

1 **A comparison of PAH exposure in Red Snapper (*Lutjanus campechanus*) around**
2 **natural and artificial reefs in the northwestern Gulf of Mexico**

3

4 Tiffany J. Nicholson¹, Erin L. Pulster², Steven A. Murawski², Heather L. Judkins^{1*}

5 ¹ University of South Florida St. Petersburg, St. Petersburg, FL, USA

6 ² University of South Florida, College of Marine Science, St. Petersburg, FL, USA

7

8

9 *Corresponding author:

10

11 Heather Judkins

12 University of South Florida St. Petersburg

13 140 7th Ave S, St. Petersburg, FL 33701

14 judkins@usf.edu

15 ***Abstract***

16 Red Snapper (*Lutjanus campechanus*) are an important fishery resource in the
17 Gulf of Mexico (GoM) and are found in abundance around artificial (e.g. oil and gas
18 platforms) and natural habitats (e.g. coral reefs, outcroppings). Polycyclic aromatic
19 hydrocarbons (PAHs), are a small but toxic component of crude oil released into GoM
20 waters through both anthropogenic (e.g., oil and gas activities) and natural (e.g.,
21 hydrocarbon seeps) sources. The objectives of this study were to measure and compare
22 PAH concentrations between tissue matrices (liver, gonad, muscle, and bile), by sex and
23 location (e.g., artificial oil and gas infrastructure vs. natural reefs), of Red Snapper
24 collected in the northwestern GoM. In 2016, Red Snapper ($n = 88$) were collected from
25 natural and artificial reefs to evaluate potential differences in PAH exposures and body
26 burdens. There were no significant results from the biometric analysis or their
27 association with PAH's. Average PAH concentrations were significantly higher
28 ($p < 0.001$) in livers than in gonads and muscle tissue. No significant differences were
29 found in PAH concentrations between sexes or between structure type for both biliary,
30 liver, or, muscle PAH concentrations, likely due to the close proximity of the natural and
31 anthropogenic sites sampled (within 97km radius). However, biliary PAH concentrations
32 in fish collected outside of the densely populated oil and gas infrastructure fields had
33 significantly lower PAH levels ($p < 0.001$). Thus, the scale at which samples are collected
34 and compared is critical to understanding the cumulative impacts of oil and gas activities
35 and underscores the need for further research at multiple scales across the GoM.

36

37 **Keywords:** oil rigs, fisheries, artificial reefs, contaminants, PAHs, Red Snapper

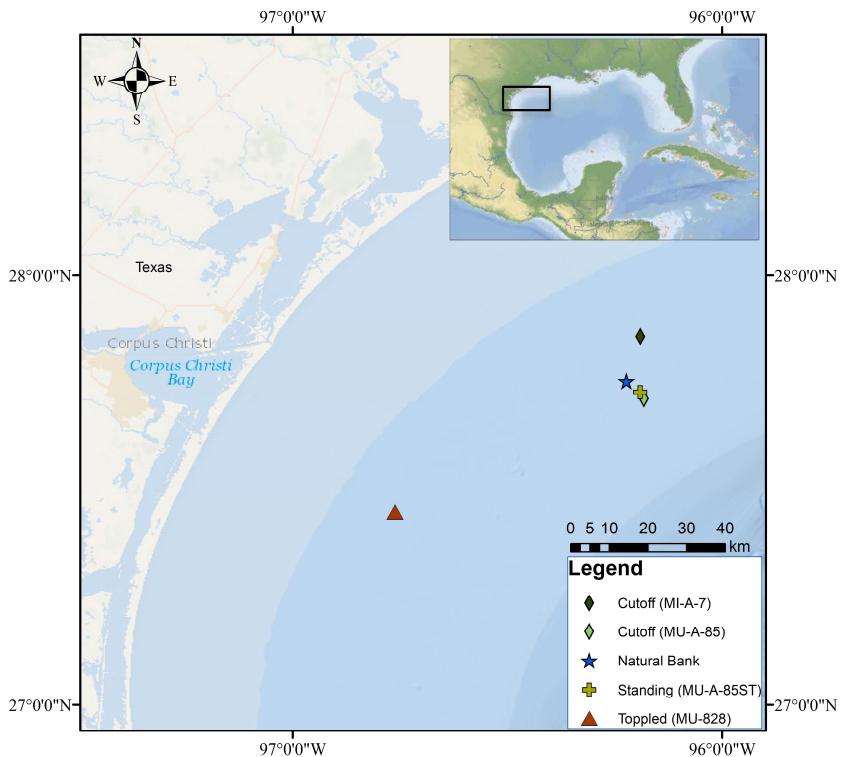
38 **INTRODUCTION**

39 Red Snapper (*Lutjanus campechanus*) are a primary target species of reef fish fisheries
40 throughout the Gulf of Mexico (GoM) and along the Atlantic coast of the United States. Red
41 Snapper grow rapidly, initiate spawning in their second year and are relatively long-lived (40-50
42 years) (Wilson et al. 2001). Spawning occurs from May through early October with peak
43 production in August (Collins et al. 1996). Juvenile Red Snapper prefer shallow, sandy bottom
44 areas, feeding primarily on small zooplankton or squid until they experience an ontogenetic shift to
45 primarily feeding on crustaceans and other fishes while occupying hard bottom habitats as adults
46 (Wells et al. 2008).

47 Adult and large juvenile Red Snapper congregate around both natural and artificial reef
48 structures, which are thus important recreational fishing locations (Bradley et al. 1975; Streich et
49 al. 2017b). Natural reef structures consist of coral reefs and carbonate rock outcroppings,
50 whereas artificial reefs consist primarily of various engineered structures such as concrete slabs,
51 reef “balls”, tires, abandoned vehicles, sunken ships and other debris, which serve as aggregating
52 locations for bottom-dwelling fishes (Rezak et al. 1990). Producing and abandoned oil
53 infrastructures (e.g., production platforms, pipelines, pumping stations, etc.) particularly in the
54 western GoM constitute the bulk of “artificial reefs” (Kaiser et al. 2005).

55 The GoM contains numerous non-operational (but potentially exuding oil) oil and gas
56 infrastructure in the northern GoM, which function as artificial reef systems (Gallaway et al.
57 2009; Reynolds et al. 2018). Rigs providing large surface areas attract many animals and provide
58 some of the only hard substrate available in various locations to support organisms (Shinn 1974).
59 Federal legislation(s) require that abandoned rigs be removed within a year from being
60 decommissioned (Sammarco et al. 2014; Rusco 2017). However, during the mid-1970s the

61 United States Department of Interior initiated the Rigs-to-Reef program (Reggio 1987) to
62 transition decommissioned rigs into permanent artificial reefs (Kaiser et al. 2005). There are
63 three categories of rig structures that serve as artificial reefs: (1) standing rigs that are no longer
64 in service; (2) cutoff rigs; and (3) toppled rigs. A standing rig is one where no major structural
65 changes have occurred. A cutoff structure is formed when the top of the oil platform is severed at
66 a depth >26m and either taken to shore, or left on the seafloor to create a smaller system next to
67 the larger remaining section. A toppled structure refers to a standing rig that has been toppled on
68 its side, either in its original location or transported to a designated artificial reef zone.


69 With over 3,200 operational and abandoned structures found throughout the GoM
70 (<https://www.ncei.noaa.gov/maps/gulf-data-atlas/>), there is a risk to marine life occupying these
71 structures of being exposed to hydrocarbon pollution. The most toxic constituents of
72 hydrocarbons to wildlife and humans are polycyclic aromatic hydrocarbons (PAHs) which
73 comprise approximately 2-7% by volume in crude oil (Jourdain de Muizon et al. 1990; Maes
74 2004). PAHs are environmentally persistent pollutants that are both anthropogenically and
75 naturally derived through pyrolytic processes and incomplete combustion that can be
76 found in natural fuel deposits (e.g. crude oil) as well as the incomplete combustion or
77 burning of organic substances (e.g. coal, oil, diesel, etc.). Hydrocarbons can be separated
78 into three main groups based on where they have been derived: natural sources, such as
79 plants (phytogenic) and petroleum (petrogenic), or from the anthropogenic sources
80 (pyrogenic). While an organism can metabolize PAHs, these concentrations in fish have been
81 linked to DNA damage, altered growth, reduced fitness, abnormalities, and epidermal lesions
82 (Myers et al. 1994; Heintz et al. 2000; Collier et al. 2013; Murawski et al. 2014). These PAHs
83 (petrogenic/pyrogenic) can be associated with oil rigs and have potentially negative effects due

84 to increased exposure to the organisms that utilize these structures (Peterson et al. 1996). An
85 obvious concern is whether the high abundance of Red Snapper inhabiting oil and gas
86 infrastructure result in differential exposure to hydrocarbons, potentially compromising fish
87 health, including reproduction, disease prevalence and growth.

