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Abstract The weak El Nino˜  of 2014 was preceded by anomalously high equatorial 
Pacific Warm Water Volume (WWV) and strong Westerly Wind Events (WWEs), 
which typically lead to record breaking El Nino, like in 1997 and 2015. Here, we 
use the CNRM-CM5 coupled model to investigate the causes for the stalled El 
Nino˜  in 2014 and the necessary conditions for extreme El Ninos.˜  This model is 
ideally suited to study this problem because it simulates all the processes thought 
to be critical for the onset and development of El Nino.˜  It captures El Nino˜  precon-
ditioning by WWV, the WWEs characteristics and their deterministic behaviour 
in response to warm pool displacements. Our main finding is, that despite their 
deterministic control, WWEs display a sufficiently strong stochastic component 
to explain the distinct evolutions of El Nino˜  in 2014 and 2015. A 100-member 
ensemble simulation initialized with early-spring equatorial conditions analogous 
to those observed in 2014 and 2015 demonstrates that early-year elevated WWV 
and strong WWEs preclude the occurrence of a La Nina˜  but lead to El Ninos˜  
that span the weak (with few WWEs) to extreme (with many WWEs) range. 
Sensitivity experiments confirm that numerous/strong WWEs shift the El Nino˜  
distribution toward larger amplitudes, with a particular emphasis on summer/fall 
WWEs occurrence which result in a five-fold increase of the odds for an extreme 
El Nino˜ . A long simulation further demonstrates that sustained WWEs through-
out the year and anomalously high WWV are necessary conditions for extreme 
El Nino˜  to develop. In contrast, we find no systematic influence of easterly wind 
events (EWEs) on the El Nino˜  amplitude in our model. Our results demonstrate 
that the weak amplitude of El Nino˜  in 2014 can be explained by WWEs stochastic 
variations without invoking EWEs or remote influences from outside the tropi-
cal Pacific and therefore its peak amplitude was inherently unpredictable at long 
lead-time. 
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38 1 Introduction 

The El Nino˜  Southern Oscillation (ENSO) is the most prominent year-to-year 
climate fluctuation on earth (McPhaden et al, 2006a). El Nino,˜  the positive phase 
of ENSO, is characterized by an equatorial Pacific anomalous warming peaking 
near the end of the calendar year, and occurs every 2 to 7 years. On some occasions, 
these El Nino˜  events can be exceptionally large, as in 1982, 1997 and 2015, with 
surface temperature (SST) anomalies in the equatorial eastern Pacific exceeding 
2.5◦C (Fig. 1a). These extreme events result in a massive reorganization of tropical 
atmospheric convection (Cai et al, 2014) and have particularly strong impacts on 
extreme weather events such as cyclones, marine and terrestrial ecosystems and 
agriculture worldwide (McPhaden et al, 2006a). 

El Nino˜  grows as a result of the Bjerknes feedback (Bjerknes, 1966), a positive 
feedback loop between the ocean and atmosphere in the equatorial Pacific. An 
initial warm SST anomaly in the central Pacific, usually during boreal spring, 
drives enhanced deep atmospheric convection and westerly wind anomalies. This in 
turn induces eastward currents and deepens the thermocline in the central/eastern 
equatorial Pacific, reinforcing the initial warming. The onset of an El Nino˜  event 
tends to be favored when the equatorial upper Pacific ocean is anomalously warm 
(Jin, 1997). The Warm Water Volume (WWV), defined as the anomalous volume 
of water warmer than 20◦C in the equatorial Pacific (Meinen and McPhaden, 
2000, Fig. 1a,b), is for instance a widely used El Nino˜  predictor, with a 0.6 lead-
correlation six months before the peak of El Nino˜  (McPhaden, 2015). 

Atmospheric high frequency forcing can also promote the development and/or 
initiation of El Nino˜  events (e.g. McPhaden and Yu, 1999; Boulanger et al, 2001, 
2004; Vecchi and Harrison, 2000; Lengaigne et al, 2004a; Seiki and Takayabu, 
2007a; Fedorov et al, 2015; Larson and Kirtman, 2015) by affecting the equatorial 
SSTs , amplified afterward by the Bjerknes feedback. In the equatorial Pacific, this 
high frequency atmospheric forcing mostly occurs under the form of synoptic short-
lived westerly wind events (WWEs), characterized by westerly wind anomalies 
lasting between 5 and 30 days, with typical amplitudes of 5 m.s-1 and zonal and 
meridional extent of 30◦ and 10◦ respectively (Harrison and Vecchi, 1997; Seiki and 
Takayabu, 2007a,b; Puy et al, 2015). They preferentially occur over the western 
Pacific warm pool during boreal winter and spring and are effective triggers for El 
Nino˜  when the WWV is anomalously high (Ludescher et al, 2014; Lengaigne et al, 
2002; Vitart et al, 2003). WWEs are an essential contributor to El Nino˜  diversity, 
in terms of timing (Jin et al, 2007), magnitude (Eisenman et al, 2005) and spatial 
pattern (Lian et al, 2014). 

