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Abstract—The performance of various composite satellite pre-
cipitation products is severely limited by their individual passive 
microwave (PMW)-based retrieval uncertainties since the PMW 
sensors have diffculties in resolving heavy rain and/or shallow 
orographic precipitation systems. Characterizing the error struc-
ture of PMW retrievals is crucial to improving precipitation 
mapping at different space-time scales. To this end, this paper 
introduces a machine learning framework to quantify the un-
certainties associated with satellite precipitation products with 
an emphasis on orographic precipitation. A deep convolutional 
neural network (CNN) is designed, which utilizes the ground-
based Stage IV precipitation estimates as target labels in the 
training phase, to reduce biases involved in the precipitation 
product derived using the NOAA/Climate Prediction Center mor-
phing technique (CMORPH). The products before and after bias 
correction are evaluated using four independent precipitation 
events over the coastal mountain region in the western United 
States, and the impact of topography on satellite-based precip-
itation retrievals is quantifed. Experimental results show that 
the orographic gradients have a strong impact on precipitation 
retrievals in complex terrain regions. The accuracy of CMORPH 
is dramatically enhanced after applying the proposed machine 
learning-based bias correction technique. Using Stage IV data 
as references, the overall correlation (CC), normalized mean 
error (NME), and normalized mean absolute error (NMAE) of 
CMORPH are improved from 0.55, 32%, 63%, to 0.88, -2%, 
39%, respectively, after bias correction for the independent case 
studies presented in this article. Such a machine learning scheme 
also has great potential for improved fusion of other or future 
satellite precipitation retrievals. 

Index Terms—Satellite, ground radar, precipitation estimation, 
complex terrain, deep learning, bias correction 

I. INTRODUCTION 

SPACE-based precipitation products (SPPs) are of vital 
importance in regional, continental, and global water, 

weather, and climate research. The high-resolution SPPs with 
low latency also serve as critical forcing of hydrological 
models for streamfow and food predictions, particularly in 
regions that lack weather radars and rain gauges. Compared 
with ground-based weather radars and/or rain gauges that may 
offer better estimates of precipitation at regional scales, the 
satellite sensors have great advantages in providing seamless 
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spatial coverage over the globe, especially over the oceans and 
other remote regions. 

A large number of geostationary (GEO) and low earth 
orbit (LEO) satellites have been launched for hydrometeo-
rological applications. Based on the GEO satellite infrared 
(IR) data or passive microwave (PMW) measurements from 
LEO satellite sensors, different precipitation retrieval algo-
rithms have been developed (e.g., [1][2][3]). Through fusion 
of precipitation estimates from multiple satellites, a number of 
quasi-global SPPs have been developed in the precipitation re-
search community, including the precipitation estimation from 
remotely sensed information using artifcial neural network 
(PERSIANN) and its improved versions [4][5], the Tropical 
Rainfall Measuring Mission (TRMM) Multisatellite Precip-
itation Analysis (TMPA) [6], the Global Satellite Mapping 
of Precipitation (GSMaP) [7], the Climate Prediction Center 
(CPC) MORPHing technique (CMORPH) [8] [9], and the 
recent Integrated Multi-satellitE Retrievals for Global Precipi-
tation Measurement (IMERG) [10]. These SPPs are produced 
at different temporal and spatial resolutions, and are commonly 
used for natural disaster monitoring and situational awareness 
worldwide. 

However, the accuracy of SPPs is severely limited by 
the spatiotemporal sampling of individual PMW and/or IR 
sensors, as well as the implemented precipitation retrieval 
algorithms. Although the PMW and IR sensors can do a 
reasonable job at resolving moderate rain, both struggle with 
retrieving precipitation during light or heavy rain events. In ad-
dition, due to complex land-ocean interactions and orographic 
enhancement, none of the SPPs performs well in complex 
terrain regions such as the coastal mountain areas over the 
western United States [11][12][13]. 

