenge for emissions estimation. Given the large uncertainty and 
variability of NOx emissions, keeping up with current NOx emissions is critical for reliable air quality forecasting 
(Campbell et al., 2021).

Traditionally, a “bottom-up” approach is used to develop NOx emission inventories across different sectors, such 
as the US Environmental Protection Agency's National Emissions Inventory (NEI) (EPA, 2020). This approach 
builds emissions inventories by multiplying detailed sectoral-based activity data and corresponding emissions 
factors, which has the advantage of offering better insight into sector-specific emissions. Bottom-up emissions 
inventories can be used to identify the major sources of emissions, aid in the development of mitigation strate-
gies, and track progress toward emissions reduction goals. However, the development of bottom-up inventories 
is laborious and time-consuming, which usually means that bottom-up emission inventories lag several years 
from present day. Uncertainties in emissions factors and activity statistics could also result in poor representation 
of emissions in terms of their spatial-temporal variation and magnitude (Fujita et al., 2012; Gately et al., 2015; 
McDonald, McKeen, et al., 2018). Several modeling studies have reported large uncertainty associated with NOx 
emissions in the NEI when evaluating the model simulated NOx against in situ, aircraft, and remote-sensing 
measurements in the U.S. Anderson et al. (2014) found the mobile NOx emissions in NEI-2011 over the Balti-
more/Washington region were overestimated by 51%–70%. Kim et al. (2011) found that industrial and ship NOx 
emissions in the NEI-2005 over the Houston Ship Channel could potentially be biased high by 70%. McDonald, 
McKeen, et al. (2018) compared the NOx emissions from the Fuel-based Inventory of motor-Vehicle emissions 
(FIVE) against NEI and found that mobile source NOx emissions in the NEI-2014 were likely biased high by 
∼28% in the southeast U.S., but Li et al. (2021) in a more recent analysis of FIVE versus NEI-2017 found them 
to be similar.

Alternatively, the “top-down” approach, which estimates NOx emissions by combining chemical transport model 
(CTM) simulations with observations through inverse modeling techniques or directly infers NOx emissions from 
the remote sensing observation (e.g., Beirle et al., 2011), can improve our understanding of NOx sources and 
chemistry in a more timely manner. Nevertheless, discrepancies in the CTM and biases in the observations could 
introduce uncertainties in the top-down emissions, which require further assessment to ensure their reliability 
(Elguindi et al., 2020). Satellite nitrogen dioxide (NO2) retrievals are well suited for NOx emissions inversion 
given their wide geographic coverage and have been extensively used in constraining NOx emissions from local 
to global scales (e.g., Dix et al., 2022; Duncan et al., 2013; Martin et al., 2003; Müller & Stavrakou, 2005; Qu 
et al., 2017). Two advanced data assimilation (DA) methods are typically utilized to conduct top-down emissions 
estimates:

1.  The four-dimensional variational assimilation (4D-VAR) optimizes the emissions by minimizing the cost 
function using the adjoint model (e.g., Cao et al., 2022; Choi et al., 2022; Elbern et al., 2007; Qu et al., 2019; 
Stavrakou et al., 2013).

2.  The ensemble Kalman filter (EnKF) approach utilizes the flow-dependent error covariance generated by the 
ensemble of model simulations to relate the observation information to emissions (e.g., Barbu et al., 2009; 
Huang et al., 2022; Ma et al., 2019; Miyazaki et al., 2012, 2017; Peng et al., 2018; Zhang, Li, Wang, et al., 2021; 
Zhang, Li, Wei, et al., 2021).

Recent studies of NOx emissions top-down estimates mainly use data from low-earth orbit (LEO) instruments 
such as the Ozone Monitoring Instrument (OMI) (Lamsal et  al.,  2021) and the TROPOspheric Monitoring 
Instrument (TROPOMI) (van Geffen et al., 2020). However, the low temporal resolution of LEO measurements 
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may restrict the ability of emissions inversion to identify key features of emissions sources, such as diurnal vari-
ability. The recent and upcoming launches of several geostationary (GEO) satellite instruments, consisting of the 
Geostationary Environment Monitoring Spectrometer (GEMS) (Kim et al., 2020) over Asia (launched Febru-
ary 2020), the Tropospheric Emissions: Monitoring of Pollution (TEMPO) (Zoogman et al., 2017) over North 
America (launched April 2023), and Sentinel-4 over Europe (anticipated launch in late 2024), are expected to 
be utilized more in top-down emissions inversion as they provide unprecedented high spatiotemporal resolution 
NO2 measurements during the daytime. These spatially and temporally dense observations can resolve fine-scale 
emission patterns, such as major point sources, the difference between the urban core and surrounding suburban 
regions, and the tracking of emissions from miscellaneous activities (e.g., lightning NOx, biomass burning).

An Observing System Simulation Experiment (OSSE) (Lahoz et al., 2010) is a modeling experiment designed to 
assess the potential impact of new observing systems (e.g., GEO instruments) on operational forecast when actual 
observational data is unavailable. The synthetic observations are created and assimilated in an OSSE to quantify 
the improvements due to the new observing network. For example, Zoogman et al. (2014) conducted an OSSE 
and demonstrated that assimilation of future TEMPO O3 observations can greatly improve O3 simulations in the 
Intermountain West of US by capturing 82% of the high-ozone days. Similarly, Shu et al. (2022) reported that 
assimilating O3 measurement from GEMS reduced the root-mean-square-errors (RMSE) of simulated surface 
O3 concentration by 7.2%–19.2% over urban regions in East Asia. The modeled O3 vertical profiles were also 
improved in the middle to upper troposphere.

Nevertheless, most published OSSE studies have only focused on evaluating the benefits of updating trace-gas 
concentrations using GEO data (e.g., Barré et al., 2016; Quesada-Ruiz et al., 2020; Shu et al., 2022; Timmermans 
et  al.,  2019; Zoogman et  al.,  2014), while the influence of the assimilation GEO measurement on top-down 
emissions estimates has not been fully investigated. Liu et al. (2017) examined the ability of TEMPO NO2 meas-
urements to constrain NOx emissions. The results demonstrated that the emissions inversion perform better when 
the error in the forecast wind field is less than 1.5 m s −1. However, Liu et al. (2017) only studied the Denver 
metropolitan region, and they did not explore the improvement of assimilating GEO measurements on emissions 
inversion compared to the currently existing LEO platforms. As a result, here we propose an OSSE to investigate 
the potential benefit of assimilating TEMPO NO2 observations in constraining anthropogenic NOx emissions 
versus TROPOMI data over the CONUS. This also helps inform the design of atmospheric composition instru-
ments for follow-on geostationary satellite missions, such as the Geostationary Extended Observations (GeoXO) 
planned over North America in the 2030s–2050s. In this work, we use WRF-Chem/Data Assimilation Research 
Testbed (DART) (Mizzi et al., 2016, 2018), a state-of-the-art regional ensemble chemical weather forecast/DA 
system, to assimilate synthetic TEMPO/TROPOMI NO2 observations and optimize NOx emissions in our OSSE. 
Our first objective is to assess how GEO NO2 measurements improve NOx emissions inversion compared to LEO 
NO2 measurements by conducting an OSSE during the COVID-19 lockdown period when the traffic/economic 
activities and their associated anthropogenic emissions are substantially decreased (Forster et al., 2020; Gkatzelis 
et al., 2021). We take advantage of this unprecedented reduction in emissions as an ideal and realistic scenario to 
investigate if a top-down emissions estimate approach can properly constrain NOx emissions perturbations caused 
by the COVID-19 pandemic lockdown. Second, we investigate the optimal approaches for assimilating GEO NO2 
observations by assessing the performance of NOx emissions inversion from various DA configurations in terms 
of DA window, data filtering, and which parameters to optimize.

2. Data and Methods
Figure 1 depicts our OSSE framework, which consists of four stages. We choose the first week of April 2020 as 
the study period because the COVID-19 lockdown rapidly changed anthropogenic emissions. We first conduct 
a nature run (NR) using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 
(Grell et al., 2005) to represent the “true” atmosphere. The NR is driven by “true” anthropogenic emissions that 
consider the societal disruption of the COVID-19 pandemic on anthropogenic emissions. Next, the synthetic 
GEO (TEMPO) and LEO (TROPOMI) NO2 observations are sampled from the NR according to their observing 
strategies (described in Section 2.2). We chose TROPOMI as the representative of the LEO instrument because it 
is a newer instrument that provides high-quality observations and is well-known in the research community. The 
spatial resolution of TEMPO and TROPOMI is similar, which also makes them suitable for comparison. Finally, 
the experimental runs (ERs) are initialized from a forward run (FR), which is a parallel WRF-Chem simulation 
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driven by business-as-usual (BAU) emissions (a priori emissions) that is not affected by the COVID-19 perturba-
tions. The synthetic TEMPO and TROPOMI measurements are then assimilated by WRF-Chem/DART to update 
the BAU NOx emissions. By comparing the posterior NOx emissions from the ERs (e.g., assimilating TEMPO or 
TROPOMI data) with the true emissions, we evaluate the benefit of assimilating TEMPO data and propose best 
practices for NOx emissions top-down estimates using GEO observations.

2.1. WRF-Chem Configurations

For both the NR and FR we use WRF-Chem version 4.2.2. The horizontal spatial resolution is 12 × 12 km 2 
over the CONUS (Figure S1 in Supporting Information S1), with 50 vertical layers spanning from the surface 
to 50 hectopascal (hPa). The gas-phase and aerosol chemistry are based on the RACM_ESRL_VCP (Coggon 
et  al., 2021) and MADE/VBS (Ahmadov et  al., 2012) schemes. The meteorological and chemical initial and 
boundary condition (BCs) are derived from the NCEP North American Mesoscale analysis (https://rda.ucar.
edu/datasets/ds609.0/) and Realtime Air Quality Modeling System (RAQMS, http://raqms-ops.ssec.wisc.edu/) 
(Pierce et al., 2003), respectively. More details regarding the model configuration are provided in Table S1 in 
Supporting Information S1. The simulation period spans 30 March to 06 April 2020, with the first 2 days reserved 
for model spin-up.

