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Abstract Heterogeneous chemical cycles of pyrogenic nitrogen and halides influence tropospheric ozone
and affect the stratosphere during extreme Pyrocumulonimbus (PyroCB) events. We report field‐derived N2O5

uptake coefficients, γ(N2O5), and ClNO2 yields, φ(ClNO2), from two aircraft campaigns observing fresh smoke
in the lower and mid troposphere and processed/aged smoke in the upper troposphere and lower stratosphere
(UTLS). Derived φ(ClNO2) varied across the full 0–1 range but was typically <0.5 and smallest in a PyroCB
(<0.05). Derived γ(N2O5) was low in agricultural smoke (0.2–3.6 × 10− 3), extremely low in mid‐tropospheric
wildfire smoke (0.1 × 10− 3), but larger in PyroCB processed smoke (0.7–5.0 × 10− 3). Aged biomass burning
aerosol in the UTLS had a higher γ(N2O5) of 17 × 10− 3 that increased with sulfate and liquid water, but that was
1–2 orders of magnitude lower than values for aqueous sulfuric aerosol used in stratospheric models.

Plain Language Summary The injection of reactive material into Earth's atmosphere from fires
affects atmospheric composition at regional and hemispheric scales. Reported stratospheric ozone depletion
during extreme events, such as the 2020 Australian wildfires, illustrates one example of fire impacts and the role
of heterogeneous (gas‐particle) processes. We report field quantification of rates and product yields from
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Key Points:
• ClNO2 formation is active on biomass

burning (BB) particles but decreases
with transport to the upper troposphere
and lower stratosphere (UTLS)

• N2O5 uptake coefficients are low on
young BB smoke and increase with
transport through a PyroCB and UTLS
aging

• N2O5 uptake coefficients on aged BB
particles in the UTLS are significantly
lower than those used in model
parameterizations
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airborne observations of smoke. Extremely slow heterogeneous reaction rates on young smoke increase with
transport and aging, but upper atmospheric values are still a factor of 10 slower than parameterizations used in
stratospheric models. Heterogeneous production of ClNO2, a major lower atmospheric chlorine activation
pathway, may be active on biomass burning aerosol in the upper atmosphere.

1. Introduction
Biomass burning (BB) impacts global atmospheric chemical processes and is increasing regionally due to
climate‐change‐induced trends in fire weather (Jones et al., 2022). Fires emit nitrogen oxides (NO+NO2=NOx),
volatile organic compounds (VOCs) and aerosol that affect tropospheric oxidants (Koss et al., 2018). Roughly
10% of global inorganic chloride enters the atmosphere by BB (Wang et al., 2019), and a small fraction of this
may be subsequently activated to inorganic chlorine radicals. The co‐emission of NOx and VOCs enhances
tropospheric O3 globally on a scale comparable to, or greater than, urban pollution (Bourgeois et al., 2021; Xu
et al., 2021).

Large wildfires can form smoke‐filled thunderstorm clouds called pyrocumulonimbus (PyroCB) towers (Peterson
et al., 2021, 2022) that loft pyrogenic emissions to the upper troposphere/lower stratosphere (UTLS). Aerosol
injection from the 2019–2020 Australian New Year fires altered the partitioning of total reactive chlorine (Cly)
and nitrogen (NOy) species and led to stratospheric O3 loss (Bernath et al., 2022; Solomon et al., 2022, 2023;
Strahan et al., 2022). This O3 depletion results from heterogeneous reactions on the particulate surface area of
injected BB material. One of the major heterogeneous reactions is the uptake of N2O5, which in stratospheric
models produces exclusively nitric acid, HNO3 (Küll et al., 2002; Zambri et al., 2019).

N2O5(g) + H2O(l)→ 2HNO3(g) (R1, γ)

The uptake coefficient, γ, is the probability for reactive uptake upon a gas‐particle collision (Ravishankara, 1997).
Production of N2O5 occurs primarily in the absence of sunlight due to the photochemical instability of its nitrate
radical (NO3) precursor (Brown & Stutz, 2012). Reaction 1 influences NOx and O3 in both the stratosphere and
troposphere by altering the partitioning of reactive nitrogen and the availability of NOx (Dentener & Crut-
zen, 1993; Solomon, 1999).

