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Abstract 

Changes to Earth’s climate affect organisms globally; in marine systems these impacts are seen 

through warming water temperatures, ocean acidification, hypoxia, and frequent marine 

heatwaves. These effects may lead to movement of species to more favorable conditions. While 

climate-driven movement is well studied at the adult stage, how early life stages of marine fish 

will respond to future variability is less clear. Many fish species are constrained by specific 

spawning locations or phenology. Spawning in certain locations allows for local retention of 

offspring while precise timing can facilitate transport of offspring to nursery locations through 

seasonal circulation patterns. Our research investigates how changing oceans impact the location 

and timing of spawning of Bering Sea groundfishes over the next century. We used ROMS SST 

and SSS model output and NOAA survey data in species distribution models to hindcast and 

project distributions and center of gravity for eggs and larvae of six groundfish species. Our 

analyses found that most of our study species exhibit flexible geography. However, the speed 

and direction of egg and larval movement did not track the speed and direction of their respective 

thermal niches. Hence, projected distributional patterns of adult stages may be limited by their 

early life stages. This response is likely to be mirrored globally by other species with planktonic 

eggs and larvae. These results indicate that life history considerations are critical for 

management of commercially important species, as effects on early life stages are strongly 

connected to the success or failure of adult populations. 
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1 1  Introduction  

Climate change resulting from rising atmospheric  carbon dioxide and subsequent increases in 

global temperature has  been documented to have  significant physical and biological impacts on 

marine ecosystems  (Bindoff et al., 2019; Bograd et al., 2023; Poloczanska et al., 2016).  Specific  

impacts  on ocean conditions  include  rising  ocean temperatures in the Northeast Atlantic  (Belkin, 

2009),  as well  as  extreme events  like marine heatwaves  in the North Pacific  (Litzow et al., 2024). 

Climate change may also be connected  to the  recent warming  observed along the west coast of 

Australia  (Wernberg et al., 2013)  and record low  winter  sea ice extent  in  the Bering Sea  region  in 

2018 and 2019 (Stabeno & Bell, 2019).  Physical  oceanographic changes  like these  have  

ecological implications such as  reductions  in suitable habitat  for certain species  (Lynch et al., 

2015; Morato et al., 2020), mass die-offs (Szuwalski et al., 2023),  and the  spatial  expansion or 

contraction of  community assemblages (Kleisner  et al., 2016).  These  effects on marine  biota  are  

expected to continue  and  thus  will impact coastal communities that depend on these systems 

(Rogers et al., 2019). It is therefore imperative to understand more thoroughly how species 

respond to changes in their environment, allowing for insight into the biological consequences of 

a changing ocean.  

 

It is well established that the environment in which egg production and larval fish development 

occurs strongly affects  the survival of the  early life  stages  and, subsequently, the adult population 

(Cushing, 1975, 1990; Hjort, 1914). Beginning with Hjort’s (1914) critical period hypothesis, 

early life history research has continued to provide important insights into these vulnerable 

stages. For example, small fluctuations in temperature are known to reduce  egg survival and 

development (Blaxter, 1991). At higher temperatures,  larval metabolic,  developmental,  and 
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24 growth rates are  enhanced (Blaxter, 1991; Houde, 1989; Pepin, 1991)  but time spent in the water  

column and during metamorphosis are reduced (O’Connor et al., 2007; Sponaugle et al., 2006). 

The effects of temperature on eggs and larvae impose a constraint, potentially explaining why 

spawning adults evolve to reproduce in specific locations and at certain times. There  are  

additional evolutionary constraints on fish spawning habitats, linked to the developmental phases 

of the embryo, species’ social structure, and reproductive ecology of spawning adults  (Ciannelli 

et al., 2015). However, it is unclear how those constraints will be affected in the future as ocean 

conditions change and areas previously suitable for spawning become less optimal for eggs and 

larvae  (Pankhurst & Munday, 2011). Understanding how early life stages will respond to climate  

change  expands upon and enhances previous research focused on adult stages, providing a better 

foundation for managers and policymakers to anticipate impacts on commercial fisheries.  

 

Predicting future distributions of marine species under different climate change scenarios is  

possible with use of large-scale climate  projections and can provide general insight into how 

species may be  affected  (Cheung et al., 2009; Pinsky et al., 2020). Species distribution models 

(SDMs) are  a statistical tool commonly used to create long-term projections  for terrestrial, 

freshwater, and marine species. In marine  long-term models, climate projections are often used 

with fishery survey data to predict how species will generally respond to environmental change, 

whether fishing grounds may shift, and which species are most likely to survive over the next 

century  (Cote et al., 2021; Moltó et al., 2021). Marine SDMs have primarily focused on adult  

stages  and in only a few instances have models been developed to project future larval  

distributions  (Muhling et al., 2020)  and  suitable  spawning  habitat  (Bigman et al., 2023; 

Erauskin-Extramiana et al., 2019; Lima et al., 2022;  Maynou et al., 2020; Sandø et al., 2020).  
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47 Developing projections of spawning distributions and early life stages therefore have the 

potential to provide additional information about how the most critical point in the fish life cycle 

may be affected by climate change. While data on adults are more  abundant than that for early 

life stages, long time series of egg and larval data  are available in regions such as the Bering Sea, 

thus providing an opportunity to fill this research gap.  

 

Some of the world’s most productive  commercial  fishing grounds  are found in the Bering Sea  

(Figure 1), including the  largest fishery in North America:  walleye pollock  (Gadus 

chalcogrammus).  It is also the location of  a 30+ year time-series of biennial scientific surveys 

targeting fish early life stages. Understanding how the eggs and larvae of commercially 

important species of the Bering Sea will be affected by climate change is crucial for the  

sustainability of the region's fisheries and will provide insight into potential applications of 

similar methods to other regions and species. Distributions of early life stages are often used to 

study spawning location and timing  (Bacheler  et al., 2010; Rogers & Dougherty, 2019), and 

cumulatively reflect the contributions of both spawning output and early life stage survival 

processes.  Understanding changes in spawning distributions can provide insight into whether the 

offspring of marine species will continue to be retained in suitable nursery habitat or have  access 

to specific currents needed to transport them to favorable locations.  In this study, we investigate 

how changing oceanographic conditions have historically, and may in the future, impact the  

location and timing of spawning of Bering Sea groundfishes.  Here, we use early life stages of 

groundfishes as a proxy for spawning location and timing. We examine whether species are more  

likely to be flexible in their location or timing of spawning, whether egg and larval centers of  

gravity (COG)  follow similar trajectories, and how these species track climate velocity.  
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70 Evaluation of COG and climate velocity were  conducted to  determine whether separation 

between life stages will occur due to climate change and if these species are likely to adapt to 

warming waters by shifting at the speed of their thermal niche.  We expected to see differences in 

types of flexibility between species with different life histories but similarities in trajectory and 

climate velocity tracking between eggs and larvae  of the same species.  