The anthropogenic emissions used in this study are a hybrid of several bottom-up inventories, which are summa-
rized in Table 1. The NR is driven by emissions from the COVID-19 lockdown period (COVID-19 emissions), 
while the FR utilizes the same model configuration as the NR, but it is driven by BAU emissions. The FR repre-
sents a priori trace-gas concentrations without the disturbance of the pandemic, which also provides the initial 
conditions (ICs) for the WRF-Chem/DART ERs (Section 2.4). The BAU and COVID-19 anthropogenic emis-
sions were grouped by emission sector and, where applicable, adjusted from base year inventories using monthly 
scaling factors developed from applicable energy and economic data sets for March and April in 2019 and 2020, 
respectively. The emissions outside of CONUS were assumed to be the same between BAU and COVID-19 

Sources Emissions inventory

Mobile Fuel-based Inventory of motor-Vehicle Emissions (FIVE) (McDonald et al., 2014; 
McDonald, McKeen, et al., 2018)

Power plant Continuous Emissions Monitoring System (CEMS)

Other point and area sources NEI 2017 (EPA, 2020)

Oil and Gas Fuel-based Oil and Gas (FOG) inventory (Francoeur et al., 2021)

Canada/Mexico Copernicus Atmospheric Monitoring Service (CAMS) version 4.2 (Doumbia et al., 2021)

Other Volatile Chemical Products (VCPs) (McDonald, de Gouw, et al., 2018)

Biogenic a Biogenic Emissions Inventory System (BEISv3.14)

Fire b N/A

 aIsoprene emissions are reduced by a factor of two following Li et al. (2021) to reduce the biases in the simulated formaldehyde concentration.  bWe did not include 
wildfire emissions in this study because wildfires were relatively inactive between March and April 2020 over the CONUS.

Table 1 
Emissions Inventories for Each Sector

Figure 1. Flowchart of the Observing System Simulation Experiment (OSSE) for assimilation of synthetic TEMPO and 
TROPOMI NO2 slant column density observations.

https://rda.ucar.edu/datasets/ds609.0/
https://rda.ucar.edu/datasets/ds609.0/
http://raqms-ops.ssec.wisc.edu/
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scenarios. The COVID-19 perturbations reduce the overall US NOx, carbon monoxide (CO), volatile organic 
compounds (VOCs), and sulfur dioxide (SO2) emissions by 23%, 30%, 20%, and 25%, respectively, compared to 
BAU emissions. The decreases in NOx, and CO emissions are mainly from mobile sources (Harkins et al., 2021). 
The drop of VOCs emissions is driven by changes in the oil and gas sector and the volatile chemical products in 
the urban areas, while industrial and power plant sources dominate the changes in the SO2 emissions. The reduc-
tion for other emissions such as ammonia (NH3) and fine particles (PM2.5) are relatively small (within 2%). A list 
of data sources used to generate the COVID-19 and BAU emissions input for WRF-Chem can be found at https://
csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/.

The spatial and temporal variations of COVID-19 and BAU NOx emissions are shown in Figure 2. COVID-19 
NOx emissions are lower than the BAU over the CONUS, with the greatest drop occurring in metropolitan areas, 
where traffic and economic activities were greatly impacted by pandemic lockdowns (Figure 2b), and the two 
inventories are statistically distinct at the 95% confidence level (see Text S1 in Supporting Information S1). The 

Figure 2. (a) Spatial distribution of the 6-day averaged (01–06 April) COVID-19 NOx emissions. The black boxes highlight 
29 major urban areas in CONUS, (b) difference between BAU and COVID-19 NOx emissions, and (c) time series [GMT] of 
domain averaged BAU and COVID-19 NOx emissions and their relative ratio (i.e., BAU/COVID-19).

https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/
https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/
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diurnal and daily variation of domain-averaged BAU and COVID-19 NOx emissions are followed similar diurnal 
patterns (Figure 2c), with COVID-19 emissions being 20% lower than BAU. These two inventories also show the 
weekend-weekday variation in NOx emissions, with emissions lower on weekends (04–05 April) than on weekdays.

A robust OSSE demands the NR to properly represent the real atmospheric trace gas concentrations and to differ 
sufficiently from the FR. Figure 3 shows the spatial-temporal variation of NR and FR simulated surface NO2 
concentrations against surface observations from US EPA Air Quality System (AQS) data. The NR can reason-
ably capture the daily variation of surface NO2 (Figure 3a), whereas the FR has persistent positive biases when 
compared to the NR and AQS observations. In terms of the diurnal cycle of NO2, the NR shows overall consist-
ency between simulated surface NO2 and hourly observations (Figure 3b), with a RMSE of 1.92 ppb and a mean 
absolute error (MAE) of 33.23%. On the contrary, FR displays larger error statistics when driven by BAU emis-
sions, and the substantial difference between the NR and FR (RMSE = 1.84 and MAE = 31.24%) can be seen. 
The NR also accurately reflects the spatial distribution of surface NO2 over the CONUS, with a spatial correlation 
coefficient of 0.71 (Figure 3c). The NO2 hotspots in urban areas and the NO2 gradient between the eastern US and 
the remote mountainous regions in the western US are well captured by NR. As a result, we believe our NR is a 
reliable proxy for the real-world NO2 concentration for generating the synthetic satellite NO2 measurements. The 
positive bias in the FR is driven by the errors in the input emissions, which can be constrained by DA.

2.2. Synthetic TEMPO and TROPOMI NO2 Observations

The TEMPO and TROPOMI instruments are both solar-backscatter spectrometers that measure total column 
amounts of trace gases such as NO2, formaldehyde (HCHO), sulfur dioxide (SO2), and O3 in the ultraviolet-visible 
spectral ranges (Veefkind et al., 2012; Zoogman et al., 2017). TROPOMI was launched onboard the Copernicus 

Figure 3. (a) Averaged time series of NR (FR) simulated surface NO2 and Air Quality System (AQS) NO2, (b) Diurnal variation of NR (FR) and AQS NO2, the 
root-mean-square-errors, mean absolute error, and R 2 are also listed, (c) Six-day averaged spatial map of NR simulated NO2 overlay with AQS NO2 data. N represents 
the total AQS monitoring sites.
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Sentinel 5 Precursor (S5p) satellite on 13 October 2017. The satellite is in a sun-synchronous, LEO (817 km) with 
a daily equator overpass time of approximately 13:30 local solar time, allowing for one (up to two) NO2 column 
measurements at a specific location on the same day. The pixel sizes at the nadir are 3.5 × 7 km 2 (3.5 × 5.6 km 2 
since 6 August 2019), with near-global coverage in 1 day. TEMPO launched in April 2023. It is hosted by an 
Intelsat 40e communications satellite and is in geostationary orbit (35,786 km) at 91.0° W longitude with a Field 
of Regard (FoR) covering North America. It will collect hourly NO2 column measurements during the daytime 
(e.g., 8–17 local solar time) with a native resolution of 2 × 4.5 km 2 at the center of its FoR.

We generate and assimilate synthetic TEMPO and TROPOMI tropospheric NO2 slant column density (SCD) 
retrievals to evaluate which data set can better constrain NOx emissions. A synthetic tropospheric NO2 SCD (Ω) 
is calculated as:

Ω =

∑

𝑘𝑘

SW𝑘𝑘𝑋𝑋𝑋𝑋𝑘𝑘 + 𝜀𝜀 (1)

where Ω (molec cm −2) is the vertical integration of the product of the NO2 number concentrations (Xtk) from the 
NR and the scattering weights (SWk) at layer k which runs from the surface to the tropopause, and ε (molec cm −2) 
is a random Gaussian error. The calculation of SWk is described in the next section.

2.2.1. Scattering Weight Calculation

The SW at a given altitude describes the sensitivity of the retrieved NO2 to the abundance of the absorber (e.g., NO2 
concentration) at that altitude (Lamsal et al., 2021). For a given observation location, the SW vector is derived based 
on a Look-Up-Table (LUT). The SW LUT is constructed using version 2.8 of the Vector LInearized Discrete Ordinate 
Radiative Transfer (VLIDORT) model (Spurr, 2006) assuming a Rayleigh atmosphere. The LUT provides informa-
tion on SWs as a function of altitude (expressed as atmospheric pressure), solar zenith angle (SZA), viewing zenith 
angle (VZA), relative azimuth angle (RAA), surface albedo, surface (cloud) pressure, and total ozone column. Aero-
sols are not considered despite being a significant source of uncertainty (Jung et al., 2019; Lorente et al., 2017). There 
are two reasons for that: (a) it is not easy to obtain aerosol information at the pixel level and (b) it will increase the 
size of the LUT quite significantly. The 22 ozone profiles employed in the VLIDORT simulations were derived using 
OMI ozone profile retrievals (PROFOZ) (Liu et al., 2010). They provide climatological values for three latitudinal 
bands for different total columns at tropical, midlatitude, and polar regions. The selection of the LUT nodes is based 
on minimizing the interpolation errors. Here, we use the same LUT to compute SWs for TEMPO and TROPOMI 
observations given that we could not get the operational LUTs for the real TROPOMI data, and we assume clear-sky 
conditions for the SW calculation. The average synthetic TROPOMI NO2 SW vertical profiles resembled the actual 
profiles (not shown). Therefore, we expect the impact of using the same LUTs to be relatively minor.

