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Abstract

Image-based algorithms have become a powerful tool for estimating flow velocities

in rivers. In this study, we generalize the space-time image velocimetry (STIV) frame-

work for reach-scale application rather than along a cross section. The new algorithm

provides information on both the magnitude and orientation of velocity vectors, and

we refer to the algorithm as two-dimensional STIV, or 2D-STIV. The workflow

involves setting up a grid, using centreline tangent vectors as initial estimates of flow

direction, and then extracting space-time images (STIs) along search lines radiating

from each grid node. The autocorrelation function is used to infer the inclination of

streak lines present in STIs, which represents the advection of water surface fea-

tures. Information on flow direction is obtained by evaluating various candidate sea-

rch lines and identifying that which yields the highest velocity. This search can be

performed exhaustively or via optimization. We applied the new 2D-STIV algorithm

to three test cases, one simulated data set and two natural channels, and compared

image-derived velocities to modelled or measured values. We also applied two

established particle image velocimetry (PIV) algorithms to the same data sets. 2D-

STIV performed as well as the two PIV algorithms for simulated images. For a natural

river with distinct water surface features, 2D-STIV was effective for much of the

channel but also led to a more patchy, irregular velocity field than the two PIV algo-

rithms. For a site lacking obvious surface features, exhaustive 2D-STIV led to velocity

estimates uncorrelated with field data while the optimization-based version pro-

duced erratic flow directions. 2D-STIV also required greater image sequence dura-

tions, higher frame rates, and generally longer computational run times. Overall,

ensemble PIV was the most reliable algorithm.

K E YWORD S

noncontact flow measurement, particle image velocimetry (PIV), space-time image velocimetry
(STIV), two-dimensional velocity field, uncrewed aircraft systems (UAS)

1 | INTRODUCTION

Over the past three decades, remote sensing methods have emerged

as a powerful tool for quantitative mapping and monitoring of river sys-

tems (Carbonneau et al., 2012; Marcus & Fonstad, 2010; Piégay et al.,

2020). A prominent aspect of this trend is the broader uptake of image-

based algorithms for estimating flow velocities in river channels (Dal

Sasso et al., 2021; Jolley et al., 2021; Strelnikova et al., 2023). Image

velocimetry can provide detailed information on complex flow patterns

and offers a number of significant advantages relative to conventional

field methods. For example, the ability to measure velocities remotely,

without placing instruments into the water, is particularly important
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when high flows or other hazardous conditions like ice, debris, or con-

tamination of the river make standard techniques like acoustic Doppler

current profiling (ADCP) onerous to implement and can place personnel

at risk. In addition, image-based algorithms can be used to map flow

fields at high spatial resolution and over large areas (Legleiter et al.,

2023), including locations that are difficult to access. These efficiencies

also open up the possibility of reducing costs and expanding hydrologic

monitoring networks into ungaged basins (e.g., Conaway et al., 2019).

Another factor facilitating the expansion of image-based river

velocimetry is the growing range of platforms from which suitable

image data can be acquired. In addition to more established bridge- or

bank-mounted cameras (e.g., Muste et al., 2008) and helicopters

(Fujita & Hino, 2003), various uncrewed aircraft systems (UAS) are now

widely used to collect nadir-viewing river images (e.g., Eltner

et al., 2021). Recent studies have also demonstrated the potential to

map flow velocities from moving, fixed-wing aircraft (Legleiter et al.,

2023) or even satellites (Legleiter & Kinzel, 2021). Although optical

images and RGB (red-green-blue) video are the most common data

types used for velocity mapping, thermal cameras can also serve this

purpose if water surface features expressed as subtle differences in

temperature can be detected and tracked (Schweitzer & Cowen, 2021).

In parallel with these advances in data acquisition, a wide variety

of algorithms for inferring velocities from image time series have been

and continue to be developed. Proven algorithms include particle image

velocimetry (PIV; Muste et al., 2008), particle tracking velocimetry (PTV

Eltner et al., 2020), optical tracking velocimetry (Tauro et al., 2018),

space-time image velocimetry (STIV Fujita et al., 2007), and numerous

variants of optical flow (e.g., Hutley et al., 2023). These algorithms are

accessible to a growing community of end users through various soft-

ware tools (Jolley et al., 2021), such as RIVeR (Patalano et al., 2017),

FlowVeloTool (Eltner et al., 2020), KLT-IV (Perks, 2020), Hydro-STIV

(Watanabe et al., 2021), and TRiVIA (Legleiter & Kinzel, 2023b). The

availability of these programs allows for the use of image velocimetry

in a wide range of applications, including noncontact streamflow

(i.e., discharge) measurement (Peña-Haro et al., 2021) and efforts to link

hydraulic heterogeneity to habitat suitability for aquatic organisms

(Strelnikova et al., 2020). As these tools begin to be incorporated into

reach-scale monitoring programs (e.g., Randall, 2021), further refining

the underlying algorithms and evaluating their performance across a

range of conditions becomes crucial.

Herein, we address this need by introducing a new two-

dimensional implementation of STIV, which we refer to as 2D-STIV,

specifically intended for application at the reach scale of tens to hun-

dreds of km, as opposed to a single, isolated cross section. STIV was

initially developed by Fujita et al. (2007), refined in the ensuing years

(Fujita et al., 2019; Watanabe et al., 2021), and is now one of the most

mature and widely used image velocimetry algorithms. We provide a

more detailed description of the STIV algorithm in Section 5 but to

provide some introductory context, we begin by identifying two fac-

tors that motivated us to explore STIV. First, our previous research

focused on PIV, which, as the name implies, is predicated upon the

existence of discrete, readily trackable particles. This assumption is

seldom satisfied in natural channels, however, and seeding the flow

with artificial tracers, as in (Biggs et al., 2022) and many other studies,

is likely to be highly complex, if not impractical, in large rivers or for

operational streamgaging. Seeding can also introduce a number of

additional complications during analysis (e.g., Alongi et al., 2023). We

were thus drawn to STIV as an alternative algorithm capable of cap-

turing not only the motion of distinct particles but potentially less

well-defined, diffuse image textures such as deforming boils of

suspended sediment (Legleiter & Kinzel, 2020), waves, or other pat-

terns of water surface reflectance. Second, and more importantly, we

saw an opportunity to generalize the STIV framework to provide a

more complete characterization of complex flow fields in natural

channels. Most previous applications of STIV have focused on a single

cross section, with the algorithm providing estimates of velocity mag-

nitude along a constant flow direction assumed to be perpendicular to

that transect (Fujita et al., 2007). In this study, we build upon recent

work by Han et al. (2021) to develop a new, two-dimensional imple-

mentation of STIV that is capable of inferring not only the magnitude

but also the orientation of velocity vectors. Moreover, we designed

the 2D-STIV algorithm for application at the reach scale, making pre-

dictions at grid nodes spatially distributed throughout a user-defined

region of interest rather than a single predefined cross section. The

new 2D-STIV algorithm is not contingent upon user identification of

search lines and is thus better-suited to mapping full, extensive veloc-

ity fields than standard STIV workflows.

To assess the potential utility of 2D-STIV, we applied the algo-

rithm to three test data sets: a simulated image sequence based on

hydrodynamic model output and UAS-based videos from two natural

rivers. As an initial benchmarking exercise, we evaluated the accuracy

and precision of the flow fields inferred via 2D-STIV and compared

their performance to that of two established PIV algorithms, per-

frame pair PIV and ensemble PIV. The results of this analysis provide

insight into the strengths and weaknesses of each algorithm and a

preliminary appraisal of the feasibility of obtaining a more complete

characterization of natural flow fields via 2D-STIV. To summarize, our

objectives in this paper are to (1) introduce a two-dimensional imple-

mentation of STIV amenable to reach-scale application; (2) describe

two different versions of the new algorithm, one that exhaustively

evaluates all possible flow directions within a specified range and one

that uses an optimization-based algorithm to infer the local flow direc-

tion; and (3) apply the two 2D-STIV algorithms to three test data sets

and compare their performance to that of two established PIV

algorithms.

2 | METHODOLOGY AND METHODS

In this section, we first introduce the three test data sets used to eval-

uate the various image velocimetry algorithms we considered in this

study: a simulated image sequence based on hydrodynamic model

output and UAS-based videos from two natural rivers. We then

describe the new two-dimensional STIV algorithm we developed. Sec-

tion 2.3 briefly summarizes the PIV algorithms we used for compari-

son with the 2D-STIV algorithm and their parameterization. Finally,

Section 2.4 defines the metrics we used to evaluate the performance

of each algorithm for each test data set.

2.1 | Test data sets

Development and testing of image velocimetry algorithms proceeds

most efficiently when the expected output is known a priori and can
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be compared with the velocity estimates produced by the algorithm

under consideration. Several previous studies have used simulated

images for this purpose (Bodart et al., 2022; Dal Sasso et al., 2018;

Mendes et al., 2020; Pumo et al., 2021), and we recently introduced a

new workflow for Simulating Hydraulics and Images for Velocimetry

Evaluation and Refinement (Legleiter & Kinzel, 2024). This approach,

abbreviated SHIVER, involves combining a hydrodynamic model with

a synthetic particle generator to produce a series of river images that

capture the motion of simulated water surface features. The hydrody-

namic model provides a plausible estimate of the flow field that is spe-

cific to the channel of interest and can be used to direct the advection

of synthetic particles over time. Each of the resulting particle maps is

rendered as an image to produce a sequence suitable for image

velocimetry. The velocity estimates derived from this time series can

then be compared with the known (modelled) flow field to evaluate

the accuracy and sensitivity of the algorithm. For this study, we used

SHIVER to generate a sequence of images for a 1.6 km reach of the

Sacramento River in northern California, USA, with a mean width of

approximately 110 m at a discharge of 255 m3/s. This time series con-

sisted of 240 images at a frame rate of 4 Hz, with a pixel size of

0.15 m; the first frame in this sequence is shown in Figure 1a. The full

240-frame, 4 Hz sequence was used as input to 2D-STIV and per-

frame pair PIV algorithms, but for the ensemble PIV algorithm, we

used 60 frames at a lower frame rate of 1 Hz. Further details on the

SHIVER framework and our study area along the Sacramento River

are provided by Legleiter and Kinzel (2024); the data, hydrodynamic

model archive, and source code used for this purpose are available

from Legleiter and Kinzel (2023a).