This article aims to characterize the error structure of SPPs 
over complex terrain regions using deep learning techniques. 
In particular, this study uses the CMORPH product for demon-
stration purposes, which is derived through combining IR 
data and precipitation retrievals from multiple PMW sensors 
[8][9]. Therein, the high temporal resolution IR imageries 
are used to create motion vectors of the cloud systems and 
the derived cloud motion vectors are then used to interpolate 
and propagate the PMW-based retrievals to produce complete 
precipitation estimates at a global scale [8]. In recent years, 
artifcial intelligence and machine learning are increasingly 
being used in geosciences and remote sensing applications, 
including precipitation research. For example, Tao et al. pre-
sented a deep learning approach to extract useful features from 
bispectral satellite information, IR, and water vapor channels 
to identify rain/non-rain regions [14]. Chen et al. developed a 
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novel two-stage hybrid neural network for rainfall estimation 
using ground-based and spaceborne precipitation radars [15]. 
In [16], a multi-layer perceptron model is described for 
improving precipitation estimates through fusion of IR, PMW, 
and ground observations in an urban environment. In [17], 
Lee et al. presented a proof-of-concept using machine learning 
methods to extract physical properties of convective clouds 
and automate the detection process using the observations 
from the advanced baseline imager onboard the Geostationary 
Operational Environmental Satellite-16 (formerly known as 
GOES-R). In addition to the precipitation detection and esti-
mation problems, deep learning is often applied for short-term 
prediction of precipitation (e.g., [18] [19]) and enhancement 
of weather model forecasts (e.g., [20]). 

This paper introduces a deep convolutional neural network 
(CNN) for bias correction of CMORPH retrievals of coastal 
orographic precipitation, assuming the ground-based Stage IV 
multi-sensor quantitative precipitation estimates as references 
in training the model. Using terrain gradients as auxiliary 
information, this nonparametric CNN approach can resolve the 
complex orographic enhancement in precipitation processes 
that is often missed in many SPPs. The remainder of this 
article is organized as follows. Section II details the study 
domain, data sets, and the deep learning technique for bias 
correction of CMORPH. The case studies and evaluation 
results are presented in Section III. Section IV provides a 
thorough discussion on the performance of the proposed bias 
correction methodology, as well as potential extension of the 
machine learning model. Section V concludes the study and 
suggests directions for future research. 
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Fig. 1. The digital elevation model (DEM) information of the study domain. 
The thick black line indicates coastal zone. 

II. STUDY DOMAIN, DATASETS, AND METHODOLOGY 

A. Study Domain 

In this article, the selected study domain is located in the 
west coast of the United States, covering 35◦N-40◦N latitude 
and 120◦W-125◦W longitude. The area of this study domain is 
about 500 km by 500 km, including the whole San Francisco 
Bay Area and part of the Sierra Nevada mountain range. Figure 
1 illustrates the digital elevation model (DEM) information of 
this region. Here, it should be noted that the current study 
primarily focuses on the land region (i.e., precipitation over 
the ocean is not considered). 

The study domain has a Mediterranean-type climate, with 
precipitation coming in the winter months and a pro-
nounced dry season extending roughly from April-October 
[21][22][23]. Every year, this region experiences a few at-
mospheric river (AR) events during wet season, which are 
long and narrow regions of intense water vapor transport that 
can produce foods, mudslides, and debris fows [23][24]. 
Due to the unique topography and their exposure to AR, 
many watersheds in this area are prone to fooding. Accurate 
quantitative precipitation estimation (QPE) is critical for water 
managers to balance the competing needs for water supply and 
food mitigation [25][26]. 

Unfortunately, it is very diffcult to obtain reliable QPE 
in such a complex terrain region due to the rapid changes 
of precipitation characteristics as a result of orographic en-
hancement [22][27][28]. Previous studies have shown that the 
performance of various SPPs in this region is very poor [12]. 
The precipitation intensities reported by different SPPs differ 
sometimes by an order of magnitude [11]. Hence, the objective 
of this study is to resolve and mitigate the biases associated 
with SPPs, with an emphasis on the impact of orographic 
enhancement on precipitation retrievals. 

B. Datasets 

As mentioned, this study uses CMORPH products to 
demonstrate the bias correction technique. The CMORPH 
products are created by the National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center (CPC), 
which takes advantage of precipitation observations and re-
trievals from a large number of GEO and LEO satellites (for 
details, see [8][9]). Briefy speaking, CMORPH uses precipita-
tion estimates that have been derived from LEO satellite PMW 
measurements exclusively. Cloud motion vectors are generated 
by computing spatial lag correlations on successive GEO 
satellite IR images, and are then used to propagate the PMW-
based precipitation retrievals. In this way, for regions and time 
frames that have no PMW retrievals available, CMORPH can 
still provide complete precipitation mapping through motion 
vector-based interpolation of available PMW retrievals. 

The CMORPH products are produced at global scale with 
a spatial resolution of 8 km (at the equator) and temporal 
resolution of 30 min. The products are available from 1998 
to the current day. In addition, a bias corrected version (i.e., 
CMORPH-CRT) is available, which is utilized in this study. 
The bias correction in producing CMORPH-CRT is based 
on probability density function (PDF) matching against the 
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Fig. 2. (a) Conceptual diagram of the machine learning system for bias 
correction of satellite retrievals of orographic precipitation. Essentially, the 
system is trained to produce enhanced precipitation estimates using ground-
based precipitation measurements as training labels. (b) Flowchart of the bias 
correction scheme designed for NOAA CMORPH product, which utilizes 
Stage IV QPE as reference and topography information as a key input feature. 