We collect input data for the SW computation from several sources. Surface pressure is provided by the NR. The 
total ozone column is calculated by combining the outputs of the NR and RAQMS, with RAQMS supplying the 
ozone concentration above the top of the WRF-Chem model (50 hPa). Hourly surface albedo is derived from 
the geometry-dependent surface Lambertian-equivalent reflectivity product (Qin et al., 2019) calculated at the 
440 nm wavelength. The pixel location and SW pressure levels of TEMPO are obtained from the TEMPO NO2 
proxy data set (Naeger et al., 2021). The derivation of TEMPO proxy data can be found in Text S2 in Support-
ing Information S1. The satellite viewing geometry parameters (e.g., SZA, VZA, and RAA) for TEMPO are 
computed hourly following Liu et al. (2017) using MATLAB with inputs of the location, terrain height, and local 
time of each TEMPO pixel, as well as the TEMPO sensor's location (0°N, 91°W, and 35,786 km). The TROPOMI 
pixel location, SW pressure levels, SZA, VZA, and RAA are derived from TROPOMI NO2 level 2 swath data 
in April 2020. Figure S2 in Supporting Information S1 depicts the hourly averaged SW vertical profile from 
the surface to the top of the atmosphere. The TEMPO and TROPOMI SWs have 47 and 34 total vertical layers, 
respectively. The vertical profiles of TEMPO SW show significant diurnal variation, with greater sensitivity 
to the near-surface atmosphere during midday hours (between 16 and 21 UTC) and increased sensitivity to the 
middle and upper atmosphere during sunrise and sunset hours. In contrast, TROPOMI SW profiles show very 
little diurnal variability due to the instrument's similar local overpass time (at around 13:30 local solar time).

2.2.2. Observation Error Estimation and Perturbed Observations

We begin by calculating the “perfect tropospheric NO2 SCD (Ωtr)” by solving for the first term on the right-hand 
side of Equation 1 for TEMPO and TROPOMI. A random Gaussian error (ε) is then added to the “perfect obser-
vation” to create a “perturbed observation”—the synthetic tropospheric NO2 SCD (Ω) which will be assimilated 
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in the ERs. The error (ε) is computed by taking a random sample from a Gaussian distribution that describes the 
instrument's error characteristics which is defined as:

𝜀𝜀 = 𝑁𝑁(0, 𝜎𝜎𝑜𝑜). (2)

𝐴𝐴 𝐴𝐴𝑜𝑜 is the retrieval/observation error, and its characteristics are associated with 𝐴𝐴 Ω via the following relationship:

𝜎𝜎𝑜𝑜 = 𝛾𝛾Ω (3)

where γ represents relative mean uncertainty which is the ratio of σo to its corresponding observation value (Ω). 
The magnitude of γ for NO2 column measurements can differ between polluted and clean regions in the actual 
observations. For example, the polluted pixels generally have lower γ values (Boersma et al., 2004). Therefore, 
Liu et al. (2017) estimated the synthetic TEMPO NO2 observation error by assuming two distributions of γ values 
for polluted and clean pixels, respectively. However, the relationship between the γ value and the NO2 actual SCD 
varies in a complex manner and may depend on other parameters such as SZA and VZA. Figure S3 in Supporting 
Information S1 shows γ as a function of NO2 SCD, SZA, and VZA for TEMPO proxy data and actual TROPOMI 
data. In general, γ displays a non-linear and inversely proportional response to the NO2 SCD, with low (high) 
γ values associated with polluted (clean) pixels for both sensors (Figures S3a and S3d in Supporting Informa-
tion S1). The γ value also exhibits a linear relationship with SZA and VZA for TEMPO, while there is no clear 
relationship in the TROPOMI data.

To better reproduce the instrument's error characteristics and estimate the observation error (σo) for the synthetic 
NO2 SCD products, we developed a multiple linear regression approach that predicts the magnitude of γ as a 
function of SZA, VZA, and Ω for each pixel of synthetic TEMPO and TROPOMI data. The training data set for 
the regression analysis is compiled from TEMPO proxy data and level 2 data from actual TROPOMI NO2 obser-
vations, and only observations with low cloud cover and high retrieval quality flag (qf) values are used (qf > 0.75 
and cloud fraction <0.2 for TROPOMI data; qf = 0, and cloud fraction <0.2 for TEMPO proxy data). It should 
be noted that the γ value for TEMPO is calculated based on the total column data in the TEMPO proxy data set 
(i.e., the ratio of total SCD error to total SCD) due to the lack of tropospheric column error in TEMPO proxy 
data set, and we simply assume the error characteristics are the same in the total and tropospheric column when 
estimating TEMPO tropospheric SCD error. The impact of TEMPO observation error assumption on emissions 
inversion will be discussed in Section 4.

We divided the training data into groups based on NO2 SCD, SZA, and VZA, with detailed data binning setups 
provided in Table S2 in Supporting Information S1. Multiple linear regression was then performed on each group 
to fit a prediction equation as follows:

𝛾𝛾𝑚𝑚 = 𝑎𝑎 + 𝑏𝑏 ln(Ω∕1015) + 𝑐𝑐(Ω∕1015)
−1.5

+ 𝑑𝑑VZA + 𝑒𝑒SZA. (4)

a, b, c, d, and e are regression coefficients for corresponding predictor, and γm is the predicted relative mean 
uncertainty. For TEMPO, we conduct the regression analysis hourly from 11 to 01 UTC while all overpasses 
from TROPOMI are used to fit a single regression equation. In the data fitting process, we use both SZA and 
VZA as predictors for TROPOMI, but only VZA for TEMPO because incorporating SZA in the regression 
analysis degraded the goodness of fit. Figure S4 in Supporting Information  S1 shows examples of γm for 
TEMPO and TROPOMI, and Equation 4 can successfully predict the overall trend of relative mean uncer-
tainty in the training data. Nevertheless, Equation 4 fails to capture the spread of γ from the training data set. 
To properly reflect the uncertainty associated with γ, we compute the standard deviation of the residual (η) 
of Equation 4 and estimate η as a function of NO2 SCD in each data group using another linear regression, as 
follows:

𝜂𝜂 = 𝑓𝑓 + 𝑔𝑔(Ω∕1015) (5)

The f and g represent the regression coefficients for predicting the η. Figure S5 in Supporting Information S1 
shows η value and the corresponding regression line for the same data group as in Figure S4 in Supporting Infor-
mation S1. In general, η is inversely proportional to the NO2 SCD, and the estimated η is then used to perturb γm 
by assuming γm followed a Gaussian distribution, which is defined as follows:

𝛾𝛾𝑓𝑓 = 𝑁𝑁(𝛾𝛾𝑚𝑚, 𝜂𝜂). (6)



Journal of Geophysical Research: Atmospheres

HSU ET AL.

10.1029/2023JD039323

9 of 30

γf can better capture the trend and dispersion of the input training data (Figure S6 in Supporting Information S1) 
after imposing a random perturbation.

The regression model from Equations 4–6 is used to estimate the γf for synthetic NO2 column. However, the 
synthetic Ω is initially unknown; we thus use the Ωtr, SZA, and VZA from our synthetic TEMPO and TROPOMI 
NO2 data as inputs to predict γf. Once γf is known, we use Equation 7 to calculate the observation error for indi-
vidual pixels which is defined as:

𝜎𝜎𝑜𝑜 = 𝛾𝛾𝑓𝑓 Ω𝑡𝑡𝑡𝑡. (7)

The observation error is then applied to perturb the 𝐴𝐴 Ω𝑡𝑡𝑡𝑡 and create the final perturbed synthetic TEMPO and 
TROPOMI 𝐴𝐴 Ω products by Equations 2 and 1.

It should be emphasized that NO2 column observations are always non-negative, which means that any pertur-
bation imposed on them must be done with caution. When calculating a random Gaussian perturbation by Equa-
tion 2, a negative NO2 column might occur if the observation error exceeds 35% of the observed value. Positive 
biases in the perturbed observations can emerge if the negative NO2 column is reset to zero or a small positive 
value. This happens more often in the synthetic TROPOMI NO2 data set because of its larger γf value. To prevent 
positive biases in the synthetic TROPOMI data set, we have set the upper limit of the γf value to 0.35 (35%). Addi-
tionally, we define the time of synthetic NO2 observations to be precisely (and only) on the hour. For example, all 
TEMPO and TROPOMI pixels within 18–19 UTC are defined at 18 UTC for simplicity.

2.3. Experimental Runs With WRF-Chem/DART

WRF-Chem/DART combines WRF-Chem with the Data Assimilation Research Testbed (DART) to conduct 
chemical-weather ensemble forecasts and assimilate synthetic TEMPO and TROPOMI NO2 observations to 
update NOx emissions. DART is an open-source EnKF based DA system (Anderson et al., 2009). It offers users 
a variety of EnKF analysis algorithms and aids in managing covariance inflation and localization during DA. 
WRF-Chem/DART can assimilate a wide range of data types, including in situ and remote sensing meteor-
ological/chemical observations to constrain their associated ICs/BCs. The state augmentation approach (J. L. 
Anderson, 2003; Liu et al., 2017; Ma et al., 2019) is used to constrain the emissions, for example, by adding the 
NOx emissions to the WRF-Chem state vector during the assimilation step which allows the EnKF to use ensemble 
correlations between observations and states to constrain the elements of the state vectors (J. L. Anderson, 2003). 
This enables us to use satellite-based NO2 observations to constrain NOx emissions.

The ERs are initialized from the FR output at 00 UTC on 1 April. The meteorological ICs ensemble is created by 
randomly perturbing the FR output. The perturbation for each member is sampling from NCEP background error 
covariance using the WRF DA system (WRFDA), as described by Liu et al. (2017). The pert_wrf_bc module in 
the WRF-Chem/DART generates random perturbations for each member of the meteorological lateral BCs ensem-
ble using the random variation approach. The ensemble of chemical ICs and BCs are created following Mizzi 
et al. (2016) and Ma et al. (2019) with imposition of spatial-temporal ensemble error decorrelations. We apply the 
spatial-temporal correlated Gaussian perturbation with a standard deviation of 30% around a defined mean (the 
FR and RAQMS output). The horizontal and vertical correlation of the perturbations is modeled by an isotropic 
exponential decay function with correlation lengths of 300 and 1 km, respectively (Evensen, 1994, 2003). The 
temporal correlation length is assumed to be 24 hr and to decline exponentially with time (Boynard et al., 2011; 
Gaubert et al., 2014).