WWEs were initially thought to be purely stochastic, occurring randomly and 
independently from ENSO (Penland and Sardeshmukh, 1995; Kessler et al, 1995; 
Kleeman and Moore, 1997), hence raising concerns for El Nino˜  predictability (Fe-
dorov et al, 2003). There is now a clear body of evidence (Eisenman et al, 2005; 
Gebbie et al, 2007; Gebbie and Tziperman, 2009a; Seiki and Takayabu, 2007a; 
Puy et al, 2015) that WWEs occur more frequently when the western Pacific 
warm pool is abnormally shifted to the east. For instance, a very strong WWE in 
March 1997 (e.g. McPhaden and Yu, 1999; Yu and Rienecker, 1999; Boulanger 
et al, 2001, 2004) shifted the warm pool eastward via anomalous zonal advec-
tion (Lengaigne et al, 2004a). This promoted an eastward expansion of the deep 
atmospheric convection, favouring the occurrence of subsequent WWEs later in 
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Fig. 1 a, b, Time evolution of (red) standardized Niño3 SSTA (std.dev=1.24◦C, see methods) 
and (blue) WWV anomalies from (a) 1981 to present (5-month running mean) and (b) from 
2013 to early 2016 (monthly values). The green bars on panels a and b display the cumulative 
Westerly Wind Events (WWEs) strength (a good proxy of their oceanic dynamical response, 
see methods) for the January-March period. c, d, 2014 and 2015 time-longitude section of 
averaged 2◦N-2◦S SST anomalies, and WWEs (red circles) and EWEs (easterly wind events, 
blue circles). The size of the circles that indicate the wind events central dates and longitudes 
is proportional to the wind event strength. The black line indicates the eastern edge of the 
western Pacific warm pool (i.e the 28.5 isotherm). 

86 the year (Lengaigne et al, 2004b), and the development of the extreme 1997/98 
87 El Niño. This positive loop between the large-scale SST field (i.e. the warm pool 
88 eastward extension) and WWEs numbers and magnitude (Eisenman et al, 2005; 
89 Gebbie et al, 2007; Lengaigne et al, 2003; Puy et al, 2015) can be viewed as an 
90 intraseasonal component of the Bjerknes feedback. Studies indicating that WWEs 
91 are modulated by the large scale SST field raised hopes for the potential to im-
92 prove ENSO prediction (Gebbie and Tziperman, 2009a,b; Lopez and Kirtman, 
93 2014). Yet, the occurrence of individual WWEs cannot be predicted more than a 
94 couple of weeks ahead because they are not only influenced by large-scale condi-
95 tions but also by shorter time-scale atmospheric processes (Seiki and Takayabu, 



4 Puy Martin et al. 

96 2007a; Puy et al, 2015). In addition, while WWEs are more likely to occur when 
the warm pool is shifted eastward, there is still a stochastic component in their 
number, amplitude or location that limits ENSO predictability. 

The stark contrast in the evolution of the Pacific in 2014 and 2015 is a com-
pelling reminder of the competing role of the deterministic vs. stochastic WWEs 
behaviour on El Nino˜  evolution and predictability. Operational forecasts in spring 
2014 predicted the advent of an El Nino˜  at the end of the year. (Ludescher et al, 
2014; Tollefson, 2014; McPhaden, 2015). The WWV index reached the highest 
value since 1997 during January to March of 2014 (Fig. 1ab). This period also 
witnessed the strongest series of WWEs since 1997 (Menkes et al, 2014, Fig. 1ab). 
These early WWEs shifted the warm pool towards the central Pacific (160◦W in 
May 2014, Fig. 1c, Menkes et al, 2014), laying the ground for subsequent WWEs. 
The ensemble-mean of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) seasonal forecasts (Molteni et al, 2011) initialized on the 1st of April 
2014 predicted a moderate El Nino˜  (Fig. 2a). Early 2015 was very similar to early 
2014 in terms of positive WWV anomaly and early-year WWE activity (Fig. 1b). 
The April 2015 ECMWF forecasts were also similar to those of 2014 and their 
ensemble mean again pointing to a moderate (but slightly stronger) El Nino˜  (Fig. 
2b). The resemblance between these forecasts likely arose from the similar upper 
heat content and WWEs precursors. Yet, 2014 developed into an at most weak 
“borderline” El Nino˜  (McPhaden, 2015), while 2015 ranked amongst the strongest 
El Ninos˜  on record, comparable in strength to those of 1997 and 1982 (Fig. 1a). 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

  

0

2

N
iñ

o3
 S

ST
A 

(s
td

)

4
ensemble mean
observation

ensemble mean
observation

a

-2

A J
2014

A O DF A J A O DF
2015

b

WWV= 1.3
Cumulative WWE strength= 6.5

WWV= 1.4
Cumulative WWE strength= 5.6

Fig. 2 a, b, Standardized Niño-3 SST anomaly plume from ECMWF 51-members ensemble 
forecasts initialized on the 1st April 2014 and 2015. The dashed line on panels a, b represents 
the 2014-2015 observed Niño-3 SST anomaly and the red line on panels a,b,c the ensemble 
mean. 