As a complement to these synthetic images, we also considered

videos acquired from UAS hovering in place above two natural rivers

under typical low-flow conditions, without introducing any kind of

artificial tracers. The first of these data sets was acquired along the

Androscoggin River in Maine, USA to support the study of Duan et al.

(2023) and is available from Engel et al. (2022). These two publications

provide further detail on the site and data collection, but the key

pieces of information most relevant in the present context are that

the video was acquired at a frame rate of 24 Hz with a pixel size of

0.037 m and captures an 80 m reach of the river for which the mean

width was approximately 94 m. A 10 s subset was extracted from the

beginning of the original video to yield a 240 frame sequence for

input to 2D-STIV and per-frame pair PIV algorithms. For the ensemble

PIV algorithm, we used 90 frames extracted at a reduced frame rate

of 1 Hz. Direct field measurements of flow velocity were also col-

lected from the Androscoggin River by deploying an ADCP along a

cross section located within the field of view of the UAS video

(Figure 1b); the ADCP data were obtained on the same day as the

video. We used the Velocity Mapping Toolbox (VMT Parsons et al.,

2013) to produce a mean cross section from two passes across the

channel and compute depth-averaged velocity vectors. Although we

did not add any material to the Androscoggin to facilitate image

velocimetry, our study site was located approximately 750 m below a

waterfall that aerated the water and produced distinct patterns of

foam and froth. These textural features are clearly evident in

Figure 1b and presumably could be detected by the image velocimetry

algorithms as they were advected downstream. The unique local

geography of this site was thus highly conducive to remote sensing of

surface flow velocities.

The second natural channel we examined provided a more realis-

tic example in that neither artificial tracers nor fortuitous patterns of

foam and froth were present. This data set was acquired from the

North Santiam River in Oregon, USA, as part of an ongoing investiga-

tion of habitat suitability for salmonids. In this case, the clear water

and lack of distinct surface tracer particles implied that any image-

derived velocity estimates would have to be inferred from wave pat-

terns and irregular reflections (i.e., sun glint) from the water surface

itself (Figure 1c). We acquired UAS-based video of a 215 m reach of

the North Santiam River with a mean width of approximately 40 m at

a native frame rate of 30 Hz and a pixel size of 0.0472 m. For 2D-

STIV and the per-frame pair PIV algorithm, we extracted 30 s of video

at the full frame rate to obtain a 900-frame sequence. For ensemble

PIV, we used a subsampled 1 Hz sequence spanning the entire dura-

tion of the video, yielding 31 frames. As for the Androscoggin, we

used an ADCP to obtain direct measurements of flow velocity along a

cross section within the footprint of the images and used VMT to

F I GU R E 1 Example images from each study area: (a) simulated data based on the Sacramento River; (b) UAS-based video from the
Androscoggin River; and (c) UAS-based video from the North Santiam River. For each site, the red box in the upper panel indicates the location of

the zoomed subset in the lower panel. The locations of the cross sections along which an acoustic Doppler current profiler (ADCP) was used to
make field measurements of flow velocity also are shown in (b) and (c). [Color figure can be viewed at wileyonlinelibrary.com]
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process these data and obtain depth-averaged velocities. Both the

video and ADCP data are available from Legleiter and Harrison

(2023).

We did not perform any kind of image preprocessing to increase

the visibility of surface features in the UAS-based videos from the

Androscoggin and North Santiam Rivers because our goal in this study

was to assess the performance of the velocimetry algorithms using

images without significantly enhancing them for this purpose. How-

ever, previous studies have shown that applying various filtering oper-

ations can improve velocity estimates (e.g., Ljubiči�c et al., 2024),

suggesting that the results presented herein might be considered a

lower bound on the performance of the algorithms we evaluated.

2.2 | A two-dimensional, reach-scale
implementation of STIV

Like any image velocimetry algorithm, the fundamental input to our

new, 2D implementation of STIV is a video or sequence of images.

These data span a certain duration T and are captured at a specified

interval dt, yielding a stack of nf ¼ T=dt�1 image pairs at a frame rate

of 1=dt. To produce velocity estimates for a series of points along a

cross section, as in most previous applications of STIV, or within a grid

covering some larger region of interest encompassed by the image

sequence, as in this study, the same core analysis is performed for

each point in turn. For a given node, the other required inputs

for STIV are the ðx,yÞ image coordinates of the origin of a search line

along which pixel values are extracted from the image time series, the

length np of this search line in pixels, and an angle specifying

the direction of the search line. This angle is essentially an initial guess

for the primary flow direction at the current node and is denoted by

ϕ0. For typical, cross section-based STIV, ϕ0 is defined automatically

as perpendicular to the cross section. In general, however, ϕ0 will vary

spatially throughout a reach. In our two-dimensional implementation,

ϕ0 thus becomes a function of ðx,yÞ, but for brevity, we retain the

same notation ϕ0. For 2D-STIV, we obtain a plausible initial estimate

of the flow direction at any location along the channel by determining

the orientation of the centreline tangent vector at that streamwise

position. This analysis is based on the Legleiter and Kyriakidis (2006)

framework for converting from Cartesian ðx,yÞ to channel-centred

ðs,nÞ coordinates and involves digitizing the line, representing this line

as a series of cubic splines, and then using these polynomials to calcu-

late the tangent vector for each vertex along the centreline.

Once the origin ðx,yÞ, orientation ϕ0, and length np of a search

line are specified in this manner, the next step in the workflow is to

extract a space-time image (STI) along this line. To make this process

more efficient, we first establish a gridded interpolant for the original,

three-dimensional image sequence (i.e., a series of images stacked

over time). This algorithm is much faster than standard functions for

extracting pixel values along a profile and more flexible than direct

indexing into an array. This initial phase of the 2D-STIV algorithm is

illustrated in Figure 2a, which shows a simulated image of the Sacra-

mento River generated via SHIVER with a search line beginning at

ðx,yÞ¼ ð1400,1250Þ and extending roughly downstream (southeast in

this case, such that ϕ0 ¼160 ∘ ) over a distance of np ¼50 pixels. The

resulting STI is shown in Figure 2b, with time (i.e., image frame num-

ber) as the horizontal axis and space (i.e., distance along the search

line in units of pixels) as the vertical axis. This way of organizing the

STI follows Han et al. (2021) but is transposed relative to the conven-

tion followed by Fujita et al. (2007) and many other applications of

STIV. The representation adopted herein is more intuitive because

‘rise/run’ on the STI corresponds to units of velocity: space/time. In

this case, the advection of simulated particles over time (i.e., from

frame to frame) is depicted as white streaks steeply aligned from

lower left to upper right.

In essence, STIV infers the velocity of the flow driving the motion

of the water surface features captured in an STI by detecting streaks

like those shown in Figure 2b and quantifying their orientation. To

accentuate these streak lines and suppress background noise, the

original STI is typically filtered prior to STIV analysis. Several filtering

algorithms have been proposed (e.g., Fujita et al., 2020), but we found

a relatively simple standardization filter described by Fujita et al.

(2019) to be effective. The filter is applied independently to the rows

of the STI, each of which represents a spatial position along the search

F I GU R E 2 (a) Simulated image from the Sacramento River showing a search line oriented along the primary flow direction and the locations
of pixels extracted along this line from each image in a sequence to construct the space-time image (STI) shown in (b). [Color figure can be viewed

at wileyonlinelibrary.com]
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line, and involves subtracting the time average (i.e., row mean) from

each pixel and then dividing by the standard deviation of the pixel

values along that row. This procedure is basically a statistical z-score

transformation that serves to homogenize the distribution of image

intensities in the original STI by normalizing the pixel values along

each row to have a variance of 1.

One way to characterize the streaks evident in the resulting, fil-

tered STI is to calculate its autocorrelation function (ACF, Fujita et al.,

2019; Han et al., 2021), defined as

Rðτx,τtÞ¼
ð∞
�∞

ð∞
�∞

fðx,tÞfðxþ τx,tþ τtÞdxdt ð1Þ

where Rðτx,τtÞ is the ACF value for a spatial lag of τx and a time lag of

τt and fðx,tÞ is the grayscale pixel value at location ðx,tÞ in the filtered

STI. In general, the cross-correlation of two arrays can be calculated

as the convolution between the first array and the flipped version

of the second array, so we obtained ACF values by convolving the

filtered STI with the flipped version of itself. This algorithm is equiv-

alent to the more complex alternative described by Fujita et al.

(2019): calculating the ACF as the inverse Fourier transform of the

power spectral density function of the filtered STI via the Wiener–

Khinchin theorem (e.g., Krynkin et al., 2014). In any case, the ACF is

then scaled to ensure a value of 1 at the origin; by definition, the

correlation of any pixel in the STI with itself (i.e., when τx ¼0 and

τt ¼0) is 1:

R̂ðτx,τtÞ¼Rðτx,τtÞ=Rð0,0Þ ð2Þ

Finally, the ACF is cropped to focus only on the central portion,

beginning at the origin and extending in each direction by

minðnp=2,nf=2Þ. The original and cropped versions of the ACF calcu-

lated from the STI in Figure 2b are shown in Figure 3a and 3b,

respectively. The purpose of the ACF is to summarize the texture

present in the STI, with R̂ðτx,τtÞ taking on relatively large values for

combinations of the spatial and temporal lags τx and τt for which the

pixel intensities at ðx,tÞ and ðxþ τx,tþ τtÞ are similar. A high degree of

similarity (i.e., correlation) occurs for pairs of pixels that are aligned

along a streak, such that the highest values of R̂ðτx,τtÞ are concen-

trated within an elongated ellipse inclined at an angle relative to the

axes of the ACF. The correspondence between this tilted region of

strong correlation and the streak lines in the STI makes the ACF a use-

ful tool for detecting streaks and quantifying their primary orientation.