We produce emission ensembles in the same way as we generate chemical ICs perturbations (Mizzi 
et al., 2016, 2018). The hourly emissions ensemble is created by imposing a Gaussian perturbation around the 
BAU emissions with a standard deviation of 30%. This value is consistent with other inverse modeling studies 
which typically assume an uncertainty range of 30%–50% for NOx emissions (Ma et al., 2019; Qu et al., 2017; 
Sekiya et al., 2022; Souri et al., 2020). The emissions perturbations have the same spatial correlation length as 
chemical ICs, and the temporal correlation length is set to 72 hr.

One concern in our OSSE is we used the same numerical model for both NR and ERs (i.e., identical twin OSSEs) 
which may present overly optimistic forecast skill and underestimate the background error in the ERs (Lahoz 
et al., 2010). We address those shortcomings by altering the WRF-Chem model configurations in the ERs to 
create some independence between the NR and the ERs, and this approach is also adopted in other OSSE studies 



Journal of Geophysical Research: Atmospheres

HSU ET AL.

10.1029/2023JD039323

10 of 30

(e.g., Chang et al., 2022; Descheemaecker et al., 2019; Ye et al., 2022). We use 10 different WRF-Chem physics 
configurations (see Table S3 in Supporting Information S1) to conduct the ensemble forecasts, but the same 
chemical mechanism is still employed in NR and ERs.

To quantify the benefit of altering model configurations, we conducted an ensemble forecast (EF) initialized 
from the NR and driven by the perturbed true NOx emissions. Figure 4 displays the average NO2 profile over 
CONUS from NR and EF, and some members (gray curves) in ER display greater divergence from the NR profile 
(black curve). The presence of these outliers could increase the ensemble spread, thereby mitigating the problem 
of underestimating the background error when using the same model. Additionally, the EF also tend to predict 
a higher concentration of NO2 (blue curves) in the lower troposphere which results from the lower planetary 
boundary layer (PBL) height. The PBL height in the EF is biased low by 8%–41% compared to the NR, which 
enhances the NO2 concentration within PBL. The bias in the simulated NO2 vertical profile also causes differ-
ences (+3%–4%) in the synthetic TEMPO NO2 column. This result provides evidence that altering the physics 
option leads to a distinct NO2 profile in the ER, which can be treated as a surrogate of model error. In summary, 
we anticipate that using different physics options in the ERs will help to address the problem of identical twin 
OSSEs and enhances the robustness of our conclusion.

Finally, we did not generate synthetic meteorological observations to constrain the forecast meteorology. Instead, 
we used the hourly grid analysis nudging technique in WRF-Chem to nudge the ER meteorology forecasted mete-
orology (e.g., wind fields, temperature, and moisture) toward the NR simulated meteorology.

Figure 4. Three-day average (04/01–03) NO2 vertical profiles over CONUS from the nature run (black curve), ensemble mean of ensemble forecast (EF) (blue curve), 
and individual members of EF (gray curves) at (a) 15, (b) 18, (c) 21, and (d) 00 UTC. The average TEMPO NO2 SCD and planetary boundary layer height are also 
listed.
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2.4. Data Assimilation Configuration

We use a 20-member ensemble to run continuous 3-hr forecast-data assim-
ilation cycles at 0, 3, 6,…, and 21 UTC. The small ensemble used in this 
work is mainly a result of computational cost, and emissions inversion studies 
that use a regional model with a higher horizontal resolution often employ 
10–30 ensemble members as well (e.g., Liu et  al.,  2017; Ma et  al.,  2019; 
Timmermans et  al.,  2019; Zhang, Li, Wang, et  al.,  2021; Zhang, Li, Wei, 
et al., 2021). The modeled concentrations and emissions are updated using 
the ensemble adjustment Kalman filter (EAKF) (J. L. Anderson, 2001, 2003) 
in WRF-Chem/DART. The Gaspari-Cohn (GC) localization function 
(Gaspari & Cohn, 1999) is applied to reduce the effect of spurious ensem-
ble correlation across observations and distant state variables due to small 
ensemble size (20). In this study, the vertical localization is disabled and 
the horizontal localization half-width for the GC function is set to 150 km. 
To lessen the erroneous correlations between observations and various kinds 
of state variables, the state variable localization technique (Ma et al., 2019; 
Miyazaki et al., 2012) is also used. We eliminate the ensemble correlations to 
other variables and solely permit TEMPO and TROPOMI NO2 observations 
to update the NOx concentration and anthropogenic emissions.

The prior adaptive inflation (J. L. Anderson, 2007) in WRF-Chem/DART is 
utilized to maintain the ensemble spread of chemical states and emissions for 
covariance inflation. However, we find that this approach is insufficient to 

support the emissions ensemble spread. The NOx emissions ensemble spread collapses after several DA cycles 
due to a lack of an emissions model to forecast/grow the error with time. Therefore, a posterior inflation approach 
from Miyazaki et al. (2012) is used to avoid the contracting of the emissions ensemble standard deviation. We 
artificially inflate the posterior emissions ensemble spread back to a minimum predefined value (i.e., 50% of the 
BAU emissions ensemble spread) when the posterior spread falls below this. This inflation uses centering about 
the ensemble mean, so there is no impact to the ensemble mean emissions. The detailed WRF-Chem/DART 
configurations are summarized in Table 2.

2.5. Emissions Adjustment Scheme

We update the instantaneous NOx emissions at the DA cycle hour using the synthetic TEMPO and TROPOMI 
NO2 measurements, and WRF-Chem/DART computes the 3-D emissions scaling factor (S) for each emission 
ensemble member as follows:

𝑆𝑆
𝑖𝑖(𝑡𝑡) =

𝑒𝑒
𝑖𝑖

𝑎𝑎(𝑡𝑡)

𝑒𝑒𝑖𝑖(𝑡𝑡)
. (8)

S i(t) is a 3-D emissions scaling factor for individual members i at DA cycle time t (hour), while 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑎𝑎(𝑡𝑡) and e i(t) 
(mole km −2 hr −1) are 3-D posterior and prior NOx emissions member i at DA cycle time t (hour). The emissions 
scaling factor is advanced in time without damping to adjust the prior emissions and obtain the adjusted prior NOx 
emissions for the next 3 hours as follows:

𝑒𝑒
𝑖𝑖

𝑝𝑝(𝑡𝑡 ∶ 𝑡𝑡 + 3) = 𝑒𝑒
𝑖𝑖
(𝑡𝑡 ∶ 𝑡𝑡 + 3)𝑆𝑆

𝑖𝑖
(𝑡𝑡) (9)

𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑝𝑝 is the adjusted prior NOx emissions for the hour over the course of t to t + 3 for individual members i, which 
are used to drive the WRF-Chem ensemble forecast and serve as the prior emissions for the next DA cycle to 
calculate the new posterior emissions and update emissions scaling factor. It is noted that e i(t) is equivalent to 

𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑝𝑝(𝑡𝑡) for the first DA cycle. With this emissions adjustment scheme, the entire historical emissions adjustment, 
as well as the  structure of posterior emissions ensemble covariance, is preserved and propagated forward in 
time. Because no satellite observations can be assimilated to update the emissions during the night, we apply the 
emissions scaling factor from the last DA cycle before sunset to adjust NOx emissions overnight. Our emissions 
adjustment scheme corrects the error in the emissions diurnal pattern at the DA cycle hour. We propagate the 

WRF-Chem/DART configurations

Filter type EAKF

Ensemble members 20

DA cycle 3-hr

Prior adaptive inflation 1 and 0.9

Prior inflation damping a 0.9 and 0.65

Posterior inflation Section 2.4

Localization function Gaspari-Cohn

Horizontal localization half-width 150 km

Vertical localization Off

Chemical ICs/BCs and emissions uncertainty 30%

Horizontal correlation length 300 km

Vertical correlation length 1 km

Temporal correlation length 24 and 72 hr

 aThe inflation damping of 0.65 is applied to TEMPO-exp1 and TEMPO-exp2 
(Table 3), and 0.9 is used for other ERs.

Table 2 
WRF-Chem/Data Assimilation Research Testbed Configurations
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emissions  scaling factor during the intra-cycle period; therefore, the emissions adjustment scheme may not be 
able to resolve the intra-cycle diurnal pattern. The process of our emissions adjustment scheme is also summa-
rized in Figure 5.

2.6. Experimental Design

2.6.1. Two True NOx Emissions Scenarios

We use a 6-day study period beginning at 00 UTC on 1 April and ending at 00 UTC on 7 April 2020. The series 
of ERs were summarized in Table 3. We propose two NRs with different scenarios for true NOx emissions. 
In the first scenario, the true NOx emissions are consistent with the COVID-19 lockdown period emissions 
(Figure 2), and we run five ERs, including four TEMPO and one TROPOMI run. The length of the DA window, 

Figure 5. Flowchart of dynamical emissions adjustment scheme. N is the ensemble size; n is the data assimilation cycle hours (n = 3 in this study).

Experiment
DA window 

(hours)
Hour (UTC) of OBS 

being assimilated
Update NOx 

concentration
Update NOx 
emissions

#OBS being 
assimilated

COVID-19 emissions case

 TEMPO-exp 0 a 15, 18, 21, 00 Yes Yes 752,091

 TEMPO-exp1 ±1.5 b 14–01 Yes Yes 2,144,243

 TEMPO-exp2 0 and ±1.5 15, 17–22, 00 Yes Yes 1,697,575

 TEMPO-EMS 0 15, 18, 21, 00 No Yes 752,091

 TROPOMI-exp ±1.5 Varies with each date Yes Yes 330,261

Time-varying true NOx emissions case

 TEMPO-TVE 0 15, 18, 21, 00 Yes Yes 752,091

 TROPOMI-TVE ±1.5 Varies with each date Yes Yes 330,261

 aThe synthetic observations time are defined at the hour. As a result, observations at cycle time are assimilated when using 
0-hr DA window. The 0-hr DA window is equivalent to a ±0.5-hr DA window when assimilating operational TEMPO 
data.  bFor ±1.5-hr DA windows, the windows width spans from 13.5–16.5, 16.5–19.5, 19.5–22.5, and 22.5–1.5 UTC for the 
cycle time at 15, 18, 21, and 00 UTC, respectively.