 

2  Materials & Methods  

2.1  Biological  data  

Ichthyoplankton data for six species were  obtained from the NOAA  Alaska  Fisheries Science  

Center’s  (AFSC)  and Pacific Marine Environmental Lab’s  joint research program: the 

Ecosystems and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) Bering Sea  

surveys. Data used for this research were collected between 1988 –  2017 from February to early 

October using a  fixed station grid, though sampling is primarily  between April and June. The  

surveys conducted by EcoFOCI use oblique tows to depths 5 m from the seafloor with 60-cm  

diameter  bongo nets with 333 or 505 μm mesh to capture fish eggs and larvae. Difference in 

mesh size has not been found to affect ichthyoplankton catch rates for this survey  (Boeing &  

Duffy-Anderson, 2008; Shima & Bailey, 1994).  The volume of water filtered was measured by a  

flowmeter mounted at the opening of each net. Ichthyoplankton preserved at sea in formalin 

were identified to species at the Plankton Sorting and Identification Center in Szczecin, Poland. 

Taxonomic verifications were  conducted by the  EcoFOCI Program. Catch per unit effort (CPUE) 

at each station for each species was calculated as count of larvae or eggs per 10 m2 .   
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92 The  six species selected for the present analyses  are all commercially important fishes  abundant 

in the survey time series  and exhibit  differing life  history strategies. Four Pleuronectids  (flatfish)  

were selected: Alaska plaice (Pleuronectes quadrituberculatus), yellowfin sole (Limanda 

aspera), northern rock sole (Lepidopsetta polyxystra), and flathead sole (Hippoglossoides 

elassodon). Two species of Gadid, Pacific  cod (Gadus macrocephalus) and  walleye  pollock  

(hereafter, “pollock”), were also chosen. Sufficient egg data were only available for  pollock,  

flathead sole, and Alaska plaice, as both northern rock sole and Pacific cod produce demersal 

eggs while yellowfin sole eggs were not captured in significant quantities. Larval data were  

available for all six species. For each species, the ichthyoplankton data were trimmed to ensure  

our analysis focused on the habitat of the species during the time of year eggs and larvae are  

present. Stations further than 30 km from an observation of the species were removed from the  

final prediction dataset, as were data collected in months during which few eggs or larvae were  

collected.  

 

2.2  Environmental data  

The explanatory variables in the models included temperature (°C) and salinity. These covariates 

were obtained from a reanalysis-forced hindcast simulation of the Bering10K model, a Bering 

Sea  implementation of the Regional Ocean Modeling System (ROMS). This model has 

demonstrated skill in reproducing the thermal environment of the Bering Sea shelf;  see  Kearney 

et al. (2020)  and citations within for a full description, history, and validation of this regional 

model and the hindcast simulations. The Bering10K model has a 10 km horizontal grid 

resolution with 30 vertical layers. The Bering10K model was also used to dynamically 

downscale six simulations from Phase 6 of the Coupled Model Intercomparison Project (CMIP6; 
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115 O’Neill et al., 2016). Three Earth System Models (ESM) and two emission scenarios were used. 

The ESMs were  chosen to span the range of projections within the full CMIP6 suite, choosing 

models with high, low, and near-median thermal sensitivities. These include the CESM version 2 

with Community Atmospheric Model version 6  (Danabasoglu et al., 2020), GFDL Earth System 

Model version 4.1 (Dunne et al., 2020), and the MIROC Earth System version 2 for long-term 

simulations. These will  hereafter be referred to as CESM, GFDL, and MIROC. The emission 

scenarios used are two of the Shared Socio-economic Pathways (SSPs)  - a low carbon mitigation 

scenario, SSP5-8.5, and a high carbon mitigation scenario, SSP1-2.6  - which describe possible 

combinations of future mitigation and adaptation challenges that lead to different levels of 

radiative forcing  (Riahi et al., 2017).  

 

Temperature and salinity from the model’s top layer, or surface, provided model-generated co-

located values of sea surface temperature (SST) and sea surface salinity (SSS).  Hindcasted  SST 

and SSS  values  for specific locations  were matched to the nearest EcoFOCI survey station using 

nearest neighbor search  through the ‘nn2’  function in the  RANN  R package  (Arya et al., 2019). 

Downscaled projections of SST  and SSS  for each ESM-forced model and SSP were bias 

corrected using the delta  method, as described in Holsman et al. (2020).  This bias correction 

method compares each ESM and the hindcast during a reference period to correct for differences 

in time-series means and variances.  In doing so, SDMs parameterized with  hindcast output can 

provide more realistic future predictions of fish  spatial distributions when applied to  the bias 

corrected projections  compared to the raw projections. The equation  used here  is as follows:   

 

𝜎 ⃗⃗⃗⃗⃗⃗ ⃗⃗� 
𝑇′�𝑓𝑢𝑡,𝑦�=�𝑇̅ 𝑓

𝑟𝑒𝑓�+�ℎ𝑖𝑛𝑑,𝑟𝑒
ℎ𝑖𝑛𝑑, (𝑇𝑓𝑢𝑡,𝑦�−�𝑇̅� ⃗⃗⃗⃗⃗⃗⃗� )�             (1)  

𝜎� 𝑓𝑢𝑡,𝑟𝑒𝑓
𝑓𝑢𝑡,𝑟𝑒⃗⃗⃗⃗⃗⃗ 𝑓⃗⃗� 
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139 where  𝑇′�𝑓𝑢𝑡,𝑦� provides the adjusted projected SST or SSS values while  𝑇𝑓𝑢𝑡,𝑦� represents the 

original projected values and 𝑇̅ ⃗⃗ ⃗⃗ ⃗⃗ ⃗�  represents a projected mean for the reference  years, which 𝑓𝑢𝑡,𝑟𝑒𝑓

is derived from the historical period. 𝑇̅ℎ𝑖𝑛𝑑,𝑟𝑒𝑓� represents the reference year period hindcast mean 

while 𝜎� refers to the standard  deviation during the reference period for either the hindcast or 

projections. A reference  period of 1980 –  2014 and projected SST  and SSS  from 2015 –  2099 for  

each SSP and ESM combination were  used. Both SSPs and all ESMs indicate a trend in 

increasing temperature over the next century (Figure  2).  