88 Understanding when and where fish congregate and if they are thus differentially exposed
89 to harmful concentrations of PAHs is an important, but as of yet, untested assumption of the
90 Rigs-to-Reefs campaign. The main objectives of this study were: (1) to quantify and compare
91 PAH concentrations between sexes and matrices (i.e., liver, gonad, muscle, and bile samples) in
92 Red Snapper collected from the northwestern GoM; and (2) to compare PAH concentrations in
93 Red Snapper occupying natural vs. various types of artificial habitats, including standing,
94 toppled and cut-off oil and gas rigs.

95 **METHODS**

96 *Sample collections.* — In 2016, a total of 88 Red Snapper (35 female/53 male) were
97 collected from one natural and four artificial reefs (one toppled rig, one standing rig, and two
98 cutoff rigs) in depths ranging from 47 to 76 m, located in the northwestern GoM. These samples
99 were collected by researchers from Texas A&M University- Corpus Christi Harte Research
100 Institute as part of the center for the integrated modeling and analysis of the Gulf Ecosystem (C-
101 IMAGE) research consortium (Table S1; Figure 1). Of the 88 Red Snapper used in this study, 11
102 were caught at a toppled rig, 22 at cutoff rigs, 24 at a standing rig, and 31 at a natural reef site.
103 All samples were caught using a hook and line or vertical longline during July-November.
104 Biometric data (i.e., length, weight, organ weight) were recorded and bile, muscle, gonad, and
105 liver sampled from each fish. Samples were immediately frozen at
106 -20°C and transported to the laboratory for further analysis.

107

108 FIGURE 1: Locations of Red Snapper collected in 2016 off the coast of Texas from 1-toppled rig
 109 (triangle), 1-standing rig (cross), 2-cutoff rigs (diamonds), and 1-natural reef (star) for
 110 assessment of PAH concentrations.

111

112 *Biliary PAH analyses.* — Of the 88 Red Snapper collected, 78 bile samples had an
 113 adequate volume for analysis. PAH compounds, Naphthalene (NAP), phenanthrene (PHN), and
 114 benzo[*a*]pyrene (B[*a*]P) equivalents were quantified in bile samples using the semi-quantitative
 115 method of high performance liquid chromatography with fluorescence detection (HPLC-F)
 116 (Krahn et al. 1984). Briefly, 3 μ L of untreated bile samples were injected into the HPLC-F
 117 system (LaChrom Elite, Hitachi High Technologies America, San Jose, CA) equipped with a
 118 C18 reverse-phase column (SynergiTM 4 μ m Hydro-RP 80 \AA , Phenomenex, Torrance, CA) held at
 119 a constant temperature of 50 °C. The PAH equivalents were eluted with a linear gradient from
 120 95% water/acetic acid and 5% methanol (95:5) to 100% methanol at a flow rate of 1 mL/min.

121 Chromatograms were recorded at wavelength pairs for two and three aromatic ring compounds
122 (292/335 nm, e.g. naphthalene), three and four aromatic ring compounds (260/380 nm, e.g.
123 phenanthrene), and four and five aromatic ring compounds (380/430 nm for, e.g.
124 benzo[a]pyrene). All peaks eluting from 5 to 19 minutes were integrated for each wavelength
125 pair and peak areas were summed. Concentrations of biliary PAH equivalents (PAHeq) were
126 calculated using external standards of the parental PAHs, NAP (1 ng/µL), PHN (1 ng/µL) and
127 B[a]P (250 pg/µL), and the following formula:

128

129
$$\text{Biliary} = \frac{\text{standard conc ntration}}{\text{standard m an ar a}} \times \frac{\text{int grat d sampl ar a}(5 - 19\text{min})}{\text{d nsity of bil (0.00103} \frac{\text{g}}{\mu\text{L}}\text{)}} \times \frac{\mu\text{L standard inj ct d}}{\mu\text{L sampl inj ct d}}$$

130

131 *Tissue extractions and PAH analysis.* — Tissue samples (liver, gonad, muscle) for each
132 of the 88 Red Snapper were extracted using the QuEChERS method (Bond Elute, Agilent
133 Technologies, Santa Clara, CA) optimized for this species. Using this method, analytes of
134 interest were extracted from homogenized samples using an organic solvent, followed by a
135 cleanup method to remove excess water and other compounds.

136 For the QuEChERS extraction method, two grams of homogenized liver and gonad tissue
137 and five grams of homogenized muscle tissue were individually weighed and added to a 50 mL
138 test tube, then spiked with deuterated surrogate standard (SS) at a final concentration of 100
139 pg/µL. The sample and SS were vortexed (Mini vortexer MV 1, IKA Works, VWR) and allowed
140 to marinate at room temperature. Extraction solvent (20 mL, Acetonitrile, ACN Optima, Fisher
141 Scientific, Fair Lawn, NJ, USA) and two steel homogenizing beads were added to the sample test
142 tube and mixed for ten minutes using a MiniG® Geno Grinder (MiniG 1600, SPEX Sample
143 Prep, Metuchen, NJ, USA) and then centrifuged (Bio Lion, XC-L5) at 5,000 rpm for five

144 minutes. For further cleanup, 8 mL of the ACN extract were transferred to a 15 mL EMR dSPE
145 tube (Bond Elute, QuEChERS dispersive kit, Agilent Technologies, Santa Clara, CA, USA) and
146 shaken using the Mini G for five minutes at 1,000 rpm and then centrifuged (Premiere, Model
147 XC-2400) at 3,300 rpm for five minutes. The extract was decanted into a clean 50 mL test tube,
148 followed by the addition of 3.5 g of MgSO₄ polish (Bond Elute, QuEChERS extraction salts,
149 Agilent Technologies, Santa Clara, CA, USA) to assist in water removal. This mixture was
150 vortexed for 30 seconds and centrifuged for five minutes at 5,000 rpm. The process was repeated
151 until all water was removed from each sample. Prior to analysis, 50 μ L (final concentration of
152 100 ng/ μ L) of the internal standard *p*-Terphenyl-d14, was added to the sample extract to monitor
153 instrument stability.

154 Two-layer sandwich injections drew 0.2 μ L of analyte protectant (20 mg/mL L-
155 gulonolactone and 10 mg/mL D-sorbitol in ACN) with 2 μ L of sample or standard for enhanced
156 peak signal quality (Anastassiades et al. 2003; Maštovská et al. 2005). Sample extracts were
157 simultaneously analyzed for a total of 46 PAHs (TPAH₄₆), including 19 parental PAHs and their
158 associated homologues, using an Agilent 7890B gas chromatograph equipped with a 7010
159 tandem mass spectrometer (GC/MS/MS) operating in electron impact (EI) and multiple reactions
160 mode (MRM). The multimode inlet and source temperatures were set to 295° C, with the transfer
161 line set to 320° C, and both quadrupoles set to 150 ° C. Chromatographic separation was
162 achieved with a Rxi-5sil MS fused silica column with an Integra-guard column (Restek
163 Bellefonte, PA, USA) utilizing ultra-high purity helium as the carrier gas at a flow rate of 1
164 mL/min. The initial GC oven temperature of 60 °C was held for three minute and then increased
165 to 120 °C at 12 °C/min, followed by an 8° C/min increase to 300 °C, and a 15° C/min increase to
166 the final temperature of 320° C with a four-minute hold, resulting in an average total run time of