Table 3 
Configuration for the Different WRF-Chem/DART Experimental Runs
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a parameter in EnKF that controls the hour/amount of observation assimilated in each DA cycle, is the primary 
distinction between the TEMPO experiments. We start with an experiment (TEMPO-exp) that utilizes a 0-hr DA 
window (i.e., equivalent to a ±0.5-hr DA window when assimilating operational TEMPO data) and assimilates 
the TEMPO observations at the DA cycle hour (e.g., 15, 18, 21, and 00 UTC). This is the most restrictive DA 
window which only assimilates one full scan TEMPO data over CONUS per cycle-time. The main disadvantage 
of this configuration is that it uses only a small portion (∼30%) of the available daily TEMPO observations. 
In the next experiment (TEMPO-exp1), we extend the DA window to ±1.5-hr for all DA cycles to assimilates 
3 hours of TEMPO observations per DA cycle. By comparing TEMPO-exp and TEMPO-exp1, we investigate 
the effect of DA window on the constrained emissions. We find that using a ±1.5-hr DA window during the 
early morning and evening DA cycles (e.g., the 15 and 00 UTC cycles, day-to-night transition cycles, referred 
to as the “transition cycles”) introduces large biases in emissions estimates. As a result, we propose another 
TEMPO experiment (TEMPO-exp2) that employs a ±1.5-hr DA window at 18 and 21 UTC and a 0-hr DA 
window for DA cycles at 15 and 00 UTC. The results from those experiments are examined in Section 3.2. 
We also conduct a TEMPO experiment that solely constrains the NOx emissions and does not constrain the 
NOx concentrations (TEMPO-EMS). This experiment enables us to document the effect of constraining the 
NOx concentrations on the NOx emissions. For the TROPOMI experiment (TROPOMI-exp), we use a ±1.5-
hr DA window to assimilate all the available observations. The 15, 18, and 21 UTC DA cycles are typically 
when TROPOMI provides observations within the WRF-Chem domain. We will compare TEMPO-exp and 
TROPOMI-exp in Section 3.1 to assess  the impacts of assimilating geostationary observations as opposed to 
polar orbiting observations. By comparing the four TEMPO experiments, we can recommend best practices for 
the use of GEO NO2 observations.

In the second scenario, we make the inverse modeling more challenging by modifying the spatial and temporal 
variation of the true NOx emissions. The goal is to further examine the ability of the differing observation types 
(GEO—TEMPO vs. LEO—TROPOMI) to constrain the NOx emissions. Specifically, we add daily fluctuations 
to the true weekday emissions to create temporal variations in the daily NOx emissions. We generate the pertur-
bations by first binning the weekday NOx emissions rate by percentile (e.g., from clean to polluted areas), and 
then applying a magnitude-dependent scaling factor. We assume areas with high emissions rates, such as cities or 
highways, have greater daily variability, whereas emissions in rural areas are less disturbed. Figure S7 in Support-
ing Information S1 depicts the emissions scaling factors for various emission rates as well as the time series of 
time-varying true NOx emissions. The time-varying true NOx emissions are used to generate a new NR for the 
second scenario. Then, we generate the corresponding synthetic TEMPO and TROPOMI NO2 observations as 
discussed in Section 2.2, which are assimilated in the corresponding ERs (TEMPO-TVE and TROPOMI-TVE). 
Comparison of TEMPO-TVE and TROPOMI-TVE provides guidance as to the effectiveness of inverse modeling 
when there are daily variations in the emissions.

2.6.2. Observation Data Preprocessing

The computational cost of directly assimilating raw TEMPO NO2 observations is expensive due to high spati-
otemporal resolution of the measurements (i.e., 10 6 to 10 7 pixels per hour). To reduce the cost, we first used an 
inverse error weighted superobservation technique (Hartung et  al., 2008) based on the observation error (not 
considering the distance to the grid center or the pixel sizes) to reduce the data volume. However, we found that 
assimilating superobservations introduced negative biases in the emissions inversion. This is due to the obser-
vation error in our synthetic data is proportional to the observed column magnitude, thus pixels with lower NO2 
column concentrations have larger impacts in the inverse error weighted superobing calculation. As a result, the 
superobservation NO2 column tended to be biased low compared to the raw data. Therefore, we simply use spatial 
data thinning of the synthetic TEMPO and TROPOMI NO2 observations by retaining the observations that are 
closest to the centroid of the model grid point within which the horizontal location of the observations falls. This 
means that we have only one observation for each model grid cell. In terms of data screening for quality control, 
we omit synthetic TEMPO and TROPOMI NO2 data that have SZA > 70° or maximum cloud fraction >0.5 
(as given by NR). Figure S8 in Supporting Information S1 shows the spatial distribution of averaged synthetic 
TEMPO and TROPOMI NO2 SCD, and the number of measurements during 01 to 06 April. Over CONUS, 
TEMPO data show better spatial coverage and provides 4–5 times more observations than TROPOMI. However, 
regions in the northeast, northwest, and Texas have comparatively few satellite observations because of cloudy 
skies (Figures S8c and S8d in Supporting Information S1). The total number of observations assimilated in each 
ER are also provided in Table 3.
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3. Results
Before examining the performance of the NOx emissions inversion from individual ERs, we first perform obser-
vational space diagnostics. The left column of Figure S9 in Supporting Information S1 shows the time series of 
prior and posterior RMSEs, and they are defined as follows:

prior RMSE =
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√

√

√
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posterior RMSE =
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where N is the total number of the assimilated NO2 column measurements, 𝐴𝐴 𝐴𝐴
𝑜𝑜

𝑖𝑖
 is an assimilated observation, and 

𝐴𝐴 𝑦𝑦
𝑓𝑓

𝑖𝑖
 and 𝐴𝐴 𝑦𝑦

𝑎𝑎

𝑖𝑖  are the ensemble mean of expected and analysis observations. The posterior RMSE is lower than the 
prior RMSE for all ERs at the cycle time, indicating that the DA system performed properly in terms of assimi-
lating TEMPO and TROPOMI data.

We next evaluate the ratio of the prior RMSE to the prior total spread, which is defined as follows:

prior total spread =

√

√

√

√
1

𝑁𝑁
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∑
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(
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where 𝐴𝐴 𝐴𝐴
𝑜𝑜

𝑖𝑖
 is the observation error variance and 𝐴𝐴 𝐴𝐴

𝑓𝑓

𝑖𝑖
 is the prior ensemble variance in the observation space. The 

ratio is a chi-square variate (Ménard & Chang, 2000) and can be used to verify whether the DA system is appro-
priately tuned (Raeder et al., 2012). If the observation error, model ensemble spread, and covariance inflation 
are adequately specified, the prior RMSE and total spread should be balanced. We multiply the observation error 
variance by 0.70 to balance the prior RMSE and total spread for all our ERs. The right column of Figure S9 in 
Supporting Information S1 shows the time series of the ratio, and the averaged ratio of each experiment ranging 
from 0.88 to 1.07, suggesting that the prior RMSE and total spread are comparable, and the DA system is well 
balanced.

3.1. Advantage of TEMPO Over TROPOMI Data for NOx Emissions Inversion

We quantify the impact of assimilating TEMPO observations on the posterior emissions by comparing the poste-
rior NOx emissions estimated from TEMPO-exp (GEO) and TROPOMI-exp (LEO) to the true COVID-19 NOx 
emissions.

Figure 6 shows the time series of the average posterior NOx emissions over 29 cities and the CONUS. The names 
and geographic information of 29 urbans are provided in Table S4 in Supporting Information S1. TEMPO-exp 
recovers the true NOx emissions within a single day, particularly in metropolitan areas. At 0 UTC on 2 April, the 
ratio of posterior NOx emissions to true NOx emissions (shown by the red dashed curve in Figure 6) for urban 
areas approaches one, and the error in NOx emissions over the CONUS is significantly reduced. In contrast, 
TROPOMI-exp takes two to 3 days to retrieve the true NOx emissions over urban regions. Similar to the result 
in urban areas, the posterior NOx emissions in sub-urban/rural regions (e.g., bottom 80% NOx emissions) from 
TEMPO-exp are substantially closer to the true NOx emissions, whereas TROPOIMI-exp emissions exhibit a 
larger persistent negative bias (5%–10%) in comparison to the true NOx emissions (not shown). Additionally, 
TEMPO-exp is better at tracking temporal fluctuations of true NOx emissions, including the weekend drop and 
subsequent weekday rebound across the CONUS. On the other hand, TROPOMI-exp estimated NOx emissions 
that are biased low by ∼5% during the weekend (4 and 5 April) and continued cycling during the following week-
days does not eliminate that bias.

Figure 7 illustrates the spatial distribution of the difference between the ER emissions and the true NOx emissions, 
along with the corresponding domain-averaged coefficient of determination (R 2), normalized mean bias (NMB), 
and RMSE. At the beginning of the study period, positive biases are present since TEMPO-exp and TROPOMI-
exp were initially driven by BAU emissions (Figure 7a), with metropolitan regions having the highest degrees 
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of inaccuracy. With cycling, TEMPO-exp (Figure 7b) significantly reduces the emission biases in most regions, 
with the exception of a few metropolitan areas (e.g., Seattle, Denver, and Dallas) and western Texas, which 
still have somewhat higher errors. Conversely, the spatial distribution of TROPOMI-exp posterior emissions 
are not well constrained (Figure 7c). Several cities (e.g., Pittsburgh, Chicago, and Minneapolis) and areas from 
the central to western US have higher error and lower domain-averaged skill metrics compared to TEMPO-exp.

