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Abstract. Anthropogenic emissions in East Asia have changed dramatically in recent years. To measure these 
changing emissions in support of air-quality modeling, we developed a top-down emission update system using 
surface observations and a geographical information system spatial-allocation technique. We deploy a data-
processing system to construct adjustment factors to prefecture-level SO2 emissions by comparing surface and 
modeled observations. A case study is conducted over East Asia for 2016 in which we update Chinese SO2 

emissions using measurements from around 1500 surface monitoring sites. Model simulations using updated SO2 

emissions are improved relative to the existing simulation system (e.g., R=0.23 to R=0.8), suggesting that the newly 
designed system provides an efficient, practical forecast solution. Finally, estimated SO2 emissions are compared 
with existing emission inventories, agreeing well with recent reports of reduced SO2 emissions from Chinese 
anthropogenic sources. 

1. Introduction 

In any region with rapidly developing countries, such as East Asia, the amount of sulfur dioxide (SO2) released into 
the atmosphere offers a good indicator for fast-paced changes in industrialization and urbanization (Xiao et al., 
2018). Much SO2 in the atmosphere derives from human sources (Klimont et al., 2013), usually power generation 
and industrial activities, including combustion of sulfur-containing fuels and the processing of materials containing 
sulfur (such as oil refining and metal smelting) (Stern, 2005). Volcanic eruptions and degassing are major natural 
sources (Flower et al., 2016; Krueger et al., 2008). 

High SO2 concentrations are associated with many environmental impacts. SO2 is an invisible, toxic gas with a sharp 
smell that directly affects human health (Chen et al., 2012), especially the respiratory system. Tropospheric SO2 is 
also a major precursor to fine particulate matter (PM), as it forms sulfate particles (Park and Cho, 1998; Qu et al., 
2016; Ying et al., 2014). It impairs visibility (Lin et al., 2012), harms vegetation, decreases plant growth and yield, 
and contaminates soil as acid rain. Its impact on climate has also been reported (Harris et al., 2013; Lin et al., 
2013). 

China has experienced increasing air pollution for several decades. Chinese SO2 emissions have been very high, 
especially over areas with rapid industrialization and urbanization. In China, power generation and the industrial 
sectors are major emissions sources (Liu et al., 2016); the residential sector is also important in the northern 
provinces due to demand for residential heating. However, China has recently reversed the trend in its SO2 

emissions, especially since 2006, as the Chinese government has implemented legislation to mitigate extreme air 
pollution (Liu et al., 2012; Schreifels et al., 2012; van der A et al., 2017). Stringent emissions control policy, the 
application of improved combustion technologies, and the promotion of renewable energy technologies have 
successfully controlled emissions, as recent studies have reported (Silver et al., 2018; van der A et al., 2017; Wang 
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et al., 2018; Zheng et al., 2018). With reduced OMI (Ozone Monitoring Instrument)-measured SO2 column densities 
over Beijing and surrounding provinces in 2008, Huanhuan et al. (2014) argued that strict controls on pollutant 
emissions and motor vehicle traffic before and during the 2008 Olympic and Paralympic Games were effective 
(Huanhuan et al., 2014). Over China, SO2 emissions reportedly increased until the middle of 2000. Krotkov et al. 
(2016) reported a decreasing trend over the North China Plain since 2011, with about a 50% reduction from 2012 
to 2015, and suggested that the economic slowdown and government efforts to restrain emissions from the power 
and industrial sectors explain this change (Krotkov et al., 2016). While accurate information on SO2 emissions (their 
location and amount) is required to establish air-quality models for forecasting and policymaking, such information 
has been difficult to obtain, especially in near real-time. The amount of anthropogenic emissions in China seem to 
be determined partly by the balance between increasing energy consumption and the efficiency of government 
emission-control policies and partly by natural fluctuations (Kang et al., 2019; Kim et al., 2017; Miao et al., 2017). 
Estimating anthropogenic emissions in China is therefore difficult because so many factors contribute to overall 
emissions (Li et al., 2017a). 