118 What caused the different evolution of the El Nino events of 2014 and 2015? 
119 Several authors argued that high-frequency wind variability in summer 2014 could 
120 be responsible for the failure of El Niño (Hu and Fedorov, 2016; Menkes et al, 
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121 2014). The occurrence of Easterly wind events (EWEs, Fig. 1c) , the eastward 
counterpart to WWEs (Chiodi and Harrison, 2015; Puy et al, 2015), possibly 
in relation with extra-tropical forcing (Min et al, 2015), could have halted the 
development of El Nino˜  in 2014 (Hu and Fedorov, 2016). On the other hand, 
the lack of summer WWEs could also explain why no El Nino˜  developed in 2014 
(Menkes et al, 2014). Although the warm pool was shifted eastward, increasing 
the probability of occurrence of subsequent WWEs, there was no enhanced WWE 
activity after the early-year WWEs in 2014 as compared to 2015 (Fig. 1b). Using 
coupled model ensemble experiments initialized with SSTs only in early 2014 and 
2015, Larson and Kirtman (2015) also suggested that these two events falls well 
within the expected uncertainty for noise-driven error growth independent from 
ENSO. While some external factors may have contributed to suppress WWEs 
activity in summer 2014 (McPhaden, 2015; Hu and Fedorov, 2016; Levine and 
McPhaden, 2016; Zhu et al, 2016; Min et al, 2015), this could also have happened 
by random chance (i.e. due to the stochastic part of the WWEs). 

Understanding why two similar early-year conditions led to such different out-
comes is an important question, as extreme El Ninos˜  such as in 1982/83, 1997/98 
or 2014/15 have impacts that are disproportionately stronger relative to weaker 
El Ninos˜  (Cai et al, 2014). Yet, the mechanisms giving rise to extreme El Nino˜  
events are still debated (Barnston et al, 2012). In this study, we investigate whether 
WWEs stochasticity can yield either a 2014-like weak El Nino˜  or a 2015-like ex-
treme El Nino˜  when the initial state is similar to that in early 2014 and 2015. To 
reach that goal, we use dedicated numerical simulations using a coupled general 
circulation model that simulates reasonably well El Nino˜  events, WWEs and their 
mutual relationship. The datasets and model set up are presented in section 2. 
The good performances of the model are described in section 3. In section 4, we 
show that conditions similar to those observed in 2014 and 2015 can lead to ei-
ther a weak or extreme El Nino,˜  depending on the spring and fall WWE activity, 
while EWEs play a less systematic role. In section 5, we further show that both a 
recharged WWV and strong summer-fall WWEs are necessary conditions to yield 
an extreme El Nino.˜  We also use sensitivity experiments to demonstrate that, even 
in presence of a recharged WWV, the lack of WWEs can increase by up to 5 the 
odds of a weak 2014-like El Nino,˜  compared to when WWEs occur. A summary 
and a discussion about these findings are finally provided in section 6. 

2 Data and methods 

2.1 Climate indices and datasets 

We use TropFlux (Kumar et al, 2013) daily zonal wind stresses (http://www.incois. 
gov.in/tropflux/), weekly sea level anomaly from AVISO (http://www.aviso.oceanobs. 
com/en/data/products/) and SST from the NOAA optimum Interpolation dataset 
(Reynolds et al, 2002). Anomalies with respect to the long-term mean seasonal 
cycle (over 1980-2015 except for sea-level: 1992-2015), are simply referred to as 
anomalies. The observed WWV index, defined as the anomalous volume of Pacific 
waters above the 20◦C isotherm averaged within the equatorial band (5◦N-5◦S, 
120◦E-80◦W) (Meinen and McPhaden, 2000), is derived from temperatures anal-
yses based on in situ data (https://www.pmel.noaa.gov/elnino/upper-ocean-heat-
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166 content-and-enso). ENSO evolution is characterized as the 3-month running mean 
of SST anomalies in the Nino3˜  region (5◦N-5◦S; 150◦W-90◦W). The Warm pool 
eastern edge (WPEE), a measurement of the eastward expansion of the warm 
pool, is computed as the location of the 28.5◦C isotherm in the same dataset. 
WWV and Nino3˜  indices are normalized by their standard deviation and have no 
units. El Nino˜  events are classified into three amplitude categories, based on the 
value of the standardized December Niño3 SST anomaly: “Neutral state” events 
for a value below 1.25, “Moderate” El Ninos˜  for a value between 1.25 and 2.5 and 
“extreme” El Ninos˜  for a value exceeding 2.5. With this definition, 2014, which 
is considered as a borderline (i.e. weak) El Nino˜  (McPhaden, 2015) according to 
some criteria, falls in the “Neutral state” category while 1982, 1997 and 2015 fall 
into the “extreme” El Nino˜  category. 

The oceanic dynamical response to WWEs depends on the intensity, duration 
and zonal fetch of the intraseasonal wind stress forcing. The “WWE strength”, 
defined as the space-time integration of the zonal wind stress intraseasonal anoma-
lies over the wind event patch and normalized by its standard deviation, computed 
over all the detected WWEs, is then a good proxy of the WWE-induced oceanic 
impact (”WEI” in Puy et al (2015)). We define the “early-year” and “subsequent” 
strength as the cumulative wind event strength for January to March and April 
to November, respectively, as a way to characterize the impact of episodic wind 
forcing on the ocean during these periods. Since this cumulative value is based on 
normalized values, it has no units. 