We further examine the variation of performance of the NOx emissions inversion from regional to urban scales. 
Figure 8 shows the R 2, RMSE, and NMB of posterior NOx emissions in each of the US EPA's regulatory regions 
(RRs) across the CONUS. A map defining the RRs is provided in Figure S10 in Supporting Information S1. 
TEMPO-exp outperforms TROPOMI-exp by 1.5%–17.1% and 12.5%–41.5% in terms of R 2 and RMSE for all 
RRs, respectively. Some RRs, such as New England (RR1), show significant improvement. For NMB, TEMPO-
exp also surpasses TROPOMI-exp in most RRs, except for RR2 (New York), RR5 (Great Lakes), and RR8 
(Mountains and Plains) which have slightly larger biases. The performance of the emissions inversion across 
RR1-3 shows greater error in terms of RMSE and NMB compared to the other RRs in the TEMPO-exp, which 
may be linked to the relative sparsity of observations over the northeastern CONUS due to cloud cover, as 
illustrated in Figure S8c in Supporting Information S1. The small DA window in TEMPO-exp further limits the 
available observations across these regions.

At the urban scale, Figure 9a shows a Taylor diagram of the posterior NOx emissions from the TEMPO-exp and 
TROPOMI-exp from 29 cities across the CONUS. TEMPO-exp recovers the true NOx emissions more accu-
rately than TROPOMI-exp. The TEMPO-exp (red dots) show better agreement with the true emissions than the 
TROPOMI-exp emissions (blue dots) in 23 cities. However, Seattle is an exception, where the TEMPO-exp emis-
sions deviate significantly from the true emissions because they were constrained by relatively distant and less 
representative observations during the first 4 days of cycling due to broader spatiotemporal coverage of TEMPO 
data. The posterior NOx emissions over Seattle eventually converge to the true emissions on 5–6 April, when 
more direct observations were available to constrain emissions (not shown).

In summary, we have demonstrated that TEMPO-exp recovers the true NOx emissions at least twice as fast as 
TROPOMI-exp and better resolves temporal fluctuations of the true NOx emissions. TEMPO-exp also provides 
more accurate NOx emissions compared to TROPOMI-exp from continental to urban scales based on the 
skill metrics discussed previously. We assume that the high temporal coverage of TEMPO data, which allows 
constraining emissions more frequently, is the major contributor to the improvement of emissions inversion and 

Figure 6. Time series of the TEMPO-exp and TROPOMI-exp top-down NOx emissions (left axis) and their relative 
proportion to the true NOx emissions (right axis). (a) Averaged NOx emissions over 29 urban areas and (b) averaged NOx 
emissions over the CONUS. The red and blue shaded areas represent 95% error bars from TEMPO-exp and TROPOMI-exp 
respectively.
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can be further explored in the future study. The benefit of frequent emissions updating is also highlighted in Ma 
et al. (2019) when assimilating surface measurements.

3.2. Impact of the DA Window on Emissions Inversion

3.2.1. 1.5-Hour DA Window for All Cycles

Geostationary satellites provide hourly daytime NO2 column observations which can assist in constraining the 
strength and spatial-temporal variability of NOx emissions. To utilize the most observations per day, we extend the 
DA window from 0- to ±1.5-hr Figure 10 compares the temporal evolution of the ratio of the posterior emissions 

Figure 7. Six-day average spatial distributions of the differences between the various experimental run emission estimates and the true NOx emissions. (a) BAU, (b) 
TEMPO-exp, (c) TROPOMI-exp, (d) TEMPO-exp1, (e) TEMPO-exp2, (f) TEMPO-EMS, (g) TEMPO-TVE, and (h) TROPOMI-TVE. The black boxes highlight 29 
urban regions over the CONUS. The domain averaged R 2, NMB, and RMSE are also listed.
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to the true emissions over the CONUS from all TEMPO ERs. The NOx emissions estimated by TEMPO-exp1, 
which uses a ±1.5-hr DA window for all cycles, are biased low by 15%–20% compared to true NOx emissions. 
The NOx emissions ratios consistently show a sharp decrease at 15 UTC with a rebound at 18 UTC, and the 
emissions ratios also show a small drop at 0 UTC. Spatially, TEMPO-exp1 substantially underestimates true NOx 
emissions at most locations throughout the domain (Figure 7d), particularly over the central US. As compared to 
TEMPO-exp, TEMPO-exp1 degrades R 2 by 4%–12% and RMSE by 40%–300% for most RRs, and six RRs are 
biased low with NMB ranging from −11.7% to −20.8% (Figure 8).

To better understand the ER posterior emissions skill drops at 15 and 00 UTC, we examine the emissions adjust-
ment results on 3 and 4 April to determine how the biases emerge. At first this result seems counter-intuitive 
because we expect to increase the inversion skill by assimilating a greater number of TEMPO observations. 
We start by computing the relative innovation in the observational space, defined as 𝐴𝐴

(

𝑦𝑦
𝑜𝑜

𝑖𝑖
− 𝑦𝑦

𝑓𝑓

𝑖𝑖

)

∕𝑦𝑦
𝑓𝑓

𝑖𝑖
 , to quantify 

the impact of observations. For the 15 and 0 UTC cycles, the hours of observations being assimilated are from 
14–16 to 23–01 UTC, respectively. Figure 11 depicts the relative innovation and the number of observations as 

Figure 8. The 6-day average skill scores in EPA's 10 regulatory regions for the experimental runs. The R 2, RMSE, and NMB are displayed from top to bottom. The 
deeper the color, the greater the value for each metric.
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function of the observation hour. First, the number of available observations varies during the transition hours. 
This happens because the TEMPO instrument only provides observations when sunlight is available, and the 
hours away from sunrise/sunset (e.g., 16 and 23 UTC) provide more satellite observations (Figures 11a and 11b), 
which may have a greater impact on emissions adjustments. Second, in the EnKF analysis step, the model back-
ground forecast at the cycle time hours is compared to measurement from the different observation hours, which 
can introduce representative error into the emissions inversion. For example, the model background forecast at 
15 UTC is compared to observations from 14 to 16 UTC. Figure 11a shows the relative innovation distribution 
from observations hour 15 UTC is normally distributed and unbiased, with a mean close to zero, indicating no 

Figure 9. Taylor diagrams for posterior NOx emissions from the different ERs. The cities in eastern and western US are 
roughly separated by the Mississippi river. (a) TEMPO-exp versus TROPOMI-exp, (b) TEMPO-exp versus TEMPO-EMS, 
and (c) TEMPO-TVE versus TROPOMI-TVE. The number in parentheses to the right of the experiment name shows the 
number of urban areas that performed better for the referenced experiment compared to the companion experiment.
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representative error. However, there are substantial positive and negative biases for the innovation from non-cycle 
time observation hour, suggesting increased representativeness error. The level of bias for observation hour 
16 UTC (−11.3%) is substantially higher than that for observations from 14 UTC (+7.4%). The same pattern can 
also be seen for the 00 UTC cycle (Figure 11b), where greater negative biases are associated with the observation 
from 23 UTC.

The presence of the representative error is originated from the diurnal variation of the synthetic TEMPO NO2 
measurement which is driven by the NO2 vertical profile changes as shown in Figures S11a and S11c in Support-
ing Information S1. The diurnal variation of the SW vertical profile may have an additional impact on the hourly 
variation of NO2 column since there are greater SWs appearing during the transition hours (Figure S2 in Support-
ing Information S1).

Given the influence of representative error and the uneven number of observations provided from the different 
observation hours, the emissions inversion at the 15 and 00 UTC cycles are dominated by observations from 
hours 16 and 23 UTC (i.e., more observation and negative innovation), respectively, resulting in a decrease in 
prior NOx emissions and introducing a systematically negative bias. The same pattern occurs in the other days of 
the study period.

3.2.2. 1.5-Hour DA Window for Midday Cycles

To mitigate the effect of representative error during the transition cycles, we propose a new experiment 
(TEMPO-exp2) that uses the ±1.5-hr DA window only at 18 and 21 UTC while using the 0-hr DA window for 
the remaining cycles. By decreasing the size of the DA window during the transition cycles, the domain averaged 
NMB in posterior NOx emissions is reduced by 11.6% in TEMPO-exp2 (Figure 7d) compared to TEMPO-exp1, 
and the R 2 and RSME are also improved. Nevertheless, as shown in Figure 10b, the posterior NOx emissions from 
TEMPO-exp2 are biased low by 4%–10% across the CONUS during the study period. On a regional scale, the 
posterior NOx emissions in RR4 through RR8 (southeast to central CONUS) remain biased low by 3.9%–7.9%, 
despite having a higher R 2 and lower RMSE than TEMPO-exp1 (Figure 8). Consequently, we examined the rela-
tive innovations from the 18 and 21 UTC cycles on April 3 (Figures 10c and 10d) and find smaller representative 

Figure 10. (a) Time series of ensemble mean NOx emissions from the TEMPO ERs and the true NOx emissions averaged 
across the CONUS and (b) time series of the ratio between posterior NOx emissions from the TEMPO ERs to the true NOx 
emissions.
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error associated with the assimilated observations. The relative innovations only change by ±5% compared to a 
variation of ±10% for observation hours in the 15 and 00 UTC cycles.

Next, we compare the WRF-Chem prior and posterior TEMPO NO2 SCDs to the observation during the 17 to 
22 UTC observation hours, and the results are summarized in Table 4. We find that the posterior NO2 SCD for 
the observation hours that correspond to the cycle time (i.e., 18 and 21 UTC) display the best agreement with 
measurements, with the lowest RMSE, NMB, and highest R 2. This result is expected because it effectively repro-
duces the results in TEMPO-exp. However, the posterior NO2 SCD from the daytime side of the DA window (i.e., 
observation hour 19 and 20 for the 18 and 21 UTC cycle, respectively) tend to exhibit greater goodness of fit with 
the observations, especially in terms of RMSE and regression slope as shown in Table 4. In contrast, assimila-
tion of the nighttime side observations (observations hours 17 and 22 UTC) enhances the bias. For example, the 

Figure 11. Distribution of relative innovation (%) for DA cycle at (a) 15 UTC on 04/03 from TEMPO-exp1, (b) 00 UTC on 04/04 from TEMPO-exp1, (c) 18 UTC on 
04/03 from TEMPO-exp2, and (d) 21 UTC on 04/03 from TEMPO-exp2. The total number of assimilated observations (N) is also provided.
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NMB deteriorates from −2.21% to −5.32%, and the regression slope degrades from 1.016 to 1.058 for 17 UTC 
observation hour after DA.