In traditional bottom-up approaches, SO2 emissions inventories are estimated from actual measurements (such as 
continuous emission monitors at major electricity-generating sites), emission factor estimation for other fuel 
combustion sources and industrial processes, and model simulations for on-road and non-road sources (EPA, 
2008). To establish bottom-up emissions, comprehensive parameters are required for fuel consumption, industrial 
production, emission factors, and control efficiency (Li et al., 2017b). While the bottom-up approach can provide 
detailed information on anthropogenic emissions, establishing a complete emissions inventory takes many 
resources and much time, which limits the ability of such an inventory to meet the demands of real-time modeling 
systems (Wang et al., 2016). 

To estimate the amount of SO2 emissions, the top-down approach is an alternative that uses observed information 
to constrain total estimated emissions. Using space-borne measurements to estimate the anthropogenic emissions 
from the surface has become very popular in the simulation of regional air quality thanks to its advantage in spatial 
coverage (Fioletov et al., 2016; Koukouli et al., 2018; Liu et al., 2018; Qu et al., 2019). Multiple space-borne 
instruments can monitor changes in both anthropogenic (Krotkov et al., 2016; Zhang et al., 2017) and natural 
emissions (Krueger et al., 2008; Spinei et al., 2010; Theys et al., 2019) from regional and global sources, including 
SO2 signals from anthropogenic sources. Several studies have shown how emissions have evolved from very large 
source regions, such as China. However, although space-borne monitoring has the advantage of offering wide 
coverage, satellite-based approaches have limitations resulting from data-retrieval uncertainty or errors in the 
conversion of columnar to surface information (Fioletov et al., 2017, 2013; Georgoulias et al., 2009; Koukouli et al., 
2016; Lee et al., 2011). 

In this study, we examine an alternative approach to updating top-down SO2 emissions. Recently, more surface-
monitoring networks have been developed in China with a very dense distribution of coverage. Taking advantage 
of these networks, we tested an alternative approach to estimate SO2 emissions from anthropogenic sources over 
China. Section 2 describes the data and emission adjustment method. Estimation of emission adjustments and 
model simulations are discussed in Section 3, and Section 4 concludes. 

2. Data & Methodology 
2.1. Observations 

Surface observation data were obtained from the China National Environmental Monitoring Center (CNEMC; data 
available at http://www.pm25.in). The website distributes hourly concentrations of PM10, PM2.5, CO, NO2, O3, SO2, 
and Air Quality Indices from more than 1500 surface-monitoring sites across China. As of 2016, observations are 
available from 1571 sites; 1459 sites are within our study domain. After discarding 127 sites by screening for 
observation sites with less than 80% of values available, we used observations from 1332 sites in the analysis. 

2.2. Model 

Meteorological and chemistry-transport models are used to simulate regional air quality over an East Asian 
domain. Weather Research and Forecasting Model (WRF) version 3.4.1 was used to simulate meteorology 
(Skamarock and Klemp, 2008), initiated with the National Centers for Environmental Protection (NCEP) Final 
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92 Analysis (FNL) product.(NCEP, 2000) Community Multiscale Air Quality (CMAQ) was used to simulate chemistry 
93 transport (Byun and Schere, 2006), with meteorological inputs processed through the Meteorology–Chemistry 
94 Interface Processor (MCIP) version 3.6 (Otte and Pleim, 2010); emissions were processed using Sparse Matrix 

Operator Kernel Emission (SMOKE). We used AERO5 aerosol module and Statewide Air Pollution Research Center 
96 version 99 (SAPRC99) as the chemical mechanisms in the chemical transport model (Carter, 2003). Table 1 lists 
97 detailed information on modeling configurations. The base model simulation was conducted using the 
98 Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment (CREATE) 2015 (Jang et al., 
99 2019). 

2.3. Method 

101 Ratios between observed and modeled surface SO2 concentrations are calculated as follows. We constructed a 
102 spatial distribution of surface SO2 concentrations using surface and satellite observations. For each month and 
103 prefecture, we calculate the adjustment ratio to Chinese emissions sources from surface and model 
104 concentrations, as follows: 

𝐶𝐶𝑆𝑆𝑆𝑆2,𝑚𝑚𝑜𝑜𝑜𝑜 𝐸𝐸𝑆𝑆𝑆𝑆2,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑆𝑆𝑆𝑆2,𝑚𝑚𝑚𝑚𝑎𝑎 ∙ 𝐶𝐶𝑆𝑆𝑆𝑆2,𝑚𝑚𝑚𝑚𝑎𝑎 

106 Emissions on cells with multiple prefectures are calculated using the fractional weight of each adjacent 
107 prefecture’s emissions using the conservative re-gridding method (Kim et al., 2018; Kim et al., 2016). 