CPC daily gauge analysis over land (0.25◦ lat/lon grids) and 
the Global Precipitation Climatology Project (GPCP) monthly 
precipitation analysis (2.5◦ lat/lon grids) over ocean [9]. Here-
after, the terms of CMORPH and CMORPH-CRT will be used 
interchangeably in this article. 

In this study, 10 months of CMORPH-CRT data are con-
sidered, including all January and February events from 2016 
to 2019, as well as March of 2018 and 2019. The data are 
obtained from ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH 
V1.0/CRT/8km-30min/. Therein, four precipitation events, 
namely, 9-12 January 2017, 21-23 March 2018, 13-16 Febru-
ary 2019, and 25-28 February 2019, are excluded in training 
the deep learning-based bias correction model detailed in 
Section II-C. These four events are used for independent test 
of the bias correction model performance. 

To train the deep learning model for bias correction of 
CMORPH-CRT, the National Centers for Environmental Pre-
cipitation (NCEP) Stage IV QPE data are used as target labels 
in the training phase and are assumed as ground truth in the 
test phase. The Stage IV analysis is based on multi-sensor 
(radar and gauges) hourly and 6-hr QPE data (i.e., Stage 
III data) produced by the National Weather Service (NWS) 
River Forecast Centers (RFCs) [29][30], which are mosaicked 
into a national product at the NCEP Environmental Modeling 

Center (EMC) during the Stage IV analysis. The Stage IV 
QPE, which is often used to verify and evaluate various 
SPPs, is produced on local 4 km polar-stereographic grids. 
The products are available at https://data.eol.ucar.edu/cgi-bin/ 
codiac/fgr form/id=21.093. In this study, the Stage IV QPE 
at hourly scale is used. In order to match the CMORPH-CRT 
grid resolution, the Stage IV QPE data are spatially resampled 
using the nearest-neighbor interpolation method. 

It should be mentioned that the gauge data used in gen-
erating Stage IV QPE are independent from the CPC gauge 
analysis in producing CMORPH-CRT. In addition, although 
the CMORPH-CRT products are produced every 30 min, they 
essentially represent the precipitation rates for an instanta-
neous observing time within a half-hour window. In order to 
eliminate the random error and uncertainty caused by time 
mismatching, both CMORPH-CRT and Stage IV QPE are 
aggregated to daily scale in the bias correction analysis. 

To quantify the impact of orographic enhancement on 
satellite precipitation estimation, the digital elevation model 
(DEM) information is also taken into account as the input 
feature of the bias correction model. The DEM informa-
tion is obtained from the shuttle radar topography mission: 
http://srtm.csi.cgiar.org/download. The high-resolution (30-m) 
terrain data are spatially averaged at each CMORPH-CRT grid 
pixel. That is, the uncertainties associated with fner scale (<8 
km) terrain features are neglected in this study. 

C. Methodology 

Figure 2 shows the conceptual diagram of the deep learning 
(DL) framework for bias correction of CMORPH in complex 
terrain regions. Roughly speaking, there are four components, 
including (1) preprocessing of CMORPH, ground-based Stage 
IV QPE, and corresponding terrain information; (2) construc-
tion of the training, validation, and test datasets for the DL 
models; (3) DL model training and parameter estimation; (4) 
performance evaluation based on independent test data. In the 
following, more details of these four components are provided. 

As mentioned, both CMORPH, Stage IV QPE, and DEM 
data are spatially reprocessed to the CMORPH grid pixels. 
Temporally, both the CMORPH and Stage IV QPE are inte-
grated to daily scale for training and testing the DL model. For 
the 10-month data selected in this study, the total number of 
precipitation samples (daily, 8-km grid) is 90,448, excluding 
the four test events. The precipitation samples are randomly 
split into training and validation datasets: 90% of the samples 
are used for training, and the rest (10%) are used as validation 
data to fne tune the DL model parameters. Three of the four 
test events, including 9-12 January 2017, 13-16 February 2019, 
and 25-28 February 2019, have 15,376 precipitation samples 
for each case. The 21-23 March 2018 test event has 11,532 
sample points due to the shorter duration of this event. In 
addition, the input features are normalized so that the values 
of the input data are between 0-1 before being sent to the 
DL model. The normalization will also speed up the learning 
process. Here, it is worth noting that the corresponding labels 
(i.e., Stage IV QPE) are not normalized. 