We further investigate the ensemble correlation between expected NO2 SCD and NOx emissions since the obser-
vations update the emissions via their correlations in the EnKF (J. L. Anderson, 2003). The ensemble correlations 
for observations hours between 17 and 22 UTC are also listed in Table 4, and the average ensemble correlation is 

defined as 𝐴𝐴
1

𝑁𝑁

𝑁𝑁
∑
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corr
(
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 where N is the total number of NO2 column observations for each observation 

hour, SCDk is the kth forecasted NO2 SCD ensemble, and 𝐴𝐴 𝐴𝐴
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 is the prior emissions rate ensemble at grid (i,j) 

which is spatially closest to SCDk at cycle time t. Table 4 shows that the expected NO2 SCDs from observation 
hours 19 and 20 UTC are better correlated with the prior NOx emissions rate than those from observation hours 17 
and 22 UTC. This suggests that observations from hours 19 and 20 UTC contribute more toward constraining the 
NOx emissions. The increased correlations for daytime side observations can be related to the diurnal variation 
of the SW profiles. Figure 12 shows average normalized SW profiles (i.e., normalized by the vertical summation 
of SW). For the 18 UTC cycle, the SW profile from observation hour 18 UTC has the greatest sensitivity to the 
lower troposphere, followed by 19 and 17 UTC. For the 21 UTC cycle, the observation hour 20 UTC SW profile 
(i.e., daytime side) has the greatest sensitivity to the lower troposphere compared to other observation hour. We 
hypothesize that the greater SW sensitivity to the lower troposphere leads to greater correlations with the simu-
lated near-surface NO2 concentrations and NOx emissions. As a result, observations from 19 to 20 UTC can have 
larger impacts on the emissions inversion than those from observation hours 17 and 22 UTC. This process also 
enhances the representative error (i.e., negative innovation) from observation hours 19 and 20 UTC, resulting in 
a negative bias in the emissions inversion.

In this section, we showed that using a ±1.5-hr DA window to assimilate synthetic TEMPO observations intro-
duces biases into the posterior NOx emissions due to the unrepresentativeness of observations from the non-cycle 
time observations hours. The occurrence of representative error is primarily due to the hourly/diurnal variations 
of synthetic TEMPO NO2 SCD, and this problem is more pronounced in the transition time cycles (e.g., 15 and 
0 UTC) owing to larger variation in the synthetic NO2 column and volume of observation. For the midday cycles, 
observations from hours that are closest to midday (e.g., hours 19 and 20 UTC for the 18 and 21 UTC cycles, 
respectively) show greater impact because their associated SWs have greater sensitivity to the lower troposphere, 
which leads to systematic biases in the posterior NOx emissions.

We would like to note that despite the NR simulated NO2 properly representing the surface NO2 diurnal fluctu-
ation, and the hourly variation of TEMPO NO2 SCD proxy data being similar to our synthetic product (Figures 
S11a and S11b in Supporting Information S1), the diurnal pattern in the actual TEMPO NO2 SCD data are still 

Hours

18 UTC DA cycle 21 UTC DA cycle

17 18 19 20 21 22

A Priori #OBS 287,201 286,120 284,426 285,938 286,290 236,628

RMSE 2.34 × 10 14 2.05 × 10 14 2.36 × 10 14 2.31 × 10 14 1.86 × 10 14 2.04 × 10 14

NMB −2.21% 3.45% 6.87% 6.25% 2.59% −3.28%

R 2 0.897 0.928 0.899 0.905 0.939 0.928

Slope 1.016 0.971 0.943 0.922 0.968 1.042

A Posteriori RMSE 2.07 × 10 14 1.46 × 10 14 1.70 × 10 14 1.55 × 10 14 1.38 × 10 14 1.64 × 10 14

NMB −5.32% −0.34% 2.49% 4.23% 1.62% −2.58%

R 2 0.929 0.962 0.941 0.95 0.964 0.957

Slope 1.058 1.013 0.988 0.962 1 1.048

Ensemble R a 0.173 0.185 0.179 0.104 0.090 0.084

 aThe average ensemble correlation (R) between any two observations hours for hours ranging from 17 to 22  UTC are 
significantly different at the 95% level based on the student's t-test.

Table 4 
The RMSE (molec cm −2), NMB (%), R 2, and the Regression Slopes for the Prior and Posterior Expected NO2 SCDs, and the 
Ensemble Correlations (R) Between the Expected Prior NO2 SCD Ensemble and NOx Emission Ensemble
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unknown. Therefore, the representative error issue might exist if future operational TEMPO NO2 SCD data 
display a similar diurnal pattern as our synthetic data. Additionally, the conclusion draw from Section 3.2 may 
only be applicable in the context of using EnKF algorithm because the definition of the DA window differs in 
other approaches such as 4D-VAR, which may not see the representative issue.

3.3. Impact of Adjusting NOx Concentration on NOx Emissions Inversion

The assimilation of remotely sensed NO2 observations can optimize both NOx concentrations and emissions 
simultaneously, whereas many previous inverse modeling studies have focused only on adjusting emissions with-
out updating related species concentrations (e.g., Qu et al., 2017; Souri et al., 2020). However, Liu et al. (2017) 
pointed out that solely updating the emissions rate can lead to large inaccuracies in the estimated emissions. To 
investigate the influence of updating concentrations on emissions inversion, we conduct a TEMPO experiment 
(TEMPO-EMS) that only allows observations to update NOx emissions, and the estimated NOx emissions are 
then compared with those of TEMPO-exp.

Figure 10 depicts the temporal evolution of the TEMPO-EMS posterior NOx emissions and their proportion to 
true NOx emissions. During the first 2 days (01–02 April) of the study period, the TEMPO-EMS NOx emissions 
outperform the TEMPO-exp results as it recovers the true NOx emissions more quickly. However, during the 
rest of the study period (03–06 April), the TEMPO-EMS emissions have a low bias of 2%–5%, as shown in 
Figure 10b. The spatial error pattern of TEMPO-EMS emissions (Figure 7f) is similar to that of TEMPO-exp 
(Figure 7b), although the domain averaged R 2, RMSE, and NMB are slightly worse. On a regional scale, the R 2 
and RMSE between TEMPO-EMS and TEMPO-exp are comparable throughout most RRs (Figure 8). However, 
on the urban scale, the posterior NOx emissions from TEMPO-EMS are substantially less accurate, as demon-
strated in the Taylor diagram in Figure 9b. Most cities in the western part of the CONUS, as well as several east-
ern cities (e.g., Chicago, Pittsburgh, Washington, D.C., Detroit, and Charlotte) show much larger deviations from 
true NOx emissions compared to TEMPO-exp. This suggests that constraining only the emissions may introduce 
substantial error into the top-down emissions, especially over polluted area.

Solely adjusting emissions implicitly assumes that the discrepancy between the forecasted and observed NO2 
columns is only related to emissions. However, errors in the model transport, physics, and chemistry (i.e., model 
error/biases) can contribute to errors in the predicted NO2 columns. When model error exists such as our ER 
configuration (Section 2.3), adjusting emissions alone is insufficient to address the errors in the simulated NO2 
concentration. Model error can accumulate and propagate forward in time, resulting in over-adjustments in emis-
sions to compensate for this source of error. Figure 13 displays the errors of the expected TEMPO NO2 SCD at 
15, 18, and 21 UTC. At these cycle hours, TEMPO-EMS shows larger errors (RMSE and NMB) and a worse R 2 
than TEMPO-exp in the predicted NO2 column concentrations. The RMSE in TEMPO-EMS remains at a high 
level over each DA cycle and is 25%–90% greater than in TEMPO-exp, indicating that adjusting NOx emissions 
alone cannot effectively improve the NO2 concentration forecast.

Figure 12. Average normalized SW profiles for observation hours (a) 17–19 and (b) 20–22 UTC. The lower part of the SW 
profile within the troposphere (bottom 35 layers) are plotted.
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These results highlight the importance of adjusting both NOx concentration and emissions simultaneously for 
optimal NOx emissions inversion in the presence of model errors, which is likely to always be the case.

3.4. Reducing Time-Varying Uncertainties in NOx Emissions

For the cases addressed in previous sections, only three emission profiles (weekday, Saturday, and Sunday) 
need to be recovered, and they are relatively similar to each other, making the emissions inversion somewhat 
simple. In reality, the NOx emissions may have daily variations in the diurnal pattern due to changes in energy 
consumption or traffic flow caused by holidays, weather, or other short-term events. Therefore, we conduct 
an experiment (TEMPO-TVE and TROPOMI-TVE) where we introduce daily temporal variability to the true 
NOx emissions and making emissions inversion more challenging. Specifically, the perturbed true NOx emis-
sions follow a V-shape pattern of a decreasing daily mean NOx emission for the first 3 days and an increas-
ing mean emission for the subsequent days, as shown in Figure 14. With this perturbation scheme, polluted 
regions, such as cities, exhibit higher daily variation than rural areas, as illustrated in Figure S7a in Supporting 
Information S1.

