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32 [H1] Abstract  

Earthquake-triggered giant tsunamis  can c ause catastrophic disasters to coastal  
populations, ecosystems and infrastructure over 1000s  km. In particular, the scale and  
tragedy of the 2004 Indian  Ocean (about 230,000 fatalities) and 2011 Japan (22,000 
fatalities)  tsunamis prompted global action to mi tigate the impacts  of future disasters. In  
this Review,  we summarize the progress in  understanding  tsunami generation, 
propagation, and monitoring, with a particular  focus on d evelopments in rapid early  
warning and long-term hazard assessment. Dense  arrays of ocean-bottom pressure  
gauges in offshore regions provide real-time data of incoming tsunami wave heights,  
which combined with advances in numerical and analogue modelling, have enabled the 
development of rapid tsunami forecasts for near-shore re gions (within 3 minutes of  an  
earthquake  in  Japan  case). Such  early warning is essential to give local communities 
time to evacuate and save lives. However,  long-term assessments and mitigation of 
tsunami risk from probabilistic tsunami hazard a nalysis  (PTHA) are needed so that 
comprehensive disaster prevention planning and s tructural tsunami  countermeasures  
can be implemented by governments, authorities, and local populations. Future work  
should focus  on i mproving tsunami inundation, damage r isk and evacuation modeling  
and reducing the uncertainties of  PTHA associated with the unpredictable nature of  
megathrust earthquake occurrence  and rupture characteristics.  

 

Website Summary:  

The scale and tragedy  of the giant tsunamis in 2004, 2010 a nd 2011 l ed to a revolution  
in tsunami monitoring. This Review assesses the advances in tsunami observation, 
monitoring  and hazard  assessment, which  have allowed near-real time early warning 
systems to be developed.  

 

[H1] Key Points   

•  The sc ale and tragedy of the 2004 Indian Ocean Tsunami and the 2011 Tohoku  
Tsunami prompted the  widespread deployment of  tsunami observation networks  
and the development of tsunami modelling, which have enabled tsunami early 
warning systems to approach near real-time inundation forecasts based on the 
dense a rrays of offshore observation data. 

•  Earthquake magnitude alone does  not characterize the s ize or impact  of the 
ensuing tsunami disaster. The tsunami source (such as  earthquake location and  
rupture characteristics), coastal geomorphic features and  exposure  of densely 
populated areas play  key roles  in ts unami behaviour, inundation extents and the 
level of impact. 

•  Reproducing the inundation depth and flow velocity of tsunamis that run up to 
urban areas is  important for future tsunami risk mi tigation. Combination of  
numerical and physical  models are ne eded to better understand the complex 
interactions  between building layouts,  structures, debris and non-hydrostatic flow. 

•  Long-term  assessments of the tsunami will give a c ondition for soft and hardware  
countermeasures. Hardware or structure  measures  (such as sea walls) can  
reduce life, and asset and software  or non-structural measures (such as  
evaluation,  assessments, and planning) can reduce li fe losses. 
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77 •  The probabilistic tsunami risk assessment  (PTHA) is a recent option to consider  
the variability of tsunami conditions  for risk mitigation. The PTHA  can be used for 
engineering design, and tsunami inundation ma ps at  different return period  
levels, which can be used for development of local and regional hazard mitigation  
plans 

 
 

[H1] Introduction  

Giant tsunamis are generated by  shallow  subduction zone [G] earthquakes (Mw ≥ 8.5)  
that rupture the seafloor, displacing the ocean an d generating peak  wave heights  over  
10-20 m high, roughly. These giant tsunamis  cause ca tastrophic  disasters as they  
rapidly  inundate c oastal areas within a few minutes  after the arrival and giving little time 
or information (or both) for authorities to provide warning due to location of large slips 
along the subduction zone.  For example, the number of causalities of the 2011 Tohoku  
Earthquake Tsunami exceeded  22,000, even though Japan is relatively well-prepared 
for earthquakes and tsunamis.  The tragedy of the 2004 Indian Ocean Tsunami was even  
greater, as  over  230,000  people lost their lives across 14  countries, it is  thought to be  
the deadliest tsunami in history. Both the 2004 and  2011 ts unamis were much larger  
than predicted by authorities a t the time, and as a result, the warnings given 
underrepresented the  scale of these events. To mitigate the effects of future extreme 
tsunami disasters, an integrated  approach  that combines fundamental research on  
tsunami generation, propagation,  and inundation with real-time warning (forecasts) and  
long-term assessment  [G] of  tsunami hazard and  risk  assessments  [G] is necessary 
(Fig. 1).  

The primary cause of giant earthquake-triggered tsunamis is rapid s eismic displacement 
of the megathrust fault [G] at  subduction  zones1 (Fig.1, 2), hence they are sometimes 
termed megathrust earthquake-tsunamis  [G]. Earthquakes that  can rupture the se afloor  
are typically  ≥8.5 Mw earthquakes, <15 k m deep and that generate a large amount of  
fault slip (over 10 m) over a large area (over a few hundred km) in  a shallow area along  
the trench  axis. For example,  the earthquake magnitude was 9.1, the size of fault was  
500 km by  200 km  at the depth of 5 – 20  km, and 30 m or larger slip was occurred in the  
2011 Tohoku Earthquake. 

Research on megathrust earthquakes and tsunamis has su rged globally s ince the 2004  
Indian Ocean Tsunami and accelerated further after the 2010 Maule Tsunami in Chile  
and the 2011 Tohoku Tsunami in  Japan. The tragedy of these giant tsunamis  prompted 
action to deploy  more extensive g eophysical instrumentation networks, which are  
providing better resolution seismic and  tsunami monitoring that  is essential for delivering  
rapid early  warning to  local communities and for increasing the understanding of  
megathrust  earthquake  tectonics. Advances in increased measurement networks, model  
development, computational power, and j oint seismic-tsunami  risk methodology hav e  
also p rogressed tsunami-related sc ience and engineering technology development since  
these events.  

The understanding and  development of tsunami observation networks have dramatically 
improved. For example, after the 2004 Indian Ocean Tsunami, the global tsunami 
observation network  was expanded to 6 0 systems of  DART [G] (Deep-ocean 
Assessment and Reporting of  Tsunamis) network across the Pacific, Atlantic  and Indian  
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123 oceans nowadays.   As  such, the observation n etwork for far-field tsunamis was  
substantially improved  over the Pacific Ocean.  Likewise, after the  2011 Tohoku  
Tsunami, denser  observation networks, Seafloor observation network  for earthquakes  
and tsunamis  along the J apan Trench (S-net [G]) and  Deep Ocean-floor Network 
system for  Earthquakes and Ts unamis (DONET/DONET2 [G]), were established along 
the Pacific  Japanese coast. These network w as expanded to 2 00 from 3 tsunami 
sensors  since 2013 and can reduce the time  of early-warning release and  can increase  
the accuracy of tsunami height. 

Such dense monitoring n etworks have provided enough data to support the 
development of  tsunami  early warning (TEW) [G] systems for  near-field tsunamis[G] in  
both Japan,  the  United States, and several other countries. These  approaches  integrate  
near-real time seismic and  tsunami observations, which  have been enabled by increases 
in c omputing power. TEW gives the time to evacuate and is  critical  for near-field  
tsunamis because it’s  short arrival time (<10-30  mins  for  some locations). These  
advances hav e  contributed to the  establishment and wider acceptance of  probabilistic  
tsunami hazard assessments[G]. In addition, long-term assessments of ts unami hazards  
(next a few d ecades  or longer) provide essential  information for social  scientists,  
economists, urban planners, and engineers to implement disaster  risk reduction plans  
and policies, such as  structural and non-structural mitigation and e vacuation planning.   