The core part of the DL model is a convolutional neural net-
work (CNN), which has proven to be effective in precipitation 

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/8km-30min/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/8km-30min/
https://data.eol.ucar.edu/cgi-bin/codiac/fgr_form/id=21.093
https://data.eol.ucar.edu/cgi-bin/codiac/fgr_form/id=21.093
http://srtm.csi.cgiar.org/download
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retrieval and short-term prediction [19][31][32][33]. Figure 3 
illustrates the detailed CNN structure designed for CMORPH 
bias correction, which includes three convolution layers and 
three pooling layers followed by two fully connected layers. 
The frst layer is the “input layer” for ingesting input data, and 
the last layer is the “output layer” for producing the learning 
results that will be compared with the labels. The convolu-
tional and pooling layers will perform feature extraction and 
transmission, which are the essential components of a CNN 
[19][34]. It should be noted that this study has tested a large 
number of hyperparameters including different patch sizes and 
different numbers of convolutional and pooling layers, using 
a grid search approach [35]. The structure in Fig. 3 is selected 
mainly because it renders desirable results without making the 
network too deep. 

In order to quantify the impact of terrain feature on the bias 
correction performance, the DL model is confgured in three 
different ways, namely, DL-1, DL-2, and DL-3. These three 
confgurations share the same CNN structure, but different 
input and loss functions. Overall, the requirement on terrain 
feature is gradually increased in these three confgurations, and 
the relationship between terrain and the corrected CMORPH 
is gradually enhanced. In particular, in DL-1, only CMORPH 
precipitation data are used as input and the loss function 
(Loss1) is solely determined by the precipitation estimates. 
DL-2 utilizes both CMORPH precipitation data and DEM 
information as input, and uses the same loss function as DL-1. 
In contrast, DL-3 uses terrain and precipitation information in 
both input and the loss function (Loss1+Loss2). 

As shown in Eq. 1, the loss function is a customized 
mean square error (MSE) with different weights, including 
precipitation (i.e., Loss1) and terrain constraint (i.e., Loss2).⎧ ⎨ DL − 1 : Loss1 

DL − 2 : Loss1 (1a)⎩ 
DL − 3 : Loss1 + Loss2 

NX1 2
Loss1 = W1 · (RS − RG) (1b)

N 
i=1 

NX1 2
Loss2 = W2 · (RS − DEM/25) (1c)

N ⎧i=1 

2 0 < RG ≤ 20 ⎪⎨ 5 20 < RG ≤ 40 
W1 = 10 40 < RG ≤ 60 (1d) 

20 60 < RG ≤ 80⎪⎩ 
30 RG > 80⎧ 

2 0 < DEM ≤ 500 ⎪⎨ 3 500 < DEM ≤ 1000 
W2 = 4 1000 < DEM ≤ 1500 (1e) 

5 1500 < DEM ≤ 2000⎪⎩ 
6 DEM > 2000 

where N is the sample number; RS (mm) and RG (mm) are 
the corrected CMORPH precipitation from the DL model and 
corresponding ground-based Stage IV QPE, respectively; W1 
and W2 are the weights determined by the daily precipitation 
amount (mm) and the terrain height (m), respectively. In this 
study, the statistical distributions of daily precipitation from 

CMORPH over the study domain are extensively investigated 
to determine the weights W1 and W2 (larger weight is 
assigned to heavier precipitation). In addition, DEM/25 is used 
in Loss2 mainly because the terrain height in this domain is 
0-2000 (m). After dividing by 25, the terrain height value is 
close to the range of daily precipitation amount (i.e., 0-80 
mm), although the units are different. 

In the training phase, this study selects a 70×70 grid area 
to cover the domain illustrated in Fig. 1. Considering the 
spatial correlation of precipitation, a sliding window (patch 
= 9) is applied when correcting CMORPH at each grid point. 
To achieve this confguration, 9 grid pixels near the left/right 
and top/bottom edges are not used in constructing the training 
pairs (i.e., not corrected), although they are incorporated in 
correcting relatively interior grid points. The training sample 
pairs of data and labels are then shuffed, and 1024 samples 
are fed to the network each time. That is, the batch size is 
1024. 

For DL-1, the number of input channels is 1 (CMORPH 
data only), and the dimension of the input data is (batch size 
= 1024, channel number = 1, patch size = 9×9). For DL-2 
and DL-3, there are two channels since the terrain feature is 
stacked with the precipitation data, and the dimension of the 
input data is (batch size = 1024, channel number = 2, patch 
size = 9×9). The Stage IV QPE at the center point of the 9×9 
sliding window is used as the target label. 