To investigate the role of WWEs in El Nino˜  predictability, sensitivity exper-
iments where WWEs are removed during the model computation (more details 
about these experiments in section 2.3.1) are performed. Such experiments would 
be, however, extremely difficult to conduct with Puy et al (2015)’s WWEs defini-
tion, which allows to properly compute the ”WWE strength”, because it requires 
to have the zonal wind stress field 45 days before and after a given WWE in or-
der to compute the intraseasonal anomalies needed for the detection. Fortunately, 
WWEs stand out from the seasonal and interannual variability (Equatorial in-
traseasonnal zonal wind stress average standard deviation of 0.026 N.m-2 between 
120◦E and the dateline compared to 0.01 N.m-2 for the interannual and seasonal 
variability). Therefore, defining the WWEs as 2◦N-2◦S averaged zonal wind stress 
that exceed 0.025 N.m-2 (corresponding to one standard deviation of the 2◦N-2◦S 
average wind stress in the western-central Pacific) during at least 5 days with a 
10◦ minimum zonal extension, gives similar results compared to Puy et al (2015) 
in term of WWEs ”strength” (0.98 correlation between the WWEs detected using 
the present method and Puy et al (2015)’s method). Because this method doesn’t 
require anomalies to detect the WWEs, it’s simpler to implement in a numerical 
modelling strategy (more details about these experiments in section 2.3.1). 

EWEs have however a weaker amplitude than WWEs, comparable to seasonal 
and interannual wind stress variations (Puy et al, 2015). The method described 
above for the WWEs is then not relevant regarding EWEs detection. Furthermore, 
no sensitivity experiment has been performed where the EWEs are removed. We 
hence keep Puy et al (2015) method and define the EWEs as 2◦N-2◦S averaged 
zonal wind stress intraseasonal anomalies (5 to 90 days bandpass filtered using a 
triangle filter) that exceed -0.04 N.m-2 during at least  5 days with a 10◦ minimum 
zonal extension. 
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214 2.2 ECMWF ensemble forecasts 

We also use ECMWF ensemble seasonal forecasts (Molteni et al, 1996) of Nino3˜  
SST anomalies starting on the 1st of April 2014 and 2015. The forecasts are ini-
tialized using ocean and atmosphere observations. The ocean initial conditions are 
key for ENSO prediction; they are produced through the data assimilation of tem-
perature and salinity in situ profiles, as well as sea level anomalies from satellite 
altimeter and sea surface temperature (Balmaseda et al, 2013). This information 
is evolved in time via a coupled ocean-atmosphere circulation model, whose com-
ponents are to a large extent similar to those in the CNRM-CM5 coupled model, 
used in the present study. An ensemble of 51 members is produced in order to take 
into account uncertainty in initial conditions and model formulation (Weisheimer 
et al, 2014): the spread in error forecast is hence essentially due to the amplifica-
tion of initial and model errors by the ocean-atmosphere chaotic behaviour. The 
forecast anomalies are then obtained from the difference to the model climatology 
(Stockdale et al, 1998). 

2.3 CNRM-CM5 model 

2.3.1 Model and reference experiment description 

The numerical simulations in this study are performed with the earth system 
model CNRM-CM5 (Voldoire et al, 2013), used in the Fifth Coupled Model Inter-
comparison Project. Its oceanic component, NEMO v3.2 (Nucleus for European 
Modelling of the Ocean”) is a primitive equation ocean general circulation model, 
with a free sea surface  (Roullet and Madec, 2000). It has a 1◦ nominal resolution 
with a meridional refinement of 1/3◦ at the equator (i.e. ORCA1 configuration, 
Hewitt et al, 2011). The model has 42 vertical levels, with a resolution ranging 
from 10m near the surface to 300m at 5000m. The vertical mixing parametrization 
uses a Turbulent Kinetic Energy (TKE) closure model based on a prognostic ver-
tical turbulent kinetic equation (Blanke and Delecluse, 1993). The lateral mixing 
is applied using a Laplacian operator that acts along isopycnal surfaces (Guilyardi 
et al, 2001). Short-wave fluxes penetrate into the ocean based on a single expo-
nential profile corresponding to oligotrophic water (Paulson and Simpson, 1977) 
with an attenuation depth of 23m (Lengaigne et al, 2007).The spectral general 
circulation model ARPEGE (Action de Recherche Petite Echelle Grande Echelle) 
is coupled to the ocean through the coupler OASIS v3 (Valcke et al, 2003). It has 
a horizontal resolution of  1.4◦ and 31 vertical levels, with resolution ranging from 
10m at the surface to 70km. Deep atmospheric convection parametrization follows 
a mass convergence scheme (Bougeault, 1985) that uses a humidity convergence 
closure. Deep atmospheric convection is either triggered by low-level humidity con-
vergence or by an unstable vertical temperature profile. Large scale precipitations 
are computed with a statistic precipitation scheme described by Smith (1990). Fi-
nally, surface processes are computed with SURFEX (Surface Externalisee) model 
(Le Moigne et al, 2009). A more detailed description of CNRM-CM5 can be found 
in Voldoire et al (2013). 