 

2.3  Model parameterization  

Generalized additive models (GAM), a type of regression model that can capture nonlinear 

relationships, were used to estimate the abundance of fish eggs and larvae  as a function of  

environmental variables. Models were  first parameterized using hindcasts in order to determine  

the best model for each species and life stage. The best model was then used to predict future  

fish distributions using Bering10K-derived projections of SST  and SSS.  

 

Multiple GAM formulations  were  evaluated and models using a Tweedie response distribution 

were ultimately selected due to the zero-inflated nature of the  egg and larval  data. The Tweedie 

distribution is a form of a compound Poisson-gamma distribution due to the use of a power 

parameter, estimated in this case through the ‘tw’ function in the  mgcv  R package  (Tweedie, 

1984; Wood, 2017). Use  of a  Tweedie distribution  allowed  for better handling of an abundance  

of zeroes in these  data, which  is common in fisheries data  (Shono, 2008).  To determine the best 

model, several formulations  were  compared. These included a base model with only spatial and 
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161 temporal covariates and a set of additional models with progressively more complex 

specifications of environmental covariates.  The base model formulation  included only  latitude 

and longitude (𝜙,�𝜆)� as a tensor product and  day of the year (𝐽)� as nonparametric  thin plate  

splines (𝑠). Latitude and longitude were included  due to the ability of spatial covariates to 

improve SDM projections for organisms that are not highly mobile, such as eggs and larvae  

(Brodie et al., 2022). Day of the year was included as a way to correct for  possible effects of the 

differences in timing of survey across years and to characterize the phenology of egg or larval 

production.  Year (𝑦)� was included as a  random effect in order to allow removal when projecting.  

A log-link (𝑔)� provided the link between CPUE and each predictor. This model  is described  as 

follows:  

 

𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠(𝐽)�                 (2)  

 

Varying coefficient terms were incorporated into additional models to allow for increased 

flexibility in spawning location or timing  (Bacheler et al., 2012; Hastie et al., 2001). In this case, 

location and timing were  allowed to vary linearly with temperature, which was a mean  index  

value for each year. The  mean temperature index  (𝑇)� was calculated using SST values from 

February 1 to April 30 for each year for an area over the continental shelf with dimensions of 

latitude 56°N to 58°N and longitude -165°W to -170°W.  This area was chosen to provide an 

annual index of cold and warm years over the Bering Sea continental shelf. Thus, the time frame 

and spatial dimensions for  𝑇� remained the same for each species.  Collocated SST, SSS, and the 

varying coefficient terms were included as thin plate splines for each independent variable. The  

two equations used are as follows:  
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𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)�            (3)  

 

𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝐽,�𝑏𝑦�=�𝑇)�                 (4)  

 

Equation 3  allows for the effect of location to vary as a function of the temperature index while  

Equation 4  allows for the effect of time to vary as a function of the temperature index. For each 

model, the maximum number of knots were specified as five  for the SST and SSS splines and as 

nine for the day of the year. Day of the year was allowed to have  a  higher number of knots to 

characterize the potential multiple spawning peaks. To prevent inappropriate extrapolation  in the  

projection  beyond the covariate ranges existing in the hindcast, each term was penalized based 

on their first derivative  (Barnes et al., 2022).  We  used Akaike’s information criterion  (AIC)  to 

select the best model for each species and life stage  (Akaike, 1974).  The base models and 

varying coefficient models were also compared to models that included the splines for SST and 

SSS, but excluded the varying coefficient term (Table  S1). To further evaluate the benefit of 

including varying coefficient terms, overall model mean square error (MSE) was calculated  for  

all  models  and percent reduction in MSE compared to the base model was calculated. In each 

case, MSE was reduced  for the models containing a varying coefficient term  and the same model 

was selected as through AIC, with the exception of flathead sole larvae  (Table S2).  

 

2.4  Distribution  projections  

Once model parameterization was complete, the  final models were used to project  future  

distributions of eggs and larvae in the Bering Sea. The  projection  period  was divided into three  
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207 time periods: early (2015-2039), middle (2040-2069), and late century (2070-2099).  For each 

year within a period, a prediction grid  of latitudes and longitudes with approximately a  10  km  

resolution  covering the study region, similar to the ROMS grid,  was generated using a month and 

day of year that corresponded approximately to the peak of abundance of  fish  larvae  and/or eggs 

for each species.  At this point, the grids for each year were identical for  each species and stage  

combination.  Then, monthly SST and SSS values from the top layer of  each year of  the ROMS 

projection  model output was matched to the nearest location on a given year’s  prediction grid 

using the ‘nn2’ function in the RANN  package in R  (Arya et al., 2019). The temperature index 

was also calculated for each year within the period for use in the varying coefficient term. Year, 

which was included as a  random effect during model parameterization, was excluded from the 

projection  models. Predictions of egg and larval abundance  for each period were scaled from 

zero to one based on minimum and maximum values of abundance  each year to allow for 

comparison  between time periods  and to focus only on changes in distribution.  