In this Review, we summarize the progress in  understanding historical tsunamis, the  
development of the latest observation networks and TEW systems. Furthermore, we  
summarize  megathrust  subduction zo ne modeling for tsunamis, model development  of  
tsunami propagation and inundation process,  and lo ng-term as sessment with  
applications to hazard assessment and risk mitigation.  

 

[H1] Historical Giant Tsunamis 

Multiple giant tsunami events have occurred in  the last  ~20 years, which  caused 
devastating impacts  and raised global awareness of tsunami disasters.  This  section 
briefly summarizes four of these major tsunamis since the turn of  the millennium (Fig. 2), 
the instrumental records of which hav e provided unprecedented insight into tsunami 
generation  and propagation  and h ighlighted flaws in the early  warning systems  of the  
time. In particular, the impact of the 2004 a nd 2011 events  were a much larger  
magnitude than local communities anticipated  before the tsunamis hit coastal regions.  
These experiences accelerated technology developments into early warning  systems  
and prompted increased actions  to educate residence in  tsunami awareness a nd 
preparedness.   

[H2] 1960 and  2010 Chilean Tsunami 

The eastern  Pacific seaboard is one of the most seismically active zones in the world 
due to the subduction  of the Nazca Plate under  the South American Plate, with  
convergence rates that  reach up to 70  mm per year  2. As a result, the region produced 
five megathrust (M 3W  >= 8.0) earthquakes  since 1922 . For example, paleotsunami [G]  
evidence4,5  from Chile has been used to estimate a recurrence interval of 285 years for 
earthquakes  larger than Mw9.0 in this region6. 
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The largest instrumentally recorded earthquake was the May 22, 1960, Mw9.5 Valdivia 
event, which ruptured more than 1,000 km of seafloor from 37°S to 45°S7-9. The 1960 
earthquake cause 18 m high tsunami along the Chilean coast and triggered a trans-
Pacific tsunami that was less documented in the near-field (along the South American 
west coast) because it affected sparsely populated areas. However, the tsunami was 
recorded by far-field wave recording stations throughout the Pacific Ocean9,10. It caused 
damage and destruction across the Pacific11, including in Hawaii, where 61 people died 
owing to waves up to 10.7 m, and Japan, where waves reached up to 6.3 m causing 138 
fatalities11. 

Chile did not experience a megathrust tsunami again until 50 years later, when the 
segment immediately north of the 1960 event ruptured on February 27, 2010 in a Mw8.8 
earthquake off the coast of the Maule Region (35°26’S, 71°40’W). The 2010 earthquake 
fault size was 700 km long at depth of 35 km with slip of almost 10 meters It caused 3 m 
tsunami along the Chilean coast and expanded over the Pacific Ocean. The 2010 
tsunami caused major damage and 124 fatalities in the coastal regions (Valparaiso, 
Santiago and Maule) and islands of Chile12, affecting a more densely populated area 
than previous tsunamis in the 500 years prior13. It was the first time to check the 
usefulness of DART system over the Pacific after the 2004 Indian Ocean Tsunami. 

The most striking feature of the 2010 event was that run-up height distributions showed 
a large variability over a 1,000 km stretch of the Chilean coast, with an average run-up 
height of 7 m and reaching up to 29 m in some extreme locations12, which can be 
explained by the edge waves [G] along the continental shelf amplified the tsunami 
waves13 . Based on the model tests have shown that the slip distribution affects edge 
waves and the combination of direct tsunami waves from the source and substantial 
edge waves along the coast significantly amplified total tsunami heights along the 
coast13. 

These two events provided many lessons14. From a physical standpoint, they highlighted 
that earthquake magnitude alone is insufficient to characterize the impact of a tsunami 
disaster, although two events were quite large in magnitudes. The details of the source, 
coastal geomorphic features, and exposure play key roles in tsunami behavior and the 
related disaster15 . 

[H2] 2004 Indian Ocean Tsunami 

The 2004 Indian Ocean Tsunami was caused by the Sumatra-Andaman earthquake, 
which occurred on a low-angle trust fault at the subduction zone between the Indian and 
Sunda Plates16. The magnitude [G] of this earthquake was initially measured magnitude 
8.5 in the first hour and moment magnitude [G] Mw9. 0 by Global CMT solution 19 hours 
after the earthquake17 ,  while the estimated moment magnitude [G] was, about 2.5 times 
larger, up to Mw9.318,19. The epicenter was located off the west coast of northern 
Sumatra Island at a depth of 30 km19, with the rupture extending out northwards by 
more than 1,200 km over a period of ~8 minutes20,21. This extensive fault rupture 
generated a massive tsunami with run up heights up to 51 m23, 24 and maximum 
inundation distances up to 939 m25. The scale of this event resulted in severe losses and 
fatalities along the coastline areas of the Indian Ocean7. The earthquake and 
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subsequent tsunami caused over ~230,000 fatalities13 across 10 countries in South Asia 
and East Africa, and is thought to be the deadliest tsunami in history.  

The tsunami propagated eastward towards Indonesia, Thailand, Myanmar, Malaysia, 
and the nearby islands within a few hours. Indonesia was first to be impacted, with the 
tsunami waves arriving within 30 minutes after the earthquake26. Thailand was impacted 
next, where tsunami waves with run-up heights larger than 10 m (and even up to 19.6 m, 
ref.25) hit the coast about two hours after the earthquake25. The tsunami also propagated 
westward to Sri Lanka, where the south coast was impacted by intensive tsunami 
waves24 with inundation distances of up to 390 m and runup heights of up to 12.5 m27. 
The Indian mainland and islands were also impacted by the tsunami about two hours 
after the earthquake. The east coast of India was most damaged, where the maximum 
runup of 5 m and inundation distance of 2 km were reported in Nagapattinam, Tamil 
Nadu state and Pondicherry (Puducherry) city24,28. The tsunami propagated ~5,000 km 
across the Indian Ocean to Somalia and the East African coast in about 7.5-8 hours29 , 
where it caused large run-up heights up to 9-m high 29 and inundation distances of a few 
hundred meters29 . There was not TEW system in Indian Ocean at that time. No tsunami 
warning issue was released these countries, although there was enough time to 
evacuate for the most of counties. DART system installed in Indian Ocean as well as 
increasing number of systems in other oceans after this event. 

The tsunami was also detected in the Atlantic and Pacific Oceans30 by numerous tide 
gauges, wave gauges, and ocean bottom pressure (OBP) gauges, such as DART 
stations31. In addition to ground observatories, the 2004 tsunami was the first tsunami for 
which the wavefields were captured by satellite altimeters32, 33. With these observations, 
analyses have been performed with in-situ and satellite data34-36. The satellite altimeter 
data could measure spatial distribution of tsunami waveform over a few hundred 
kilometers. The combined two different observation data could  improve the initial source 
estimation more accurately34 

The 2004 tsunami immediately aroused an intense global concern about tsunami 
hazards. Since this event, tsunami monitoring and warning systems have been 
successfully developed in many countries that are at risk of tsunami hazards. For 
example, the German Indonesian Tsunami Early Warning System (GITEWS) Project for 
Indonesia was established and leaded to the first TEW alert in Indonesia37. 