An 800-years long control simulations is performed after a 200-years spin-up, 
using pre-industrial forcings, with greenhouse gases (GHG) concentrations and 
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258 solar irradiance fixed to their value observed in 1850. 150 years of the 800-years 
259 control simulation OLR and wind stress daily outputs are used to characterize 
260 the modelled WWEs and their relationship with ENSO. Monthly outputs from 
261 the 800-years control simulation are used to quantify El Niño distribution and 
262 preconditioning by the equatorial oceanic heat content. In the model, we use the 
263 same definitions as in observations for defining the WWV index, El Niño amplitude 
264 and WWEs characteristics. Modelled climatologies are computed over the entire 
265 length of the control simulation. The modelled eastern edge of the warm pool is 
266 computed using the 27.5◦C isotherm rather than 28.5◦C in observations, because 
267 of the cold equatorial bias simulated by this model (Voldoire et al, 2013) 

268 2.3.2 Ensemble and sensitivity experiments 

269 In order to explore the limitations of predictability by the ocean-atmosphere sys-
270 tem chaotic behaviour, a 100-members control ensemble simulation was run, start-
271 ing from the 1st April of a given year of the model simulation, with 0.1◦C amplitude 
272 random white noise perturbations applied to SST to generate the ensemble. The 
273 choice of the specific model year from which this ensemble is initiated is further 
274 justified in section 4. We chose to start our ensemble on the 1st of April because 
275 ECMWF ensemble forecasts in April 2014 and 2015 are similar (amplitude range 
276 and spread, see Fig. 2a,b) and include the impact of the strong WWEs that oc-
277 curred in March 2014 and March 2015. 

278 We also performed three types of sensitivity experiments to quantify the impact 
279 of WWEs on El Niño evolution. In the control ensemble, the El Niño amplitude 
280 probability distribution has reasonably converged with 50 members (not shown) 
281 and we hence use only 50 members for these sensitivity experiments. WWEs are 
282 “removed” during the model calculation by limiting positive zonal wind stress to 
283 0.025 N.m-2 within the equatorial band (5◦N-5◦S, 90◦E-90◦W). We verified that 
284 seasonal wind stresses (defined as three-month moving averages) almost never ex-
285 ceed this threshold in the equatorial band in the control ensemble simulation (Fig. 
286 3a), i.e. that this strategy efficiently removes both the stochastic and determinis-
287 tic components of the wind events without affecting the large-scale low-frequency 
288 Bjerknes feedback. We performed three 50-members sensitivity ensemble simula-
289 tions where ”initial” (January to March), ”subsequent” (April to November) and 
290 ”all” (January to November) WWEs are removed. For removing initial WWEs, 
291 we proceeded as follows: there is only one strong WWE in March in the control 
292 simulation from which our ensemble starts (Fig. 3b). We ran one single mem-
293 ber with suppressed WWEs for March, checked that the 1st of April WWV was 
294 not significantly affected, and started our 50-member ensemble from this date. Fig. 
295 3c,d,e show the evolution of equatorial zonal wind stress for sample members of the 
296 control and three sensitivity experiments. Low-frequency westerly winds that char-
297 acterize the (low-frequency) Bjerknes feedback still develop in the central/western 
298 Pacific in the ”subsequent” and ”all” sensitivity experiments, indicating that our 
299 approach indeed removes WWEs without affecting the lower frequency wind vari-
300 ability. 
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Fig. 3 a, Time series of the March to December zonal wind stress averaged over the [180; 
160◦W] region in one member of the CNRM-CM5 reference ensemble experiment (conditions 
before the 1st April come from the long CNRM-CM5 experiment from which the ensem-
ble is initiated). The red line illustrates the threshold applied to remove WWEs in the “No 
WWE” experiments (and values above this threshold are hatched). “Initial” WWEs are de-
fined as WWEs during January-March and “subsequent” as WWEs during April-November. 
Climatological (black curve) and envelope of the 1st-99th percentiles of the low frequency (90 
day-smoothed, grey shading) of 2◦N-2◦S Pacific zonal wind stress in the CNRM-CM5 long 
experiment. b, c, d, e January to December time-longitude section of averaged [2◦N-2◦S] 
zonal wind stress from the member with the strongest warming in the Niño3 region in De-
cember for b control ensemble, c No subsequent WWE, d No initial WWE and e No WWE 
experiments. The low-frequency (here defined as periods >90 day) zonal wind stress variability 
along the equator almost never exceeds the threshold defined to remove WWEs in our exper-
iments. I.e. WWEs are well separated in absolute zonal wind stress values from the seasonal 
and interannual variability, hence justifying our method for “cutting” them. 