108 We followed the following simple rules: 

109 - We honor basic information from the current emission inventory. 
- We discarded hourly observational data sets with more than 20% of values missing. We also did a fair 

111 sampling of observations and model simulations by discarding any of paired observations and model has 
112 missing values. 
113 - Observations allocated within the same domain (grid) cell were merged together. We averaged such 
114 observations because we do not want to over-weight dense monitoring sites, which are usually at urban 

locations. 
116 - All observations within a prefecture were merged to calculate the average. Using this information, we 
117 estimated one adjustment ratio for each prefecture. This practical data-processing approach is justified by the 
118 following assumptions: (1) policy implementation tends to be conducted by administrative group; (2) SO2 

119 observations within a prefecture represent local emissions and the airborne concentrations; (3) provinces are 
too large to be considered as a single factor; and (4) analysis at the prefecture level reduces the effects from 

121 transport; and 
122 - Spatial representativeness can be a problem in data processing. Applying more advanced spatial re-gridding 
123 techniques, such as kriging or machine learning, can help. 

124 In total, after merging data from 1332 monitoring sites into domain cells, around 550 observations were used to 
calculate the adjustment ratios. We assigned surface-monitoring observations to prefecture-level concentration 

126 using the Database of Global Administrative Areas (GADM; https://gadm.org/), which provides high-resolution 
127 data for country administrative areas. 

128 Compared to the top-down method of estimating emissions based on satellite, space-borne observations, using 
129 surface-based observations to make top-down estimates has both benefits and limitations. Since we focus on the 

construction of accurate emissions input to improve the performance of regional air-quality modeling, surface 
131 observational data can provide a more realistic emissions input by focusing on the chemical behaviors of ground-
132 level pollutants. Moreover, and again compared to satellite products, surface observations have much less 
133 potential retrieval uncertainty. In estimating ground-level emission sources, ground-level data are less affected by 
134 transport compared to satellite data, which uses information about column-integrated density. The surface data 

we used in this study also offer better temporal coverage compared to a polar-orbiting satellite product with 
136 limited local overpass time. 
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On the other hand, surface observations are clearly limited in their spatial coverage and can be spatially 
unrepresentative, potentially missing information over areas without monitoring sites or over-emphasizing local 
pollutants detected by monitors located near local hotspots of SO2 emissions. This method may notably overfit the 
deficiencies of the model itself into emission adjustments, since meteorological and chemical models are not 
perfect; the model can attribute those imperfections into emission adjustments that are, in reality, non-emission 
factors. 

3. Results 
3.1. Base simulation 

Before we applied the top-down emissions adjustment, we conducted a base case simulation using the CREATE 
2015 emissions inventory. Figure 1 shows the spatial distribution of modeled and observed surface SO2 

concentrations over China during June 2016. As expected, high concentrations were found over Northern China, 
especially over the Beijing, Tianjin, and Hebei (BTH) region, which forms the core of China’s recent rapid 
industrialization. Strong signals of SO2 concentrations are shown over Tianjin and southern Hebei, extending to 
surrounding provinces of the BTH region, such as Shandong, Shanxi, Henan, and Inner Mongolia. Elevated SO2 

concentrations are also shown in areas near the Yangtze Delta River (YDR) region, as well as over Jiangsu, Anhui, 
and Zhejiang provinces. Over western China, the high SO2 concentrations around Chongqing municipality represent 
the region’s industrialization. Figure 1b shows the spatial distribution of bias (that is, modeled concentrations less 
observations) for the same period. The bias patterns display several noticeable discrepancies, mostly over the east 
coast mega cities. We attribute these biases to the failures of the emissions inventory to keep up with recent 
changes in released emissions, which is very common when using bottom-up emissions inventories. We think the 
approach presented in this paper can complement these shortcomings of the current emission inventory. Major 
overestimation of SO2 emissions in the model occurs in the YRD and the BTH. Emissions from the Pearl River Delta 
(PRD), another location with large biases in the model, are not recognized in Figure 1a. 

3.2. Estimation of adjustment ratio 

We estimated the adjustment ratio by comparing surface observations with base case model simulations. Figure 
2a describes the data processing procedures used to generate updated emissions for CMAQ simulation. We 
checked the validity of the observational data; only monitoring sites with more than 80% of observations available 
were included. To enable comparison, model data were also retrieved for the times and locations corresponding to 
observational data. Model data were discarded if paired observations were not available. 