To make the relationship between the ACF and the angled streak

lines in the STI more explicit, we follow Han et al. (2021) and convert

the ACF from the Cartesian (τx,τt) coordinate system to a polar frame

of reference, (θ,ρ). This transformation is defined as

θ¼ tan�1ðτt=τxÞ ð3Þ

ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2x þ τ2t

q
ð4Þ

where the angle θ represents a direction in the ðτx,τtÞ space of the

original ACF and ρ denotes a radial distance from the origin along a

ray in that direction. The polar ACF R̂ðθ,ρÞ derived from the cropped

Cartesian ACF R̂ðτx,τtÞ in Figure 3b is shown in Figure 3c, with the

axes of the former plot representing lines of constant θ and contours

of ρ. Although the original ACF grid is regularly spaced in the ðτx,τtÞ
reference frame, the polar ACF in ðθ,ρÞ coordinates is irregular due to

the nonlinearity of the transformation given by Equations (3) and (4),

which dictates that the spacing between lines of constant θ increases

as ρ increases. To obtain values of R̂ðθ,ρÞ at constant, regular intervals
of θ and ρ, we set up a gridded interpolant of R̂ðτx,τtÞ, create a series

of rays emanating from the origin at an angular interval dθ, and then

query the interpolant at points spaced along each of these rays at a

radial interval dρ.

The angle θmax along which the correlation is greatest is related to

the orientation of the streak lines in the STI from which the ACF was

derived. To identify this angle, the polar ACF is integrated over ρ

along each ray of constant θ to obtain the area under the curve for a

profile across the ACF surface in that direction:

FðθÞ¼
ðρmax

0
R̂ðθ,ρÞdρ ð5Þ

where

ρmax ¼minðmaxðθxÞ,maxðθtÞÞ¼minðnp=2,nf=2Þ ð6Þ

FðθÞ is maximized for the angle θmax corresponding to the tilt of

the predominant streak lines in the STI (Han et al., 2021). The value of

θmax is then used to calculate the velocity magnitude U as

U¼ Sx
St

tanðθmaxÞ ð7Þ

F I GU R E 3 (a) Autocorrelation function (ACF) calculated from the space-time image (STI) shown in Figure 2b. (b) Cropped version of the ACF

shown in (a) to focus on the area near the origin. (c) ACF transformed to polar coordinates. [Color figure can be viewed at wileyonlinelibrary.com]
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where Sx is the size of an image pixel in meters and St ¼ dt is the

image capture interval in seconds (Fujita et al., 2019). This process is

illustrated in Figure 4. In the first panel, two example profiles across

the polar ACF surface along lines of constant θ are plotted: an arbi-

trarily selected value of 30 ∘ and the angle θmax that maximizes the

area under the curve (i.e., FðθÞ). Figure 4b shows how the radial inte-

gral FðθÞ varies as a function of θ over the full range from 0 ∘ to 180 ∘ ,

including the well-defined peak at θmax. This angle corresponds to the

orientation of the streak lines in the STI and can thus be used to cal-

culate the velocity magnitude via Equation (7). For the pixel size

(Sx ¼0:15 m) and capture interval (St ¼ dt¼0:25 s) used to simulate

the image sequence upon which this example is based, this calculation

leads to a plausible velocity estimate of 1.18 m/s.

The algorithm described so far is analogous if not equivalent to

previous implementations of STIV (e.g., Fujita et al., 2019) and is one-

dimensional, providing an estimate of the velocity magnitude along a

search line with a single, predefined orientation. To extend STIV to

two dimensions, we build upon previous work by Han et al. (2021)

and repeat the preceding analysis for a range of search lines, each

with a unique direction ϕ defined as an angle in the horizontal ðx,yÞ
plane. A separate STI is extracted along each of these lines and the

ACF calculations described above are then repeated for each STI. To

select the search line that corresponds to the primary flow direction,

we define the function pðϕÞ as the maximum value of FðθÞ over all

angles θ for a given search line orientation ϕ:

pðϕÞ¼max½FðθÞ�θ¼180 ∘

θ¼0 ∘ ð8Þ

The value of ϕ that yields the highest p, and thus the highest

velocity magnitude via Equation (7), is the flow direction for the

current search line origin. We implement this strategy for a given

node by radiating a collection of candidate search lines from the com-

mon origin located at ðx0,y0Þ at directions ranging from ϕ0�ϕr to

ϕ0þϕr in steps of dϕ, where ϕ0 is an initial estimate of the flow direc-

tion, ϕr specifies the range of directions to be considered, and dϕ

specifies the angular resolution. For example, to evaluate the entire

forward (i.e., downstream) hemisphere for a channel with a primary

flow direction of due south, ϕ0 would be 180 ∘ in the geographic con-

vention most often used by Earth scientists, which is equivalent to

�90 ∘ or 270 ∘ in the mathematical convention, and ϕr would be set

to 90 ∘ ; setting dϕ¼1 ∘ would provide a flow direction estimate to the

nearest degree. This process is illustrated in Figure 5a, which shows a

full set of 180 candidate search lines, each extending np pixels from

their shared origin represented by the green circle at ðx0,y0Þ but in a

distinct direction ϕ. The peak value pðϕÞ of the radial integral along

each of these search lines is plotted in Figure 5b. In this case, pðϕÞ is
maximized for a search line oriented at a mathematical angle of 265 ∘ ,

which is 5 ∘ to the west relative to the initial guess ϕ0 for the flow

direction.

To perform a full, reach-scale two-dimensional STIV analysis, this

process can be repeated at each node of a grid spanning some region

of interest captured by the image sequence. For each node, the search

line origin ðx0,y0Þ is defined as the centre of the grid cell and the initial

guess for the flow direction ϕ0 is given by the centreline tangent vec-

tor at that location. At this stage, our algorithm diverges into two bra-

nches: an exhaustive version that explicitly evaluates each one of a

specified set of candidate search lines and an optimization-based ver-

sion that identifies the flow direction which maximizes pðϕÞ. We refer

to the exhaustive and optimization-based algorithms as 2D-STIV-E

and 2D-STIV-O, respectively. Both of these functions take as input

the original image sequence, the ðx,yÞ coordinates of the grid nodes,

F I GU R E 4 (a) Autocorrelation function (ACF) profiles along two lines of constant angle θ, the latter of which is the angle θmax for which the
radial integral FðθÞ is maximized. (b) Radial integral values for all angles θ, with the two examples depicted in (a) indicated by point symbols. [Color
figure can be viewed at wileyonlinelibrary.com]
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an initial guess of the flow direction ϕ0 at each one of these nodes,

and the length np of the search line in pixels, along with the pixel size

and capture interval needed to scale the velocity magnitude estimates

via Equation (7). In addition, for 2D-STIV-E, the user must specify the

angular resolution dϕ and the range of directions ϕr to be considered,

as described above. Given these inputs, 2D-STIV-E is implemented

using a double for loop, with the outer loop over the nodes and the

inner loop over the candidate search line orientations for the current

node. The optimization algorithm is largely the same, but the inner

loop over the potential flow directions is replaced by a call to a mini-

mization algorithm (e.g., fminsearch in MATLAB MathWorks, 2024

or minimize_scalar in Python Python.org, 2024), which in turn

evaluates an objective function that returns the negative of pðϕÞ for a
given flow direction ϕ. Due to the negative sign, the lowest value of

the objective function corresponds to the highest value of pðϕÞ, and
the corresponding ϕ is taken to be the flow direction for the current

node. Both 2D-STIV-E and 2D-STIV-O yield the same type of output:

an estimate of the velocity magnitude U and flow direction ϕ for each

grid node. These results can be transformed to Cartesian vector com-

ponents u and v as follows:

u¼UcosðϕÞ ð9Þ

v¼UsinðϕÞ ð10Þ

The resulting velocity field can then be plotted, typically as a mag-

nitude (U) grid with ðu,vÞ vectors overlain to indicate flow direction.

2.3 | Particle image velocimetry (PIV) algorithms,
parameterization, and postprocessing

As an initial test of this new two-dimensional implementation of STIV,

we compared the exhaustive and optimization-based versions to one

another and to a pair of established PIV algorithms. The first,

per-frame pair PIV, is a cross-correlation-based algorithm developed

by Thielicke and Sonntag (2021) as part of the PIVlab software pack-

age. Per-frame pair PIV is implemented in the frequency domain using

a discrete Fourier transform and is applied to successive image pairs

throughout a sequence to yield a distinct velocity field for each time

increment. The resulting velocity estimates can then be time-averaged

over the entire duration to provide a single, mean velocity field, or

examined independently to quantify temporal variations in the flow

and characterize turbulence (e.g., Duan et al., 2023).

The second PIV algorithm we considered is an ensemble correla-

tion algorithm that is available within PIVlab and was recently adapted

for application to nadir-viewing river images as part of the Toolbox

for River Velocimetry using Images from Aircraft (TRiVIA Legleiter &

Kinzel, 2023b). The ensemble PIV algorithm is well-suited to situations

where the density of trackable features is low, but the flow can be

assumed steady over time. These conditions are often satisfied in riv-

ers, particularly if no artificial tracers are introduced and the duration

of the image sequence is on the order of one minute. Because the

ensemble PIV algorithm involves first calculating correlation matrices

for successive image pairs and then averaging these matrices before

applying a peak-finding algorithm, ensemble PIV can yield an

improved signal-to-noise ratio and thus more robust velocity esti-

mates than the original per-frame pair PIV algorithm (Thielicke &

Sonntag, 2021).