 

Center of gravity (COG)  for each species and stage along with thermal niche  were  calculated to 

assess potential connectivity changes over time between life stages and determine if these  

species are overall projected to track suitable thermal conditions.  COG  in latitude and longitude 

(𝜙,�𝜆)� units  was calculated for  the scaled predictions (𝑆)� for each  year within each  time period, 

then averaged  across the time period. Latitude and longitude were calculated separately using the 

following:  

 

𝑛� 𝑛�∑ 𝜙
𝐶𝑂𝐺 =�𝑖� 𝑖∙𝑆𝑖� ∑ 𝜆 ∙𝑆

   ,�   𝐶𝑂𝐺 =�𝑖� 𝑖 𝑖�
𝜙� 𝑛 𝜆�∑ ∑𝑛                (5)  

𝑆𝑖� 𝑖� 𝑆𝑖� 𝑖�
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230 The  same prediction grid  spatial  dimensions were  used for all species, stages, time periods, and 

scenarios to allow for comparison.  As with the hindcast prediction grid, cells more than 30 km  

from a positive sample in the survey data were removed for all grids.  The  haversine distance  

(km)  between COG  of eggs and larvae of the same species was calculated  for each time period.  

 

Thermal COG for SST was calculated using a similar formula to Equation 5. SST values were  

determined to be inside or outside the  thermal range of a given species using the 95% confidence  

interval of the SST partial dependence curves generated by the  species’  final parameterized 

model. Values with significant positive effects on abundance for  a given species and stage were  

assigned a value of one  and all others assigned zero. Thermal COG in latitude and longitude 

units was calculated separately for each species grid. Using the assigned values (𝐴), thermal 

COG was calculated for each year as follows:  

 

𝑛� 𝑛�∑ 𝜙𝑖∙𝐴𝑖� ∑ 𝜆 ∙𝐴
𝐶𝑂𝐺 =�𝑖�    ,�   𝐶𝑂𝐺 =�𝑖� 𝑖 𝑖�

𝜙� 𝑛 𝜆� 𝑛                (6)  
∑ 𝐴𝑖� 𝑖� ∑ 𝐴𝑖� 𝑖�

 

To determine if species track thermal habitat, rate of change per year in COG location was 

calculated for both species distribution and thermal COG. Following the methods of Pinsky et al. 

(2013),  latitude was regressed against year to calculate the slope, or rate of  change, for each time 

period. The sign of slope  values indicate the direction of movement of COG during a given time  

period, with negative rates indicating southward movement and positive  rates  indicating 

northward movement. Then, to evaluate if species distribution COGs  (𝑆)� are  expected to track 

thermal COGs  (𝑇), bias was calculated as follows  for  each species and time period  (𝑡):  
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253 𝐵𝑡�=�𝑠𝑖𝑔𝑛(𝐶𝑂𝐺𝜙,𝑇,𝑡)�×�(𝐶𝑂𝐺𝜙,𝑆,𝑡�−�𝐶𝑂𝐺𝜙,𝑇,𝑡)�             (7)  

 

Positive biases indicate that a species tracks thermal COG, while negative biases indicate a lag or 

potential movement away from thermal COG. A t-test of bias for  all species and stages was used 

to determine if species distribution COGs lag thermal COG for each time period.  All analyses  

described above  are publicly available (Howard, 2024).  

 

3  Results  

3.1  Hindcast  

All models selected during parameterization with the hindcast output included a varying 

coefficient term (Table S1). For all species except Pacific cod, the  best fit model included the  

location varying coefficient (Equation 3; Tables 1, S2). The model with the  time  varying 

coefficient was  the best fit  for Pacific cod larvae.  

 

Temporal and spatial patterns in abundance throughout the survey period varied by species and 

life stage, illustrating phenological differences  across species, as well as how different life stages 

may be affected by the mean temperature index (Figure  3). In general, seasonal peaks in larval 

abundance followed periods of high egg abundance for the species for which both stages were  

available. There were very  clear peaks in abundance at different points in the year for pollock  

eggs  (March), flathead sole eggs  (May), and Alaska plaice larvae  (June).  Multiple peaks in 

abundance throughout the  year were apparent for flathead sole  larvae  (May and July), yellowfin 

sole  (July and September), Pacific cod  (April and  June), and northern rock sole  (April, June, and 

August). Pollock  larvae and Alaska plaice  eggs had peaks in abundance at the beginning and end 
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276 of the sampled period, respectively, and thus their full temporal distribution each year was not  

well sampled.   

 

In terms of phenology, for most species an increase in the mean temperature index  led to 

increases in abundance  throughout the sampled period  (Figure 3). In many cases, these  

directional shifts in abundance were  most apparent during  seasonal  periods in which abundance  

peaks. For example, for  Alaska plaice  eggs, there was a decrease in abundance with a 1°C  

increase in temperature at the beginning of the seasonal series. In contrast, an increase in 

temperature led to increased abundance at some phenological peaks or high points for larvae of 

pollock, Alaska plaice, flathead sole, and yellowfin sole. Effects of mean temperature on 

phenology were mixed for Pacific cod and northern rock sole larvae  while there was no change  

for pollock and flathead sole eggs.  For Pacific cod, warmer temperatures resulted in contraction 

of the larval period. A clear peak in Pacific  cod abundance was apparent near the middle of the  

season with a  1°C increase in temperature  but decreases or no change  were seen  during other  

times of the year.  Spatially, positive effects of a 1°C increase in temperature  on abundance  were  

clear for larvae of pollock, flathead sole, Alaska plaice, yellowfin sole, and Pacific cod. Negative  

effects were apparent for pollock  eggs  and northern rock sole, though positive effects  on 

abundance  were found in some areas. Spatial effects  were mixed for flathead sole  and Alaska  

plaice  eggs. In general, egg abundance seemed  more likely  to decrease  with increases in mean 

shelf temperature while larval abundance  typically  increased, though maps of change indicate 

effects of temperature may be location dependent.   
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298 Relationships with SST and SSS were variable depending on species and life stage, though the  

lowest temperatures were often associated with negative effects on abundance  (Figure  3). Partial 

dependence plots showed either peaks where temperature had a positive effect on abundance, 

like for Alaska plaice larvae, or one  clear transition from negative to positive effects on 

abundance, like flathead sole larvae. SSS relationships with abundance were also variable. Some 

species  stages, like pollock larvae and flathead sole eggs, exhibited little change over the full 

range of salinity values. For others, like Alaska plaice  larvae, lower salinities were related to 

positive effects on abundance, while conversely, for species such as northern rock sole larvae, 

higher salinities were  found to correlate with higher abundance.  