As shown in Fig. 3, the flter/kernel size for the three 
convolutional layers is 5×5, 3×3, 3×3, respectively. The 
number of flters in each convolutional layer is 96, 128, and 
192, respectively. The number of flters and flter sizes for the 
(Maxpool) pooling layers are the same with the convolutional 
layers. The activation function adopted in this study is ReLU, 
and the learning rate is 0.001. When the last pooling is 
completed, the feature map dimension becomes 192×1×1, 
which will be fattened out and connected to the two fully 
connected layers. Finally, a 1×1 value is obtained, which is the 
bias-corrected CMORPH for a single grid point of the patch 
center, and the corrected precipitation data is then compared 
with corresponding label. After training the model for different 
confgurations, the bias-corrected CMORPH can readily be 
obtained for any new CMORPH products. 

III. RESULTS AND EVALUATION 

A. Application of the Trained DL Model 

After training the DL model with different confgurations, 
original CMORPH products for the four independent test 
events are corrected using the trained models. In addition, the 
corrected daily precipitation products are aggregated to event 
totals in order to further highlight the practical performance 
of the bias correction model. For illustration purposes, Fig. 4 
shows the precipitation amounts during the 9-12 January 2017 
event, including CMORPH before and after bias correction 
using DL-1, DL-2, and DL-3. The corresponding Stage IV 
QPE product is also included in Fig. 4 for comparison. 

Comparing the original CMORPH product (Fig. 4a) and 
Stage IV QPE (Fig. 4b), it can be seen that obvious underesti-
mation of CMORPH occurs in most parts of this region. The 
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Fig. 4. Precipitation amounts during the 9-12 January 2017 event: (a) original CMORPH-CRT; (b) Stage IV QPE (i.e., reference); (c)-(e) are bias corrected 
CMORPH-CRT using the trained DL-1, DL-2, and DL-3, respectively. 

pattern of CMORPH precipitation estimates does not show a 
clear orographic gradient as the Stage IV QPE reveals (see 
also the terrain map in Fig. 1). In addition, CMORPH does 
not provide any valid estimates in some of the high elevation 
areas due to snow contamination on the PMW-based retrievals. 
In contrast, Stage IV QPE shows a signifcant amount of 
precipitation in the mountain regions. This is also indicated 
by the scatter plot of CMORPH versus Stage IV QPE in Fig. 
5a, where CMORPH shows zero values when Stage IV QPE 
reported signifcant precipitation accumulations. 

Scrutinizing the bias corrected CMORPH in Fig. 4c-e, we 
can conclude that all of the methods are able to recover the 

missed precipitation over the mountain regions since the CNN-
based DL model is incorporating precipitation information 
from surrounding grid pixels (patch size is 9×9) when cor-
recting the CMORPH grid pixel at the center of the patch. 
Nevertheless, compared to the Stage IV QPE, the corrected 
product based on DL-1 shows signifcant underestimation of 
precipitation over the mountain regions. It is also apparent that 
the CMORPH product is over corrected in the valley region, 
resulting in overestimation of precipitation. This is mainly due 
to the lack of terrain information in the DL-1 confguration. 

After including the terrain information in the bias correction 
model, the corrected CMORPH products from DL-2 and DL-3 
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Fig. 5. Scatter plots of CMORPH versus Stage IV QPE during the precipitation event illustrated in Fig. 4 (9-12 January 2017): (a) original CMORPH-CRT 
versus Stage IV QPE; (b)-(d) are bias corrected CMORPH-CRT using DL-1, DL-2, and DL-3 models, respectively, versus Stage IV QPE. 

show much more improvement than that based on DL-1. Both 
Fig. 4d and Fig. 4e agree with the Stage IV QPE very well in 
terms of precipitation accumulation and pattern. Not only the 
underestimation over high elevation regions is alleviated, but 
also the over-correction in the valley is addressed to a large 
extent. These fndings are further demonstrated by the scatter 
plots in Fig. 5b-d. In addition, it is observed that the difference 
between the corrected products based on DL-2 and DL-3 
is not signifcant, which implies that inclusion of additional 
terrain constraint in the loss function will probably not change 
the results dramatically as long as the terrain information is 
included as an input feature. But it is worth noting that DL-3 
does have a slightly better performance than DL-2 in terms of 
the overall agreement with Stage IV QPE as indicated in Fig. 
5c-d. 