Tropospheric observations have shown substantial yields of nitryl chloride, ClNO2, from chloride‐containing
aerosol (McDuffie et al., 2018b), represented below as reaction with HCl.

N2O5(g) + HCl(aq)→ ClNO2(g) + HNO3(g) (R2,ϕ)

Subsequent photolysis of ClNO2 produces Cl. The yield, ϕ, for R2 is the molar ratio of ClNO2 produced per N2O5

reacted. Due in part to the lack of chloride partitioning to highly‐acidic stratospheric aerosol, R2 has been
considered an unimportant contribution to stratospheric halogen activation (Solomon, 1999) despite its preva-
lence in the troposphere. Figure 1 illustrates BB emissions to different regions of the atmosphere together with the
emissions and heterogeneous chemistry described above with results described below.

There is considerable uncertainty caused by a lack of experimentally‐derived rates and yields related to N2O5

heterogeneous chemistry on BB particles (Solomon et al., 2022; Strahan et al., 2022; Yu et al., 2021). Current
models assume BB particles are similar to volcanic particles but are unable to reproduce the remote sensing
observations of Cly and NOy, suggesting substantial differences in N2O5 heterogeneous chemistry. Values of γ
(N2O5) and φ(ClNO2) for BB aerosol are poorly constrained. To our knowledge there no field‐derived values.
There exist limited BB laboratory studies on γ(N2O5) or φ(ClNO2), which suggest γ(N2O5) and φ(ClNO2) can be
altered by aerosol organic content and inorganic salts (e.g., nitrate and chloride) (Ahern et al., 2018; Goldberger
et al., 2019; Jahl et al., 2021). Current tropospheric and stratospheric models used to study BB impacts are poorly
constrained for γ(N2O5) and have not considered ClNO2 formation.

Here, we present aircraft observations of ClNO2 and N2O5 and field‐derived values for γ(N2O5) and φ(ClNO2) in
BB smoke. The analysis combines model and parameterization methods with aircraft observations from two field
campaigns: the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign
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(Warneke et al., 2023) and the 2017–2018 Atmospheric Tomography Mission (ATom) (Thompson et al., 2022).
We derive γ(N2O5) and φ(ClNO2) for fresh montane‐ and agricultural‐fueled smoke emissions in the troposphere
and a PyroCB injection of smoke to the upper troposphere from observations of daytime N2O5 and ClNO2 during
FIREX‐AQ. We derive γ(N2O5) for stratospheric BB‐influenced aerosol from ATom. Derived N2O5 uptake
coefficients are considerably lower than current model parameterizations. Halogen activation through ClNO2

from NOx and particulate chloride (pCl− ) is prevalent in low altitudes and possible, yet unquantified, at high
altitude. We discuss the factors that govern this heterogeneous chemistry in young and aged smoke.

2. Data and Methods
2.1. Observations

FIREX‐AQ was a large‐scale field research campaign focusing on wildfire smoke plumes in the western U.S. and
prescribed agricultural burning smoke plumes in the southeastern U.S. during the summer of 2019. We use
observations from the NOAA Chemistry Twin Otter and NASA DC‐8 aircraft (see Text S1.1 in Supporting
Information S1). The NASA Atmospheric Tomography (ATom) mission was a large‐scale research campaign
focusing on remote tropospheric, UTLS, and stratospheric air (Thompson et al., 2022). Data here are from
September–October 2017 (ATom‐3) and April–May 2018 (ATom‐4) (Text S1.2 in Supporting Information S1).
Table S1 in Supporting Information S1 lists instrumentation used in this analysis. In situ observations from ATom
and FIREX‐AQ are available as a merged data set and found in Wofsy et al. (2018) and Warneke et al. (2023),
respectively. See further details in Supporting Information S1.

2.2. Models and Parameterizations

Two models are used: an iterative 0‐D box model constrained to crosswind transects of wildfire plumes sampled
during FIREX‐AQ (Decker, Robinson, et al., 2021) (Text S1.3 in Supporting Information S1) and an iterative diel
model constrained to observations for each parcel of sampled air (McDuffie et al., 2018b) above an arbitrary
elevation cutoff of 6 km during ATom‐3 and ATom‐4 (Text S1.3 in Supporting Information S1). Calculated φ
(ClNO2) uses a parameterization determined from laboratory experiments (Bertram et al., 2009; Roberts
et al., 2009) (Text S1.4 in Supporting Information S1). See further details in the SI.