167 35.83 minutes per sample. The mass spectrometer collision cell used ultra-high purity nitrogen as
168 the dissociation gas with a flow rate of 1.5 mL/min and ultra-high purity helium as the quench
169 gas with a flow rate of 2.25 mL/min. Acquisition parameters are provided in the supplementary
170 material. All selected PAHs were identified through standards, retention time, and
171 quantifier/qualifier ion peak ratios using the Agilent Technologies Mass Hunter Workstation
172 Qualitative analysis software. Lipid content was also determined in all individual tissue samples
173 (liver, gonad, muscle) to evaluate potential associations with PAH concentration. Lipids were
174 measured following a modified Folch method (Matyash et al. 2008). Briefly, homogenized
175 sample aliquots of 20 mg were mixed thoroughly with 1.5 mL of methanol (Optima LC/MS,
176 Fisher Scientific, Fair Lawn, NJ, USA). Then five mL methyl-tert-butyl ether (MTBE, HPLC
177 grade, Fisher Scientific, Fair Lawn, NJ, USA) was and added to the sample and placed on a
178 pulsing vortex mixer (Fisherbrand, Fisher Scientific, Fair Lawn, NJ, USA) for one hour at room
179 temperature. After one hour, 1.25 mL of MS-grade water (Optima LC/MS grade, Fisher
180 Scientific, Fair Lawn, NJ, USA) was added and the sample was centrifuged to allow a clear
181 separation of the organic phases. The organic phase was transferred to a pre-weighed glass vial
182 and the remaining phase was re-extracted with two mL of MTBE: MeOH: H₂O (10:3:2.5 v/v/v)
183 mixture. The top organic phase was transferred and combined with the previously-extracted
184 organic phase and allowed to dry completely before re-weighing the vial containing the lipids.
185 The following calculation was used to determine the lipid content in the tissue sampled:

$$186 \% \text{ Crude lipid} = \frac{(Vial + \text{lipid wt (mg)}) - (\text{Empty vial wt (mg)})}{\text{Sample Aliquot wt (mg)}} \times DF \times 100$$

187 *Quality assurance / Quality control (QA/QC) Plan.* — The QA/QC plan consisted of
188 method and solvent blanks, matrix spikes, analytical standards, and sample replicates. For biliary
189 PAH analysis, a continuing calibration standard for each parent PAH (NAP: 2.5 ng/µL, PHN: 1.0

190 ng/µL, B[a]P: 250 pg/µL, Ultra Scientific, Kingstown, RI) was analyzed every six samples for
191 quantification and to ensure instrument stability in the HPLC- F system. Field samples were
192 analyzed in triplicate for biliary PAH equivalents with coefficient variations (CV) < 20%. Any
193 sample triplicates with a CV > 20% were reanalyzed until the QA/QC requirements were met.
194 Methanol solvent blanks were analyzed prior to field samples and areas were subtracted from the
195 area of field samples.

196 For tissue extractions, QA/QC procedures were adapted from the USEPA (e.g., EPA
197 Method 8270D) and NOAA (e.g., MC252 Analytical QAP, NOS ORCA 71). During the
198 QuEChERS extractions, tissue samples were spiked with the appropriate deuterated surrogate
199 and internal standards and analyzed alongside matrix matched standards (MMS), method blanks
200 and solvent blanks for each round. In addition, matrix spikes were used for each tissue (i.e., liver,
201 gonad, muscle) for species-specific optimization and to ensure method validation with recoveries
202 meeting quality control criteria (mean of 80 - 120%). Any samples that did not meet quality
203 control criteria were re-extracted and re-analyzed until criteria were met. The method detection
204 limit (MDL, 1 ng/g) was defined as the lowest matrix matched calibration standard where all
205 compounds were detectable.

206 *Data Analysis.* — For statistical purposes, any non-detects or concentrations <MDL (1.0
207 ng/g), were substituted with MDL/2 (0.5 ng/g). All statistical analyses were performed using
208 JMP 14 (SAS Institute) and all distributions were logarithmically transformed when necessary to
209 ensure normality. Any data failing the assumptions of normality were evaluated with non-
210 parametric tests and raw (non-transformed) data were used in these cases. To evaluate statistical
211 significance pairwise *post-hoc* comparisons were performed using the Steel-Dwass multiple
212 comparison method, and significance evaluated with Kruskal Wallis one-way non-parametric

213 analysis of variance. Non-parametric linear regressions were fit and tested with analysis of
214 variance to assess total biliary PAH equivalents and are reported as the sum of naphthalene,
215 phenanthrene and benzo[*a*] pyrene equivalents rounded to two significant figures as ng FAC g⁻¹
216 bile. Tissue PAHs are reported to three significant figures as ng g⁻¹ wet weight (w.w.) with an
217 alpha value of *p* < 0.05 for statistical significant value.

218 To facilitate broader comparisons, biliary concentrations in fishes from this study were
219 compared to results provided by two previous studies (Murawski et al. 2018; McDonald et al.
220 1996); (Figure 2). One study conducted by Murawski et al. 2018 collected fish via demersal
221 longline sampling in a transect survey design conducted for another C-IMAGE project. Similar
222 to my study, these C-IMAGE projects are part of a research consortium comprised of 17
223 different institutions from 5 countries, all studying the impacts of oil spills on the Gulf of
224 Mexico. The McDonald et al. (1996) study is used due to reason that their research was
225 conducted at two locations very close in proximity (< 3 miles) to those of this study.

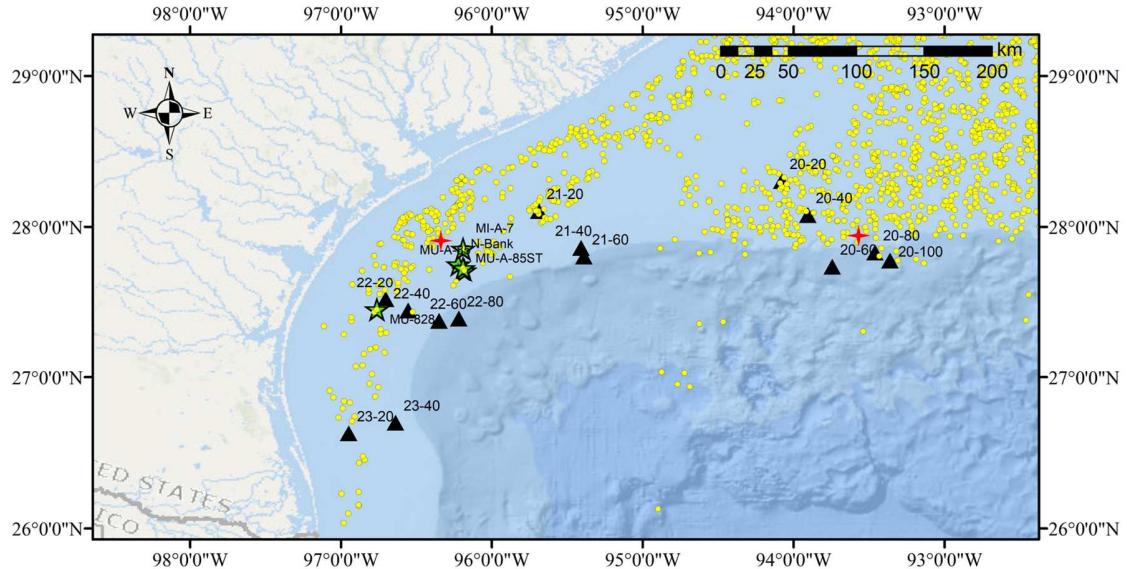
226

227 **RESULTS**

228 **Biometrics**

229 For all 88 Red Snapper (35 female, 53 male), wet weight, liver weight, gonad weight, and
230 lengths (total, fork, or standard) did not differ significantly by sex (Table 1). The average wet
231 weight of Red Snapper for both sexes combined was significantly greater at the natural bank
232 (2330 ± 79.5g) when compared to the standing rig (1790 ± 90.4g; *p* < 0.001) and a cutoff rig
233 (1740 ± 147g; Z score= 3.08; *p* = 0.018). Average total length of Red Snapper for both sexes
234 combined was also significantly greater at the natural bank (54.9 ± 0.70cm) when compared to