For both the per-frame pair and ensemble PIV algorithms, three

passes with successively smaller interrogation area (IA) sizes were per-

formed. The final IA size was set to 50 pixels for all three sites, with

the PIV step size set to half the IA. This parameterization led to a grid

spacing (i.e., distance between output velocity vectors) of 3.75, 0.92,

and 1.18 m for the Sacramento, Androscoggin, and North Santiam

Rivers, respectively. For consistency, we used the same grid spacing

for the 2D-STIV-E and 2D-STIV-O algorithms by setting the search

line length np to 50 pixels for all three sites. Velocity estimation grids

were generated by creating regularly spaced points with the specified

spacing and then retaining only those nodes located within a region of

F I GU R E 5 (a) Candidate search lines radiating from the common origin indicated by the green circle overlain on the original space-time image
(STI), each oriented in a distinct direction ϕ. (b) Evaluating the radial integral of the autocorrelation function (ACF) along each of these lines and
identifying the ϕ value for which the maximum of this integral is greatest provides an estimate of the flow direction. [Color figure can be viewed
at wileyonlinelibrary.com]
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interest digitized to encompass the wetted channel. For initial testing

and development of the 2D-STIV-E algorithm using simulated data

from the Sacramento River, we considered the full forward hemi-

sphere (i.e., ϕr ¼90 ∘ ), but for the UAS-based videos from the Andros-

coggin and North Santiam Rivers, we limited the range of directions

to ϕr ¼15 ∘ to reduce the computational burden. In all cases, the

angular resolution for 2D-STIV-E was set to dϕ¼1 ∘ . The image char-

acteristics and parameterization for all 12 combinations of site and

algorithm are summarized in Table 1.

To facilitate comparison across the four algorithms, we applied

the same postprocessing procedures to the initial velocity fields pro-

duced by each algorithm. This phase of the analysis involved filtering

the velocity estimates to exclude those with magnitudes below

0.1 m/s or above 5 m/s. Outliers were removed by discarding any

velocity estimates that were more than four standard deviations from

the global mean within the region of interest. More local filtering was

accomplished by removing any velocity estimates that were more

than 1.5 m/s above or below the median value within a 3�3 moving

window. All values rejected by these filtering operations were rep-

laced with NaNs (short for not a number and essentially serving as a

no data value). In addition, we applied the infilling and smoothing tools

available within PIVlab to the filtered velocity fields from all four

image velocimetry algorithms to produce the final output.

2.4 | Accuracy assessment and metrics for
comparison

We evaluated the performance of each velocimetry algorithm for each

test data set and enabled comparisons across the various study sites

and algorithms by calculating a series of metrics. For the simulated

data from the Sacramento River generated via SHIVER, we compared

image-derived velocity estimates to the known (modelled) flow field

throughout the entire simulated image domain. For the UAS-based

videos from the Androscoggin and North Santiam Rivers, velocities

inferred via the four image velocimetry algorithms were compared

with depth-averaged velocities measured in the field with an ADCP.

The image-derived velocity estimate at a given grid node was com-

pared with the mean of all ADCP measurements located within a

specified search radius of that node; the search radius was set to half

the grid node spacing. The following metrics were then calculated for

each combination of algorithm and site: observed (modelled

for SHIVER-generated data or measured with an ADCP for the UAS-

based videos) vs. predicted (via image velocimetry) (OP) regression R2,

normalized mean bias, and normalized root mean squared error

(RMSE). The latter two metrics quantified the accuracy and precision

of image-derived velocity estimates, respectively, and were calculated

as

NormalizedMean Bias¼

Pn
i¼1

vp,i�vm,i

� �
n �vm ð11Þ

Normalized RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

vp,i�vm,i

� �2s

n �vm ð12Þ

In these expressions, the subscript i denotes the ith velocity vec-

tor and serves to index different locations, vp,i is the velocity inferred

from the simulated image sequence or UAS-based video, vm,i is the

known velocity from the model run used as input to SHIVER or mea-

sured in the field with an ADCP, n is the total number of velocity vec-

tors being compared, and vm is the mean velocity from the flow model

or ADCP. Dividing by vm essentially scales the bias and RMSE so that

these metrics can be expressed as a proportion of the reach-averaged

mean velocity.

In addition, we also calculated three more advanced metrics that

provide information on the agreement between observed and

predicted velocities not only in terms of magnitude but also vector

orientation: the weighted relevance, weighted magnitude, and

T AB L E 1 Summary of image sequence characteristics and velocimetry algorithm parameterization for all 12 combinations of site and
algorithm.

Site Pixel size (m) Algorithm

Frame

rate (Hz) Frames

Grid spacing

(pixels)

Grid

nodes Parameters

Sacramento 0.15 2D-STIV exhaustive 4 240 25 3247 np ¼50,ϕr ¼90 ∘ ,dϕ¼1 ∘

2D-STIV optimization 4 240 25 3247 np ¼ 50

Per-frame pair PIV 4 240 25 3225 IA = 50

Ensemble PIV 1 60 25 3237 IA = 50

Androscoggin 0.037 2D-STIV exhaustive 24 240 25 9096 np ¼50,ϕr ¼15 ∘ ,dϕ¼1 ∘

2D-STIV optimization 24 240 25 9096 np ¼ 50

Per-frame pair PIV 24 240 25 8890 IA = 50

Ensemble PIV 1 90 25 9107 IA = 50

North Santiam 0.047 2D-STIV exhaustive 30 900 25 2990 np ¼50,ϕr ¼15 ∘ ,dϕ¼1 ∘

2D-STIV optimization 30 900 25 2990 np ¼ 50

Per-frame pair PIV 30 900 25 2987 IA = 50

Ensemble PIV 1 31 25 2998 IA = 50

Abbreviations: ϕr , range of angles considered; dϕ, angular resolution; 2D-STIV, two-dimensional space-time image velocimetry; IA, interrogation area used

in PIV; np is the search line length; PIV, particle image velocimetry.
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combined magnitude and relevance indices. These metrics are

described in greater detail by Willman et al. (2020) and Legleiter et al.

(2023) and were calculated using a module from TRiVIA (Legleiter &

Kinzel, 2023b). Briefly, the weighted relevance index (WRI) quantifies

the degree of alignment between two sets of vectors, with greater

weight given to higher velocities. If the observed and predicted vec-

tors were perfectly aligned, the WRI would be 0, whereas a WRI of

0.5 would indicate a 90 ∘ misalignment. Similarly, the weighted magni-

tude index (WMI) quantifies the agreement between two velocity

fields solely in terms of magnitude by dividing the difference in vector

magnitude at a given location by the median of all the magnitudes in

either version of the velocity field. Two vectors with the same magni-

tude yield a WMI of 0 and vectors that differ greatly in magnitude

lead to WMI > 1. Finally, because a strong agreement between veloc-

ity fields in terms of orientation does not guarantee a good agreement

in terms of magnitude and vice versa, the combined magnitude and

relevance index (CMRI) summarizes the two criteria as the average of

the WRI and WMI. Calculating these three metrics leads to distribu-

tions of index values that can be summarized via histograms and maps

that highlight spatial variations in the level of agreement between

observed and predicted velocities (Legleiter et al., 2023; Legleiter &

Kinzel, 2023b). In addition, we recorded the total computational run

time for each combination of site and algorithm and calculated the

run time per velocity estimation node to facilitate comparison.

3 | RESULTS

In this section, we first present results from each site, including the

velocity fields produced by the four image velocimetry algorithms

(exhaustive and optimization-based 2D-STIV and per-frame pair and

ensemble PIV) and assessments of their accuracy. For each site, the

image-derived velocity fields are displayed as grids coloured by magni-

tude with vectors overlain to indicate flow direction, both at the reach

scale and as zoomed-in subsets at the locations indicated by the red

boxes in Figure 1. The accuracy assessment figure for each site con-

sists of a plot of the observed (modelled or measured) versus

predicted (image-derived) velocities with the OP regression line

shown in blue and the one-to-one line of perfect agreement dashed in

black. The middle and right columns of these figures present histo-

grams and maps of the WRI, the metric we used to quantify the level

of agreement between the flow directions inferred from the images

and those modelled via SHIVER or measured in the field with an

ADCP. The WRI ranges from 0 to 0.5, with 0 indicating perfectly

aligned vectors and a value of 0.5 implying that the vectors are per-

pendicular to one another. Finally, in Section 5, we synthesize results

across the three sites and four image velocimetry algorithms we eval-

uated in both tabular and graphical form.

3.1 | Image velocimetry based on simulated data
from the Sacramento River

As a starting point for developing a new reach-scale, two-dimensional

implementation of STIV, we used the SHIVER framework to generate

a plausible sequence of images for a reach of the Sacramento River.

Because the flow field leading to this simulated image sequence was

based on a hydrodynamic model, the velocity estimates derived from

both the new 2D-STIV algorithms and existing PIV algorithms could

be compared directly to the known velocities throughout the reach.

This approach allowed us to verify the performance of the

velocimetry algorithms by evaluating their ability to reproduce

the modelled flow field. The velocity magnitude grids shown in

Figure 6 are all very similar to one another, essentially indistinguish-

able when plotted at the reach scale or when zoomed in. All four algo-

rithms capture the general structure of the flow through this gentle

meander bend, with higher velocities at the upper end of the study

area and along the outer bank and slower flow over the point bar and

toward the lower end of the reach.

Accuracy assessment of these flow fields via comparison to the

known (modelled) velocities also led to consistent results across

the four algorithms, as summarized in Figure 7. Agreement between

observed and predicted velocities was very strong for all four algo-

rithms, with R2 > 0:97 for both 2D-STIV implementations and for the

ensemble PIV algorithm. The correspondence between modelled and

image-derived velocities was slightly weaker for the per-frame pair

PIV algorithm, with an R2 of 0.931. All four algorithms yielded velocity

estimates that were essentially unbiased, with normalized mean bias

values on the order of �0.01 m/s, with the negative sign indicating a

slight tendency to underpredict velocity magnitudes relative to the

flow model. The estimates were also highly precise, with normalized

RMSE values ranging from 0.03 m/s for both 2D-STIV algorithms and

ensemble PIV to 0.05 m/s for per-frame pair PIV. Moreover, the WRI

histograms in Figure 7 indicate that the vast majority of the image-

derived vectors are closely aligned with those from the hydrodynamic

model. The WRI maps show that nearly all vectors throughout the

study area had WRI values near 0. The only exception, which is

obscured when plotted at this scale, is at the entrance to the reach,

where edge effects might lead to some discrepancies in flow direction.