Both observations and model data were then assigned a grid cell identifier within the modeling domain and then 
averaged for each cell, a procedure designed to reduce the impact from unbalanced sampling in urban locations. 
Since most monitoring sites are located in high-population areas, the over-weighted urban observations could 
otherwise be applied to whole prefectures, including rural locations. Figure 2b shows an example cell-level 
concentration construction in the BTH region. Gray boxes indicate grid cells in the modeling domain, and all 
observational data within the same cell is averaged to one representative value, which is thereafter assigned to the 
location at the center of the cell. 

Figure 3 describes the steps to generate the adjustment ratios to update current emission inputs for the model 
simulation. Data for June 2016 are shown. Figure 3a and 3b show the spatial distribution of surface SO2 

concentrations from observations and the model. The differences between prefecture-level observations and the 
model are shown in Figure 3c. The current modeling domain includes 11 countries, 192 provinces (29 Chinese 
provinces and municipalities), and 3314 sub-divisions (309 Chinese prefectures). We decided to use the second-
level administrative boundary, which is equivalent to the “prefecture” in China and the “county” in North America. 
Finally, Figure 3d shows the spatial distribution of the estimated adjustment ratios (observations divided by 
model), assuming a simple concentration-to-emissions ratio (often termed the beta value) of 1. That is, we 
assumed a percentage change in emissions would result in the same percentage change in concentration. The beta 
value will be further discussed later. In most areas, calculated ratios are less than 1, implying that the base model 
likely overestimates estimates, consistent with the declining trend in SO2 emissions previous studies have often 
reported. Adjustment ratios over some inland locations are larger than 1, indicating increased SO2 emissions. 
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3.3. Simulation with updated emissions 

Adjusted SO2 emissions are constructed by applying these adjustment ratios to the initial modeled SO2 emissions. 
Figure 4 compares SO2 concentrations with initial and adjusted modeled emissions. Bias plots confirm the modeled 
SO2 concentration improves when using adjusted emissions. For example, most strong overestimates over mega 
cities are removed after the emission-adjustment procedure. In general, all model-evaluation statistics are 
improved, as clearly shown in Figure 4e and F. 

Several points remain which the current methodology cannot fully resolve. First, coastal areas could be improved 
by using a higher-resolution domain setting. Second, opposite bias signals in some areas can cancel each other, in 
which case the current method cannot resolve the locality of the emission source distribution. Third, large 
subdivisions with too small observational dataset can still be poorly modeled. 

Time series of daily averaged SO2 concentrations at monitoring sites over all of China and the four major locations 
of interest, along with SO2 concentrations from the base and adjusted model runs, are shown in Figure 5. As 
expected, simulations clearly improve with the updated SO2 emissions. Evaluative statistics show clear 
improvement throughout. Over all of China with 1332 monitoring sites, model bias improved from +4.07 ppb in the 
base run to -1.03 ppb in the adjusted run. Four megacities (BTH, YRD, PRD, and CHQ) where fractional biases 
seriously overestimated modeled SO2 concentrations (by +196%, +246%, 196%, and +173%, respectively) also had 
dramatically improved model performance after adjustment (to misestimates by +8.5%, -10.8%, -13.7%, 
and -13.2%, respectively). These comparisons demonstrate that the suggested methodology improves model 
simulation by updating emissions. In general, the intensity and influence of SO2 emissions are significant during the 
heating season (Meng et al., 2018), and the modeled results using the updated emissions confirm the seasonality 
of SO2 emissions and concentration. 

Figure 6 compares observed and simulated surface SO2 concentrations for each Chinese prefecture. Out of 28 
Chinese provinces and municipalities, modeled surface SO2 concentrations are overestimated in 18 provinces, 
implying that the known emissions inventory might have overestimated SO2 emissions in those provinces. Most 
provinces with high SO2 emissions appear to be overestimated, implying that SO2 emissions in those regions, which 
include highly industrialized areas, have been seriously reduced. This is consistent with recent reports of reduced 
SO2 emissions from Chinese anthropogenic sources (van der A et al., 2017; Zhang et al., 2015). 