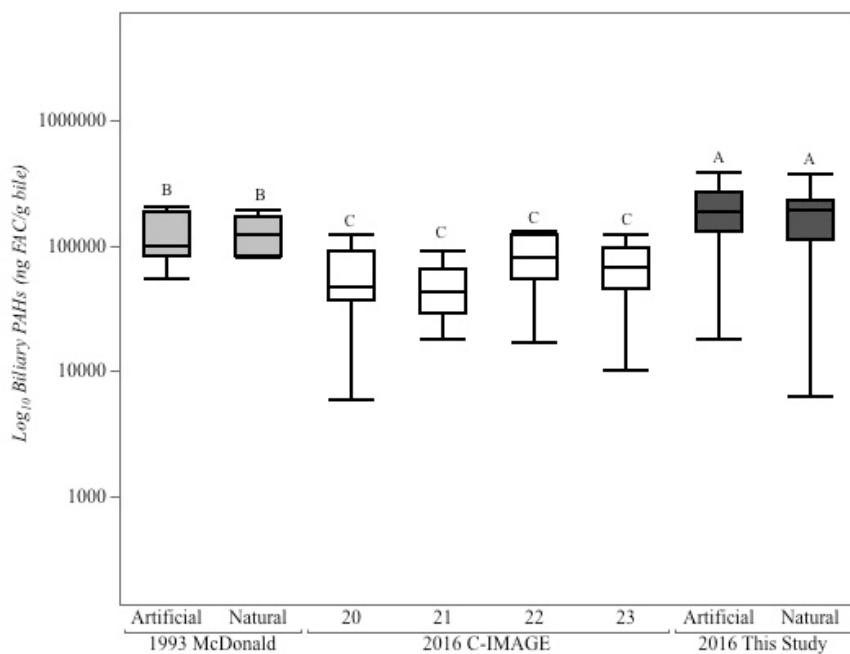
235 the standing rig (50.1 ± 0.80 cm; $p < 0.001$) and a cutoff rig (49.5 ± 1.31 cm; Z score = 2.97; $p =$
236 0.018).


237 Fulton's condition factor (K) was calculated to evaluate the robustness of fish as [K= weight (g) / length (cm³) x 100] to evaluate associations with PAH concentrations. In this study,
238 the mean K value was 1.34 ± 0.007 for females and 1.34 ± 0.005 for males, with an overall
239 min/max range of 1.15 to 1.52 (for both sexes), indicating relatively good health conditions (K >
240 1) for all fish. The hepatosomatic [HSI = liver weight (g) /total weight (g)] and gonadosomatic
241 [GSI = gonad weight (g) /total weight (g)] indices were calculated to determine the status of
242 energy reserve and reproductive condition. The mean HSI for females (0.63 ± 0.019) was
243 significantly higher than males (0.54 ± 0.016 , $p < 0.001$) for all structure types combined. The
244 HSIs were also significantly higher for females ($p = 0.002$) at natural reefs compared to those
245 collected near artificial (standing, cutoff, and toppled rigs) habitats. In males, the mean HSI was
246 significantly higher in the natural ($p = 0.003$) and cutoff ($p < 0.001$) structure types as compared
247 to the standing structure. The mean GSI was similar between females (0.37 ± 0.067) and males
248 (0.51 ± 0.055 , $p = 0.120$) for all structure types combined. In females, the GSI did not differ
249 significantly between any structure type ($p = 0.210$); however, in males the GSI was significantly
250 higher at the standing structure type compared to the cutoff ($p < 0.001$), natural ($p = 0.014$), and
251 topple ($p = 0.018$) structure types.

253 **Biliary PAH metabolite equivalents**

254 A total of 78 individual bile samples collected from 2016 Red Snapper located in the
255 northwestern region of the GoM were analyzed for the three PAH metabolite equivalents
256 (naphthalene (NAP), phenanthrene (PHN) and benzo[a]pyrene (B[a]P)) using HPLC-F (Table 2).
257 There were no significant differences ($p = 0.691$) observed in total biliary PAH equivalent

258 concentrations between males ($180,000 \pm 11,000$ ng FAC/g bile) and females ($190,000 \pm 20,000$
259 ng FAC/g bile) located at all sites, therefore male and female biliary PAH concentrations were
260 combined. No significant differences were observed in the total biliary PAH equivalent
261 concentrations (NAP, PHN, B[a]P) in Red Snapper across sites or structure type (cutoff, natural,
262 standing, toppled; Table 2). The mean concentrations of biliary PAH equivalents in all fish were
263 160,000 (NAP), 26,000 (PHN) and 290 (B[a]P) ng FAC/g bile respectively. Biliary PAH
264 metabolite equivalents were dominated by NAP (85.7%), followed by PHN (14.2%) and B[a]P
265 (0.12%). Naphthalene was significantly higher than both PHN ($p < 0.001$) and B[a]P ($p <$
266 0.001), with PHN also being significantly higher than B[a]P ($p = 0.003$).

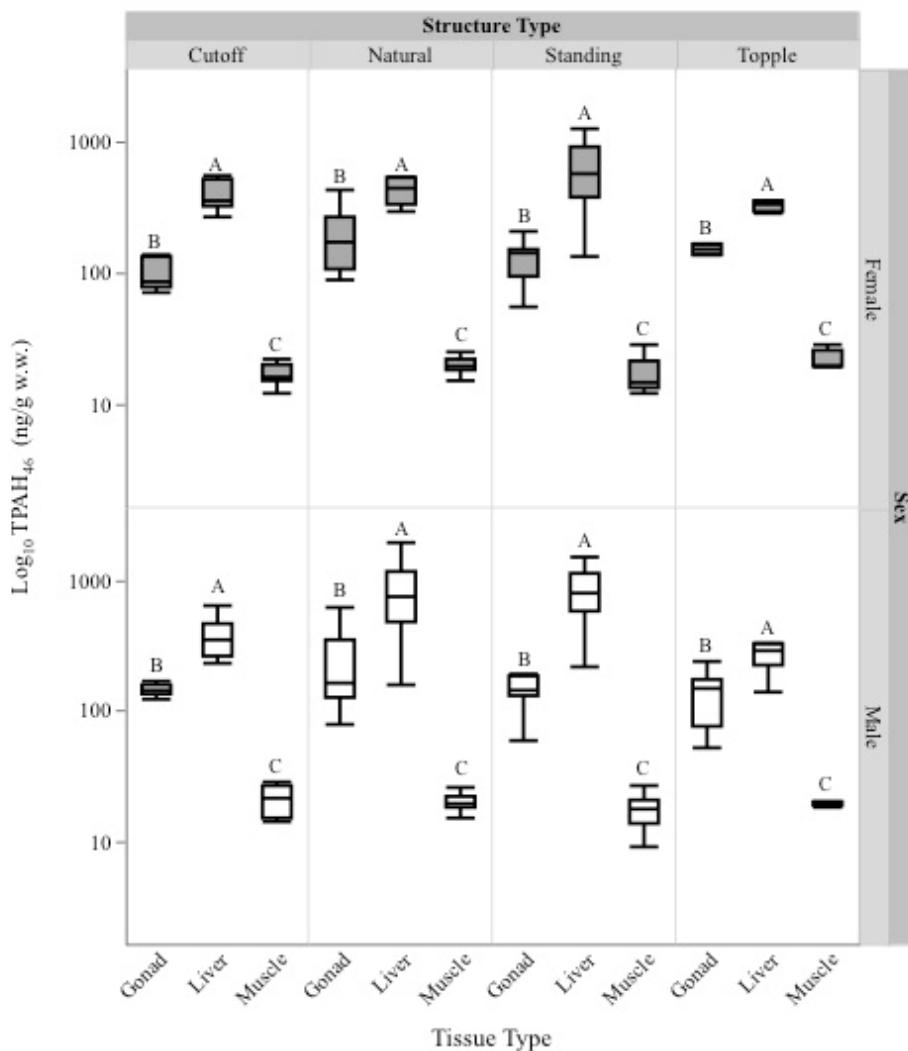

267

268

269 **FIGURE 2:** Fish sampling locations in 2016 via benthic longlining from this current project
270 (stars), in 2016 via the C-IMAGE benthic longlining transects (triangles; (Murawski et al. 2018),
271 in 1993 via semi-balloon otter trawling (diamonds; (McDonald et al. 1996) in the northwest Gulf
272 of Mexico. Locations of oil/gas platforms (active/non-active) are plotted as yellow circles.
273

274 By comparing data to past records, it is possible to address the changes over time similar to other
 275 studies that monitor PAH exposure in fishes overtime (Dearnley et al. 2020). The McDonald et
 276 al. (1996) study was conducted near the same platform locations used in this study but included
 277 various fish species other than Red Snapper. The 2016 C-IMAGE surveys also included biliary
 278 concentrations from a variety of benthic, pelagic and reef associated fish species (Pulster et al.
 279 2020a), however only Red Snapper concentrations were used for comparison. The mean biliary
 280 concentrations collected from Red Snapper obtained in the 2016 C-IMAGE study ($66,000 \pm$
 281 8,000 ng FAC/g bile; (Pulster et al. 2020b) were significantly lower than both the McDonald et
 282 al. (1996) study ($100,000 \pm 14,000$ ng FAC/g bile; $p < 0.001$) and this current study ($190,000 \pm$
 283 7,000 ng FAC/g bile; $p < 0.001$) (Figure 3). Mean biliary concentrations for this current study
 284 were also significantly higher than the McDonald et al. (1996) study ($p < 0.001$).