 

Maps of the location varying coefficient term  (Figures 4, S1-S4)  illustrated the spatial effects of 

mean temperature on abundance for all species except Pacific  cod, for which the time varying 

coefficient term was selected, with positive effects primarily on the inner shelf and negative  

effects located along the  Alaska Peninsula for most species. Nonetheless, effects of the varying 

coefficient term were different for each species and stage. For example, pollock  egg and larval  

maps showed positive effects of increases in temperature on abundance over the northeastern 

continental shelf, near Unimak Pass, and northeast of Unalaska  (Figure  4). Negative effects on 

pollock  abundance as a  result of increased  temperature were found along the Alaska Peninsula 

and southeast of the Pribilof Islands. There were additional negative effects  on the abundance of  

pollock  eggs to the southeast of the Pribilof Islands. Flathead sole varying coefficient maps 

showed clear differences between stages, with  both negative and positive effects on  egg  

abundances  (Figure S1). For example,  negative  effects of increases in temperature  on egg 

abundances  were  evident  along the Alaska Peninsula and east of the Pribilof Islands. Positive 
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321 effects for flathead sole  eggs were  found to be concentrated in the middle of the study region but  

for larvae they were dispersed across the shelf. In contrast to other species, direction of  

temperature effects for Alaska plaice were  generally  specific to stage: negative effects were  

primarily seen for  eggs whereas  positive  effects were seen  for larvae (Figure S2). Yellowfin sole  

exhibited  mainly positive  effects from increases in temperature, particularly in the southeast  

along the Alaska Peninsula (Figure S3). Northern rock sole positive effects were greatest near 

Unalaska  Island and between 56 and 58°N on the inner shelf, while negative effects were  

dispersed across the  outer  shelf and along the inner Alaska Peninsula  (Figure S4). Location 

varying coefficient maps for Pacific  cod were not created  as the best fit model was that 

containing the  time  varying coefficient  term (Table 1, S2).  

 

3.2  Projections  

The  projected distributions for each stage  and species showed varied responses to changes in 

temperature and salinity over the next century, both in terms of overall spatial patterns and 

trajectories  of each COG.  Pollock  eggs, for example, were predicted to be concentrated around  

the Pribilof Islands at the beginning of the century (2015-2039) but by the end (2070-2099)  were  

dispersed across the continental shelf  and were  expected to become more  concentrated near  

Unimak Pass in the future  (Figure  5). Pollock  larvae, in contrast, appeared  to have a less 

noticeable change in spatial patterns and areas of high abundance  remained  consistent over time, 

albeit with decreases in abundance. When comparing emission scenarios, pollock  egg and larval 

abundances appeared  to be higher throughout the  region for the high emission scenario by the 

end of the century. Little change in distributional pattern over time was observed for  flathead 

sole eggs, which appeared  to further concentrate at 56°N (Figure S5). Flathead sole larvae  also 
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344 became more concentrated in a smaller area  by the end of the century, but were  instead predicted 

to be located  at 58°N. These effects were seen for both emission scenarios. Alaska plaice  eggs 

and larvae  were  predicted to be  distributed on the shelf near the boundary of the study area, 

centered at about 60°N (Figure S6). In both cases, the distributions became more concentrated at 

the northern edge  of the study area over the next century, possibly indicating movement into the  

Northern Bering Sea. For larvae, the high abundance  near the Alaska Peninsula all but 

disappeared  by the end of the century. Yellowfin sole larvae  were located along much of the  

inner shelf at the beginning of the century but were predicted to  become highly  concentrated  in 

Bristol Bay by the end of the century (Figure S7). Northern rock sole larvae became more  

concentrated  at 56°N  above  the Alaska Peninsula by the end of the century, though an  area of 

high abundance  remained  in Unimak Pass (Figure S8). Pacific cod larvae distributions changed  

very little over the three time periods, with the highest abundances also remaining through  

Unimak Pass  and around  Unimak Island  (Figure S9). For yellowfin sole, northern rock sole, and 

Pacific cod, differences between the two emission scenarios were not apparent.  

  

Movement of species distribution COG over the next century was evaluated for all species and 

distance between life stage COG was compared for pollock, flathead sole, and Alaska plaice. 

Pollock, flathead sole,  and Alaska plaice  were the three  species for which predicted average  

COG trajectory over the  next century was northward  (Table 2, Figure  6). Yellowfin sole  

movement was predicted to be southward, while  northern rock sole  were expected to move east 

and Pacific cod  to move  west. The COGs for the eggs and larvae of pollock  and Alaska plaice  

moved closer together by the end of the century, which was in contrast to flathead sole for which 

the COGs moved slightly further apart (Table S3). While the average direction of movement for  
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367 pollock  and Alaska plaice life stage COGs differed  slightly, the reduced distance between each 

COG by the end of the century may indicate more  overlap of the life stages of these species.   

 

By evaluating thermal COG, we found that thermal habitat of  all  species and life stages moved 

northward  despite  only half of the  species exhibiting shifts in COG in this direction. In all cases, 

the thermal habitat COG  moved further than the species COG. Hence, species distribution COGs 

lagged slightly behind thermal COGs for all  projected time periods, as indicated through a t-test  

(Figure  6, Table S4). The strongest evidence  for lags were during the first and last projection  

periods (p < 0.05, mean  first  period =  -0.010 °N/year, mean last period =  -0.012 °N/year), while 

there was less evidence of a lag during the middle projection  period (p = 0.08,  mean =  -0.018 

°N/year). As expected, there was no indication of  a lag during the hindcast time period (p > 0.1, 

mean = 0.003 °N/year).  