[H2] 2011 Tohoku Tsunami 

The 2011 Tohoku Tsunami was generated along the northern Pacific coast of Japan 
due to the Mw9.1 earthquake on March 11, 2011Error! Reference source not found.-39 . The 
magnitude was underestimated by 7.9 in the first 20-30 minutes, which was critical 
for timely tsunami evacuation in coastal areas near the source40. This earthquake 
and the induced tsunami caused fatalities of 19,729 and destroyed 121,996 
houses39. 
The earthquake epicenter was located off the coast of Miyagi prefecture in the 
Tohoku region, Japan41. The fault rupture of the earthquake lasted for more than 3 
minutes, and the seismic waves initially propagated strongly toward Fukushima, 
Miyagi, and Iwate prefectures. Later, strong tremors spread toward Aomori in the 
north and Chiba in the south. The estimated main fault slip area was delineated with 
active aftershocks that occurred over 500 km wide area off the Tohoku coast with a 
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fault slip of more than 30 m (up to 60 m possible slip was estimated 42). The resulting 
seafloor uplift caused more than 6 m changes in sea level43, resulting in a giant 
tsunami. 
There were two notable characteristics of this event. One was the scale of the 
maximum runup height of over 40 m on the Sanriku ria coast and the inundation 
extent over 1-3 km, which was similar to the past 1611 Keicho, 1896 Meiji, and 1933 
Showa Sanriku Tsunamis44. The destructive power the incoming and receding waves 
was enormous. Many villages and towns were totally washed out including houses, 
city halls and others. 
The other notable characteristic was related to the tsunami in the low-lying southern 
Sendai Plain, with a maximum nearshore tsunami height of 15 m. The scale of the 
tsunami in this area far exceeded the anticipated scenario of the Miyagi-oki tsunami 
evaluated before 2011 - indeed, the inundation range was 10 times larger than 
predicted (up to 5 km from the coastline) by Earthquake Research Committee of the 
Headquarters for Earthquake Research Promotion under MEXT45, and the prolonged 
inundation was experienced over a wide area, hampering the rescue and restoration 
activities. 
The tsunami propagated from deep to shallow waters and reached the coastal area 
within 20-30 minutes of the earthquake occurrence44. Tsunami wave amplification was 
observed along the Sanriku ria coast. Furthermore, coastal areas of the southern 
Tohoku region experienced the most substantial damage ever recorded. In particular, 
the tsunami generation area extended to areas offshore of Miyagi and Fukushima 
prefectures. A huge tsunami hit the coast of Sendai and Fukushima directly. Compared 
to Sanriku, these areas were less well prepared and consequently suffered greater 
property and human losses. The importance of tsunami scenarios and related 
preparation was confirmed by these comparisons. 

A total of more than 5,000 tsunami trace observations were surveyed by July 2011, 
resulting in an extremely large and spatially dense dataset of tsunami trace height44,46 

(note: tsunami trace height means the elevation with respect to sea level of tsunami 
traces, such as debris or flow markers in structures which corresponds to runup or 
inundation height). For example, in the Sanriku region, areas with trace heights of 20 m 
or more extend over 290 km from north to south, and locations with trace heights of 30 
m or more exist near Miyako City and Onagawa Town. Therefore, the runup height was 
notably larger than the nearshore tsunami height in these areas, indicating the affect of 
local amplification during the inland runup process.  

The 2011 Tohoku Earthquake resulted in strong ground motion with tsunami inundation 
and flooding, destruction of coastal structures, damage to coastal forests, houses, 
buildings, and infrastructure, erosion and sedimentation, and changes in topography due 
to destruction and movement. In addition, the tsunami generated debris, offshore 
tsunami, drifting of ships, spills, and fires of combustible materials, and it caused 
damage to transportation networks such as roads and railroads, ports and airports, and 
critical facilities, such as nuclear and thermal power plants. In this way, great human 
damage over 22,000 causalities, economic damage and infrastructure damage (direct 
damage 9.6 trillion yen), were caused. Although they were reduced by the disaster 
prevention and reduction preparations that were being implemented at that time (for 
example, strengthening infrastructure development, disaster prevention education, 
evacuation system, and cooperation agreement for restoration), the damage was very 
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extensive and thousands of lives were lost47,48. Therefore, disaster mitigation should be 
evaluated quantitatively to help preparations for future events. 

[H1] Observation Systems and Early Warning 

Currently, there are many tsunamis observation and tsunami early warning systems 
(TEWS) in the world. Here, we focus on the global DART observation network and two 
particular TEWS in the United States and Japan as examples to demonstrate the history 
and scope of these systems. 

[H2] DART system 

DART system is the real-time tsunami monitoring systems, developed by Pacific Marine 
Environmental Laboratory (PMEL), National Oceanic and Atmospheric Administration 
(NOAA). DART system consists of a pressure sensor at seafloor bottom to detect 
tsunamis and moored surface buoy for real-time communications via satellites. DART 
system can measure tsunami waveform at 15-minute intervals in regular modes and 
becomes every 15 seconds in event mode. 

First DART buoy was tested in 2000 and DART system with 6 tsunami sensors deployed 
near regions U.S coast after that. The global tsunami observation network by DART was 
expanded to 60 systems across the Pacific, Atlantic and Indian oceans.  It has been 
used for TEW system over the world now. 

[H2] United States network 

The first Tsunami Warning Center in the U.S. was established following the 1946 
Aleutian Islands Earthquake and Tsunami (Mw8.6) and uses networks of seismic and 
sea-level observation systems to detect and forecast tsunamis. These networks are 
owned and operated by a number of domestic and international organizations, including 
the National Oceanic and Atmospheric Administration (NOAA). The collected data are 
combined with numerical models to continuously refine their messages with more 
accurate, targeted, and detailed information. 

NOAA operates two 24-hour tsunami centers. The Pacific Tsunami Warning Center 
(PTWC) in Honolulu, Hawaii, directly serves the Hawaiian Islands, the U.S. Pacific and 
Caribbean territories, and the British Virgin Islands and is the primary international 
forecast center for the Pacific and Caribbean. In addition, as a result of the 1964 Mw9.2 
Great Alaska earthquake, which killed over 100 people in Alaska, Oregon, and 
California, the National Tsunami Warning Center (NTWC) was established in Palmer, 
Alaska, and serves Alaska, Canada, and the continental U.S. For tsunami forecasts, the 
PTWC utilizes the Real-time Forecast of Tsunamis (RIFT) model49, which utilizes the 
passing tsunami waves to forecast the maximum deep-ocean tsunami height as well as 
the coastal maximum tsunami wave height. The NTWC uses the numerical model ATFM 
(Alaska Tsunami Forecast model)50 to forecast the propagation and inundation of 
tsunamis in the Pacific and Atlantic Oceans. ATFM pre-computes hundreds of 
hypothetical cases, which are accessed and calibrated with observations during a real 
event to have an immediate forecast. In addition, both Tsunami Warning Centers use 
the Short-term Inundation Forecasting for Tsunamis (SIFT) model developed by the 
NOAA Pacific Marine Environmental Laboratory51 (PMEL) to forecast tsunami arrival 
times, heights, and inundation based on observations in the deep ocean. 
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NOAA relies on in-water instruments and observation systems for tsunami monitoring 
and forecasting. NOAA’s National Data Buoy Center operates and maintains the U.S. 
network of DART systems, which were developed by NOAA’s PMEL for the early 
detection, measurement, and real-time reporting of tsunamis in the open ocean. Closer 
to shore, networks of coastal water-level stations are used to confirm tsunami arrival 
times and nearshore tsunami heights as well as determine when to downgrade or cancel 
a tsunami Advisory or Warning. In the U.S., most of these stations are operated and 
maintained by NOAA’s Center for Operational Oceanographic Products and Services 
and the Tsunami Warning Centers. NOAA is also exploring integrating other observation 
systems into their tsunami detection system, including the Global Navigation Satellite 
System (GNSS) and ocean-bottom cable systems. 