Figure 14 shows the posterior NOx emissions time series over CONUS for the TEMPO-TVE and TROPOMI-
TVE experiments. In the scenario with time-varying true NOx emissions, both TEMPO-TVE and TROPOMI-
TVE struggle to recover the true emissions, but TEMPO-TVE performs better in tracking the daily variability 
of NOx emissions throughout the simulation. The spatial distribution of the discrepancy between the posterior 
and true NOx emissions are relatively small in TEMPO-TVE (see Figure 7g). Only cities in the central US (e.g., 
Dallas, Kansas City) and Seattle show larger errors. In contrast, the estimated NOx emissions from TROPOMI-
TVE display greater errors in the central US, with emissions outside urban regions and on highways biased low 
(Figure 7f), leading to larger RMSE and NMB compared to TEMPO-TVE. On the regional scale, the TEMPO-
TVE results display higher R 2 (2%–60%) for all RRs compared to the TROPOMI-TVE results as shown in 
Figure 8, especially for the regions over the central US (i.e., RR6 and RR7). The RMSE for most RRs, except 
RR1, are also outperformed in TEMPO-TVE with an improvement of 10%–40% over TROPOMI-TVE. Simi-
larly, the NMB shows lower errors in most of RRs compared to TEMPO-TVE (Figure 8). In urban regions, the 
TEMPO-TVE estimated NOx emissions shows better agreement with the true NOx emissions over 24 city areas, 
while posterior NOx emissions from TROPO-TVE display larger deviations from the truth (Figure 9c). There-
fore, we conclude that assimilating geostationary observations can better constrain the daily variability of NOx 
emissions rate.

Additionally, TEMPO-TVE only uses 30% of the observations each day. We anticipate that the performance 
of emissions inversion could be further improved if more synthetic TEMPO data are assimilated by increasing 
the frequency of emissions updating (e.g., 1 hr DA cycle) when the true emissions consist of a more complex 
spatial-temporal variation pattern.

Figure 13. Expected and observed TEMPO NO2 SCD at (a) 15, (b) 18, and (c) 21 UTC. The red and blue dots are the values from TEMPO-exp and TEMPO-EMS, 
respectively. The linear regression lines, RMSE, NMB, and R 2 are also presented.
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4. Discussion
As mentioned in Section 2.2, the synthetic TEMPO NO2 observation error is estimated based on the total column 
from the TEMPO proxy data. However, this approach may underestimate the observation error, as demonstrated 
by the γ value calculated from the real TROPOMI NO2 total SCD data being substantially smaller than the one 
based on the tropospheric SCD (Figure S12 in Supporting Information S1). Underestimating the observation 
error could lead to a more accurate synthetic observation and overestimate the influence of synthetic observation 
on the state variables during DA. To investigate the impact of the synthetic observation errors on the emissions 
inversion, we assumed that the error characteristics of synthetic TEMPO data follow real TROPOMI data and 
regenerated the synthetic TEMPO NO2 data. These data are used to constrain NOx emissions in an additional ER 
with a 0-hr DA window (TEMPO-exp3). It is noted that the γ value upper limit (35%) is still applied to prevent 
bias in the synthetic TEMPO NO2 data.

We first compare the average CONUS posterior NOx emission time series from TEMPO-exp3 to TEMPO-exp, 
as shown in Figure 15a. In general, the posterior emissions from TEMPO-exp3 and TEMPO-exp are similar, 
but the skill of the emissions inversion in TEMPO-exp3 degrades slightly. The RMSE and NMB increased from 
1.04% to 1.09% and 1.94% to 3.35%, respectively, when compared to TEMPO-exp, especially on the last day of 
simulation (6 April), which displayed a large discrepancy between these two ERs. This is owning to the larger 
observation error and the less accurate synthetic observations assimilated in TEMPO-exp3. Next, we compare 
TEMPO-exp3 to TROPOMI-exp (Figure  15b), and TEMPO-exp3 still outperforms TROPOMI-exp in terms 
of emissions inversion performance, as TEMPO-exp3 can resolve true NOx emissions faster and better. The 
TEMPO-exp3 also shows better performance in constraining NOx emissions in most urban areas, as shown in 
Figure 15c.

As a result, the conclusion drawn from Section 3.1 that assimilating synthetic TEMPO observations improves 
the skill of NOx emissions inversion is still valid, even though the TEMPO observation error is assumed to be 
the same as TROPOMI data. We also anticipate the conclusion obtained from other TEMPO sensitivity runs 
will remain the same because the emissions inversion results from those ERs are either subjected to the diurnal 
variation of synthetic TEMPO NO2 data (e.g., TEMPO-exp1 and TEMPO-exp2) or the DA configuration (e.g., 
TEMPO-EMS), neither of which are directly related to the magnitude observation error.

Additionally, the consequence of setting an upper bound for the value of γ (i.e., 0.35) leads to an underesti-
mation of synthetic TROPOMI NO2 observation error by 30%–50% in polluted areas when compared to real 
data, and the differences can be even larger in non-polluted regions. This indicates that the impact of our 
synthetic TROPOMI NO2 data on emissions inversion may be overestimated, particularly in non-polluted 
locations.

One method for relaxing the upper bound of γ is to decouple the observation error estimation algorithm from 
the process of generating perturbed synthetic column observations. Assuming the observation error follows a 
log-normal distribution could be another approach that allows for imposing large errors on synthetic observations 
while preserving the positiveness of the synthetic NO2 column observation.

Figure 14. Time series of the averaged posterior NOx emissions over the CONUS for TEMPO-TVE and TROPOMI-TVE 
(left axis) and their relative proportion to the perturbed true NOx emissions (right axis). The red and blue shaded areas are 
95% error bars from TEMPO-TVE and TROPOMI-TVE, respectively.
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5. Conclusions
We conducted an OSSE to assess how assimilating geostationary NO2 observations from TEMPO (GEO) 
improves the inverse modeling of NOx emissions compared to TROPOMI (LEO). The emissions inversion is 
accomplished with WRF-Chem/DART using an EAKF with the state augmentation method. Several TEMPO 
ERs were conducted with different DA configurations to study the optimal strategy for constraining NOx emis-
sions using GEO NO2 observations.

Our results show that assimilating synthetic TEMPO observations allows for the recovery of true NOx emissions 
at least twice as fast as TROPOMI. The posterior NOx emissions from the TEMPO ER (TEMPO-exp) are also 
more accurate than the TROPOMI ER in most RRs and urban areas over CONUS. Specifically, the RMSE and R 2 
of the posterior NOx emissions are improved by 12.5%–41.5% and 1.5%–17.1%, respectively, across the different 
RRs. Additionally, the TEMPO posterior NOx emissions better capture the daily fluctuations of true emissions, 
while constraining the emissions with synthetic TROPOMI observations shows larger biases when trying to 
recover the more challenging time-varying true emissions.

Figure 15. (a) Time series of the averaged posterior NOx emissions over the CONUS for TEMPO-exp3 and TEMPO-exp, (b) 
Same as (a) but for TEMPO-exp3 and TROPOMI-exp, (c) Taylor diagrams for posterior NOx emissions from the TEMPO-
exp3 and TROPOMI-exp.
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We find that assimilating synthetic TEMPO observations with a ±1.5-hr DA window degrades the performance 
of the top-down NOx emissions estimates. That degradation is primary subject to the diurnal variability of our 
synthetic TEMPO NO2 data. In the transition cycles (15 and 00 UTC), large representativeness errors associ-
ated with the non-cycle time observation hours as well as more observations from the daytime side observation 
hours lead to substantial negative biases (−20%) in the posterior NOx emissions. Using a ±1.5-hr DA window 
only during the midday cycles (18 and 21 UTC) can still cause a −10% bias in the posterior NOx emissions 
(TEMPO-exp2); this is owing to the scattering weights associated with the daytime side observation hours having 
greater sensitivity in the lower troposphere, which enhances representativeness error impact on the posterior. The 
NOx emissions inversion also performs better when optimizing both NOx concentration and emissions simultane-
ously under the influence of model error, particularly in polluted regions.

As a result, we propose the following best practices for constraining NOx emissions with TEMPO observations:

1.  Utilize a short DA window (e.g., 30 min) to avoid the potential representativeness errors associated with 
observations that are different from the DA cycle time hour. This is especially true for the day-night transition 
DA cycles;

2.  Increase the frequency of assimilation cycling, use shorter cycling periods (e.g., 1 or 2 hr) to better account for 
the diurnal variations in the model and observations. This exploits the high temporal resolution of the geosta-
tionary observations and assimilates more observations without increasing the DA window size;

3.  Jointly constrain concentrations and emissions.

It is worth noting that some of the best practices obtained in this work (e.g., using a short DA window at transi-
tion DA cycles) may only be applicable when the future operational TEMPO NO2 data display a similar diurnal 
pattern as our synthetic data and when the EnKF method is used.

We would also like to highlight certain challenges associated with assimilating remote sensing observations and 
emissions inverse modeling using the EnKF technique that require further investigation. For example, the approach 
for how to properly conduct vertical localization for non-local observations (e.g., TEMPO and TROPOMI NO2 
columns) and the impact on emissions inversion have not yet been examined. Moreover, performing chemical 
DA and emissions inversion in log space can be further developed and implemented in the OSSE or real case 
study. Such an approach has been used to constrain methane emissions (Chen et al., 2022; Cui et al., 2019) and 
may improve the performance of NOx emissions inversion because the distribution of trace-gas concentrations 
and emissions tends to be log-normal (Deeter et al., 2007; de Souza & Ozonur, 2019; Yuan et al., 2015), which 
violates the underlying Gaussian error assumption in the EnKF analysis process and may result in a sub-optimal 
posterior estimation.

This study can guide future top-down NOx emissions estimation using geostationary observations, although the 
same model is utilized for NR and ERs. Future OSSEs should use two distinct models for more representative 
results. Despite these obstacles, we expect that operational geostationary satellite observations will improve the 
skill of top-down emission estimates and our ability to track the impact of specific emissions regulations or 
sudden societal adjustments on changes in air quality.

Data Availability Statement
The WRF-Chem/DART code used in this study as well as the BAU and COVID-19 adjusted bottom-up emission  
inventory files developed by NOAA CSL can be found at: https://csl.noaa.gov/groups/csl7/measurements/2020 
covid-aqs/emissions/.
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