Figure 1. Illustration of biomass burning sources and emission to different regions of the atmosphere together with the
heterogeneous chemistry of N2O5 and ClNO2. Arrows on the right‐hand side illustrate trends in heterogeneous parameters, γ
(N2O5) and ϕ(ClNO2), determined from aircraft observations in this work.
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3. Results and Discussion
3.1. ClNO2 and N2O5 Observations

During FIREX‐AQ the NOAA I− CIMS aboard the DC‐8 measured mixing ratios of N2O5 and ClNO2 up to 19
and 3 parts per trillion by volume (pptv), respectively, in near‐field (<5 hr transport time) daytime plumes.
Figure 2a shows the flight track of the NASA DC‐8 aircraft sampling the Williams Flats fire on 3 August colored
and sized by observed ClNO2. Both N2O5 and ClNO2 exhibit clear enhancements despite significant photolysis
rates of NO3 (jNO3) (Figures 2b and 2c). These enhancements are associated with CO, a smoke tracer, and rapid
(>1 ppbv hr− 1) NO3 production, P(NO3)= k[NO2][O3], where k is the bimolecular rate coefficient for reaction of
NO2 with O3.

Median jNO3
at the center of wildfire and agriculture plume transects (0.14 and 0.19 s− 1 respectively) presented

here were 15%–30% lower than values outside of plumes (0.16 and 0.20 s− 1 respectively). In large wildfire
plumes jNO3 attenuation was a factor of 10 or more (Figures 2b and 2c), but small agricultural plumes exhibited
no attenuation (Figure S1 in Supporting Information S1). Previous analyses of FIREX‐AQ plumes found that NO3

photolysis and reaction with NO are not major NO3 loss pathways regardless of time of day (Decker, Robinson,
et al., 2021) and that NO3 chemistry is active regardless of the location at plume center or edge (Decker, Wang,
et al., 2021). Rapid P(NO3) together with large concentrations of highly reactive VOCs and aerosol surface area
control NO3 and N2O5 chemistry. Plumes with measurable daytime N2O5 provide measures of NO3 reactivity and
N2O5 heterogeneous uptake for these species that are otherwise important only at night in non‐fire environments.

The Normalized Excess Mixing Ratio (NEMR, see Text S1.5 in Supporting Information S1) measures the above
background enhancements of a compound x relative to the smoke tracer CO (Table S2 and Figures S2–S4 in
Supporting Information S1). The median N2O5 NEMR was 1.0 pptv ppmv− 1 CO for both agricultural‐ and
montane‐fueled fire groups (Figures 2d and 2e). The ClNO2 NEMRs, by contrast, differ by a factor of∼6 between
montane (0.3 pptv ppmv− 1) and agricultural (1.8 pptv ppmv− 1) fuels. Agricultural and grass burning emits more
Cl− per kg of fuel burned (emission factor) when compared to temperate and boreal forest burning (Akagi

Figure 2. (a) NASA DC‐8 flight tracks colored and sized by ClNO2 mixing ratio for the Williams Flats fire plume on Aug 3. The inset map shows the approximate
location of sampling in Washington State. (b) Observations of CO (gray), pCl– (pink), and jNO3 (black) and (c) N2O5 (red), ClNO2 (yellow) and P(NO3) (blue) for a
subset of crosswind plume transects. (d and e) Histogram of N2O5 and ClNO2 NEMRs from all montane (d) and agricultural (e) fires. Box plots show 10th, 25th, 50th,
75th, and 90th percentiles.
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et al., 2011; Liu et al., 2016; May et al., 2014). Despite considerable variability, the greater median ClNO2 NEMR
for agricultural‐fueled fires is consistent with the observed differences in particulate chloride (pCl–). DC‐8 and
Twin Otter observations of the above background pCl– show that agricultural and grass smoke contains roughly
16×more pCl– by mass than montane smoke (Text S2 and Figure S5 in Supporting Information S1). The majority
of pCl− is from KCl emissions, which is quantitatively detectable in the AMS.