285


286 FIGURE 3: Comparison of biliary PAH equivalents (ng FAC/g bile) in samples collected in
 287 1993 (McDonald et al. 1996), 2016 by C-IMAGE (transects 20 – 23) and 2016 samples in this
 288 study.
 289

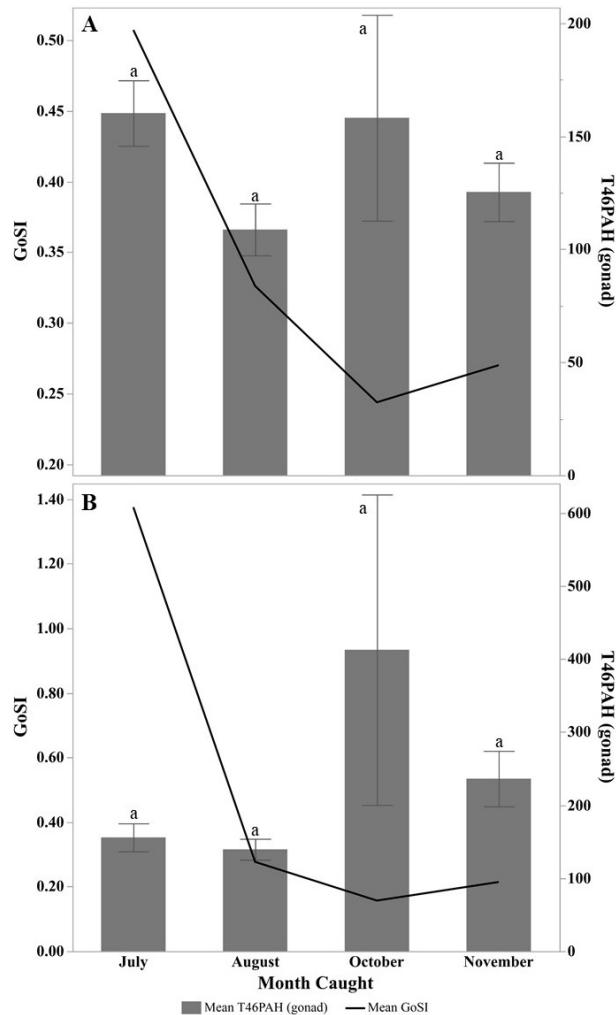
290 **Tissue PAH concentrations**

291 Tissue concentrations of PAHs are summarized by structure type in Table 2 and
292 individual PAH concentrations by structure and tissue type are provided in the supplementary
293 material (Tables S3 - 5). Lipid content and concentrations of 19 parent PAHs and their
294 associated alkylated-homolog compounds (TPAH₄₆) were measured in all tissue matrices (liver,
295 gonad, muscle) from 35 female and 53 male Red Snapper (Table 2). No significant differences
296 were found between sex for lipid content in any tissue type. Lipid content in livers (37.5% ±
297 2.70%) was similar to those in gonadal tissues (37.0% ± 4.59%) and both were significantly
298 higher than muscle (8.71% ± 0.65%, $p < 0.001$) for all structure types combined (Table 1).
299 No statistically significant relationships were observed between TPAH₄₆ and the lipid content in
300 liver ($r_s = -0.321$, $p = 0.018$), gonad ($r_s = 0.121$, $p = 0.268$), or muscles ($r_s = -0.174$, $p = 0.105$).

301 For all sites combined, the overall mean concentrations of PAHs in liver tissues for
302 females (505 ± 28.8 ng/g w.w.) and males (682 ± 42.3 ng/g w.w.) were both significantly higher
303 than the mean concentrations for female ($p < 0.001$) and male ($p < 0.001$) gonads and female (p
304 < 0.001) and male ($p < 0.001$) muscles. Female (142 ± 28.9 ng/g w.w.) and male (212 ± 41.5
305 ng/g w.w.) gonads were also significantly higher than the mean concentration of TPAH₄₆ for
306 both female muscles (18.5 ± 2.89 ng/g w.w., $p < 0.001$) and male muscles (19.3 ± 4.15 ng/g
307 w.w., $p < 0.001$). Within a particular site or structure type, there were no significant differences
308 between sexes for both liver and muscle TPAH₄₆ concentrations in Red Snapper (Table 2). In
309 Red Snapper collected at the cutoff structure, total PAH concentrations in male gonads were
310 significantly higher than females ($p < 0.001$), but no other differences were found across the
311 other structure types. Within a particular structure type, the TPAH₄₆ for muscles were
312 significantly lower than both the liver (ANOVA, $p < 0.001$) and gonadal tissues (ANOVA, $p <$

313 0.001) for both females and males at each structure type (Figure 4). Additionally, there were no
314 significant differences in the muscle, liver, or gonad concentrations of PAHs between the natural
315 and artificial habitats.

316


317 FIGURE 4: Total PAH concentrations ($\text{Log}_{10}\text{TPAH}_{46}$ ng/g w.w.) by sex and tissue matrix and
318 structure type for Red Snapper collected in the GoM. For each sex and within a structure type,
319 tissue matrices not connected by a letter are statistically different.

320

321 All Red Snapper samples ($n = 88$) were obtained and processed across six different
322 sampling days throughout July through November 2016 (7/18, 7/29, 8/25, 8/26, 10/19, 11/15).
323 Red Snapper collected on July 29th ($n = 10$) were significantly larger in total weight, gonad

324 weight, liver weight, and total length when compared to those caught on any other date.
325 Although no significant results were found, there was an increase and decrease in gonadosomatic
326 indices (GoSI) as well as mean gonadal PAH concentrations (TPAH) for both male and female
327 Red Snapper over the study period (Figure 5).

328

329

330 FIGURE 5: Female (A) and male (B) gonadosomatic indices (GSI) and mean gonadal PAH
331 concentrations (TPAH₄₆ ng/g w.w.) by month caught. Gonadal PAH concentrations not
332 connected by a letter are statistically different.

333 The two and three-ring low molecular weight (LMW) PAHs predominated the
334 distribution in fish tissues accounting for 92 - 96% of total PAHs for all tissue types. Of the

335 PAHs, NAP and its associated homologues, was the highest contributing LMW, accounting for
336 43% in all tissue types across all structure types. The four and five-ring, high molecular weight
337 (HMW) PAHs accounted for only 4 - 8% of total PAH concentration in all tissue types.

338 **DISCUSSION**

339 The Red Snapper population in the GoM has been a crucial part of the fishery economy
340 in the GoM for many years (Warren 1898). Additional knowledge regarding their abundance and
341 health status of fish throughout the GoM can help identify whether artificial reefs are having
342 negative or positive impacts on fish survival. Building on previous work (Streich et al. 2017a;
343 Downey et al. 2018), this study adds critical information regarding PAH concentrations in Red
344 Snapper inhabiting natural and artificial reef systems in the northwestern region of the GoM.
345 This study is also the first in-depth study of red snapper specifically and supports biliary PAH
346 and temporal trends observed in other species found in the GoM including Golden tilefish
347 (Snyder et al. 2019; Pulster et al. 2021).