Overall, these results indicate that the new 2D-STIV algorithms were

capable of taking a series of simplified, simulated images as input and

reproducing the known flow field upon which the simulations were

based. In addition, the accuracy of both the exhaustive and

optimization-based 2D-STIV implementations was comparable to that

of two established PIV algorithms.

3.2 | Image velocimetry based on aerial video from
the Androscoggin River

As an initial test of the new 2D-STIV algorithms using real-world data,

we applied both the exhaustive and optimization-based versions to

video acquired from the Androscoggin River via UAS. Our study area

was located immediately below a waterfall that introduced distinct

streaks of foam and froth to the river downstream (Figure 1b). We

hypothesized that these conditions would facilitate image velocimetry

by serving as natural tracers, expressed as variations in image bright-

ness, that could be detected and tracked by the various algorithms.

The velocity fields generated via the exhaustive and optimization-

based 2D-STIV algorithms and the per-frame pair and ensemble ver-

sions of PIV are shown in Figure 8, which highlights some important

differences among the four algorithms.

The new 2D-STIV algorithm led to reasonable velocity estimates

for much of the reach but also featured patches with irregular vectors,
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F I GU R E 6 Velocity fields inferred from simulated image data from the Sacramento River using four different image velocimetry algorithms:
(a) the exhaustive implementation of two-dimensional space-time image velocimetry (2D-STIV); (b) the optimization-based implementation of 2D-
STIV; (c) per-frame pair particle image velocimetry (PIV); and (d) ensemble PIV. The red boxes in the upper panels indicate the location of the
zoomed subsets in the lower panel and are the same for all four algorithms. [Color figure can be viewed at wileyonlinelibrary.com]

F I GU R E 7 Observed (modelled) versus predicted (image-derived) regression results and histograms and maps of the weighted relevance
index for simulated image data from the Sacramento River using four different image velocimetry algorithms: (a) the exhaustive implementation
of two-dimensional space-time image velocimetry (2D-STIV-E); (b) the optimization-based implementation of 2D-STIV-O; (c) per-frame pair
particle image velocimetry (PIV); and (d) ensemble PIV. [Color figure can be viewed at wileyonlinelibrary.com]
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such as those highlighted in the zoom subsets on the right side of

Figure 8a and b. These noisy areas might have occurred where the

foam patterns were not well-defined or were highly variable over

time. Another plausible explanation could be that the local flow direc-

tion was not within the ϕr ¼�15 ∘ tolerance of the centreline tangent

vector we used as an initial estimate of ϕ0 for the exhaustive 2D-STIV

implementation, which might have prevented the algorithm from pro-

ducing reliable velocity estimates in these areas. Optimization-based

2D-STIV led to even noisier patterns in these locations because the

parameter space searched by the algorithm encompassed the full

range of flow directions. In fact, inspection of the zoom subsets in

Figure 8a and b indicates that 2D-STIV-O yielded a markedly more

erratic velocity field, with greater variation in both the magnitude and

orientation of vectors. Imposing a constraint on the range of flow

directions considered by 2D-STIV-E prevented this version of the

algorithm from producing such irregular vector orientations but could

also preclude the algorithm from capturing more complex flow pat-

terns with local deviations from the general downstream direction.

In contrast, the image-derived velocity fields produced by the PIV

algorithms, shown in Figure 8c and d, had less localized noise. How-

ever, the per-frame pair PIV algorithm produced a velocity field that

was much more variable than that generated via ensemble PIV, even

when the initial per-frame pair output was time-averaged over

240 frames (10 s). At the scale of the entire image, the velocity field

generated via per-frame pair PIV is patchy and irregular, with areas of

very low velocity along the channel margins juxtaposed against iso-

lated pockets of faster flow. Although a clear thalweg is evident, even

in the centre of the channel the main flow is interrupted by elongated

streaks of low velocity. These flow patterns could be an accurate

reflection of nonstationary, turbulent conditions, but the macroscopic

impression given by Figure 8c is a lack of organization. The output

from the ensemble PIV algorithm, however, is smoother and more

F I GU R E 8 Velocity fields inferred from aerial video from the Androscoggin River using four different image velocimetry algorithms: (a) the
exhaustive implementation of two-dimensional space-time image velocimetry (2D-STIV); (b) the optimization-based implementation of 2D-STIV;
(c) per-frame pair particle image velocimetry (PIV); and (d) ensemble PIV. The red boxes in the panels in the left column indicate the location of
the zoomed subsets in the right column and are the same for all four algorithms. [Color figure can be viewed at wileyonlinelibrary.com]
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coherent, with a well-defined thalweg and a more gradual transition

to lower velocities along the banks. Performing PIV in three passes

allowed larger-scale streamwise advection to be captured effectively

by the initial passes with relatively coarse IAs before stepping down

to progressively smaller IA sizes. The difference between the two PIV

algorithms is quite pronounced in the zoom subsets, where the per-

frame pair PIV-derived velocity field features an abrupt, localized low

velocity zone that is absent from the ensemble PIV results. The aver-

aging of correlation matrices by the latter algorithm led to a smoother

representation of the time-averaged velocity field. Previous research

also showed that image sequence duration had minimal impact on the

accuracy of velocity estimates inferred via ensemble PIV (Legleiter &

Kinzel, 2024). This coherence comes at the expense of temporal

detail, however, and the ensemble algorithm cannot resolve higher-

frequency fluctuations that might be captured by the per-frame pair

algorithm and could be of primary interest for certain applications

concerned with turbulence (e.g., Duan et al., 2023).

To quantitatively assess the accuracy of the four algorithms, we

compared image-derived velocity estimates to direct field measure-

ments of depth-averaged flow velocity made with an ADCP along the

transect shown in Figure 1b, in which the example video frame was

transposed for display. The results of this analysis are summarized in

Figure 9, which represents the full width of the cross

section measured with an ADCP in the field. Because we were not

attempting to calculate discharge, we did not extrapolate the ADCP

data or the image-derived velocity estimates to the edges of the wet-

ted channel. For the 2D-STIV algorithms, the OP regressions were

similar but with stronger agreement between image-derived and field-

measured velocities for the exhaustive implementation than for the

optimization-based version. Both algorithms tended to overpredict

the ADCP data, with normalized mean bias values of 0.247 and 0.195

for 2D-STIV-E and 2D-STIV-O, respectively. Because we did not

attempt to convert image-derived velocities to depth-averaged veloci-

ties by using a measured or assumed α coefficient (Biggs et al., 2023),

these overpredictions were expected. The presence of both low and

high outliers for the latter algorithm led to a slightly higher normalized

RMSE of 0.290. A more significant distinction between the exhaustive

and optimization-based 2D-STIV algorithms was their level of agree-

ment with field observations in terms of flow direction. The WRI his-

tograms in Figure 9a and b have different scales, which indicate that

although both algorithms yielded vectors that were well-aligned with

the field data, 2D-STIV-O led to a longer tail of large WRI values

F I GU R E 9 Observed versus predicted (image-derived) regression results and histograms and maps of the weighted relevance index for aerial
video from the Androscoggin River using four different image velocimetry algorithms: (a) the exhaustive implementation of two-dimensional
space-time image velocimetry (2D-STIV-E); (b) the optimization-based implementation of 2D-STIV-O; (c) per-frame pair particle image
velocimetry (PIV); and (d) ensemble PIV. [Color figure can be viewed at wileyonlinelibrary.com]
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representing greater misalignment. The WRI maps suggest that the

spatial pattern of flow direction error was similar for the two algo-

rithms, with the largest discrepancies occurring at one point in the

centre of the channel and on the left side of the maps, which corre-

sponds to the right bank when facing downstream.

Performance differed substantially between the two PIV algo-

rithms, with the ensemble algorithm yielding velocity estimates that

were much more accurate than those produced on a per-frame pair

basis. The regression plot in Figure 9c features two pronounced hori-

zontal bands that represent points along the ADCP transect where

the velocities measured in the field varied considerably while those

inferred from the video remained relatively constant at about 1 and

1.5 m/s. This discrepancy reduced the overall correspondence and led

to a modest OP R2 of 0.505. The ensemble PIV algorithm, in contrast,

yielded a much stronger relationship between image-derived velocity

magnitudes and ADCP measurements, with an OP R2 of 0.864. Veloc-

ities tended to be overestimated, with a normalized bias of 0.239, but

this could be a consequence of comparing surface velocities derived

from the video to depth-averaged velocities calculated from the

ADCP data without applying any kind of velocity index as a correction

(Biggs et al., 2023). The per-frame pair PIV algorithm also led to less

reliable estimates of flow direction, as indicated by the longer tail of

high WRI values in Figure 9c than in 9d and a median WRI value over

twice as large: 0.0011 for the per-frame pair algorithm versus 0.0005

for the ensemble algorithm. The spatial pattern of flow direction

errors were similar for the two PIV algorithms but differed from the

2D-STIV algorithms, with the greatest discrepancies occurring on the

right side of the maps for PIV, rather than on the left as for 2D-STIV.