Tsunami warning messaging is relayed from the Tsunami Warning Centers to regional 
NOAA National Weather Service offices, state-level Operation Centers, local emergency 
managers, and the public. There are four levels of tsunami alerts in the U.S.: Information 
Statement, Watch, Advisory, and Warning. The Advisory level is used when nearshore 
tsunami heights are between 0.3 m and 1 m for a section of coastline and require 
responses by harbors and beach officials. The Warning level is called for areas under 
threat from tsunami heights greater than 1 m, which would require evacuation on land. 
Tsunami alert messaging is shared through multiple announcement methods for keep 
redundancy, including NOAA Weather Radio, wireless emergency alerts, radio and 
television, outdoor sirens, text message alerts, and reverse-call phone messages. For 
the western coast of the U.S, which is an active tectonic region that includes the 
Cascadia subduction zone, tsunami messaging is being integrated into earthquake early 
warning (EEW) platforms and the ShakeAlert® system [G]. The system issued alerts 5 
to 10 s for several recent earthquakes. 

[H2] Japanese network  

Since the 1990’s, substantial progress has been made in earthquake and tsunami 
observation networks in Japan, especially early warning systems. For example, after the 
1995 Kobe earthquake (Mw6.9), the Japanese Government deployed nationwide dense 
networks of high-sensitivity seismographs (Hi-net), broad-band seismographs (F-net), 
and strong-motion seismographs (K-NET and KiK-net). These seismological observation 
systems, now unified as MOWLAS52, have provided basic observational data for the 
seismic activity of the Japanese Islands. Japan Meteorological Agency (JMA) monitors 
the seismic activity 24 hours a day, 7 days a week; once an earthquake occurs, JMA 
reports the recorded seismic intensities in about 2 minutes, and estimated location 
(latitude, longitude, and depth) and size (magnitude) of the earthquake, as well as the 
possibility of a tsunami in 3-5 minutes53. When the seismic intensity of 5 or larger on the 
JMA scale is anticipated, which is almost equivalent to Mw≥5, EEW information is 
issued. The typical lead time between the announcement and the start of large ground 
shaking is from several to several tens of seconds, providing useful information through 
TV, radio, or cell phones. 

The GNSS has been used to monitor crustal movement by nationwide observation 
stations (GEONET) and sea levels by offshore buoys54. Currently, 18 GNSS buoys, as a 
part of the Nationwide Ocean Wave Information Network for Ports and Harbours 
(NOWPHAS) system, are moored at 10 to 20 km distance from shorelines at water 
depths of 100 to 400 m. The GNSS buoy of the NOWPHAS uses a real-time kinematic 
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392 (RTK) algorithm, which utilizes a rover GNSS on a buoy to monitor the sea level and a 
reference GNSS  on a fixed  base station on  land  to  reduce the position  error of the  rover. 
It provides  an accuracy of 4 cm at a distance of 20  km from the base  station. Such  
accuracy is su  fficient for tsunami detection, as demonstrated during  several events,  such  
as the 2010 Chilean Tsunami54 and the 2011 Tohoku Tsunami55 . 

OBP gauges, which monitor ocean bottom p ressure and c onvert to sea-level heights,  
detect tsunamis  in th e de ep ocean. Around  Japan, more than 200 OBP  gauges are  
connected by  seafloor cables (Fig. 3), and the high-resolution high-sampling data are 
sent to JMA in real-time56. The two largest networks  are  S-net and DONET/DONET2. In 
the DONET/DONET2  systems,  ~20 OBP  stations are c onnected to  cables off Kii 
Peninsula,  and ~ 30 s tations are located off Shikoku, both targeted to monitor tsunamis  
along the Nankai-Tonankai Trough57. The  DONET/DONET2 OBPs detected several  
tsunamis  of various s izes from the  2015 Torishima volcanic earthquake (Mw5.7) to th e  
2011 Tohoku Tsunami (Mw9.0). The S-net was installed after the 2011 T ohoku Tsunami 
along the  Japan Trench. The S-net has 150  stations  on 6 lines of cables with total 
lengths of 5,800  km.  

Since July 2016, TEW systems have been developed using the offshore OBP data of S-
net. For example, a near-field tsunami forecasting method  has been  developed based  
on tsunami waveform inversion58. First, the observed tsunami  waveforms at OBP  
gauges  are inverted  for initial sea surface elevations without assuming fault geometry  
and earthquake magnitude58. Then, the coastal tsunami waveforms are forecasted by  a 
linear combination of the estimated source  and the pre-computed Green’s functions58 . 
This  method, tFISH/RAPiD (tsunami  Forecasting based on Inversion fo r initial  sea-
Surface Height/Real-time Automatic detection method for Permanent Displacement), 
has been further improved by using GNSS data59. The JMA has adopted the tFISH 
method for S-net  data since 2019.  

Another way of utilizing offshore tsunami data is tsunami data assimilation60, which 
combines real-time tsunami data recorded a t  OBP gauges and numerical  simulation to  
forecast  coastal  tsunami arrivals  and nearshore heights without assuming the tsunami  
source. Real tsunami data recorded by  OBP g auges in the Cascadia subduction zone  
were used to show that data assimilation made timely and accurate tsunami forecasting 
of the 2012 Haida Gwaii earthquake61. This  approach was applied to the 2016  
Fukushima earthquake62, where ts unami data ass imilation using OBP  observations  
enabled th e reconstruction of the a ssimilated w avefield an d accurately predicted the  
tsunami waveforms at tide gauges before  their arrivals63. 

TEWS w ere originally  developed to estimate ts unami heights along the coast. These  
dense tsunami network  can directly estimate tsunami source without  estimation of  
earthquake  fault. The direct tsunami source estimation greatly improved the accuracy of 
tsunami forecasts.  Furthermore, it is now moving to real-time  inundation forecasts based  
on the dense arrays  of offshore o bservation data.  

 

[H1] Tsunami Source  and Generation  

Advances in probabilistic tsunami hazard analysis (PTHA) incorporate the anticipated  
uncertainty associated with seismic occurrence and rupture  characteristics of future 
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megathrust events64-69. PTHA considers a comprehensive range of uncertainties in 
estimates of earthquake occurrence and rupture characteristics on tsunami waves64 . 
Such probabilistic analysis contrasts with deterministic tsunami hazard analysis (DTHA), 
which is often performed for specific worst-case scenarios70,71. Earthquake occurrence 
modeling has the greatest impact on return period of tsunami 72. In contrast, earthquake 
slip modeling has substantial effects on tsunami height and related tsunami hazard 
assessments73,74, and statistical properties of slip models (for example, location, 
magnitude, and geometric slip distribution) have been considered in various studies 
worldwide75-79. In the following section, key aspects of earthquake occurrence and 
related rupture processes used in PTHA are summarized. 

[H2] Earthquake occurrence 

Important earthquake fault information for tsunamis is the length and width of the fault, 
its depth, and the amount of slip. In addition, the frequency of occurrence at each 
magnitude is also important information. Earthquake occurrence is one of the most 
influential elements in PTHA and involves substantial uncertainty80 (Figure 4a-c).  

The fundamental causes of large uncertainty in earthquake occurrence are that historical 
and instrumental tsunami records are short compared with recurrence periods of giant 
tsunamis81, while paleotsunami records span a longer period but are very uncertain82. 
The lack of observed fault data and the short historical record make it difficult to estimate 
the macroscopic characteristics of the epicenter, the length and width of the fault, the 
amount of slip, and the statistical characteristics of the frequency of occurrence for 
PTHA. In other words, it is like not knowing the shape of a dice. 