348 The Red Snapper samples ($n = 88$) were obtained and processed across six different
349 sampling days throughout July through November 2016. All Red Snapper caught in July (male
350 and female) were collected at the natural site eliminating site variability and preventing statistical
351 comparisons between habitat types. The higher GoSI and TPAH indices found in July are likely
352 due to the Red Snappers typical peak spawning month occurring in June - July; at which time
353 they typically have enlarged gonads in preparation for the release of millions of eggs (Collins et
354 al. 1996). Red Snapper collected in July had significantly higher mean (\pm SD) GSIs than any
355 other month, suggesting these fish were ready to spawn (Figure 5, Table 1). Additionally,
356 although not significant, between July and August there was a decrease in gonadal PAH
357 concentrations for both sexes (Figure 5). In female Red Snappers, this was followed by a 45%

358 increase in gonadal PAH concentrations by October ($p = 0.91$) and another decrease (21%, $p =$
359 0.99) by November. In male Red Snapper, there was a 197% increase in gonadal PAH
360 concentrations between August and October ($p = 0.91$) followed by a 43% decrease in November
361 ($p = 0.99$). This is an important finding in terms of PAH tissue desposition and offloading during
362 these months. These data suggest Red Snapper are offloading PAHs during spawning as
363 illustrated by the decrease in gonadal PAH concentrations between July and August and again
364 between October and November. However, other factors such as diet and feeding status may
365 influence these results.

366 The LMW compounds in general dominated the biliary and tissue concentrations of
367 PAHs in this study. This is not uncommon due to the abundance of these compounds throughout
368 the environment (Xu et al. 2011) and similar findings were also observed in other species
369 collected in the GoM (Snyder et al. 2015; Struch et al. 2019; Pulster et al. 2020a). Additionally,
370 LMW PAHs (i.e. NAP) are more commonly detected in tissues of exposure studies (Tuvikene
371 1995) as a result of uptake being largely driven by hydrophobicity. PAHs are more
372 hydrophobic as their molecular weight increases so in terms of naphthalene (least
373 hydrophobic) to benzo[g,h,i]pyrene (most hydrophobic), there is ~ 3.7 orders of magnitude
374 difference. This is why HMW PAHs (i.e. B[a]P) are associated with decreased uptake efficiency
375 due to their decreased bioavailability. NAP a petrogenic PAH is also much more bioavailable
376 and tends to be more imbequitous to the environment as compared to the pyrogenic B[a]P,
377 which is why we see the biliary concentrations in this study primary dominated by NAP.

378 Neither tissue nor biliary PAHs in Red Snapper differed significantly between natural and
379 artificial habitats in this study. The lack of significant differences detected between platforms
380 sampled in this study and parallel studies could be due to a number of reasons including 1) small

381 samples sizes; 2) annual variations; 3) the relatively small geographical sampling range; 4) the
382 density of oil platforms in this region; 5) fish movement and 6) the complex circulation patterns
383 in this region. However, it is important to consider these findings in a wider spatial context in
384 order to understand factors that may contribute to the lack of detectable differences between
385 sites.

386 The amount of accumulation in aquatic environments depends highly upon the type
387 of food chains, availability or persistence of a pollutant, and the physical-chemical
388 properties of the pollutant (Spacie and Hamelink, 1985). Since bioaccumulation can only
389 occur when the rate of uptake is higher than the rate of elimination, there would need to be
390 an increased amount of pollutants in the surrounding environment that would burden the
391 fishes ability to eliminate pollutants fast enough. With a fish's ability to move to different
392 places freely, it can decrease it's level of exposure in an area. The sites in this study were all
393 located within ~80 km of each other in the northwestern GoM embedded in the midst of a once
394 high-density oil and gas region (Figure 2). The majority of the platforms in this region has since
395 been decommissioned and is currently inactive (www.bsee.gov and www.boem.gov). The
396 platforms sampled in this study were all installed during the late 1970's and early to mid-1980s
397 and decommissioned ~20 years later, with the exception of standing platform, MU-A-85ST. This
398 platform was installed in 1977 and is still one of the few remaining active platforms in this
399 region.

400 The two cutoff platforms (MI-A-7 and MU-A-85), the standing (MU-A-85ST) and the
401 natural bank sampled in this study are all clustered within 20 kilometers of each other whereas
402 the toppled MU-828 platform is located approximately 80 km southwest. There are less than a
403 dozen active platforms within 50 km northeast of the platform cluster and up to 100 kilometers

404 northeast of the MU-828 platform. There are no other active platforms within a 100 km radius of
405 any of the platforms sampled in this study, however, fish collected around these platforms still
406 had similar PAH levels as those collected near the actively producing platform (MU-A-85ST, to
407 the 80 km northeast). This suggests that their level of exposure to PAHs could also be
408 influenced by other factors including river discharge, runoff, and natural oil seeps. This
409 project takes place in a relatively small sampling area in the GoM, which could be the
410 reason for the lack of significant differences found amongst these sites with other oil and
411 PAH contaminants found influencing the surrounding area. Since there were no tags on
412 these Red Snapper, it is not known if the Red Snapper caught in this study were known to
413 reside in those specific areas or if they traveled to various distant locations. Their ability to
414 move to various locations could mean that these other oil rigs and natural seeps, outside of
415 the study area are playing a significant role in the PAH concentrations. It is important to
416 consider the larger scale as an influential factor in this study as these other factors could be
417 influenced by oil dispersal through the many currents that flow through the Gulf of Mexico
418 basin.

419 Biliary PAHs in fish collected at the combined 2016 C-IMAGE transects 20, 21, 22, and
420 23 were significantly lower ($p < 0.001$) than all reef systems (natural and artificial) sampled in
421 both this current study and the McDonald et al. (1996) study (Figure 3). These transects were
422 located approximately 20 km (transects 21 and 22) to 200 km (transects 20 and 23) from the sites
423 sampled in the present study and locations sampled by McDonald et al. (1996). The significantly
424 lower concentrations observed in Red Snapper collected along the C-IMAGE transects could be
425 due to the complex circulation patterns in this region (Duran et al. 2018). Compared to C-
426 IMAGE transect 20, the platforms sampled in this study are located within a relatively inactive

427 oil region, however this area is particularly impacted by pollution based on the circulation
428 patterns identified by Duran et al. (2018).

429 The density of oil infrastructure in the Northern GoM surrounding the natural and
430 artificial reef systems should not be discounted as a potential source of PAH exposures compared
431 to areas without any oil and gas infrastructure (e.g., the West Florida Shelf, WFS). Significant
432 spatial gradients in biliary PAH exposures were identified when comparing locations within an
433 area of high-density oil infrastructure to sites without any infrastructure. For example, the 2011
434 through 2015 mean biliary PAHs in Red Snapper collected along the WFS ($32,000 \pm 25,000$ ng
435 FAC/g bile) were significantly lower than in Red Snapper collected within the high density fields
436 of oil and gas activity in the north central region ($82,000 \pm 65,000$ ng FAC/g, $p < 0.001$)
437 surrounding the Mississippi Delta during the same time period (Pulster et al. 2020b).

438 **CONCLUSION**

439 These data suggest that the scale at which the sites used in this study and previous studies
440 were too small to detect spatial gradients. Future research should carefully consider scale and
441 expand the site selection to include areas at least 250 km outside of the density-rich oil and gas
442 regions of the northern GoM. This will be difficult to achieve as the oil industry expands into
443 deeper and deeper waters and into the eastern boundary. Currently, there are no known areas in
444 the Gulf of Mexico that have not been impacted by oil to some degree (Pulster et al. 2020a). This
445 study is crucial to understanding the multi-scale impacts of oil and gas infrastructure in the Gulf
446 of Mexico. In this study, PAHs were detected in all Red Snapper samples, located at both natural
447 and artificial habitats. However, data revealed significantly higher biliary PAHs in Red Snapper
448 collected within a high-density oil and gas region (i.e. northern Gulf of Mexico) when compared
449 to a location without any known oil and gas activity (i.e. the West Florida Shelf). Additionally,

450 levels measured in this study were higher than those measured in fish collected over 20 years
451 previous from the same sites (McDonald et al. 1996). This indicates Red Snapper chronic
452 exposure to PAHs for at least two decades by pollution transport via circulation patterns, land-
453 based sources, natural seeps, or a combination of sources. This research not only demonstrates
454 the chronic pollution problem in the Gulf but also the scale at which samples are being collected
455 is critical to understanding the impacts of oil and gas activities and underscores the need for
456 further research on a larger scale in the Gulf of Mexico.