3.2. Montane and Agricultural Smoke

To derive γ(N2O5) from agricultural smoke, we use the calculated NEMR of ClNO2 as a function of the physical
plume age (Text S1.1 in Supporting Information S1) shown in Figure 3a. We combine the calculated ClNO2

NEMRs with the relationship between γ(N2O5) and φ(ClNO2) below to estimate a γ(N2O5).

γ(N2O5) = 4 ×
kN2O5

c × SA
(1)

ϕ(ClNO2) =
kClNO2

kN2O5

(2)

Here c is the mean molecular speed of N2O5 and SA is the aerosol surface area density. Data are separated into low
and high NEMR groups, although we are unable to identify any metric that differentiates the two groups. The

Figure 3. (a) Calculated ClNO2 NEMRs from agricultural‐fueled fires versus plume age. Each marker is the Normalized
Excess Mixing Ratio of a single plume transect. Dashed lines show biexponential fits (see text). (b) Parametrized φ(ClNO2)
of agricultural smoke. (c) Box model results (lines) compared to observations (markers) of N2O5 and ClNO2 from the July 29
North Hills smoke plume with γ(N2O5) = 10− 4. The hashed area shows changes to volatile organic compounds (N2O5) or
yield (ClNO2) that encompass observational uncertainty. Sensitivity to an aerosol surface area factor of 2 increase,
considered the maximum increase in surface area from water corrections, is shown by a transparent blue area. The apparent
discontinuity of N2O5 in the model is due to a reduction in the photolysis rate at sunset (2.5 hr of age). (d) Parameterized φ
(ClNO2) for montane smoke (filled bars) and transect center observations used in the box model (empty bars). Box model
derived φ(ClNO2) is shown as horizontal ranges in black. The black marker indicates the average of the five modeled plumes
sampled in the lower troposphere. The range on the model‐derived φ(ClNO2) shows the range of the five modeled plumes.
Note that within observation uncertainty the full range is 0–1.
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biexponential fit represents first‐order formation (kClNO2
) and photolytic loss (jClNO2

) of ClNO2. Constraining the
fit to an observed median photolysis rate of jClNO2

= 3.3 × 10− 4 s− 1 (Figure S6a in Supporting Information S1) we
find kClNO2

= 2.0–5.8 × 10− 4 s− 1. Aerosol surface area can vary widely across a plume transect and therefore we
chose a range (2–11 × 103 μm2 cm− 3) of observed SA representative of most observations in Figure 3a (Figure
S6b in Supporting Information S1) and present a sensitivity analysis to this choice in Figure S6c of Supporting
Information S1. Finally, we use a median observed temperature of 296 K to find γ(N2O5) × φ(ClNO2) = 0.3–
4.7 × 10− 3.

To estimate φ(ClNO2) we use a laboratory‐based parameterization based on observed pCl– and calculated liquid
water content, hereafter referred to as parameterized ϕ(ClNO2) (Section 2.2, Text S1.4 in Supporting Informa-
tion S1). Figure 3b shows parameterized φ(ClNO2) for all 1 Hz agriculture smoke observations, with median φ
(ClNO2) of 0.72. When considering only observations in Figure 2a, used to determine γ(N2O5), the median is
0.77. Previous field comparisons have shown that parameterized φ(ClNO2) is likely an upper limit to actual
values (McDuffie et al., 2018a), which may, in part, be caused by the assumption that chloride is homogeneously
distributed across surface area (Jeong et al., 2023; McNamara et al., 2020; Royer et al., 2021). Therefore, the
derived γ(N2O5) is a lower limit range of 0.2–3.6 × 10− 3.

Montane smoke plumes included several cross‐wind transects downwind, which allows for γ(N2O5) and φ
(ClNO2) determination in individual plumes using a constrained 0‐D chemical box model (Decker, Robinson,
et al., 2021) (see Text S1.3 in Supporting Information S1). Model input values of γ(N2O5) were varied between
10− 4 and 10− 1 to minimize the difference between the model and observations of N2O5. The modeled N2O5 is
sensitive to NO3 loss to reactions with VOCs. The model uses VOC emissions from laboratory burn emissions
inventories, and these are also varied to improve the agreement between modeled and observed N2O5. A com-
parison of modeled and observed VOCs shows that the majority of the observation‐model comparisons remain
within the observation uncertainty. Lastly, φ(ClNO2) is varied between 0 and 1. Figures S7–S12 in Supporting
Information S1 show complete model and observation comparisons.