Although a time-independent homogeneous Poisson process (i.e. number of random 
events in a given time) is commonly adopted in PTHA, the occurrence rates of 
earthquakes in subduction zones are non-Poissonian and quasi-periodic83-85. Therefore, 
both physics-inspired occurrence models86,87 and statistics-based renewal models88 

have been adopted. A renewal process can characterize the evolution of occurrence 
probability with time in terms of the inter-occurrence time distribution of earthquakes. It 
can account for the elapsed time since the previous event. There are several popular 
inter-arrival time distributions 89,90. A homogeneous Poisson process corresponds to the 
exponential distribution with a constant occurrence rate. Typically, such an earthquake 
occurrence model is combined with a magnitude recurrence distribution which 
characterizes the uncertainty of earthquake magnitude when a major event occurs 
(Figure 4a). An recent advance of the time-space interaction model of earthquake 
occurrence includes the multi-segment time-dependent rupture model, represented by 
the multivariate Bernoulli model with renewal process-based probabilities91 . 

[H2] Earthquake rupture process 

Earthquake rupture is complex and is governed by pre-rupture stress and frictional 
conditions of the fault and trigger conditions of the rupture that are largely unknown and 
unobservable. The rupture of an earthquake is not uniform but heterogeneous. For 
example, the slip of a rupture may concentrate at one side. Although the energy is the 
same as a uniform rupture, the concentrated slip can induce stronger tsunami waves92 . 

Through earthquake source inversions93 or joint inversions, the spatiotemporal rupture 
process can be estimated by matching key features of simulated data with observations. 
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To characterize earthquake sources of future events, empirical scaling relationships of 
fault geometry and earthquake slip can be utilized94-99 based on a series of historical 
earthquake source inversion or joint inversion data (Fig 4d). 

To characterize the spatial distribution of earthquake slip, spectral analysis can be used 
to determine the wavenumber representation of earthquake slip heterogeneity100-102, and 
generate a wide range of earthquake rupture scenarios (Fig 4c). Subsequently, the 
derived spectral model, such as the von Karman spectrum, can be used to generate 
stochastic earthquake slip distributions101,102 . For stochastic source modeling, scaling 
relationships for spatial earthquake slip parameters are necessary103,104 . To quantify the 
uncertainties of tsunami earthquake rupture, such stochastic source models have been 
used in various tsunami hazard studies that account for heterogeneous earthquake 
slips75-79,105,106 (Fig 4c). 

[H2] Rapid moment magnitude estimation 

Rapid estimate of earthquake magnitude is essential for earthquake and tsunami hazard 
mitigations. However, accurately estimating the magnitude of a great earthquake within 
minutes after its occurrence remains a challenge. For example, as mentioned in 
previous sections, the 2004 Sumatra-Andaman was underestimated as magnitude 8.5 in 
the first hour, and the 2011 Tohoku earthquake was estimated magnitude 7.9 in the first 
20-30 minutes. Traditional earthquake magnitude measuring methods, such as local 
magnitude ML, body wave magnitude mb, surface wave magnitude Ms, suffer from 
saturation problems when magnitude greater than 8.0. The moment magnitude Mw does 
not saturate but requires tens of minutes for long period signals to reach teleseismic 
stations (> 1000 km). W-phase inversion is an alternative method for promising estimate 
of moment magnitude with about 20 minutes107 and has been adopted to real-time 
monitoring108 . In addition to inversion approaches, empirical approaches methods are 
also used to estimate magnitudes of large earthquakes109-112. In the ideal case, the 
moment magnitude or comparable magnitude can be estimated as fast as 6-10 
minutes112. 

Within tsunami source and generation, the earthquake occurrence and rupture process 
are very important for hazard assessment. On the other hand, rapid moment magnitude 
estimation is an important process for TEW system. As noted in Historical Giant 
Tsunamis, these techniques are closely related to observational data and have made 
significant progress since 2000, especially in the last decade. 

[H1] Propagation and Inundation  

The 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami prompted the 
development of tsunami modeling for coastal to landward inundation processes. The 
damage caused by a tsunami cannot be estimated from the waveform of the tsunami to 
the coast. It is important to know how the water level and velocity of tsunami change as 
over the breakwater and onshore. Tsunami propagation in deep water can be described 
by linear or nonlinear shallow water equations, depending on the degree of nonlinearity 
of the tsunami waveform. Dispersion and other second-order effects are also important 
considerations in modeling long-distance tsunamis113. Wave dispersion means that 
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waves of different periods travel at different phase speeds, for example, waves with 
shorter periods travel at slower phase speeds. After a certain distance traveling, short-
period waves spatially fall behind long-period waves. Due to the complex nature of 
tsunami inundation, non-hydrostatic modeling is generally required for coastal to 
landward inundation processes if one is interested in details of tsunami interactions with 
complex bathymetry, topography, and structures. 

[H2] Offshore propagation physics 

Tsunami simulation with the incompressible long-wave assumption (Fig. 5a) accurately 
predicts tsunami arrival time in the near-field but can yield arrival times too early in the 
far-field. For example, after long-distance traveling, the observed tsunami arrival times 
were reported later than predicted during the 1960 Chile Tsunami and the 2004 Indian 
Ocean Tsunami, where 10-15 minutes delays were reported at distant stations with 19-
20 hours travel time114. Furthermore, the 2010 Maule Tsunami and the 2011 Tohoku 
Tsunami had marked differences in their tsunami wave speeds between that observed 
by OBPGs and simulated values away from the source region115. Prediction errors in the 
waveform are also noted in the literature; while a leading trough (negative crest) is 
generally observed in the far-field, standard numerical models based on the nonlinear 
shallow water equations cannot recreate this characteristic116 . 

To explain the systematic late arrivals of transoceanic tsunamis, additional physical 
factors have been introduced to solve these problems for the nonlinear shallow water 
equations, including elastic loading of the seafloor by tsunamis116,117, compressible 
seawater117-118, ocean density stratification117,118, and gravitational potential change by 
tsunami motion120. All these factors reduce tsunami speed by up to 1.5 % in a 4 km deep 
ocean, which is equivalent to 18 minutes for a 20-hour travel time far-field tsunami119,120. 
The elastic loading of the seafloor and compressible seawater, accounting for around 
1.1 % speed reduction in a 4-km-depth ocean, are the predominant factors. The reduced 
phase speed varies in different frequencies. For example, in a 4 km deep ocean, the 
maximum phase speed is in around 1000 second period and reduces for a larger or 
smaller period. With the arrival time discrepancy resolved, tsunami warning systems can 
accurately predict tsunami arrival time in the far-field. Furthermore, far-field tsunami data 
have been used to re-examine the recorded major tsunami events that suffer from 
insufficient near-field dataError! Reference source not found.,121. 

[H2] Nearshore and inundation physics 

As a tsunami enters shallow water (Fig. 5b), the processes of shoaling and focussing 
control the wave speed and shape. In this area, tsunami current velocities and wave 
steepness grow quickly, leading to the generation of strong turbulence through bottom 
stress, interactions with complex bathymetry, and wave breaking; compared to modeling 
the offshore evolution of a tsunami, nearshore and onshore processes are more difficult 
to predict correctly. For example, for some tsunamis with very large incident crest 
heights, the leading crest can decompose into a series of much shorter waves (with 
periods of 10 seconds) through a process known as fission124. Tsunami-induced 
currents in the nearshore, taking into account of irregular bathymetry or coastal 
structures, are often characterized by large turbulent eddies or whirlpools125. Accurate 
modeling, while being sufficiently efficient with these chaotic features, is still an open 
research challenge126. 
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569 The 2011 Tohoku Tsunami showed complex inundation behavior127. Especially in urban  
areas, land structures  and their layouts  had a su bstantial impact on the hydrodynamic  
characteristics of the tsunami (Fig. 5c). Even for the same inundation depth, the damage  
was different depending o n the local topography  and the la yout of  surrounding 
structures. In addition, coastal bathymetry and/or topography and shoreline complexity 
notably affected  the  probability of structural  damage, with more complex topography  
resulting in higher damage rates128-130. These results  indicate that it  is difficult to  
represent the tsunami inundation  characteristics o f  land areas using only  inundation  
depth.  Flow velocity and horizontal momentum flux should be  included in a ddition to  
inundation depth131,132 . 