457 **ACKNOWLEDGMENTS**

458 We thank the G. Stunz' Lab at Texas A&M University- Corpus Christi Harte Research
459 Institute for sample collections, with special gratitude to T. Topping and J. Wetz. All sampling
460 was conducted in accordance with Protocol IACUC-AUP #04-15 approved by the Institutional
461 Animal Care and Use Committee at the Texas A&M Harte Research Institute. This project was
462 funded by Texas A&M Research Foundation (Award #18-06 548001-100) and NOAA (Award
463 #NA16OAR4170181).

464 **AUTHOR CONTRIBUTIONS**

465 TN, EP, SM, HJ- project conceptualization, TN- data collection and analysis, original draft; EP-
466 data analysis, review and editing; SM, HJ- supervision, review and editing.

467 **REFERENCES**

468 Anastassiades, M., K. Maštovská, and S. J. Lehotay. 2003. Evaluation of analyte protectants to
469 improve gas chromatographic analysis of pesticides. *Journal of Chromatography A*
470 1015(1):163-184.

471 Bradley, E., and C. Bryan. 1975. Life history and fishery of the Red Snapper (*Lutjanus*
472 *campechanus*) in the northwestern Gulf of Mexico 1970-1974.

473 Collier, T. K., B. F. Anulacion, M. R. Arkoosh, J. P. Dietrich, J. P. Incardona, L. L. Johnson, G.
474 M. Ylitalo, and M. S. Myers. 2013. Effects on fish of polycyclic aromatic hydrocarbons
475 (PAHs) and naphthenic acid exposures. Pages 195-255 in *Fish physiology*, volume 33.
476 Elsevier.

477 Collins, L., A. Johnson, and C. Keim. 1996. Spawning and annual fecundity of the red snapper
478 (*Lutjanus campechanus*) from the northeastern Gulf of Mexico. Pages 174-188 in

525 Murawski, S. A., W. T. Hogarth, E. B. Peebles, and L. Barbeiri. 2014. Prevalence of External
526 Skin Lesions and Polycyclic Aromatic Hydrocarbon Concentrations in Gulf of Mexico
527 Fishes, Post-Deepwater Horizon. *Transactions of the American Fisheries Society*
528 143(4):1084-1097.

529 Murawski, S. A., E. B. Peebles, A. Gracia, J. W. Tunnell Jr, and M. Armenteros. 2018.
530 Comparative abundance, species composition, and demographics of continental shelf fish
531 assemblages throughout the Gulf of Mexico. *Marine and Coastal Fisheries* 10(3):325-
532 346.

533 Myers, M. S., C. M. Stehr, O. P. Olson, L. L. Johnson, B. B. McCain, S.-L. Chan, and U.
534 Varanasi. 1994. Relationships between toxicopathic hepatic lesions and exposure to
535 chemical contaminants in English sole (*Pleuronectes vetulus*), starry flounder (*Platichthys*
536 *stellatus*), and white croaker (*Genyonemus lineatus*) from selected marine sites on the
537 Pacific Coast, USA. *Environmental Health Perspectives* 102(2):200-215.

538 Peterson, C. H., M. C. Kennicutt, R. H. Green, P. Montagna, D. E. Harper, E. N. Powell, and P.
539 F. Roscigno. 1996. Ecological consequences of environmental perturbations associated
540 with offshore hydrocarbon production: A perspective on long-term exposures in the Gulf
541 of Mexico. *Canadian Journal of Fisheries and Aquatic Sciences* 53(11):2637-2654.

542 Pulster, E. L., S. Fogelson, B. E. Carr, J. Mrowicki, and S. A. Murawski. 2021. Hepatobiliary
543 PAHs and prevalence of pathological changes in Red Snapper. *Aquatic Toxicology*
544 230:105714.

545 Pulster, E. L., A. Gracia, M. Armenteros, G. Toro-Farmer, S. M. Snyder, B. E. Carr, M. R.
546 Schwaab, T. J. Nicholson, J. Mrowicki, and S. A. Murawski. 2020a. A first
547 comprehensive Baseline of Hydrocarbon pollution in Gulf of Mexico fishes. *Scientific*
548 *reports* 10(1):1-14.

549 Pulster, E. L., A. Gracia, S. M. Snyder, I. C. Romero, B. Carr, G. Toro-Farmer, and S. A.
550 Murawski. 2020b. Polycyclic aromatic hydrocarbon baselines in Gulf of Mexico fishes.
551 Pages 253-271 in *Scenarios and Responses to Future Deep Oil Spills*. Springer.

552 Reggio, V. 1987. Rigs-to-Reefs: The use of obsolete petroleum structures as artificial reefs. US
553 Department of the Interior, Minerals Management Service, Gulf of Mexico

554 Reynolds, E. M., J. H. Cowan, K. A. Lewis, and K. A. Simonsen. 2018. Method for estimating
555 relative abundance and species composition around oil and gas platforms in the northern
556 Gulf of Mexico, USA. *Fisheries Research* 201:44-55.

557 Rezak, R., S. R. Gittings, and T. J. Bright. 1990. Biotic assemblages and ecological controls on
558 reefs and banks of the northwest Gulf of Mexico. *American Zoologist* 30(1):23-35.

559 Rusco, F. 2017. Offshore Oil and Gas Resources: Information on Infrastructure
560 Decommissioning and Federal Financial Risk.

561 Sammarco, P. W., A. Lurette, Y. F. Tung, G. S. Boland, M. Genazzio, and J. Sinclair. 2014.
562 Coral communities on artificial reefs in the Gulf of Mexico: standing vs. toppled oil
563 platforms. *Ices Journal of Marine Science* 71(2):417-426.

564 Shinn, E. A. 1974. Oil structures as artificial reefs. Pages 91-96 in *Proceedings of an*
565 *international conference on artificial reefs*. Texas A&M University USA.

566 Snyder, S. M., E. L. Pulster, and S. A. Murawski. 2019. Associations between chronic exposure
567 to polycyclic aromatic hydrocarbons and health indices in Gulf of Mexico tilefish
568 (*Lopholatilus chamaeleonticeps*) post deepwater horizon. *Environmental toxicology and*
569 *chemistry* 38(12):2659-2671.

570 Snyder, S. M., E. L. Pulster, D. L. Wetzel, and S. A. Murawski. 2015. PAH exposure in Gulf of
571 Mexico demersal fishes, post-Deepwater Horizon. *Environmental science & technology*
572 49(14):8786-8795.

573 Streich, M. K., M. J. Ajemian, J. J. Wetzel, J. D. Shively, J. B. Shipley, and G. W. Stunz. 2017a.
574 Effects of a new artificial reef complex on red snapper and the associated fish
575 community: an evaluation using a before–after control–impact approach. *Marine and
576 Coastal Fisheries* 9(1):404-418.

577 Streich, M. K., M. J. Ajemian, J. J. Wetzel, J. A. Williams, J. B. Shipley, and G. W. Stunz. 2017b.
578 A comparison of size structure, age, and growth of Red Snapper from artificial and
579 natural habitats in the western Gulf of Mexico. *Transactions of the American Fisheries
580 Society* 146(4):762-777.

581 Struch, R. E., E. L. Pulster, A. D. Schreier, and S. A. Murawski. 2019. Hepatobiliary analyses
582 suggest chronic PAH exposure in hakes (*Urophycis* spp.) following the Deepwater
583 Horizon oil spill. *Environmental toxicology and chemistry* 38(12):2740-2749.

584 Tuvikene, A. 1995. Responses of fish to polycyclic aromatic hydrocarbons (PAHs). Pages 295-
585 309 in *Annales Zoologici Fennici*. JSTOR.

586 Warren, A. F. 1898. The red snapper fisheries: their past, present and future. *Bulletin of the
587 United States Fish Commission* 17:331-335.