301 3 Model Validation 

We chose the CNRM-CM5 model because it simulates the ENSO cycle and as-
sociated ocean-atmosphere feedbacks well (Bellenger et al, 2014). In particular, 
it accurately reproduces the El Nino˜  amplitude distribution (Fig. 4a), with the 
observed distribution (50 years period) falling within the range of modelled ampli-
tudes (whiskers on Fig. 4a were obtained from 50-years segments of the 800-years 
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Fig. 4 a, Observed and CNRM-CM5 El Niño amplitude distributions. Normalized Decem-
ber Niño-3 SST anomaly distribution for (grey) 1966-2016 (50 years) ERSST v4 observa-
tions(Huang et al, 2015) and (blue) the 800-years CNRM-CM5 control simulation. The whiskers 
represent the 5-95% confidence interval on CNRM-CM5 distribution, obtained from all the 50 
years segments in the 800-years simulation. The model has a good representation of El Niño 
amplitude distribution, considering observational uncertainties. This result stay robust when 
using different SST products and for every bin, the observed distribution ranges between the 
simulated distribution error intervals. Observed (b, c) and CNRM-CM5 (e, f ) 2◦N-2◦S average 
time longitude section composite El Niño anomalies b, e, zonal wind stress (shading, N.m-2) 
and c, f SST (shading, ◦C). On panels b and e, the dashed black line represents the -0.01 
N.m-2 absolute wind stress contour composite (i.e. western edge of equatorial easterlies) and 
the thick line its climatological value. On panels c and e, the dashed black line represents the 
warm pool eastern edge composite (see methods) and the thick line its climatological value. d 
Lagged correlation between the 5-month running-mean Niño-3 SST anomaly and the 5-month 
running-mean WWV anomalies in the observations (dashed) and the 800-years CNRM-CM5 
control simulation (blue). On panel d, WWV anomalies lead Niño-3 SST anomalies. 

307 long control simulation). It also reproduces the space-time evolution of equatorial 
zonal wind stress (Fig. 4b,e) and SST anomalies (Fig. 4c,f) associated with El 
Nino.˜  As in the observations, early westerly wind anomalies induce an eastward 
shift of the warm pool and weak central Pacific positive SST anomalies in boreal 
spring (Fig. 4b,e). The SST and westerly wind anomalies grow through summer to 
reach a peak at the end of the year and generally evolve towards a La Nina˜  state 
during the following boreal spring. The composite SST anomalies have comparable 
amplitudes in the model and observations, with up to 2.5 ◦C warming in Decem-
ber in the eastern Pacific (Fig. 4c,f). The low-frequency westerly wind response is 
however underestimated in the model (Fig. 4b,e). This is a recurrent bias of ocean-
atmosphere coupled models, which tend to underestimate the Bjerknes feedback 
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318 (Guilyardi, 2006; Bellenger et al, 2014). In addition to low frequency dynamics, this 
bias may affect the influence of WWEs on ENSO by limiting the large-scale am-
plification of WWE-induced SST anomalies and hence preventing the occurrence 
of subsequent WWEs. The El Nino˜  preconditioning through enhanced WWV is 
relatively well simulated in the model, with positive WWV anomalies leading El 
Nino˜  by about 6 months (negative lags on Fig. 4d). The unrealistic negative corre-
lation for positive lags on Fig. 4d is also a common bias of the ocean-atmosphere 
coupled models that tend to produce a too symmetric ENSO cycle (skewness of 
Nino-3 SST interannual anomalies equal to 0.4 in the model in comparison to 0.8 
in the observation, Zhang and Sun, 2014). 

The confidence in the model results discussed below strongly relies in the ability 
of the model to capture WWEs essential characteristics and their relationship with 
low-frequency SST anomalies. Fig. 5 compares the characteristics of observed and 
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Fig. 6 a, b Zonal distribution of the WWE occurrence probability (%, see text for details), as 
a function of the position of the eastern edge of the Warm pool for (a) observations and (b) the 
model. Black solid (dashed) boxes represent bins where the wind event occurrence probability 
is significantly higher (lower) than what would be expected with a random distribution at the 
95 % confidence level. The horizontal black line indicates the warm pool eastern edge mean 
position. 

331 modelled WWEs following Puy et al (2015). Both observed and simulated WWEs 
are characterized by increased deep atmospheric convection (i.e. negative OLR 
anomalies) and by a zonal and meridional extension of   about 40◦ and 20◦ respec-
tively (Fig. 5ab). The modeled WWEs are modulated by equatorial atmospheric 
Rossby waves and the Madden-Julian Oscillation (Puy, 2016), in agreement with 
observations (Puy et al, 2015). Observed and modelled WWEs occur preferentially 
in boreal winter (Fig. 5c,f) in the western Pacific (Fig. 5d,g). The long positive tail 
of the observed WWEs strength distribution is also well captured by the model 
(Fig 5e,h). This is an important aspect of the WWEs characteristics, since the oc-
currence of exceptionally strong WWEs such as the one in March 1997, have been 
suggested to have a particularly strong impact on El Nino˜  evolution (Lengaigne 
et al, 2004a). 

A proper model representation of the observed modulation of WWEs probabil-
ity by the warm pool zonal displacement (i.e. the WWEs deterministic component) 
is of particular importance for the present study. Fig. 6 assesses this relationship 
in both observations and model by showing the zonal distribution of the WWEs 
occurrence probability, as a function of the position of the eastern edge of the 
warm pool (i.e. a quantification of the eastward expansion of the warm pool) for 
the observations and the model. The WWEs occurrence probability is computed 
as the ratio of the total duration of WWEs for a given longitude and position of 
the WPEE to the total number of days for which the WPEE is at this longitude. 
In both cases, the highest probability for WWEs occurrence shifts eastward along 
with the warm pool. More quantitatively, the WWEs probability of occurrence is 
multiplied by up to 20 in the central Pacific when the warm pool is shifted east-
ward beyond 160◦W. The WWEs deterministic component (i.e. their occurrence 
probability modulated by WPEE east-west displacements) is hence also very well 
captured by this model. 
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358 4 Linking El Nino˜  amplitude to WWEs activity 