Reproducing the inundation  depth and flow  velocity of tsunamis that run up to urban  
areas  is important for future tsunami risk  mitigation. However, the roughness model, 
typically dep endent on  the land-use  category, cannot simulate the tsunami flow  velocity 
in the urban area accurately. Therefore, it is necessary to evaluate the interactions  
between the structures for the inundation process in the numerical model133. To 
understand  the characteristics  of tsunami behavior  in u rban areas and to validate  
numerical  models, physical experiments for  tsunami inundations  within  complex building  
layouts have been  conducted134. The physical  model results and c omparison w ith 
numerical  models  showed that the non-hydrostatic flow, including v ertical  velocity 
around the structures, cannot be neglected  as it impacts the flow behind 
structures135,136. In addition, tsunami-generated debris can substantially affect the  
inundation be havior and the s tructural  loads due to debris collision137,138. The challenges  
are th at  location, mass, moving s peed, and impact angle of debris involve a great 
degree of uncertainty.  Prediction of debris  makes  several times the difference in final 
location depending  on these values.   

n order to predict damage, it is most important to know q uantitatively the water  level and  
velocity of  land si de tsunami inundation process. For  this reason, tsunami models are  
being developed  for the propagation from offshore, very shallow water to land. 
Especially for  tsunamis in urban areas, how to incorporate information on complex 
structures  and buildings is  becoming i ncreasingly  important; 3D  city data will be very  
useful. Modeling of tsunami debris is even more difficult, and there are various efforts 
underway. 

 

[H1] Long-term Risk Assessments  

Based on a giv en tsunami  condition, hardware  or  structure me asures (such as  sea  
walls) can reduce life, and asset and software  or non-structural measures (such as  
evaluation, assessments and planning)  can reduce life losses  significantly. Long-term  
assessments of the tsunami will give a condition for soft and hardware 
countermeasures. However, a deterministic approach has limitation due to uncertainty of  
earthquake  faults and tsunami modeling. The probabilistic tsunami risk assessment is  
one option to consider the variability of tsunami  conditions fo r risk mitigation.  
Furthermore, comprehensive disaster  prevention planning is important to maximize the  
effectiveness of tsunami countermeasures.  

[H2]  Probabilistic tsunami risk assessment 
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Modern PTHA frameworks described above can provide the basis for mitigating and 
controlling disaster risk exposures effectively in coastal areas. The key requirements are 
that those main uncertainties in earthquake occurrence, rupture process, and tsunami 
generation and propagation are quantified and incorporated into the assessments. In 
addition, epistemic uncertainty associated with PTHA elements should be accounted for 
by considering alternative models139 . Outputs from such hazard assessments include 
site-specific tsunami hazard curves, which can be used for engineering design140, and 
tsunami inundation maps at different return period levels, which can serve as the 
fundamental input to develop local and regional hazard mitigation plans141 . 

Adopting and implementing PTHA approaches in a seismic region of interest offer two 
advantages. First, because of methodological similarity with probabilistic seismic hazard 
analysis142, PTHA can be extended to probabilistic tsunami risk analysis and loss 
estimation143 by integrating tsunami fragility models for probabilistic damage 
assessment128, 129,144. This integration has opened new avenues of research to develop 
and advance performance-based tsunami engineering (PBTE) methods, including 
analytical tsunami fragility modeling145,146. When combined with high-resolution 
inundation simulations, the effects of debris transport and collision on buildings can be 
included in tsunami vulnerability assessments147. Second, PTHA and PBTE approaches 
can be integrated with seismic counterparts and evolved into new multi-hazard 
methods148-150. For example, Fig. 6 shows joint shaking-tsunami risk maps for Kuroshio 
Town, which is located in southwestern Japan, facing the imminent threat due to future 
Nankai-Tonankai megathrust earthquakes and tsunamis151,152. With these new multi-
hazard risk assessment tools, combined impacts due to ground shaking and tsunami 
can be evaluated more comprehensively. It is also important to emphasize that tsunami 
hazards and risks have interactions with other climate-related hazards, such as relative 
sea-level rise153,154. 

Earthquake-tsunami loss models serve as essential decision-support tools in designing 
structural risk mitigation measures and planning community-focused solutions, including 
evacuation planning and land-use planning. The multi-hazard loss models are also 
necessary for developing disaster risk financing tools, including insurance rate-making155 

and alternative risk transfer instruments, such as catastrophe bonds156. By integrating 
these key elements of earthquake-tsunami risk mitigation measures from a holistic risk 
management perspective, future resilience-based approaches for earthquakes and 
tsunamis have emerged151. They can be used to quantify and compare the benefits and 
costs associated with different alternatives, thereby promoting risk-informed decision-
making in managing catastrophic earthquake-tsunami risks. Moreover, the new 
approaches can incorporate maintenance and inspection costs and environmental 
impacts from cradle-to-grave to further improve both the resilience and sustainability of 
society and the built environment for coastal communities. 

[H2] Structural measure  

Several countermeasures have been proposed and implemented to ameliorate the 
effects of tsunami inundation in communities and surrounding infrastructure. Hardware 
and structural countermeasures include coastal defense structures (dikes, seawalls, and 
breakwaters), nature-based systems (coastal forests), and building code requirements.  
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Coastal structures have long played an important role in coastal hazard mitigation157. 
While seawalls and dikes of sufficient elevation have been shown to play a protective 
role in tsunami mitigation158, structural measures alone cannot prevent tsunami 
disasters. However, these structures can lead to a false sense of security for 
developments in inland areas110. Observations of damage to residential and other 
buildings following tsunami events have led to the development of fragility functions for 
predicting building vulnerability based on tsunami inundation height and flow velocity, 
among other parameters129,131. 

The 2011 Tohoku Tsunami caused substantial damage to coastal protection structures, 
including the Kamaishi breakwater, Ofunato Bay breakwater, and many coastal dikes in 
the Iwate, Miyagi, and Fukushima prefectures159,47. Following the Tohoku Tsunami, a 
new generation of coastal embankments was designed to better withstand overtopping 
forces, with the Japanese Government establishing a policy that structures should be 
built to ensure satisfactory performance. However, several have noted potential 
maintenance challenges associated with these newer, more resilient structures. 

The effects of tsunami countermeasure structures on tsunami inundation and the 
resulting damages to community infrastructure can inform the design and location of 
these systems. Physical modeling160 and numerical simulations161-163, as well as 
Probabilistic Tsunami Hazard and Risk Analysis164,165 can be used to evaluate the 
vulnerability of the existing building stock162,166, and the efficacy of mitigation 
measures160,167,168 under a performance-based or reliability framework169,170. For 
example, Syamsidik et al168 evaluated the effects of installing an elevated roadway 
parallel to the coast in Banda Aceh, Indonesia, and found that the countermeasure could 
markedly reduce the tsunami inundation area and flow velocities. Tanaka et al161 

considered the combined effects of a coastal forest and sea wall on washout region 
reduction in the Tohoku and Kanto districts of Japan following the 2011 tsunami. 

Nature-based solutions, including coastal forests, dunes, coral reefs, seagrasses, and 
greenbelts, or hybrid systems, such as tsunami mitigation parks [G], have also been 
proposed as a natural infrastructure approach to tsunami mitigation171,172. While coastal 
pine forests were observed during the 2011 Tohoku Tsunami to provide some mitigation 
through debris flow capture, particularly in inland zones, and reduced damage to dikes in 
some areas, other areas experienced complete destruction of coastal forests, which 
contributed to the impact of the tsunami through floating debris172,173. Osti et al. 174 noted 
the importance of coastal mangroves in tsunami disaster prevention. Indeed, coastal 
mangrove forests provided protection to communities during the 2004 Indian Ocean 
Tsunami in southeast India, Sri Lanka, and the Andaman Islands175 , and the Sulawesi 
earthquake and tsunami in Indonesia176. 