Figure 3c shows a representative model to observation comparison for N2O5 and ClNO2. In all model runs, a γ
(N2O5) of 10− 4 (one order of magnitude precision, see Figure S7 in Supporting Information S1) best reproduces
N2O5 observations. In these five cases, values of γ(N2O5) ≥ 10− 3 cannot recreate the N2O5 observations without
near or complete removal of VOCs, and values of γ(N2O5) < 10− 4 require φ(ClNO2) >1 to reproduce ClNO2.

The box model derived φ(ClNO2) ranges from 0.18 to 0.80 but spans the entire 0–1 range when considering the
ClNO2 observational uncertainty (Figure S13 in Supporting Information S1). The average model‐derived φ
(ClNO2) is 0.45 (Figure 3d, black marker). The average of transect‐center‐parameterized φ(ClNO2) is 0.65,
similar to the average of all parameterized φ(ClNO2) of 0.62. Parameterized φ(ClNO2) exceeds the box model,
similar to previous field derivations (McDuffie et al., 2018a), although >90% of parameterized φ(ClNO2) lies
within the box model derived range (Figure 3d). The derived φ(ClNO2) of agricultural smoke is generally greater
than montane smoke, consistent with the greater pCl– in the former. Plots of φ(ClNO2) against the OA:pCl− or O:
C ratio do not show clear dependences for the small number of determinations (Figure S14 in Supporting
Information S1).

Values of γ(N2O5) derived here are smaller than values determined in urban air (γ(N2O5) 10− 3–10− 1) (Brown &
Stutz, 2012; McDuffie et al., 2018b) and comparable to or lower than a limited number of laboratory studies. A
chamber study of pyrogenic aerosol for a wire grass fuel (2.8–6 ± 0.6 × 10− 3) and a long leaf pine needle fuel
(2.5–3.2 ± 0.4 × 10− 3) (Goldberger et al., 2019) are similar to our agricultural fuels result. A flow‐tube study of
pyrogenic aerosol identified an increase of γ(N2O5) for high‐chloride‐containing BB fuels at relative humidity
(RH) >80% (Jahl et al., 2021). This is similar to the average RH (70%) for the agricultural smoke plumes here
(Figure S15 in Supporting Information S1) and consistent with the observation of greater pCl– (Figure S5 in
Supporting Information S1) and larger γ(N2O5) values (Figure 3) compared to montane smoke.

3.3. PyroCB Processed Smoke

The DC‐8 sampled a PyroCB event produced from the Williams Flats fire on August 8 that reached 6–10 km
above sea level, or 5.6 to 1.6 km below the mean tropopause height. Three visually distinct plumes were observed,
and therefore we separate our analysis by plume number and transect number defined by Peterson et al. (2022).
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Observed P(NO3) and N2O5 (Figure 4a) demonstrate the potential for heterogeneous chemistry in the PyroCB
injection to the upper atmosphere. Calculated N2O5 NEMR increases with calculated physical plume age when
separated by plume number (Figure 4b). Enhancement of pCl– (Figure 4c) demonstrates the potential for ClNO2

production. However, observations of ClNO2 remained at or below the 1 Hz I− CIMS detection limit of 0.05 pptv
in Figures 4a and 4d, limiting the ability to quantify its production. Figure S16 in Supporting Information S1
shows that the ClNO2 signal within all PyroCB smoke observations (average ± 1‐σ of 0.03 ± 0.10 pptv) is
statistically significantly greater (p < 0.001) than signal outside of the plume (average± 1‐σ of 0.02± 0.06 pptv),
but the data do not allow quantification of the amount of ClNO2 within the PyroCB.

Aerosol data are unavailable for plume 3, and plume 1 did not have sufficient semi‐Lagrangian crosswind
transects required to constrain the model. Therefore, the box model is used to derive γ(N2O5) and to place an upper
limit on φ(ClNO2) for plume 2 only. The model derived γ(N2O5) = 0.7–5.0 × 10− 3 (Figure 4e), which is a factor
of 7–50 × greater than the γ(N2O5) values from plumes produced by the same fire but sampled in the lower
troposphere.