As discussed above, early 2014 and 2015 were very similar in terms of equatorial 
oceanic and atmospheric preconditioning. First, the WWV in early 2014 and 2015 
was also anomalously high (1.4 standard deviation as in early 1997 (Fig. 1a)). 
These two years were also characterized by a series of early-year WWEs (Fig. 
7d,g), which were one of the strongest on record (a cumulative strength of 7.3 
standard deviation in 2014 and 5.6 standard deviation in 2015), comparable to 
the one in 1997 (cumulative strength of 6, Fig. 7a). These WWEs shifted the 
warm pool eastward (Fig. 7b,e,h) and triggered downwelling Kelvin waves that 
deepened the thermocline in the eastern Pacific (Fig. 7c,f,i). 

In this section, we further investigate the role of high frequency wind forcing 
(WWEs and EWEs) in promoting an extreme El Nino˜  in the model for a situation 
comparable to that observed in early 2014 and 2015. We first identified in the 
control simulation an analogue to the equatorial Pacific conditions observed in 
early 2014 and 2015. We defined this analogue as a model background state having 
similar March WWV anomalies and January-March cumulative WWE strength to 
those observed in early 2014 and 2015 (Fig. 8). Fig. 8a,b is similar to Fig. 1a,b but 
for a 35-years chunk of the long control simulation. This analysis led us to select 
the model year 2154 as it exhibits an initial WWE strength of about 6 standard 
deviation (compared to 5.6 and 7.3 in 2015 and 2014 respectively; Fig. 8c) and 
WWV anomaly reaching 1.4 (as in 2014 and 2015, Fig. 8d). 

However, if the WWV quantifies the recharge state of the equatorial Pacific, it 
doesn’t precisely account for the spatial structure of the subsurface temperature 
anomalies. While March 1997 and 2014 both exhibit warm subsurface anomalies 
confined to the central Pacific near the dateline, March 2015 and the model ini-
tial conditions show shallower warm anomalies located further east and sloping 
upwards in the eastern Pacific (not shown). These subtle differences in initial sub-
surface temperature anomalies are not encompassed by the WWV index, which 
is an integrated measure over the entire equatorial band. This may play a role in 
the subsequent Pacific evolution but this is out of scope of the present study. 

Off-equatorial SST anomalies in the tropical Pacific have also been suggested 
to play a role in the development of El Nino˜  (Chang et al, 2007; Zhu et al, 2016; 
Min et al, 2015). Observations in March 2015 in the north Pacific are reminiscent 
of the north Pacific meridional mode (Fig. 9 a) discussed in Chang et al (2007) 
but this pattern is weaker in March 1997 and 2014 (Fig. 9 b,c) and absent in the 
model initial conditions (Fig. 9 d). Similarly, observations in March 2014 and 2015 
display negative SSTA in the south-eastern Pacific (Fig. 9 bc), consistent with the 
South Pacific Meridional mode suggested by Min et al. (2013), but such anomalies 
are absent in March 1997 and our initial conditions (Fig. 9 a,d). 

The experimental framework used in the present study is designed to focus on 
two equatorial El Nino˜  precursors (i.e. WWV and early-year WWEs) which were 
similar in early 2014 and 2015. It does not allow, however, to test the potential 
influence of off-equatorial SST precursors or the spatial structure of the subsurface 
temperature anomalies on the evolution of El Nino.˜  

A 100-members ensemble simulation is run from small perturbations applied 
to this 2014 and 2015 analogue initial state on the 1st of April (see section 2), i.e. 
after that the early-year strong WWE has shifted the warm pool eastward and 
seeded the potential for more WWEs. The El Nino˜  amplitude ensemble diversity is 
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Fig. 7 Averaged 2◦N-2◦S time-longitude section of observed a, Zonal wind stressKumar et al 
(2013) b, SST(Reynolds et al, 2002) and c, sea surface height (a proxy for thermocline depth, 
http://www.aviso.altimetry.fr/duacs/) anomalies during 1997. d, e, f, Same for 2015. g, h, 
i, Same for 2014. The dotted black contour indicates the eastern edge of the western Pacific 
Warm Pool (defined as the 28.5 ◦C isotherm). On all panels, WWEs (red circles) and EWEs 
(easterly wind events, blue circles) have been added. The size of the circles that indicate the 
wind events central dates and longitudes is proportional to the wind event strength. 
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406 hence uniquely due to the now-famous butterfly effect (Lorenz, 1993, i.e. sensitivity 
407 to initial conditions). Fig. 10 however illustrates that this chaotic behaviour does 
408 not preclude predictability for early spring forecasts of El Niño’s peak at 9 months 
409 lead times. The ensemble El Niño amplitude probability distribution function is 
410 indeed very different from that of the 800-yr long reference experiment (Fig. 10b), 
411 indicating El Niño predictability (Stockdale et al, 1998) from initial conditions such 
412 as those of early 2014 or 2015. The positive WWV anomalies and early-year WWEs 
413 indeed preclude the occurrence of a La Niña, with end-of-year conditions that range 
414 from a nearly neutral state to extreme El Niño in both ECMWF forecasts and our 
415 model framework (Fig.2a,b and Fig. 10a). 
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Fig. 10 a, January to December standardized Nino-3˜  SST anomaly evolution for 100 members 
of the CNRM-CM5 ensemble run with a similar initial state to that in 2014 and 2015, in terms 
of the main precursors of El Nino:˜  early-year WWV and WWEs cumulative strength, and b, 
corresponding December standardized Nino-3˜  SST anomaly distribution (blue). The December 
standardized SST anomaly distribution for the 800-years long CNRM-CM5 simulation (grey) 
is also shown on panel b. The red line on panel a represent the ensemble mean. 