 

4  Discussion  

Climate change is already impacting oceanographic conditions in the Bering Sea  (Stabeno & 

Bell, 2019)  and our results show that distributions of groundfish eggs and larvae  in the Bering 

Sea will  continue  to  be affected by these changes  over the next century.  Early life stages of all  

study  species except  Pacific cod  are expected to  shift geographically  over time  in response to 

environmental shifts.  Much of this change is seen through increased abundances of eggs  and 

larvae  to the north or over the  inner  shelf  area and Unimak Pass  by the end of the century  

(Figures 5, S5-S9). And, for many species, those regions  were  where  initial analyses indicated 

that  increases in mean temperature  would lead  to positive effects on abundance. The direction of  

movement or areas  of high abundance  are  not consistent among species. Pollock, flathead sole,  
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390 and Alaska plaice  are  predicted to move  northward in terms of the COG  of their distributions, 

which contrasts with the  directions predicted for yellowfin sole  (south), northern rock sole  (east), 

and Pacific cod  (west;  Table 2). These shifts, however,  may  still result in  a  mismatch between 

species distributions and ideal habitat over time, as the species studied here  overall  lag  behind 

their thermal niche  (Table  S4).  In addition, the distance between COGs for  different life stages of 

pollock, Alaska plaice, and flathead sole  are  predicted to change over time,  possibly indicating a 

shift  in the overlap of egg and larval distributions  and reduced connectivity between the two 

habitats.  Similar mismatches or increases in overlap may occur with predators  or competitors, 

and are  predicted  to occur  globally (Bindoff et al., 2019).  Our  study  provides  new insight into 

how groundfish species may be impacted by  next-century  changes  in temperature and salinity,  

though  there are a number of other factors such as climate effects on ocean currents, fishing 

pressure  changes, and altered species interactions that were not evaluated here. In addition, we  

were limited by the seasons during which data was  collected, the uncertainty associated with 

long-term  climate  projections  (Brodie et al., 2022), and the application of  correlative methods  

like SDMs rather than mechanistic models.  In the case of model method choice, mechanistic 

models were not used due to their tendency to be  computationally expensive  and  a  lack of 

knowledge for  all study  species needed  to predefine the requisite parameters.  Therefore, these  

results  provide initial context into how spawning distributions may change long-term in the 

Bering Sea and give insight into effects on  their  associated fisheries, but also provide a  

foundation for further methodological development.  

 

Early life stages of many marine fish  species occupy  a dynamic, pelagic environment and the 

planktonic egg and larval stages in particular  are  largely  unable to control their movement  and 
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413 thus are strongly influenced by the prevailing oceanography. This means  that  the  environment 

they inhabit  during  these  critical life stages  primarily  depends on  where  or  when adults choose to 

spawn, given this may influence what currents eggs are larvae  are subjected to, prey availability, 

and whether  early-stage juveniles can later access nursery grounds  (Ciannelli et al., 2015).  Our  

results indicate that spawners of multiple groundfish  populations  in the Bering Sea  may be  

flexible with where they spawn more so than when, hence why we see predicted changes in  

spatial  distributions of eggs and larvae.  This is consistent with results from recent research using 

in situ  data for Bering Sea groundfish distributions (Vary et al., 2023), but other studies have  

shown phenological flexibility for some species during recent years (Nichol et al., 2019)  and 

earlier spawning in response to rising temperatures has been predicted broadly for spring 

spawning species (Pauly & Liang, 2022).  Geographic flexibility may be seen through shifts in 

distribution across the Bering Sea shelf, as with pollock, or through increasingly concentrated 

abundances of eggs or larvae in specific areas, as seen with flathead sole and yellowfin sole. 

These  end-of-century  locations  are often areas where increases in abundance were observed 

when the effects of a rise in mean temperature were revealed by the  spatial  varying coefficient 

term  (Figures 4, S1-S4).  For instance, the visible  geographic  shift of pollock  may be  primarily  in 

response to temperature  changes;  plots showed positive effects on abundance  with increases in 

temperature  in areas where  pollock  eggs and  larvae  are predicted to move  over the next century 

(Figures 4, 5).  Northern rock sole larvae provide another example of this, with their distribution  

predicted to  become  concentrated north of  the Alaska Peninsula by the end of the century (Figure  

S8). This  area  is  where positive temperature  effects  on northern rock sole occurred  (Figure S4).  

Given the more dynamic  relationships  many species have  with temperature  in contrast to salinity  

(Figure  3), it is not unexpected that  both collocated  and annual  thermal conditions  play an 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

436 important role in driving distributions for most species.  Consequently,  warming in the Bering 

Sea  may lead to  spatial shifts in  groundfish  spawning distributions  that then  alter food webs and 

result in  cascading effects throughout the  ecosystem.  There may  be increased mismatches  with  

prey distributions along with new competition for resources and predation pressure if species 

composition changes.  Ultimately, thermally  driven changes in  pelagic  early life stage  

distributions  and the potential geographic flexibility of groundfish spawning distributions  have  

broader implications for the Bering Sea region.  

 

Despite the importance of temperature and the likelihood of future spatial shifts for early life  

stages, thermal habitat is not always the primary driver nor are geographic shifts always the 

predicted  response. In the case of yellowfin sole, the reason for  future  shifts southeastward  

toward Bristol Bay  still appear  somewhat  related to temperature, but  other factors may be  

involved.  High  magnitude positive effects  of temperature  on yellowfin sole  abundance  were  

located  in  the southeast Bering Sea  near Bristol Bay  despite  present-day high abundances near 

St. Matthew Island  (Figures S3, S7). These areas  with current high abundances of yellowfin sole 

were  associated with  lower magnitude  or no  positive effects  with increases in temperature.  

Therefore, temperature  may drive shifts in distribution in part but  currently, other  oceanographic 

features such as higher salinity or the need for larval retention in specific  areas  may be more  

influential.  Yellowfin sole prefer shallow, coastal areas to spawn and are vulnerable to high 

temperatures (Ciannelli et al., 2022; Wilderbuer et al., 1992), but given that salinity may 

decrease in those areas following increased terrestrial ice melt  (Pilcher et al., 2022), where  

yellowfin sole  move over the next century may  also be associated with preferred, higher 

salinities.  They, and other species, may also prefer specific substrate and this could constrain 
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459 movement to new spawning locations.  For many species, like yellowfin sole, complex 

relationships between habitat characteristics are likely to drive distributional changes over the  

next century  (Vary et al., 2023).  

 

Future loss of spawning habitat  has been predicted for numerous species globally (Dahlke et al., 

2020), though many species have been shown to shift phenologically rather than geographically. 