In order to further compare the improvement brought by 
DL-1, DL-2, and DL-3, Fig. 6 shows the probability density 
functions (PDFs) of precipitation during this verifcation event. 
The PDFs indicate that the original CMORPH is overestimat-
ing light rain but underestimating heavy rain; the intersection 

of PDFs of CMORPH and Stage IV QPE is around 100 
mm (event total) for this particular event. After applying the 
DL model, PDFs of the three corrected CMOPRH products 
are closer to that of Stage IV QPE, especially the corrected 
products based on DL-2 and DL-3. 

Bias corrected CMORPH for other three test events are not 
shown here since they essentially exhibit the same trends in 
performance. The PDF structures are similar to those shown in 
Fig. 6. This is not a surprise given that precipitation character-
istics such as the distribution patterns are rather similar during 
different (AR) events [23] [36][37]. For the sake of illustration, 
Fig. 7 shows the scattergrams of CMORPH versus Stage IV 
QPE for all the four validation events combined. Overall, the 
terrain information has a strong impact on the bias correction 
performance, and the orographic enhancement of precipitation 
can be learned very well by DL-2 and DL-3. The distribution 
of corrected values using DL-2 and DL-3 agree with Stage IV 
QPE much better than that based on DL-1, which does not 
include terrain information. Compared to DL-2, the results 
from DL-3 are more concentrated along the 1:1 line, which 
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Fig. 6. Probability density functions (PDFs) of precipitation estimates during 
the 9-12 January 2017 event (event totals, see also Fig. 4). Different colors 
indicate different products, including Stage IV QPE and CMORPH before 
and after bias correction. 

further demonstrates the positive infuence of adding a terrain-
based constraint in the loss function. 

Nevertheless, Figs. 5 and 7 also show that all the CMORPH 
products, even after bias correction, are underestimating the 
precipitation peaks that occur in the Sierra Nevada. Since 
this high elevation region is often characterized by mixed-
phase precipitation, which is ignored in the PMW-based re-
trievals ingested by CMORPH, the DL model uses terrain 
and surrounding precipitation information to predict actual 
precipitation in this case. Although the terrain feature is 
considered in DL-2 and DL-3, the convolution and pooling 
process is likely smoothing out the precipitation peaks since 
surrounding precipitation intensity is noticeably lower. 

B. Quantitative Evaluation of the DL-based Bias Correction 
Performance 

In order to quantify the bias correction performance, the 
following metrics are computed, including the Pearson cor-
relation coeffcient (CC), normalized mean error (NME), nor-
malized mean absolute error (NMAE), and root-mean-squared 
error (RMSE), which are respectively defned as: P 

[(RS − < RS >)(RG− < RG >)]
CC = pP pP (2a)

(RS − < RS >)2 (RG− < RG >)2 

< RS − RG > 
NME = (2b)

< RG > 
< |RS − RG| > 

NMAE = (2c)
< RG > p

RMSE = < (RS − RG)2 > (2d) 

where RS is satellite precipitation estimate from CMORPH; 
RG is ground-based Stage IV QPE; and the angle brackets 
stand for sample average. In addition, a threshold of 0 mm 
(at daily scale) is applied in computing these scores. That 
is, only precipitating grid pixels (both CMORPH and Stage 

IV products) are considered. In this way, the blank regions 
with snow contamination in the original CMORPH product 
are ignored for fair comparison. 

The quantitative evaluation scores for the 9-12 January 2017 
event and the four test events combined are indicated in Fig. 
5 and Fig. 7, respectively. For clarity, Fig. 8 summarizes the 
evaluation results for all the individual events, as well as the 
overall scores combining all the samples from the four test 
events. Obviously, the CC scores of CMORPH for all the 
four events are improved after bias correction. Compared to 
the original CMORPH, the improvement is more and more 
signifcant from DL-1 to DL-2 and then to DL-3. In particular, 
the overall CC score of original CMORPH combining all the 
test events is 0.55. After applying the DL-1, Dl-2, and DL-
3 models, the CC score is improved to 0.77, 0.85, and 0.88, 
respectively. 

In terms of NME, the original CMORPH products are un-
derestimating precipitation during all the four test events (i.e., 
NME scores are negative). After applying the three trained 
models, the bias corrected products during the 9-12 January 
2017 event still show some underestimation. In contrast, the 
corrected products generally exhibit overestimation during 
other three test events except the DL-2 based product for 21-23 
March 2018 and the DL-3 based product for 25-28 February 
2019. The underestimation of the DL-3 based product for 25-
28 February 2019 is negligible (NME = -2%). It is also noticed 
that in general the magnitude of NME scores is getting lower 
after bias correction, indicating the effectiveness of the DL-
based approach. The product based on DL-1 during the 21-23 
March 2018 event has the highest NME score, likely due to the 
over correction of CMORPH in the valley regions. In addition, 
the NME scores for the corrected products based on DL-2 
and DL-3 models are lower than those based on DL-1 model. 
Nevertheless, it should be noted that although NME is a good 
overall indicator of underestimation or overestimation, there is 
a potential cancellation of overestimation and underestimation 
in calculating NME for a large amount of samples. 