The model predicts φ(ClNO2) < 0.05 to match observations at or below the detection limit (or 0.05 at the LoD),
although φ(ClNO2) may be up to 0.23 within the 1‐σ determined ClNO2 measurement uncertainty (15% + 0.05
pptv). The average parameterized φ(ClNO2) (0.53) is also lower than tropospheric smoke from the same fire
(Figure S17 in Supporting Information S1) as a result of increased calculated liquid water fraction (LWF, Figure

Figure 4. NASA DC‐8 observations in a PyroCB on Aug 8 5.6 to 1.6 km below the mean tropopause height. Panels (a and b) show plume 2 observations only (transects
4–7). (a and c) Observations of N2O5 (red), ClNO2 (yellow) and P(NO3) (blue), CO (gray), pCl– (pink), and jNO3 (black). (b and d) NEMRs of N2O5 and ClNO2.
Markers and colors indicate the plume number, and white numbers indicate the transect number. The thick black line indicates the limit of detection. E. Transect center
observations of N2O5 (black) for plume 2 compared to the model N2O5 for a range (7× 10− 4–5× 10− 3) of γ(N2O5). (f) Transect center observations of ClNO2 (black) for
plume 2 compared to the model‐derived ClNO2. Solid color is the result of a φ(ClNO2)= 0.05 and a γ(N2O5)= 1–2× 10− 3 and the hashed area shows a range of possible
φ(ClNO2).
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S18 in Supporting Information S1) in the PyroCB. The presence of sufficient
pCl− for average parameterized ϕ(ClNO2) > 0.5 suggests that ClNO2 pro-
duction may occur in PyroCB transported smoke, even if it was observed only
at the detection limit in this daytime flight.

3.4. Aged UTLS Pyrogenic Aerosol

Observations from the ATom campaign provide N2O5 observations in the
UTLS. We separate our analysis into pyrogenic‐influenced and background.
Air parcels with >75% of aerosol number concentration containing pyrogenic
markers (see SI) are defined as pyrogenic‐influenced while all others are
considered background. The pyrogenic aerosol is estimated to have a physical
age of >15 days. Unlike FIREX‐AQ, during ATom the DC‐8 did not conduct
targeted sampling of plumes to constrain a semi‐Lagrangian box model.
Instead, a diel model built on the framework of previous model de-
terminations of γ(N2O5) in the lower troposphere (McDuffie et al., 2018b) is
constrained to chemical observations (see Text S1.3 in Supporting
Information S1).

The diel model predicts the median γ(N2O5) from all background UTLS
samples (N = 3,483) is 2.9 × 10− 2 as shown in Figure 5a (gray box and
whiskers). The pyrogenic‐influenced aerosol has a median γ(N2O5) of
1.7 × 10− 2 (Figure 4a, brown) which is significantly different (p < 0.001)
than the background aerosol. We also consider a smaller subset of pyrogenic
influenced aerosol from ATom previously identified by Katich et al. (2023) to
have originated from PyroCB influence. The resulting γ(N2O5) of 2.5 × 10− 2

is significantly (p = 0.01) less than background UTLS aerosol, and greater
than our selection of pyrogeneic influenced aerosol (Figure S19 in Supporting
Information S1). Overall, the model predicts that pyrogenic aerosol has a
lower rate of N2O5 uptake than background UTLS aerosol, yet substantially
greater than pyrogenic aerosol in young tropospheric plumes.

The differences in γ(N2O5) across agricultural, montane, PyroCb, and UTLS
data are associated with increased aerosol sulfate fraction. Figure 5b shows a
positive trend in log(γ(N2O5)) as a function of aerosol sulfate fraction dis-
tribution. The median sulfate fraction was 1%, 5%, 9%, and 42% in recently‐
emitted montane, PyroCB, agricultural and aged stratospheric BB aerosol,
respectively. Laboratory studies suggest organic coatings inhibit N2O5 up-
take, which is generally dependent on the organic layer composition and RH
(Gaston et al., 2014). Conversely, increasing sulfate fraction is associated

with increasing γ(N2O5), potentially due to increased aerosol hygroscopicity (McDuffie et al., 2018b). Sulfate in
tropospheric BB plumes arises from oxidation of pyrogenic SO2 (Rickly et al., 2022), whereas pyrogenic‐
influenced aerosol in the UTLS takes up sulfate during aging.