3.3 | Image velocimetry based on aerial video from
the North Santiam River

The data set from the second natural river we examined, the North

Santiam, presented a more stringent test of the image velocimetry

algorithms. Whereas the simulated data from the Sacramento

F I GU R E 1 0 Velocity fields inferred from aerial video from the North Santiam River using four different image velocimetry algorithms: (a) the
exhaustive implementation of two-dimensional space-time image velocimetry (2D-STIV); (b) the optimization-based implementation of 2D-STIV;
(c) per-frame pair particle image velocimetry (PIV); and (d) ensemble PIV. The red boxes in the panels in the left column indicate the location of

the zoomed subsets in the right column and are the same for all four algorithms. [Color figure can be viewed at wileyonlinelibrary.com]
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consisted of idealized, spherical particles and the Androscoggin video

featured distinct streaks of foam and froth, the North Santiam did not

contain any obvious tracers, only rippled patterns of reflectance from

the water surface. Although the advection of these textures was evi-

dent to the human eye when playing the video, the ability of the algo-

rithms to detect such subtle motion remained uncertain. Velocity fields

inferred from the North Santiam video using the new 2D-STIV and

existing PIV algorithms are depicted in Figure 10. Relative to the exam-

ple frame shown in Figure 1c, which was transposed for display, these

velocity fields are rotated, with flow toward the left in Figure 10

corresponding with flow toward the bottom of Figure 1c. The velocity

grids were also truncated to exclude the area of very bright sun glint

that saturated the lower portion of the original images.

Qualitatively, the two versions of the new 2D-STIV algorithm

yielded similar velocity fields, both when viewed at the reach scale

and when zoomed in on a smaller subset (Figure 10a,b). The output

from both algorithms became more patchy at the lower (left) end of

the domain, where intense sun glint might have led to space-time

images that lacked coherent streak lines, at least for the 50-pixel sea-

rch lines we evaluated. The 2D-STIV algorithms captured the higher

velocities at the upper (right) end of the reach but were erratic

through the middle of the study area. The greater variation in flow

direction resulting from the optimization-based algorithm was evident

in Figure 10b, whereas constraining the range of search line orienta-

tions considered by the exhaustive implementation led to more uni-

form vectors (Figure 10a).

The two PIV algorithms yielded much smoother, more coherent

velocity fields, particularly for the per-frame pair algorithm (Figure 10c).

Neither of the PIV algorithms led to patchy output at the lower end of

the reach where sun glint caused problems for 2D-STIV. In contrast to

the Androscoggin, the per-frame pair version of PIV led to a more

coherent velocity field than the ensemble algorithm, with the latter

yielding a more irregular pattern of velocities with an abrupt transition

from very low velocities spanning the full channel width at the upper

end of the reach to much higher velocities in the middle of the study

site. The thalweg in this area is also broader for the ensemble PIV-

derived velocity field, as illustrated by the higher velocities at the top of

the zoom subset for the ensemble PIV algorithm (Figure 10d) than for

the per-frame pair algorithm (Figure 10c). These differences between

PIV algorithms could be a consequence of temporally nonstationary

image texture that affected velocity estimates less when they were

computed as the time average of instantaneous velocity fields, as in the

per-frame pair algorithm, than when the correlation matrices were

averaged prior to peak finding, as in the ensemble algorithm.

Quantitative analysis of the four image-derived velocity fields

based on comparisons to ADCP data collected along the transect

shown in Figure 1c indicated that image velocimetry could still yield

reasonably accurate velocity estimates even in the absence of discrete

particles or obvious patterns like those present in the other two test

data sets we examined. Accuracy assessment of the output from 2D-

STIV-E revealed very poor agreement between image-derived and

field-measured velocities, with the latter scattered about 1.5 m/s

across a range of measured velocities from nearly 0 up to 2 m/s

(Figure 11a). The reason for this poor performance is not immediately

apparent but could be a consequence of the restricted range of search

line orientations to which we constrained the exhaustive algorithm.

The optimization-based 2D-STIV algorithm, in contrast, yielded a

much stronger relationship between image-derived and field-

measured velocities, with an OP R2 of 0.755, but with a tendency to

overpredict velocities that was more pronounced in the slower areas

of the flow. The two PIV algorithms led to similar levels of agreement

with ADCP measurements, with OP R2 values of 0.730 and 0.781 for

the per-frame pair and ensemble implementations, respectively. Both

algorithms tended to overpredict velocities, with normalized mean

bias values of 0.325 and 0.491 that might result from comparing sur-

face velocities to depth-averaged velocities. In terms of vector align-

ment, the two PIV algorithms had similar WRI values that were much

smaller than those from the optimization-based 2D-STIV algorithm.

For all four algorithms, the largest WRI values were concentrated in a

zone toward the upper left of the maps in Figure 11, which corre-

sponds to the right bank when facing downstream. The ADCP data

and video footage both indicate that flow in this area is very slow or

even recirculating back upstream, so the inability of the image

velocimetry algorithms to capture these complex flow patterns was

not unexpected.

3.4 | Synthesis and comparison of results across
sites and algorithms

The accuracy assessments described on a site-by-site basis in the pre-

ceding subsections are represented graphically in Figure 12 as a series

of bar charts grouped by site, with the four image velocimetry algo-

rithms distinguished by bar colour. These results are also aggregated

and summarized in Table 2. The metrics reported include measures of

the agreement between the velocity magnitudes estimated from simu-

lated or UAS-based image sequences and those predicted by the

hydrodynamic model or measured in the field: OP regression R2, nor-

malized bias, and normalized RMSE. A set of more advanced metrics

(WRI, WMI, and CMRI) provided information on the correspondence

between image-derived flow directions and the orientations of the

modelled or measured velocity vectors; we summarized distributions

of these metrics using the median. Finally, we provide a relative mea-

sure of the computational burden associated with each algorithm by

reporting the run time per grid node.

The reliability of image-derived velocity estimates was greatest

for the simulated data set from the Sacramento River, which consisted

of highly idealized, spherical particles advected by a simple, modelled

flow field. For this site, all four algorithms led to high OP R2 values,

ranging from 0.931 for per-frame pair PIV to 0.976 for ensemble PIV,

and small, negative normalized biases of less than 1% of the mean

flow velocity for the reach. Velocity estimates were also highly pre-

cise, with normalized RMSE values ranging from 3% to 5%. Metrics

based on both magnitude and direction also indicated that the image-

derived and modelled velocity vectors were consistently well aligned.

Differences among the four algorithms were negligible for this site,

providing confirmation that the new 2D-STIV algorithms were capable

of reproducing a simple, known flow field with a level of fidelity simi-

lar to that of more established PIV algorithms.

The performance of all four algorithms was not as strong for the

two natural rivers, with the metrics for the Androscoggin generally

superior to those from the North Santiam. For both sites, the ensem-

ble PIV algorithm led to the highest OP regression R2, with the per-

frame pair algorithm leading to a value nearly as high for the North
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Santiam but substantially lower for the Androscoggin. Results from

the 2D-STIV algorithms were more variable, ranging from highly reli-

able when the exhaustive implementation was applied to the Andros-

coggin to essentially uninformative when the same algorithm was

used on the North Santiam. The metrics based on vector orientation

also varied as a function of both site and algorithm, with higher values

of the median WRI for the optimization-based version of 2D-STIV

indicating a greater tendency to produce vectors that were not well-

aligned with the ADCP observations. Because the exhaustive 2D-STIV

algorithm was constrained to a �15 ∘ tolerance about the initial esti-

mate of flow direction, the image-derived velocity vectors were, by

construction, less variable. Imposing such constraints would also pre-

clude 2D-STIV-E from detecting more complex two-dimensional flow

patterns, however.

Finally, the computational cost of the various image velocimetry

algorithms followed a consistent trend across the three test data sets.

As the name implies, the exhaustive implementation of the 2D-STIV

algorithm required the longest run times on a per-node basis, whereas

the optimization-based 2D-STIV algorithm was relatively efficient

even though all possible flow directions were considered. The selec-

tion of a 2D-STIV algorithm might thus entail a trade-off between

reliability and speed. The most computationally efficient PIV algorithm

was the ensemble algorithm, which involved averaging correlation

matrices prior to peak finding. Although run times were longer when

the PIV was performed on a per-frame pair basis, the per-frame pair

PIV algorithm was capable of providing temporally detailed informa-

tion on turbulence and unsteady flow conditions that would be

obscured by ensemble PIV. The greatest run times for this study were

for the exhaustive 2D-STIV and per-frame pair PIV algorithms for the

North Santiam, where 900 frames at 30 Hz were provided as input to

maximize the amount of data available to support inference of flow

velocities from subtle patterns of water surface reflectance.

4 | DISCUSSION

In Section 2.2, we introduced a new, two-dimensional implementation

of STIV that generalizes the original one-dimensional algorithm for

reach-scale mapping of complex velocity fields in natural channels.

Section 3 then presented results from the application of two different

versions of the new 2D-STIV algorithm to three different test data

sets and compared their performance to that of two established PIV

F I GU R E 1 1 Observed versus predicted (image-derived) regression results and histograms and maps of the weighted relevance index for
aerial video from the North Santiam River using four different image velocimetry algorithms: (a) the exhaustive implementation of two-
dimensional space-time image velocimetry (2D-STIV-E); (b) the optimization-based implementation of 2D-STIV-O; (c) per-frame pair particle
image velocimetry (PIV); and (d) ensemble PIV. [Color figure can be viewed at wileyonlinelibrary.com]
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algorithms. Here, we begin by providing some guidance for collecting

data suitable for 2D-STIV and for parameterizing the algorithm

appropriately. We then contrast the advantages and disadvantages of

2D-STIV and PIV relative to one another and discuss how these algo-

rithms might help advance river image velocimetry.