Figure 8c shows the NMAE scores, which do not involve 
cancellation of overestimation and underestimation. Clearly, 
the bias corrected products based on DL-2 and DL-3 have 
much better performance than the original CMORPH or the 
corrected products based on DL-1. The DL-3 model has 
slightly better performance than the DL-2 model in terms of 
the NMAE. For the four events combined, the overall NMAE 
score of original CMORPH is 63%. After applying the DL-
1, Dl-2, and DL-3 models, the NMAE score decreases to 
61%, 44% 39%, respectively. This dramatic improvement is 
further demonstrated by the RMSE scores illustrated in Fig. 
8d. After bias correction using DL-3, the RMSE of event totals 
for the four events combined reduced from 62.1 mm (RMSE 
of original CMORPH) to 33.5 mm. 

IV. DISCUSSION 

The bias corrected products and quantitative evaluation 
results have demonstrated that machine learning is very ef-
fective in capturing the error structure of satellite retrievals of 
orographic precipitation. In particular, after incorporating the 
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Fig. 7. Scatter plots of CMORPH versus Stage IV QPE during the four independent validation events: (a) original CMORPH-CRT versus Stage IV QPE; 
(b)-(d) are bias corrected CMORPH-CRT using DL-1, DL-2, and DL-3 models, respectively, versus Stage IV QPE. 

terrain feature as an additional input in the DL model, the 
bias correction performance is dramatically improved. This 
implies that the terrain elevation information plays a critical 
role in learning the orographic enhancement of precipitation. 
The performance can be further enhanced if a terrain constraint 
is imposed in the loss function of the machine learning model. 
Such a constraint (i.e., physics-guided loss) also makes the 
bias correction model fall under the concept of physics-guided 
artifcial intelligence. 

Although signifcant progress has been made in improving 
CMORPH products over the western U.S., a few relevant 
issues should be considered in general applications of the pro-
posed bias correction technique. First of all, the precipitation 
peaks are underestimated, even after bias correction. This is 
mainly due to the implementation of convolutional and pooling 
processes across a large area in order to predict the missed 
precipitation over the mountains (e.g., blank regions in Fig. 
4a). Unfortunately, that is where the precipitation peaks occur, 
and there is no effcient or better way to handle this issue in the 
current bias correction model framework. A possible solution 

is to improve individual PMW-based retrievals before merg-
ing them into a composite product. Therein, a precipitation 
classifcation scheme could be incorporated to support mixed 
phase precipitation retrievals. In this way, both the earlier 
stage PMW-based retrievals (hence the composite product 
such as CMORPH) and the bias corrected versions should 
be enhanced, especially in capturing precipitation currently 
missed in CMORPH. 

In addition, this article only focuses on the complex terrain 
regions in Northern California over the Western U.S. However, 
CMOPRH is a global product. Although numerous studies 
have been performed to quantify uncertainty of CMORPH at 
global scale, almost all the studies are conducted at coarse 
resolution (0.25-degree lat/lon grids or even lower resolution). 
A major concern in resolving the error structure of CMORPH 
at global scale at its native 8-km resolution is the lack of 
high-fdelity ground precipitation references. As such, extra 
attention should be paid when applying the bias correction 
model in other domains, especially where orographic enhance-
ment is a main driver of precipitation. Our recommendation 
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Fig. 8. Quantitative evaluation results of CMORPH before and after bias correction for the four independent validation events and four-event combined 
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is that if reliable ground-based precipitation products such 
as the Stage IV QPE used in this study are available, the 
DL model should be retrained with local terrain and ground 
precipitation references. At the very least, the fully-connected 
layers in the CNN model should be fne tuned with a small 
amount of local data (also refer to the transfer learning concept 
in [19][38]). However, if there is no ground precipitation 
reference available, it is suggested that one can either retrain 
the model with data from a similar climate regime or directly 
use the model trained in this article. Future work will quantify 
the general applicability of this DL model and extend it to 
different domains or global scale. 