3.4. Implications of Chinese emissions changes 

Figure 7 shows the spatial distribution of recent changes in prefecture-level SO2 concentrations for each season. 
The top panel shows the distribution of SO2 concentration for each season, and the second to fourth rows present 
relative changes in prefecture-level SO2 concentrations compared to 2015 levels. In 2015, SO2 concentrations were 
highest in the first quarter (January–March) and lowest in the third quarter (July–September), showing typical 
seasonal variation. 

In general, SO2 concentrations are decreasing, especially in 2018. However, we have no evidence that this decrease 
is solely due to reduced emissions, nor has this decrease been clearly associated with any other factor, especially 
meteorological. A declining trend from 2015 is clear during the cold season compared to the warm season, 
suggesting a potential association with the residential emission sector (due to residential heating), but further 
studies are required to confirm this hypothesis. 

We further estimated yearly variations of estimated SO2 emissions over China during 2015-2018 using the 
approach developed in this study. Figure 8 compares estimated SO2 emissions from different emissions inventories 
and previous studies—Multi-resolution Emission Inventory for China (MEIC) v1.2, CREATE 2015, KORUS-AQ 
emissions versions 2.1 and 5, Koukouli et al. (2018) and Zheng et al. (2018)—with estimated SO2 emissions from 
this study (Koukouli et al., 2018; Zheng et al., 2018). Interestingly, in 2015, the total amount of estimates SO2 

emission is very close to that of CREATE 2015. However, their spatial distribution is quite different. For example, 
our result estimates BTH SO2 emissions as 1.8 Tg/year while CREATE 2015 has much higher emission amount, 3.5 
Tg/year. 
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The estimate from this study is 19.3 Tg/year (18.1 Tg/year inside simulation domain) for 2016, based on the top-
down approach estimated from surface concentration; note, however, that this study aimed to improve model 
performance and has not focused specifically on estimating accurate emission information. Therefore, this 
comparison should be taken as a guidance for relative emissions change, and should not be used for evaluation 
purpose. Table 2 summarizes the estimated SO2 emissions from each province. 

As shown in Figure 6, one area with a notable discrepancy in SO2 emissions is Shanxi province, located west of 
Beijing, which is well-known for having the largest coal reserves in China, along with nearly a hundred coal-
powered power plants. The high SO2 loadings southwest of BTH could be partially attributed to emissions from 
Shanxi. Song et al. (2014) reported that the successful operation of a flue gas desulfurization (FGD) system in 
Shanxi reduced SO2 emissions from power plants from 2005 to 2010 but that its emissions had rebounded from 
2011 to 2012 (Song and Yang, 2014). Figure 7 also shows slightly increased SO2 concentrations in Shanxi province 
recent years, compared to 2015 level. 

Increased emissions alone could be due to emission control failures or to an explicit policy to move emission 
sources from the core BTH region to adjacent regions. Fang et al. (2019) reported that the Chinese government’s 
emission-abatement policy has led to temporary increases in emissions in neighboring provinces to the regions of 
main interest (Fang et al., 2019). After investigating the development of other emission sources in Shanxi, Song et 
al. (2014) concluded that the rapid expansion of high coal-consumption industries are responsible for the rise in 
2011–2012 SO2 emissions (Song and Yang, 2014). If emissions sources in the BTH region have been moved to 
Shanxi, this is notable in terms of international source-receptor relationship. In South Korea, there has been 
rumors in the social network services that the Chinese government has pushed pollution-emitting facilities to the 
Shandong area, which is close to South Korea. As addressed in Kim et al. (2018) (Kim et al., 2018), there is no 
evidence of increased SO2 or NOx emissions from Shandong province, and actual observations may suggest that 
BTH emissions have moved to the west (i.e. Shanxi) not to the east of BTH (i.e. Shandong). Zhang et al. (2015) also 
reported considerable differences in SO2 emission-control efficiency by region in China (Zhang et al., 2015). 

4. Conclusion 

We have developed a data-processing framework to update SO2 emissions using observations from surface 
monitoring sites. Thanks to enhanced coverage surface observation networks, we were able to process prefecture-
level observational data. Updated SO2 emissions were generated by applying adjustment ratios to prefecture-level 
SO2 concentrations between observations and the model. We chose a prefecture-level adjustment to include the 
effects of local transport. 