In addition to coastal defense structures and control forests, guidance for coastal 
defenses and buildings in tsunami inundation zones has been developed and modified 
to improve the robustness of buildings subject to tsunami loads140,177. The improvements 
in tsunami design codes aim to reduce the tsunami impact and damage based on a real 
experience that will provide an insight on tsunami safety and the resilience of coastal 
communities in the U.S. and elsewhere. 

[H2] Non-structural measure 
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Life safety remains the highest priority in mitigating the tsunami disaster due to its 
catastrophic nature. The life safety issue is severe for near-field tsunamis for several 
reasons. First, there is a short time between the seismic event and the resulting 
inundation, typically tens of minutes, compared to several days of warning for hurricanes 
and typhoons. Second, evacuations will be self-initiated, relying on an individual’s 
perception of risk and knowledge of the correct course of action. This can be problematic 
in areas where current generations of residents have not experienced major tsunamis. 
Third, the coastal population in some areas has a disproportionately larger population at 
risk due to age and socioeconomic status. Finally, life safety can be increased through a 
number of means, including structural measures, such as vertical evacuation facilities. 
Advances in evacuation modeling can help individuals better understand their risks to 
near-field tsunamis and determine the best travel routes. Further, these models can help 
communities to plan the locations of vertical evacuation structures, and assembly areas 
outside of inundation zones and to estimate required travel times throughout the tsunami 
inundation zone178-181 . 

Tsunami evacuation models generally fall into two categories. Static models consider the 
optimized travel time out of the inundation zone. Typically, this least-cost-distance (LCD) 
approach can be used in a Geospatial Information System (GIS) framework182 by 
incorporating land cover, slope, and other features to modify travel speeds183. These 
models can ingest large population data sets and can be implemented on a whole city-
scale. However, they do not reflect factors in the tsunami inundation dynamics or human 
interactions. Dynamic models, such as Agent-Based Model (ABM), are more advanced 
in that they can capture the dynamics of tsunami inundation, interaction with the built 
environment, and complex human interactions. High-fidelity ABMs are generally run for 
smaller areas compared to LCD approaches. 

The use of these ABMs can lead to counterintuitive results. For example, the shortest 
path might not provide the maximum risk reduction because tsunami inundation zones 
may exist along evacuation routes, or evacuees may be concentrated, causing traffic 
congestion184. Tsunami evacuation models have been used for case studies worldwide 
and can be used for evidence-driven resource allocation185, to understand the impact of 
earthquake-induced debris on evacuation186, and the dynamics of pedestrian-vehicle 
interaction187. Advances in computational efficiency might enable the increased use of 
ABMs combined with stochastic approaches, such as PTHA181. Fig. 7 illustrates how the 
ABM and stochastic tsunami modeling can be combined to evaluate the dynamic 
aspects of tsunami evacuations in Padang, Sumatra, Indonesia. However, similar to fire 
evacuation modeling, verification and validation of tsunami evacuation models remain a 
challenge. Even with extensive research over the last 20 years on the extreme events 
that occurred in the Indian Ocean, Chile, and Japan, there are relatively few validation 
data sets187 . Data from evacuation drills, survivor surveys, expert judgment, or other 
means to qualitatively assess the models are needed. 

[H2] Community-level disaster planning 

A robust tsunami planning strategy requires higher-level government entities to develop 
and support legislation, policies, and guidance that can be implemented consistently at 
the local community levels. Effective planning involves multiple specialties at a local 
level, including personnel from: (i) local building and public works departments 
responsible for technical review and implementation of the mitigation process; (ii) land-
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747 use planning departments responsible for the community planning and development  
approval processes,  and (iii) emergency management  and response de partments  
responsible for long-term implementation and sustainability of tsunami safety prac tices.  
Successful planning will also benefit from an accurate tsunami hazard  analysis and a fair  
application of the risk analysis for different uses, such as the performance-based  
approach188 . 

Land-use planning s trategies for tsunami hazards  exhibit differences  between cou ntries,  
but they  do have si milar components. In  Japan, as an example, the 2011 T ohoku 
Tsunami triggered ne w mitigation an d land-use planning p ractices  through a new   
institution, Japan  Reconstruction Agency189. In addition to ne wly  engineered tsunami  
countermeasures, a two-tiered approach was created for residential and commercial 
development. Hazard areas  at lower elevations  (lower  than the 1000-year inundation  
exceedance probability boundary) require land-use, mitigation, and  evacuation  
strategies. Hazard areas at higher elevations focus on evacuation s trategies. The  
process of implementing these guidelines  has  been delayed, in many cases, due to a 
lack of resources, emphasizing the need for  early and c ontinued funding for this w ork190. 

In th e U .S., tsunami land-use and mitigation planning regulations and guidelines have  
been  established  in some states. For example, the State  of  Oregon was one  of the first 
to d evelop restrictions  on placing new development and s tructures  critical to co mmunity 
resilience, including hospitals and police or fire stations, in tsunami hazard areas.  
Although the law restricting this development was repealed in 20XX, Oregon  
continuously supports s tructural  and land-use strategies that protect communities and  
the public from ts unami hazards191. In addition, the State of California has  utilized the 
Seismic Hazard Ma pping Ac t of 1990 to c reate two-tiered tsunami hazard  zones  similar 
to th e J apanese system, where assessments and mitigation s trategies for new 
developments are to be implemented by local  governmental agencies192. The U.S. 
National Tsunami Hazard Mitigation Program  utilizes strategies developed by these 
states  and creates guidance for mitigation  and recovery planning for other state and 
local governmental entities193. Additionally, sustainable d isaster education is also 
important to keep residential interests and knowledge of hazards and disaster risk 
reduction, and high tsunami  awareness  helps reducing the local tsunami fatality194. 

 

[H1] Summary and Future Perspectives  

In th is review, the overall picture of research for tsunami  hazard is presented. both TEW  
and long-term assessment are important. For TEW enhanced observation n etworks  and  
early warning s ystems have been developed and  are being  implemented in  society. For 
long-term assessment, fault modeling  for mega-trust subduction  zones, tsunami 
propagation and inundation process  modeling, and hazard  assessment have been  
developed based on  the  latest observations  and scientific research  progress.  
Applications to hazard assessment and mitigation are showing realistic  solutions. 

First, a continuous archive o f tsunami data b y tsunami observation networks  is important  
for modeling tsunami generation and propagation. Accumulation of observation data will 
help improve  TEW accuracy  and  fault modeling. In addition, the  development of  
temporal and spatial observations  by  satellites (for example, synthetic  aperture radar, 
SAR) is  also expected near future.  The temporal and s patial observations lead d irectly  
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792 to improved accuracy of initial tsunami value estimation. The TEWS  has been developed 
to r elease rapid estimation of tsunami heights along the co ast. However,  real-time 
inundation forecasts  are developing and need  to improve  both land-side tsunami 
modeling and 3D city data.   

Second, understanding mega-earthquakes c an improve the sc aling laws for megathrust 
earthquake characteristics and improve probabilistic tsunami risk assessment103. It is 
also e xpected to improve tsunami inundation and damage risk  modeling. However, there 
is a notable gap between the  simulation of tsunami water levels up to the coastline, the  
calculation  of inundation on land, and the assessments of damage to  buildings  and other 
structures. Onshore and land inundation simulations require information o n s tructures  
such as br eakwaters at the 1-meter scale.  The inundation process is expected to 
improve with numerical model development and 3D city data. Furthermore, building 
damage assessment  requires not only high-resolution age  information,  including building  
information but also fluid calculations that accurately solve fluid pressure. The prediction  
building destruction is required. 