We also want to note again that different precipitation events 
have fairly similar characteristics in the selected study domain. 
Overall, this region is dominated by shallow stratiform rain in 
the wet seasons [39]. Although the instantaneous precipitation 
rate is not high, a precipitation event may last a few days, 
resulting in signifcant amount of rain, especially over the 
mountain areas. Hence, this article only uses a number of 
typical precipitation cases in training the DL models, and 

the 10-month training data can represent local precipitation 
features well. When applying the proposed technique in other 
regions, it is entirely possible that more data will be required in 
training the DL models. In addition, adding other features such 
as temperature and water vapor imagery may further enhance 
the DL-based bias correction model, especially for correcting 
CMORPH products for small scale, rapidly changing precipi-
tation events. 

V. SUMMARY 
Precipitation estimation using satellite measurements over 

complex terrain regions remains a formidable challenge due to 
the orographic enhancement of precipitation, especially during 
shallow precipitation events. As part of our continuing effort to 
improve QPE over the mountain ranges of the western United 
States, this study has developed a deep learning framework 
to characterize and correct the biases associated with satellite 
retrievals of orographic precipitation. The essential component 
of the framework is a convolutional neural network (CNN), 
which has been trained with three different confgurations (i.e., 
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DL-1, DL-2, and DL-3) in order to quantify the impact of 
terrain features on precipitation retrievals. In short, DL-1 only 
uses the satellite precipitation products as input, and the loss 
is defned purely based on precipitation estimates. In DL-2 
and DL-3, both the satellite precipitation products and terrain 
elevations are used as input features. DL-2 uses the same 
loss as DL-1, whereas DL-3 has an additional terrain-based 
constraint in the defned loss function. 

A demonstration study has been performed using the NOAA 
CMORPH product in Northern California as an example. 
The ground-based Stage IV QPE products are utilized as 
references in training and evaluating the deep learning models. 
In particular, 10-month data from 2016 to 2019 were used 
in this analysis, among which four precipitation events were 
excluded from the total dataset and were used for independent 
model verifcation. Primary conclusions are summarized as 
follows: 

1) All the three trained DL-based bias correction schemes 
can improve the performance of CMORPH product. Not only 
the precipitating areas detected by the original CMORPH 
were enhanced, but also the missed precipitating regions 
over high elevation regions were recovered since the CNN 
was able to learn the spatial correlation of precipitation and 
provide effective estimates for the missing grid points using 
surrounding precipitation information. 

2) Before incorporating the terrain feature in the DL model, 
the overall CC score of the event totals combining all the 
samples from the four test cases was improved from 0.55 
(original CMORPH) to 0.77 (corrected CMORPH based on 
DL-1). The NMAE score was improved from 63% to 61%, 
and the RMSE score was improved from 62.1 mm to 48.0 
mm. 

3) After including the terrain feature in the DL model, the 
improvement is dramatic, indicating the signifcant impact of 
orographic enhancement on precipitation formation and sub-
sequent retrievals. The overall CC score of the bias corrected 
CMORPH using DL-2 and DL-3 was improved to 0.85 and 
0.88, respectively. The NMAE of the corrected products using 
DL-2 and DL-3 decreased to 44% and 39%, respectively. The 
RMSE dropped to 38.3 mm and 33.5 mm, respectively. 

4) The only difference between DL-2 and DL-3 was the 
inclusion of a terrain based precipitation constraint in the 
loss function of DL-3. Although this would not dramatically 
change the results, the corrected product based on DL-3 indeed 
showed improved performance over that based on DL-2. To 
some degree, this implies the importance of physics-guided 
machine learning rather than purely data-driven models. 

5) Since the terrain information is currently not used in the 
operational PMW- and/or IR-based precipitation retrieval algo-
rithms (e.g., [1] [2][40][41]), it is suggested that the orographic 
precipitation gradient should be considered an additional input 
or a constraint in the development of future algorithms. Also, 
machine learning has a great potential to enhance the current 
parametric retrieval algorithms since machine learning is more 
effective in extracting information from multi-source multi-
dimensional data, which should be taken into account in future 
algorithm development. 

In addition, the DL-based bias correction framework is 

designed with high fexibility. It can easily be adapted to 
process other SPPs such as IMERG product. Besides the SPPs 
and terrain features, the model can be extended to incorporate 
other features such as wind, temperature, and water vapor 
imagery. The bias correction model can also be applied to 
other regions and at different time scales. Nevertheless, de-
tailed demonstration is yet to be done. Future work will focus 
on further improving the satellite precipitation retrievals from 
all these aspects. Generalization capability of this DL-based 
approach, especially in regions where the training labels are 
not available, should also be investigated. 
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