588 Wells, R. J. D., J. H. Cowan, and B. Fry. 2008. Feeding ecology of red snapper *Lutjanus
589 campechanus* in the northern Gulf of Mexico. *Marine Ecology Progress Series* 361:213-
590 225.

591 Wilson, C. A., and D. L. Nieland. 2001. Age and growth of red snapper, *Lutjanus campechanus*,
592 from the northern Gulf of Mexico off Louisiana. *Fishery Bulletin* 99(4):653-665.

593 Xu, F. L., W. J. Wu, J. J. Wang, N. Qin, Y. Wang, Q. S. He, W. He, and S. Tao. 2011. Residual
594 levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake
595 Small Bai-Yang-Dian, Northern China. *Ecological Modelling* 222(2):275-286.

596
597

598 TABLE 1: Mean biometrics (\pm standard deviation) and sample sizes (n) for male (M) and female (F) Red Snapper collected in 2016
 599 from the northwest Gulf of Mexico used in this study.

Structure Type	Sex	n	Total length (cm)	Total wet weight (g)	Liver weight (g)	Gonad weight (g)	% Liver lipid content (g)	% Gonad lipid content (g)	% Muscle lipid content (g)
Cutoff 1(MI-A-7)	F	6	52.9 \pm 1.62	2020 \pm 160	10.3 \pm 1.10	6.80 \pm 1.00	24.0 \pm 7.73	21.0 \pm 10.4	4.18 \pm 1.93
	M	7	53.6 \pm 1.43	2120 \pm 165	10.8 \pm 1.65	2.05 \pm 5.30	18.7 \pm 4.83	26.6 \pm 12.4	7.71 \pm 1.42
Cutoff 1 mean (sexes combined)		13	53.3 \pm 1.09	2080 \pm 122	10.5 \pm 1.06	4.24 \pm 3.13	21.2 \pm 2.44	23.5 \pm 2.66	6.07 \pm 2.44
Cutoff 2 (MU-A-85)	F	4	52.6 \pm 1.91	2120 \pm 200	14.1 \pm 1.46	8.40 \pm 1.20	39.0 \pm 9.47	21.5 \pm 12.7	12.2 \pm 2.30
	M	5	47.0 \pm 1.61	1440 \pm 196	9.10 \pm 1.97	4.60 \pm 6.30	41.8 \pm 5.71	48.8 \pm 14.3	7.20 \pm 1.72
Cutoff 2 mean (sexes combined)		9	49.5 \pm 1.31	1740 \pm 147	11.4 \pm 1.27	6.36 \pm 3.77	40.6 \pm 6.12	36.6 \pm 6.10	9.44 \pm 6.10
Standing (MU-A-85ST)	F	10	51.6 \pm 1.22	1930 \pm 130	10.6 \pm 0.83	7.20 \pm 0.80	46.5 \pm 5.99	37.0 \pm 8.06	8.10 \pm 1.29
	M	14	49.0 \pm 0.92	1690 \pm 117	8.10 \pm 1.21	6.90 \pm 3.79	37.6 \pm 3.41	42.6 \pm 8.54	9.28 \pm 1.02
Standing mean (sexes combined)		24	50.1 \pm 0.80	1790 \pm 90.4	9.16 \pm 0.78	7.03 \pm 2.31	41.3 \pm 4.33	40.3 \pm 4.34	8.79 \pm 4.32
Toppled (MU-828)	F	4	51.3 \pm 1.93	1850 \pm 200	9.60 \pm 1.42	5.40 \pm 1.25	61.0 \pm 9.47	36.2 \pm 12.7	7.00 \pm 2.37
	M	7	54.4 \pm 1.42	2220 \pm 165	11.1 \pm 1.63	8.20 \pm 5.37	35.4 \pm 4.81	31.8 \pm 12.1	8.28 \pm 1.45
Toppled mean (sexes combined)		11	53.3 \pm 1.18	2090 \pm 133	10.6 \pm 1.15	7.19 \pm 3.41	44.7 \pm 6.22	33.4 \pm 6.22	7.82 \pm 6.23
Natural Bank (NBAK)	F	11	51.2 \pm 1.21	1900 \pm 120	14.1 \pm 0.84	7.30 \pm 0.74	36.3 \pm 5.71	35.7 \pm 7.69	9.82 \pm 1.42
	M	20	57.0 \pm 0.85	2570 \pm 98	16.2 \pm 0.90	22.8 \pm 3.26	31.1 \pm 2.85	62.4 \pm 7.14	10.3 \pm 0.86
Natural mean (sexes combined)		31	54.9 \pm 0.70	2330 \pm 79.5	15.5 \pm 0.69	17.3 \pm 2.03	32.9 \pm 3.86	52.9 \pm 3.68	10.2 \pm 3.86
Mean by Sex	F	35	51.8 \pm 1.25	1950 \pm 690	11.9 \pm 5.10	7.10 \pm 4.23	40.2 \pm 3.21	31.9 \pm 5.11	8.31 \pm 0.73
	M	53	53.2 \pm 0.99	2120 \pm 860	12.0 \pm 8.25	12.2 \pm 5.66	34.7 \pm 2.31	42.0 \pm 4.23	9.12 \pm 0.61
Mean (all data)		88	52.5 \pm 0.85	2040 \pm 530	12.0 \pm 7.23	9.65 \pm 4.96	37.5 \pm 2.70	37.0 \pm 4.59	8.71 \pm 0.65

600

601 TABLE 2. The 2016 mean (\pm standard deviation) biliary PAH equivalents (PAHeq, ng FAC/g
 602 bile) and tissue (ng/g w.w.) PAH concentrations for male (M) and female (F) Red Snapper by
 603 structure type.

604

Structure Type (Structure ID)	Sex	n	Biliary PAHeq	Liver	Gonad	Muscle
Cutoff 1 (MI-A-7)	F	6	200,000 \pm 46,000	412 \pm 114	81.6 \pm 27.1	17.2 \pm 2.23
	M	7	200,000 \pm 30,000	341 \pm 159	137 \pm 95.2	24.4 \pm 1.69
Cutoff 1 mean (sexes combined)		13	200,000 \pm 36,000	374 \pm 105	106 \pm 50.9	21.1 \pm 1.38
Cutoff 2 (MU-A-85)	F	4	160,000 \pm 56,000	379 \pm 140	119 \pm 32.3	20.0 \pm 2.73
	M	5	230,000 \pm 36,000	479 \pm 189	146 \pm 95.6	16.6 \pm 2.01
Cutoff 2 mean (sexes combined)		9	20,000 \pm 46,000	434 \pm 126	134 \pm 56.3	18.1 \pm 1.65
Standing (MU-A-85ST)	F	10	180,000 \pm 40,000	643 \pm 88.5	129 \pm 21.1	17.4 \pm 1.72
	M	14	170,000 \pm 22,000	895 \pm 113	189 \pm 56.4	17.4 \pm 1.96
Standing mean (sexes combined)		24	180,000 \pm 33,000	790 \pm 77.6	164 \pm 34.4	17.4 \pm 1.01
Toppled (MU-828)	F	4	280,000 \pm 65,000	328 \pm 140	149 \pm 33.3	21.5 \pm 2.733
	M	7	140,000 \pm 32,000	292 \pm 160	141 \pm 80.3	20.4 \pm 1.69
Toppled mean (sexes combined)		11	210,000 \pm 45,000	305 \pm 114	144 \pm 50.9	20.7 \pm 1.50
Natural Bank (NBAK)	F	11	180,000 \pm 38,000	542 \pm 84.2	192 \pm 20.2	18.8 \pm 1.64
	M	20	180,000 \pm 19,000	841 \pm 94.6	287 \pm 47.6	19.1 \pm 1.00
Natural mean (sexes combined)		31	180,000 \pm 23,000	735 \pm 68.3	253 \pm 30.3	19.0 \pm 0.89
Mean by Sex	F	35	190,000 \pm 20,000	505 \pm 28.8	142 \pm 28.9	18.5 \pm 2.89
	M	53	180,000 \pm 11,000	682 \pm 42.3	212 \pm 41.5	19.3 \pm 4.15
Mean (all data combined)		88	190,000 \pm 15,000	593 \pm 35.6	177 \pm 37.2	18.9 \pm 3.15

605