Here, Pacific cod was the only species for which the phenological variability model was selected, 

but this is possibly due to data limitations. The EcoFOCI surveys typically occur during a  

several-week period in late spring, and again in late summer, but may not have the intra-seasonal 

frequency necessary to capture temporal shifts, leading to increased selection of the 

geographically flexible  model.  For example, in contrast to our results,  pollock  stocks in the Gulf  

of Alaska and Bering Sea  have historically been shown to shift their spawn timing  and retain 

specific spawning sites (Bacheler  et al., 2012; Rogers & Dougherty, 2019).  In  the Bering Sea, it  

is possible that  our  inclusion of additional years of data  compared to Bacheler et al. (2012)  led to 

this discrepancy in results.  However, recent studies on  adult pollock have found evidence of 

northward shifts (Eisner et al., 2020; Stevenson & Lauth, 2019).  Additionally, in many cases  past 

studies have focused on either phenological shifts or changes in geography, not both.  Regardless, 

the differences between these studies and our own warrant further  research into using these data 

to predict spawning distributions. This may involve  the inclusion of additional criteria  like  egg 

and larval developmental stage or use of joint SDMs for a full life cycle analysis, both of which 

may reduce prediction uncertainty about the  future distributions of marine fishes.  Also, 

mechanistic models, particularly those that predict where  eggs or  larvae  are likely to drift given 
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481 changes in current patterns, may provide  valuable insight by incorporating physical 

oceanographic features that impact retention or transport.  

 

The projected  spawning distributions of our six study species  combined with previous research  

provides  initial  context as to how they will be affected by climate change throughout their life  

cycle. A study  on  juvenile and  adult stages for these species showed  that direction of movement 

was generally northward for  pollock,  flathead sole,  yellowfin sole, and  northern rock sole,  while 

Alaska plaice shifted southward and little discernible movement was seen for Pacific cod 

(Rooper et al., 2021). Directional trends were  consistent with our results for  pollock, flathead 

sole, and  Pacific  cod but not for  Alaska plaice,  yellowfin sole, and northern rock sole. This may 

be due to species’ use of specific spawning grounds while  non-spawning adult distributions 

differ  in location. For example, yellowfin sole use  the  Bering Sea  inner shelf  to reproduce, 

flathead sole spawn on the mid-shelf, and northern rock sole spawn in areas on the mid-shelf, 

along the Alaska Peninsula, and near Unalaska  Island (Lanksbury et al., 2007; Porter, 2021; 

Porter & Ciannelli, 2018; Wilderbuer et al., 1992).  Climate change may lead to spatial mismatch 

between areas suitable to spawners and areas conducive to survival of early life stages.  Previous  

work found that for  young-of-the-year pollock, the  projected warmer conditions that support 

greater abundances of eggs and larvae prevent the appearance of necessary food sources, leading 

to poor recruitment (Mueter et al., 2011).  Higher temperatures are  also  expected to benefit 

pollock  adult stages (Bacheler et al., 2012), but a bottleneck appears to occur at the juvenile 

stage.  However,  decreases in the southern extent of sea ice coverage  associated with warm 

surface temperatures  may be  driving a shift in the northern Bering Sea  from a benthic ecosystem 

to one that is more often pelagic  like the eastern Bering Sea  (Grebmeier et al., 2006). Changes to 
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504 community structure  may lead to more prey availability for juveniles to the north, which is also 

the direction eggs and larvae are expected to shift over the next century.  This further illustrates 

the importance of evaluating climate change  effects on all life stages, as habitat requirements 

often change throughout  the life of marine  species. These types of  contrasting responses to 

environmental conditions at different points in an organism’s life cycle are  likely exhibited by 

other  marine species.  

 

Positive effects on abundance  in response to  higher water temperatures  were seen during model 

parameterization and spawning distributions are expected  to have geographic flexibility  in the  

future. However,  there was evidence for  a  lag  in spawning distributions  behind suitable thermal 

habitat  location  during the  projection  time  periods, albeit this was somewhat less  evident during 

the middle time period. This contrasts  with the results of Pinsky et al. (2013), where the authors 

found that marine species  in multiple regions  tend to track climate velocity.  However,  their  focus 

was on  historic range shifts and later life  stages, which are  capable of directed movement toward 

more favorable conditions unlike the planktonic early life stages that were examined in this 

study. Future changes to ocean temperature may be more extreme than in recent decades and 

here we explore a much longer time period, both of which may partially explain our observation 

of lags. Additionally, it is possible that given the narrow thermal  requirements of early life stages 

and spawning adults, these stages  may not be able to track climate as well as  the  non-spawning 

adults  and juveniles  that were the focus of Pinsky et al.  (2013).  This may also illustrate future  

mismatches  and reduced connectivity  between life  stages  and their stage-specific habitats, 

possibly preventing life cycle completion for some species. Moreover, our study did not include  

other important oceanographic conditions  such as current velocity, water density, and salinity in 
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527 our assessments of changing suitable early life history habitats over time, all of which may affect 

ichthyoplankton  distributions  (Bashevkin et al., 2020). And for  spawning adults,  conditions at 

the seafloor may not continue to match appropriate  early life stage  habitats in the near-surface, 

pelagic environment. Despite this, determining projected species intersections with thermal 

habitat provides important insight into the future  ability of these species to inhabit areas with 

biologically suitable temperatures.  

 

Projecting species distributions remains an active  area of research and it remains challenging to 

predict how species will respond to climate change. Our research provides insight into potential 

changes in spawning distributions but methodological improvements are needed. As pointed out 

by Barnes et al.  (2022)  there are issues with using complex SDMs that include terms like 

spatially varying coefficients, which allow abundance over time or space to vary with ocean 

conditions. However, use of these terms allowed us to investigate tradeoffs between geographic 

and phenological variability at the spawning stage, something less relevant to the adult  

populations of the two species examined  by Barnes et al. (2022). We constrained our models 

using a similar methodological approach to prevent  extrapolating  beyond conditions experienced 

in the hindcast time period. While this prevents overfitting, it also prevents us from 

understanding how species will respond to novel conditions like higher water temperatures. 