Further improvement of evacuation models, such as the Ag ent model181, is needed to  
predict human damage a nd optimize ev acuation r outes. The development of  
probabilistic tsunami hazard models requires  improvement not only in scaling la ws for 
large earthquake ch aracteristics b ut also in  historical  data to confirm the accuracy  of the 
calculations. The development of tsunami hazard  models re quires further advancement 
of these unique  technologies and a comprehensive compilation of  historical  data.  
Combining  these disciplines will involve active collaboration  among science, 
engineering, and social sciences. 
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Fig. 1 | Overview  of tsunami generation, propagation, early  warning, and long-term 
assessment.  a| Earthquake-triggered tsunamis are generated by displacement at the 
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1468 seafloor by a fault rupture. Ocean bottom sensors, tsunami buoys and onshore seismic 
1469 networks detect the earthquake and any resulting tsunami. b| A typical representation of a 

subduction zone. Shallow (~<15 km) rupture of the updip region of the subducting plate or of 
1471 splay faults within the accretionary wedge can cause large amounts of slip on the fault and 
1472 displacement of the seafloor. c| Information from monitoring networks and patterns from 
1473 historical events are fed into early warning systems and long-term risk assessments. The 
1474 observation relates the tsunami early warning and the long-term assessment.  

1476 Fig. 2 | Historical giant tsunamis. Tsunamis are usually generated by seismic slip during 
1477 an earthquake (circles), but they can also be generated from other sources such as volcanic 
1478 eruptions, landslides or rockfalls (triangles). Both types of tsunamis can cause numerous 
1479 casualties and substantial destruction. Data from the NOAA-NGDC Tsunami Database.  

Major historical events occur in the subduction zone mainly along the Pacific Ocean. 

1481 

1482 Fig. 3 | Ocean bottom pressure monitoring network in Japan. OBP gauges monitor 
1483 ocean bottom pressure and convert it to sea-level heights, so that tsunamis can be detected 
1484 in the deep ocean. More than 200 OBP gauges (yellow dots) are connected by seafloor 

cables (bold black line) around the Japan Trench. The two main OBP systems are DONET 
1486 and S-net28,56 and 18 GPS bouys are NOWPHAS. The high-resolution, high-sampling data 
1487 are sent to monitoring authorities in real-time56 . A very dense tsunami observation network 
1488 was established for the next earthquake and tsunami after 2011. 

1489 

Fig. 4 | Components of earthquake occurrence and rupture models. a| Elements of a 
1491 renewal-process-based earthquake occurrence model. A renewal process distinguishes the 
1492 probability distributions for the first and subsequent earthquake events based on the elapsed 
1493 time since the last major event. b| An earthquake magnitude model can be represented by a 
1494 Gutenberg-Richter model [G], where the overall occurrence rate for major events and the 

relative distribution of earthquake magnitude is determined from statistical analysis of 
1496 regional seismicity or by a characteristic magnitude model with uniform marginal distribution. 
1497 c| Stochastic event catalogs can be generated over a specified time duration by combining 
1498 simulated earthquake occurrence times (panel a) and magnitudes (panel b). d| Earthquake 
1499 scaling relationships for fault length and mean earthquake slip are used to simulate various 

earthquake source parameters. e| stochastic earthquake source models use the earthquake 
1501 parameters simulated from the scaling relationships to synthesize heterogeneous 
1502 earthquake slip distributions and a wide range of rupture scenarios. As examples, three 
1503 realizations of stochastic earthquake slip distributions for an Mw9 event off the Tohoku 
1504 region of Japan are shown.  Both the stochastic events (panel c) and the stochastic source 

models (panel e) can be combined and used in probabilistic tsunami hazard analysis 
1506 (PTHA). 

1507 

1508 Fig. 5 | Hierarchy of length-scales for tsunami simulations. a| An example of global-scale tsunami 
1509 propagation modeling (taken from NOAA122) with resolution typically in excess of 1 km. b| A 

nearshore domain tsunami propagation model with 10 km2 coverage and resolutions near 10 m. c| A 
1511 structure-resolving overland flow simulation123, with resolutions of 1 m or less. Panel c adapted with 
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1512 permission from ref. 123 Building and street scale tsunami assessments require simulations 
1513 starting at the 1000 km scale and going down to the 1 m scale. 

1514 

Fig. 6 | Multi-hazard assessments combine risks from earthquake and tsunami hazards. An 
1516 example of a probabilistic shaking-tsunami risk assessment for Kuroshio Town, Kochi Prefecture, 
1517 Japan. a| stochastic source modeling, b| shaking hazard footprint, c| tsunami hazard footprint, d| 
1518 shaking fragility, e| tsunami fragility, f| shaking damage ratio, g| tsunami damage ratio, and h| 
1519 combined damage ratio. Starting from the fault model (a), the probability of damage (f, g) for each 

building is calculated based on the damage curves (d, e) from the shaking intensity (b) and tsunami 
1521 depth (c), respectively, and the total damage (h) is summarized by both damages. 

1522 

1523 Fig. 7 | Evacuation assessments for urban environments under different tsunami scenarios. 
1524 Tsunami evacuation simulations are shown for Padang, Sumatra, Indonesia, which is subject to 

potential tsunami threats from the Sunda-Mentawai subduction zone. a| agent-based evacuation 
1526 model, b| stochastic tsunami simulations, and c| tsunami evacuation simulations. In the agent-
1527 based model, evacuation simulations are performed based on tsunami simulations (b) from 
1528 evacuation routes (a-left) and human arrangements (a-right) to evaluate the ease of evacuation and 
1529 bottlenecks (c). 

1531 Glossary 

1532 DART - real-time tsunami monitoring systems by NOAA 

1533 DONET - Deep Ocean-floor Network system for Earthquakes and Tsunamis 

1534 Edge waves – long-wave propagate along the coast 

Far-field tsunami - tsunami occurs far from the location of target (more than 1000 km) 
1536 without seismic shake 

1537 Gutenberg-Richter model – empirical relation to estimate frequency of earthquake 

1538 Hazard – intensity of natural phenomenon 

1539 Long-term assessment – estimation of hazard intensity and frequency based on historical 
data or model results 

1541 Magnitude – a measure of an earthquake's size or strength) 

1542 Megathrust earthquake tsunami – tsunami occurs at the subduction zone 

1543 MEXT – The Japanese Ministry of Education, Culture, Sports, Science and Technology 

1544 Moment magnitude (Mw) - a measure of an earthquake's magnitude based on its seismic 
moment. 

1546 Near-field tsunami – tsunami occurs near the location of target with seismic shake 

1547 Paleotsunami - tsunamis that occurred prior to historical records or for which there are no 
1548 written observations (as defined by the International Tsunami Information Center).  
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Probabilistic tsunami hazard assessments – probabilistic estimation of tsunami intensity and 
frequency 

Risk – combination of hazard, exposure and vulnerability 

S-net - Seafloor observation network for earthquakes and tsunamis along the Japan 
Trench  

ShakeAlert system - earthquake early warning system developed by USGS 

Subduction zone – collision between oceanic lithosphere and continental crust 

Tsunami early warning – real time tsunami prediction based on seismic or tsunami 
observation data 

Tsunami trace height - the elevation with respect to sea level of tsunami traces, such as 
debris or flow markers in structures which correspond to the run-up or inundation height 

Tsunami mitigation parks – a space to reduce tsunami forces 
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