Current stratospheric models of BB impacts on stratospheric processes (Strahan et al., 2022; Yu et al., 2021) use a γ
(N2O5) based on purely aqueous sulfate aerosol. However, Figure 5c shows γ(N2O5) values from BB influenced
aerosol are a factor of 10–100 lower than pure aqueous sulfate particles (Burkholder et al., 2020). BB particles are
expected to condense organics from low‐volatility VOC oxidation products (Palm et al., 2020), forming organic
layers that will likely reduce γ(N2O5) relative to pure sulfate aerosol. Indeed, evidence of organic markers on
stratospheric aerosol was found in some studies of stratospheric BB aerosol (Bernath et al., 2022; Katich
et al., 2023), and BB aerosol markers are used here, by definition, to separate BB aerosol from background aerosol.

The results here indicate γ(N2O5) values increase for BB particles transported from the troposphere into the
UTLS, but never reach values used in stratospheric models. Some of this transport occurs through PyroCB events.
Injection of the chloride‐containing aerosol observed in montane smoke or repartitioning of gas phase HCl to
particulate organics or reduced nitrogen (Solomon et al., 2023) may result in a non‐zero ClNO2 yield, thus
introducing chlorine activation pathways currently not considered. Observations presented here cannot quantify

Figure 5. (a) Comparison of the model‐derived γ(N2O5) from FIREX‐AQ
and ATom. Markers show FIREX‐AQ results, and the histograms show
ATom BB‐related γ(N2O5). The box and whisker plots show the ATom BB‐
related (brown) and all of the ATom (gray) results from the UTLS. (b) Log γ
(N2O5) versus aerosol sulfate fraction for FIREX‐AQ and ATom. (c) γ
(N2O5) parametrization from Burkholder et al. (2020) for aqueous sulfate
particles used in stratospheric models compared to results from this work.
Marker size represents the interquartile range of temperature and sulfate
fraction in this work.
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ClNO2 production on BB particles transported through a PyroCB but demonstrate potential for this process.
Observations of diffuse BB influenced particles in the UTLS from ATom do not have reliable ClNO2 mea-
surements, such that we are unable to assess ClNO2 production on aged, dilute UTLS BB influenced particles.
Concentrated BB plumes transported to the stratosphere through PyroCB events, such as the 2020 Australian
fires, should have heterogeneous chemistry similar to that observed here. Recent analysis of high‐altitude aircraft
data suggest a ubiquitous influence of such events on stratospheric aerosol composition (Katich et al., 2023).

4. Conclusions
These results have implications for heterogeneous reactions on smoke aerosol and for smoke injection to the
upper atmosphere.

Uptake coefficients for N2O5 determined from in situ observations are lower on BB aerosol than current model
parameterizations. Figure 1 illustrates the observed trends in uptake coefficients from the lower to the upper
atmosphere. The γ(N2O5) on dilute smoke‐impacted particles derived in this study is already lower than model
parameterizations but likely represents an upper limit for more concentrated smoke such as the 2020 Australian
wildfires. We therefore suggest that models of the smoke impact to the UTLS will require revised parameteri-
zations with reduced uptake coefficients.

The recent results of Solomon et al. (2023) shows that chloride uptake by the organic phase of smoke aerosol
increases heterogeneous reaction rates of halogen‐containing species, thereby activating chlorine radicals that
participate in ozone destruction cycles. Our results demonstrate that N2O5 uptake on chloride‐containing smoke
particles produces ClNO2 in the lower atmosphere and has the potential to do so in the upper atmosphere. We
suggest that ClNO2 formation from N2O5 uptake on smoke particles injected into the stratosphere during large
PyroCB events may be a component of smoke‐induced halogen activation cycles that influence stratospheric
ozone.

Data Availability Statement
The aircraft data used in the study are publicly available at https://www‐air.larc.nasa.gov/missions/firex‐aq/.
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