4.1 | Guidance for data collection and 2D-STIV
parameterization

Like any algorithm, effective use of the 2D-STIV workflow requires

both careful planning prior to data collection and thoughtful

parameterization of the algorithm. More specifically, given the range

of velocities present in the river of interest, one must select a pixel

size and image capture interval (i.e., frame rate) that will allow for reli-

able characterization of the flow field via remote sensing. To help

potential users of these algorithms develop some intuition for how to

acquire and then analyse image time series for velocity mapping, we

focus on three key variables: the size of the pixels making up an

image, the rate at which the images are captured, and the velocity of

the flow itself. The latter is imposed for a given channel, so our objec-

tive herein is to provide guidance for selecting a pixel size and capture

interval likely to yield velocity estimates that are accurate and as pre-

cise as possible. A theoretical result from Fujita et al. (2019) is useful

(a) Observed vs. predicted R2

Sacramento-simulated Androscoggin North Santiam
0

0.2

0.4

0.6

0.8

1
(b) Normalized bias

Sacramento-simulated Androscoggin North Santiam
-0.2

0

0.2

0.4

0.6

0.8

1

(c) Normalized Root Mean Squared Error

Sacramento-simulated Androscoggin North Santiam
0

0.2

0.4

0.6

0.8

1

1.2
(d) Median Weighted Relevance Index

Sacramento-simulated Androscoggin North Santiam
0

0.01

0.02

0.03

0.04

(e) Median Weighted Magnitude Index

Sacramento-simulated Androscoggin North Santiam
0

0.1

0.2

0.3

0.4

0.5
(f) Median Combined Magnitude and Relevance Index

Sacramento-simulated Androscoggin North Santiam
0

0.05

0.1

0.15

0.2

0.25

(g) Run time (s/node)

Sacramento-simulated Androscoggin North Santiam
0

0.2

0.4

0.6

0.8

1
2D-STIV-Exhaustive

2D-STIV-Optimization

Per-frame pair PIV

Ensemble PIV

F I GU R E 1 2 Comparison of metrics across the four different image velocimetry algorithms for each site. 2D-STIV, two-dimensional space-
time image velocimetry; PIV, particle image velocimetry. [Color figure can be viewed at wileyonlinelibrary.com]
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in this context: the velocity estimation error is minimized when the

streak lines on an STI have an angle θ of 45�. This angle corresponds

to a ‘rise’ of 1 and a ‘run’ of 1 on an STI, such that tanðθÞ = 1. In

other words, a hypothetical, discrete, single-pixel size particle would

move by a distance of 1 pixel in the time period between image

frames. We can use this line of thinking to calculate an appropriate

capture interval St given a velocity U and pixel size Sx. For example,

for a typical flow velocity of 1 m/s and a pixel size of 0.05 m, similar

to that of our UAS-based videos from the Androscoggin and North

Santiam Rivers, the ideal capture interval leading to θ = 45� would be

St ¼ Sx=U = [0.05 m]/[1 m/s] = 0.05 s, or a frame rate of 20 Hz.

We extend this reasoning to a range of different scenarios in

Figure 13, in which idealized single-particle STIs are abstracted as

lines and plotted as trajectories with time in frames on the horizontal

axis and space (i.e., distance traversed along the search line) in units of

pixels on the vertical axis. Each line colour represents a distinct flow

velocity and the four panels depict different combinations of pixel size

and capture interval. As flow velocity increases from the trivial case of

0 m/s, when the particle is not moving and thus remains at the search

line origin over the entire time period, up to 2 m/s, the STI lines

become steeper because the particle covers a greater distance (num-

ber of pixels) in the same amount of time (number of frames). Also

note that as the velocity increases, the search lines for velocities sepa-

rated by a fixed increment of 0.25 m/s become closer together and

the difference in streak angle decreases. For example, the difference

in angle between the 0.25 and 0.5 m/s lines is much greater (18.4�)

than that between the 1.75 and 2 m/s lines (<1�). This analysis illus-

trates why, for a given combination of Sx and St, measurement preci-

sion, which is essentially the ability to resolve a given difference in

velocity, is greatest for low velocities and deteriorates as the flow

becomes faster.

However, comparison of Figure 13a and b indicates that preci-

sion can be enhanced by reducing the capture interval, which is

equivalent to increasing the frame rate. If U and Sx are held constant,

halving St from 0.2 s in Figure 13a to 0.1 s in Figure 13b, causes each

of the STI lines to ‘lay down’, thus reducing θ for a given U such that

the ideal streak angle of 45� corresponds to a velocity of 0.5 m/s

rather than 0.25 m/s. Also note that the separation between lines

representing 0.25 m/s intervals of U is greater in Figure 13b than in

Figure 13a, indicating that the precision of velocity estimates is

greater for the smaller capture interval. If we were to instead increase

Sx from 0.05 to 0.1m while holding St constant at 0.2 s (comparing

Figure 13a and c), the STI lines would also lay down and reduce θ for

a given U. Because halving the capture interval and doubling the pixel

size have the same net effect on the STI lines, Figure 13b and c are

identical. If we were to both halve St and double Sx relative to the

base case represented in Figure 13a, we would arrive at Figure 13d, in

which the STI lines lay down even more, such that the ideal streak

angle of 45� corresponds to a velocity of 1 m/s and the ability to

resolve differences in velocity magnitude on the order of 0.25 m/s is

further enhanced.

For airborne image acquisition, particularly via UAS, where the

flying height and thus pixel size can be easily adjusted, calculations of

this kind can help direct flight planning. Typical video cameras are

capable of frame rates of 24–30 Hz, so the capture interval can be

modified by skipping frames to obtain a value of St that will lead to

STI streak angles near 45�, given the image pixel size Sx, for the major-

ity of the velocities present in the channel of interest. The trade-offs

involved in adjusting either Sx or St while holding the other fixed are

illustrated in Figure 14 for a constant representative flow velocity of

1 m/s. In the first panel, the pixel size is fixed at 0.05m while the cap-

ture interval varies from 0.05 to 0.5 s in increments of 0.05 s,

corresponding to frame rates from 20 to 2Hz and represented by dif-

ferent coloured lines. Increasing the capture interval (i.e., reducing the

frame rate) makes the STI lines ‘stand up’ straighter as θ increases.

For the shortest capture interval of 0.05 s, Sx ¼ St and the ideal θ of

45� is achieved, but as St increases, the STI lines in Figure 14a become

closer together and measurement precision deteriorates. This analysis

highlights the importance of capturing image sequences at a suffi-

ciently high frame rate to enable small differences in velocity to be

resolved. The second panel in Figure 14 illustrates the effect of vary-

ing pixel size while holding the capture interval constant at 0.1 s, also

for a fixed U of 1 m/s. As Sx increases from 0.05 to 0.5 m, the STI lines

lay down as θ decreases, passing through the ideal 45� for Sx = 0.1 m.

In this case, the separation between STI lines representing Sx

increments of 0.05m decreases as Sx increases, indicating that

T AB L E 2 Summary of image velocimetry results for all 12 combinations of site and algorithm.

Site Algorithm Obs. vs. pred. R2 Norm. bias Norm. RMSE WRI50 WMI50 CMRI50 Run time (s/node)

Sacramento 2D-STIV exhaustive 0.974 �0.010 0.030 0.0001 0.0166 0.0084 0.551

(simulated) 2D-STIV optimization 0.974 �0.013 0.030 0.0001 0.0187 0.0094 0.033

Per-frame pair PIV 0.931 �0.009 0.053 0 0.0081 0.0041 0.276

Ensemble PIV 0.976 �0.002 0.031 0 0.0097 0.0048 0.095

Androscoggin 2D-STIV exhaustive 0.864 0.247 0.289 0.0006 0.1927 0.0981 0.331

2D-STIV optimization 0.774 0.195 0.290 0.0007 0.1821 0.0927 0.095

Per-frame pair PIV 0.505 0.150 0.333 0.0011 0.1494 0.0773 0.109

Ensemble PIV 0.866 0.240 0.275 0.0005 0.1846 0.0933 0.062

North Santiam 2D-STIV exhaustive 0.029 0.842 1.146 0.0089 0.3209 0.1618 0.903

2D-STIV optimization 0.755 0.516 0.641 0.0345 0.3839 0.2426 0.345

Per-frame pair PIV 0.730 0.325 0.491 0.0054 0.3472 0.1782 0.422

Ensemble PIV 0.781 0.491 0.699 0.0041 0.4714 0.2375 0.062

Abbreviations: 2D-STIV, two-dimensional space-time image velocimetry; CMRI50, median combined magnitude and relevance index; Norm., normalized;

Obs., observed; PIV, particle image velocimetry; Pred., predicted; WMI50, median weighted magnitude index; WRI50, median weighted relevance index.

LEGLEITER ET AL. 3109



measurement precision is degraded for coarser pixel sizes. This

thought exercise points to the need to acquire images with suffi-

ciently small pixels to distinguish among similar velocities via STIV.

Although this paper focuses on the new 2D-STIV algorithm, the pre-

ceding discussion pertains to any application of STIV, including the

original one-dimensional formulation.

4.2 | 2D-STIV, PIV and potential advances in
image velocimetry

As summarized briefly in Section 1, image-based algorithms for esti-

mating flow velocities are increasingly used by researchers and man-

agers across the river community. This growth continues to be

fostered by the development of new algorithms and the incorporation

of these algorithms into accessible software tools. In this study, we

contributed to this trend by building upon the work of Han et al.

(2021) to introduce a new, two-dimensional extension of the popular

STIV framework first described by Fujita et al. (2007). We presented

two different versions of the 2D-STIV algorithm and compared their

output to that from two different variants of PIV. Based on our appli-

cation of these algorithms to three different test data sets, we can

make some tentative statements regarding the relative strengths and

weaknesses of 2D-STIV and PIV that could help potential users select

an algorithm appropriate for the problem at hand.