Inclusion of extreme years has been shown to improve predictions for some species and life  

stages  (Muhling et al., 2020), but when using conditions derived from the higher emissions 

scenario, this may not fully alleviate the issues associated with extrapolation or certain life stages 

of some species. More mechanistic studies may be useful for pinpointing suitable habitat for  

each life stage, along with further development of SDMs for use in projections.  
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Our research not only adds to a small body of literature on early life stage distributional 

responses to climate change, but it also has implications for future fishery management and 

applications to other regions. Understanding potential changes to spawning distributions 

connects directly to many fisheries, including pollock. This fishery operates with two seasons, 

the first occurring during the winter months and focused on targeting spawning aggregations to 

harvest roe  (egg masses). Previous work found that variations in fishery spatial distribution for  

pollock  are more strongly associated with overall fish abundance, financial factors, and annual 

temperature fluctuations rather than climate regimes, and that shifts for the  roe fishery are  

typically temporal  (Haynie & Pfeiffer, 2013).  While  there have yet to be observed northward 

shifts in the  pollock  roe fishery  (Haynie & Pfeiffer, 2013; Watson & Haynie, 2018), if spawning 

aggregations indeed move northward as suggested by our results, the fleet may eventually 

follow. This response by the fishery is uncertain due to the numerous factors influencing fleet 

dynamics, but could occur in  other fisheries where spawning aggregations are targeted and range  

shifts are observed. For example, Atlantic mackerel spawning distributions expanded northward 

over several decades, resulting in potential challenges for transboundary fishery management  

(Bruge et al., 2016; Chust et al., 2023).  Shifts in spawning or adult distributions may also lead to 

difficulty accessing fishing grounds, in part from increased fuel costs due to increases in distance  

traveled.  Our study showed  that multiple species are expected to shift northward, away from the 

Alaska Peninsula and Aleutian Islands, where most  of the ports  for these  fisheries  are located. 

These shifts may lead to changes in fishing ground locations.  Future  analyses using methods like 

these in other regions with sufficient early life stage fishery data can provide important insights 

into  future  fishery and ecosystem effects as our oceans continue to change. While there  are  
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573 limitations to our methodologies, our results illustrate the importance of evaluating climate 

574 effects on early life stages of marine species and the need for further research beyond the Bering 

575 Sea. 
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Species Stage Direction Δ Distance (km)

Pollock
Egg NE 119.5

Larvae NW 109.8

Flathead Sole
Egg NE 78.4

Larvae NW 145.7

Alaska Plaice
Egg N 66.1

Larvae NW 216.8

Yellowfin Sole Larvae SE 247.5

Northern Rock Sole Larvae E 135.3

Pacific Cod Larvae W 26.1

 

 

 

     

 

         

      

 

 

      

      

 

 

      

      

 
      

  
      

 
      

 

 

 

     

  
   

   

  
   

   

  
   

   

    

     

    

 

           

            

           

        

      

     

  
   

   

  
   

   

  
   

   

    

     

    

Tables 

Table 1: This table shows the best fit model selected during the parameterization process. The difference in AIC was 

calculated between Equation 2 and the best model. Deviance is the percent deviance explained by the best model. 

Species Stage Best Model ΔAIC Deviance 

Eggs 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 368 52.9% 

Pollock 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 1009 53.1% 

Eggs 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 217 52.9% 
Flathead 

Sole 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 603 68.6% 

Eggs 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 156 56.5% 
Alaska 

Plaice 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 702 68.8% 

Yellowfin 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 211 76.7% 

Sole 

Northern 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝜙,�𝜆,�𝑏𝑦�=�𝑇)� 260 52.0% 

Rock Sole 

Pacific 
Larvae 𝑔(𝐶𝑃𝑈𝐸)�=�𝑟𝑒(𝑦)�+�𝑡𝑒(𝜙,�𝜆)�+�𝑠1(𝐽)�+�𝑠2(𝑆𝑆𝑇)�+�𝑠3(𝑆𝑆𝑆)�+�𝑠4(𝐽,�𝑏𝑦�=�𝑇)� 160 54.9% 

Cod 

Table 2: Change in COG for each species and life stage over time. The direction of movement indicates the COG 

location during the 2070-2099 time period relative to the hindcast time period. The distance reflects how far the 

COG moved in kilometers between the hindcast and 2070-2099. 

Species Stage Direction Δ Distance (km) 

Egg NE 119.5 
Pollock 

Larvae NW 109.8 

Egg NE 78.4 
Flathead Sole 

Larvae NW 145.7 

Egg N 66.1 
Alaska Plaice 

Larvae NW 216.8 

Yellowfin Sole Larvae SE 247.5 

Northern Rock Sole Larvae E 135.3 

Pacific Cod Larvae W 26.1 



  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure Legends 

Figure 1: Map of the study region with relevant locations labeled. 

Figure 2: Average change in temperature over the Bering Sea shelf during the historical period 

(1980-2014) and the projection period (2015-2099). Each plot is for an ESM and shows the 

historical values (yellow) as well as both SSPs (red and blue). Shading indicates minimum and 

maximum values of temperature. 

Figure 3: The first three columns depict partial dependence plots for day of year, SST, and SSS 

for hindcast models for each species and stage, with the same axis ranges for a given species. 

The last two columns represent an estimate of the varying coefficient terms with regard to 

temperature. The fourth column depicts how phenology would change with a 1°C increase 

(purple) in mean shelf temperature. The fifth column depicts how a 1°C increase in temperature 

would change the spatial distribution of a species. Purple indicates a decrease in abundance; 

orange indicates an increase. 

Figure 4: Maps of the effect of an increase in mean temperature on abundance of pollock eggs 

and larvae imposed over teal shading depicting their average predicted spatial distribution during 

the hindcast time period. Red bubbles indicate increases in abundance with an increase in 

temperature while blue bubbles indicate a decrease in abundance with a decrease in temperature. 

Bubble size indicates the magnitude of the effect of temperature. Areas without bubbles indicate 

no statistically significant change in abundance at that location with a change in temperature. 

Figure 5: Maps of projected distributions of pollock eggs (top) and larvae (bottom) over the next 

century for three time periods for each SSP. Abundance is scaled from 0 to 1, with lighter colors 

indicating higher abundance. The projections using the three ESMs were averaged for each SSP 

and time period to create the final maps. 



  

 

 

Figure 6: Plots of COG for each species and stage (solid line) as well as their corresponding 

thermal niche (dotted line) over the hindcast and projection time periods. Solid circles represent 

different COGs, with colors corresponding to the time periods. 