Using the suggested method, we conducted CMAQ simulations with updated SO2 emissions. With this adjustment 
method, CMAQ very well reproduces both spatial and seasonal variations. Using this method, we further estimated 
the amount of SO2 emissions. For most major emission sources, including megacities like BTH, YRD, PRD, and 
Chongqing city, our results suggest serious reductions in SO2 emissions, consistent with a stringent SO2 emission-
control policy by the Chinese government. On the other hand, in some areas we have estimated increased SO2 

emissions, most notably in Shanxi province. 

We conclude that frequent updates to anthropogenic emissions sources are required to improve the performance 
of regional air-quality modeling systems and forecasts. Top-down estimation of anthropogenic emissions using 
actual observational data can greatly improve simulation accuracy. 
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   Table 1. Physical options for meteorological and chemical simulations. 

Model  Physical options  Descriptions  

 Initial field   FNL (NCEP, 2000)  

WRF  
v3.4.1  

Microphysics  
 Cumulus scheme 

 Land surface model scheme  

 WSM6 (Hong et al., 2004)  
 Kain-Fritsch (Kain, 2004)  

  NOAH (Chen and Dudhia, 2001) 
 Planetary boundary layer scheme  YSU (Hong et al., 2006)  

Chemical mechanism  SAPRC99 (Carter, 2003)  
Chemical solver   EBI (Hertel et al., 1993)  

CMAQ  
v4.7.1  

 Aerosol module 
Advection scheme  

 Horizontal diffusion  

AERO5 (Binkowski, 2003)  
 YAMO (Yamartino, 1993)  

 Multiscale (Louis, 1979)  
Vertical diffusion   Eddy (Louis, 1979) 

 Cloud scheme RADM (Chang et al., 1987)  
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455 Table 2. Base (CREATE 2015) and estimated, province-level Chinese SO2 emissions (Unit: KTon/year). 
Region Base Adjusted Region Base Adjusted 

Heilongjia 486 591 Fujian 453 302 
Jilin 495 437 Jiangxi 598 732 

Liaoning 1,600 1,267 Henan 1,634 1,195 
NeiMongol 1,256 1,151 Hubei 1,098 493 

Hebei 2,549 1,189 Hunan 811 730 
Beijing 478 46 Guangdong 1,273 630 
Tianjin 587 107 Guangxi 713 983 
Shanxi 1,549 1,835 Shaanxi 916 608 

Shandong 2,337 1,694 NingxiaHui 230 444 
Jiangsu 1,472 681 Chongqing 926 192 

Shanghai 1,463 163 Sichuan 866 531 
Zhejiang 1,242 418 Guizhou 540 856 

Anhui 823 519 Yunnan 210 388 
456 

457 
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458 
459 Figure 1. Spatial distribution of modeled SO2 concentrations overlaid by surface monitoring sites over China in June 2016 (left) 
460 and their biases (right). 
461 
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462 
463 Figure 2. Schematic diagram of data processing for emission adjustment (left), and a zoomed-in map of surface-monitoring site 
464 locations and “cell-level” averaged SO2 concentrations in the BTH region (right). 
465 
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469
470

Figure 3. Calculation of emissions adjustment ratio. Shown are surface SO2 concentrations for June 2016 from (a) observation, 
(b) model simulation, (c) their difference, and (d) the adjustment ratios (observations/model). 
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471
472
473
474
475

Figure 4. Performance evaluation of models run with initial emissions inventory (left) and adjusted emissions (right). Also shown 
are spatial distributions of simulated SO2 concentrations (top) and biases (middle), as well as scatter plot comparisons for initial 
(bottom-left) and adjusted (bottom-right) emissions for January to December 2016. 
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476 
477 Figure 5. Time series of daily mean SO2 concentrations over China (CHN), BTH, YRD, PRD, and Chongqing (CHQ) areas with base 
478 and adjusted model runs. 
479 
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480 
481 Figure 6. Comparison of modeled and observed SO2 concentrations in 29 Chinese provinces during 2016. CREATE emissions 
482 before adjustment were used in the model. 
483 
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488
489

484 

Figure 7. Spatial distributions of 2015 surface SO2 concentrations averaged over each season (January–March, April–June, July– 
September, and October–December) (top row), and percentage changes from 2015 to 2016, 2017 and 2018 (2nd-4th row). 
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491 

492 
493 
494 Figure 8. Comparison of estimates of Chinese SO2 emissions based on emissions inventories and as estimated in this study. 
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