The results of this study suggest that the 2D-STIV and PIV algo-

rithms produce similar levels of agreement between the velocities

derived from images and those predicted by the hydrodynamic model

or measured in the field (Figure 12). An important distinction between

2D-STIV and PIV is that the former requires a higher frame rate and
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(a) STI lines for different velocities
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(b) STI lines for different velocities
pixel size = 0.05 m, capture interval = 0.1 s
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(c) STI lines for different velocities
pixel size = 0.1 m, capture interval = 0.2 s
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(d) STI lines for different velocities

pixel size = 0.1 m, capture interval = 0.1 s

F I GU R E 1 3 Space-time image (STI) lines for different flow velocities and various combinations of pixel size and capture interval. [Color
figure can be viewed at wileyonlinelibrary.com]
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thus a larger number of frames to support an image velocimetry analy-

sis. To infer velocities via STIV, the flow field must be imaged for a

sufficient dwell time to create an STI that consists of at least as many

frames as the number of pixels along the specified search line. Even

longer dwell times are beneficial because calculating the autocorrela-

tion function involves averaging over all possible combinations of

frames that are offset from one another by a given time lag

(Equation 1). As a result, 2D-STIV tends to require larger data storage

volumes, greater computational power, and longer run times than PIV,

particularly for the exhaustive version of the 2D-STIV algorithm. The

optimization-based implementation can be faster but is also more sus-

ceptible to spurious estimates of flow direction. A major advantage of

PIV, in contrast, is the ability to infer velocities from a single pair

of images. This approach is the basis for the per-frame pair PIV algo-

rithm and the reason why per-frame pair PIV can be used to charac-

terize turbulence and nonstationary flow conditions. The ensemble

version of PIV can also be applied to as few as two images but doing

so would make the ensemble implementation equivalent to per-frame

pair PIV and undercut the enhanced signal-to-noise that can be gained

by ensembling over longer time periods.

Our results also suggest that PIV might be more robust than 2D-

STIV in terms of the ability to provide smoothly varying velocity esti-

mates throughout a region of interest. Whereas both PIV algorithms

produced coherent velocity fields for all three test data sets, the 2D-

STIV output for the Androscoggin and North Santiam Rivers included

areas with much patchier, more irregular velocity estimates (Figures 8

and 10). Of course, PIV can also be subject to noise, particularly if

trackable feature are sparse, but our findings indicate that PIV is less

likely to be locally noisy than the new 2D-STIV algorithm. Although

we were initially motivated to explore STIV as a means of overcoming

the presumed dependence of PIV on discrete particles that could bet-

ter exploit more diffuse image textures, our results suggest that 2D-

STIV might actually be more contingent upon the presence of distinct

features than PIV. This inference is based on the observation that the

2D-STIV algorithm performed best for the simulated data set

consisting of simple, spherical particles that were discrete, uniformly

distributed, and stationary over time. In this idealized scenario, 2D-

STIV performed as well as or better than PIV, but as conditions

became more realistic, and thus more challenging, the former algo-

rithm became less reliable. One factor that might have limited the per-

formance of 2D-STIV was the relatively short, 50-pixel search lines

we used in this study. Multi-pass PIV is well-equipped to capture

structures across a range of scales because the IAs over which corre-

lations are calculated become progressively smaller from one pass to

the next, with the initial larger-IA passes essentially serving to ‘hot
start’ subsequent passes with smaller IAs. For 2D-STIV, in contrast,

the entire pattern of brightness variation from which a velocity is

inferred must be observed along a single search line of length np,

which could limit detection of larger-scale flow features. More specifi-

cally, for a natural river with obvious features to track, the foam and

froth conveniently available on the Androscoggin, the exhaustive 2D-

STIV algorithm was comparable to ensemble PIV overall but patchier

locally. For the most complex case of a natural river lacking such clear

features, the North Santiam, comparison with ADCP data indicated

that the exhaustive 2D-STIV algorithm was essentially uninformative

and that the optimization-based version was less reliable than either

of the PIV algorithms. These results suggest that 2D-STIV might not

be well-suited to the common situation where velocity inference must

be made on the basis of subtly advecting patterns of water surface

reflectance associated with waves and sun glint; seeding the flow with

artificial tracers could lead to more consistent, reliable velocity

estimates.

The results of this initial study suggest that the new 2D-STIV

algorithm we developed is a viable alternative to well-established PIV-

based workflows with a level of performance comparable to existing

algorithms. However, further testing across a broader range of river

conditions is needed to more fully evaluate the potential and limita-

tions of 2D-STIV. One plausible outcome that could emerge from

such investigations might be that STIV is most appropriate for the

one-dimensional, single cross-section use case for which the algorithm

F I GU R E 1 4 Space-time image (STI) lines for (a) a fixed velocity and pixel size but varying capture intervals and (b) a fixed velocity and
capture interval but different pixel sizes. [Color figure can be viewed at wileyonlinelibrary.com]
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was initially developed and continues to be applied in practice. This

finding would support the use of STIV for cross section-based dis-

charge measurements, because the velocity estimates produced by

STIV represent a spatially and temporally averaged quantity that

might be more directly comparable to conventional streamgaging

techniques such as ADCPs.

To most effectively apply image velocimetry, broadly defined, the

best approach might be to provide end users with a suite of algo-

rithms that can be tested on a case-by-case basis to identify an

algorithm that is well-suited to the river of interest and the flow con-

ditions at the time of data collection. Currently, we lack sufficient case

studies to know a priori which algorithm will perform best for a partic-

ular set of circumstances. Until more general insight is gained, inte-

grating existing and yet-to-be-developed tools into a common

software ecosystem could allow users to easily evaluate several

options. This strategy has proven useful in the context of hydrody-

namic modelling, with packages like the International River Interface

Cooperative (iRIC, Nelson et al., 2016) providing a germane precedent

for advancing the use of image velocimetry in river science and man-

agement. Deep learning approaches (e.g., Ansari et al., 2023) could

also be considered as such efforts proceed.

5 | CONCLUSION

This study contributed to the growing number of algorithms for infer-

ring flow velocities in river channels from image time series by intro-

ducing a two-dimensional, reach-scale implementation of STIV. The

workflow outlined herein involves setting up a grid within the channel

and then specifying a local, initial guess of the primary flow direction

using the centreline tangent vector at each grid node. For a given

node, STIs are then extracted from the image sequence along rays

radiating from a common origin in a range of candidate flow direc-

tions. The advection of water surface features is expressed in these

STIs as streak lines, with the angle of these streaks in the (time, space)

plane related to the flow velocity. We characterize these streaks by

calculating the autocorrelation function of each STI, transforming the

ACF into polar coordinates, and identifying the angle that yields

the strongest correlation, which corresponds to the inclination of the

primary streak lines present in the STI. The velocity magnitude is then

calculated from this angle, along with the pixel size and capture inter-

val of the image sequence. To infer the orientation of the velocity

vector, we repeat the ACF analysis for STIs along a range of directions

and select that which yields the greatest velocity magnitude. Two ver-

sions of the 2D-STIV algorithm were presented, one that exhaustively

evaluates all candidate flow directions within a specified angular toler-

ance of the initial guess and another that performs this search using a

numerical optimization algorithm. Combining the estimates of magni-

tude and direction for each grid node thus yields a two-dimensional

velocity field with vectors spatially distributed throughout the reach.

To evaluate the performance of the new 2D-STIV algorithm, we

applied both the exhaustive and optimization-based versions of 2D-

STIV to three test data sets: a simulated image sequence in which the

motion of synthetic particles is driven by a modelled flow field and

UAS-based videos from two natural channels, one with well-defined

patterns of foam and froth that presumably could be easily tracked by

the image velocimetry algorithms and another that featured only far

more subtle variations in water surface reflectance. For each site, we

compared the 2D-STIV output to that from two established PIV-based

algorithms, one implemented on a per-frame pair basis and the other

using an ensemble correlation algorithm. The performance of each

algorithm at each site was quantified by comparing image-derived

velocity estimates to known (i.e., predicted by a hydrodynamic model)

or directly measured velocities and computing various measures of

agreement, including metrics that considered vector orientation as

well as magnitude. Our findings lead to the following conclusions:

The new 2D-STIV algorithm extends STIV beyond single cross

sections to continuous, reach-scale mapping of complex flow fields in

natural channels. Moreover, 2D-STIV provides information on not

only the magnitude of velocity vectors but also their orientation.

Quantifying the structure of a space-time image via its autocorrelation

function is computationally efficient and allows a range of candidate

search line directions to be evaluated at each grid node, either

exhaustively or via an optimization-based algorithm. The new 2D-

STIV algorithm performed as well as or better than PIV for a simulated

data set consisting of idealized, spherical particles that were discrete,

uniformly distributed, and stationary over time. For a natural channel

with well-defined water surface features, velocities inferred via 2D-

STIV agreed closely with direct field measurements, particularly for

the exhaustive implementation. The velocity fields generated via

2D-STIV were much more patchy and irregular than velocity fields

generated via PIV, however, and vectors from the optimization-based

version of the algorithm tended to be more erratic in terms of flow

direction than those from the exhaustive version. For a river that

lacked obvious water surface features, velocity estimates derived

using the exhaustive 2D-STIV algorithm were uncorrelated with

ADCP data and both versions of the 2D-STIV algorithm led to areas

of local noise and irregular flow directions. Considering all three test

data sets, the ensemble PIV algorithm emerged as the most robust

image velocimetry algorithm, yielding smooth, coherent velocity fields

that were strongly correlated with ADCP measurements. The per-

frame pair PIV algorithm can provide more detailed information on

turbulence and unsteady flow conditions but led to a patchy, less reli-

able flow field for one of the natural channels we examined and is

more computationally demanding than the ensemble algorithm. The

new 2D-STIV algorithm is more demanding in terms of image

sequence duration, frame rate and computational run time than

established PIV implementations. Importantly, any form of STIV

requires that the number of image frames exceeds the number of

pixels along the search lines, whereas PIV can be used to infer veloci-

ties from a single pair of images. Results from these three case studies

suggest that the new 2D-STIV algorithm is a viable alternative to

established PIV implementations, but further testing is needed

to more fully evaluate the potential and limitations of 2D-STIV. Suc-

cessful application of STIV requires careful data collection and appro-

priate parameterization of the algorithm, with thoughtful

consideration of the effects of pixel size and capture interval on the

precision of image-derived velocity estimates for a given set of flow

conditions. Because numerous image velocimetry algorithms are now

available, an effective strategy might be to provide end users with a

suite of tools, all packaged within a common software environment,

that can be tested on a case-by-case basis to select an algorithm that

is well-suited to the river of interest under the flow conditions

observed at the time of image acquisition.
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