Fig. 11 suggests that the initial WWE strongly contribute to the El Nino˜  
amplitude, as indicated by previous studies (Lengaigne et al, 2004a; Fedorov et al, 
2015; Lengaigne et al, 2002; McPhaden et al, 2006b). The strong initial March 
WWE forces a downwelling Kelvin wave, whose related eastward current anomalies 
induce an eastward displacement of the warm pool and central Pacific warming 
during April in all the ensemble members (Fig. 11). The oceanic impact of this 
initial WWE is consistent with the observations in early 1997, 2014 and 2015 
(Fig. 7). After this common initial evolution, there is a clear divergence between 
ensemble members, some of which evolve into extreme El Ninos˜  and others into 
weaker El Ninos˜  (Fig. 11). The composite of the ten members that show the 
largest warming in the Nino3˜  region in December are of course associated with 
larger eastern and central Pacific SST anomalies and eastward expansion of the 
warm pool (Fig. 12b). But they are also associated with more frequent and intense 
subsequent WWEs, especially during summer (Fig. 12ab), as in 2015 (Fig. 7d). 
The ten strongest simulated El Ninos˜  are indeed associated with twice as many 
summer WWEs than the ten weakest El Nino˜  (6/year compared to 3/year, Fig. 
12ab). Strong El Ninos˜  are not only associated with more WWEs but with a 
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Fig. 11 Comparison between extreme,moderate and weak warming events in CNRM-CM5 en-
semble simulation. As Figure. 5, but for three members of the CNRM-CM5 reference ensemble 
that produce qualitatively similar evolutions to those in a, b, c, 1997 (strongest warming 
in the model November-January ensemble Niño-3 SST anomaly); d, e, f, 2015 (the median 
warming); g, h, i, 2014 (the weakest warming). The dotted black contours indicate the eastern 
edge of the western Pacific Warm Pool (defined as the 27.5 ◦C isotherm, see methods). On all 
panels, WWEs (red circles) and EWEs (easterly wind events, blue circles) have been added. 
The size of the circles that indicate the wind events central dates and longitudes is proportional 
to the wind event strength. 

433 larger cumulative WWEs strength. There is indeed a strong linear relationship 
434 (0.72 Pearson correlation, p<0.01) between the cumulative strength of subsequent 
435 (i.e. April to November) WWEs and the eastward expansion of the warm pool (i.e. 
436 measured as the location of the warm-pool eastern edge) in December across the 
437 ensemble (Fig.12d). A similar correlation is found between the cumulative strength 
438 of subsequent WWEs and the Niño-3 SST anomaly in December (0.7, Fig. 13). 



18 Puy Martin et al. 

(°C)

140E 180 140W
Longitude

140E 180 140W 100W 100W
Longitude

-5 -4 -3 -2 -1 0 1 2 3 4 5

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oct 

Nov 

Dec 

a b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
2 (s

td
)

WWE Strength
4

1
2 (s

td
)

WWE Strength
4

c d

-5

180

160W

140W

120W

100W

80W
EWEs (r = -0.1)

5 10 15

Extreme 
El Niño

Moderate
  El Niño

    
Neutral 
  state

WWEs (r = 0.72)

1997

2015

2014

Control ensemble
Observation

0 0
Cumulative normalized strength (Apr-Nov)

W
es

t <
-- 

W
ar

m
 p

oo
l e

as
te

rn
 e

dg
e 

-->
 E

as
t 

Fig. 12 a,b, Composite time-longitude section of 2◦SN-2◦SS-averaged SST anomalies for the 
10 weakest and 10 strongest El Niños in the CNRM-CM5 control ensemble experiment. Red 
(blue) circles indicate the WWEs (EWEs) central dates and longitudes for all the members in 
each composite, the size of the circle being proportional to the WWE strength (see methods). 
The black line on panels a,b indicates the eastern edge of the western Pacific warm pool and 
its climatological position (dash-dotted line). c, d Scatter plot of the December Pacific Warm 
pool eastern edge position versus the April to November cumulative (c) EWEs and (d) WWEs 
strength (see methods) for (dots) each of the 100 members of the CNRM-CM5 ensemble control 
run and (stars) from observations with the colour indicating the El Niño category (yellow for 
neutral state, orange for moderate and red for extreme El Niños) 

439 The observed 1997 and 2015 El Ninos˜  align with some of the most intense El 
Ninos˜  and subsequent cumulative WWE strength in our experiment (Fig. 12d). As 
a comparison, the magnitude and evolution of El Nino˜  in the member associated 
with the warmest SST anomaly in the Nino3˜  region bears strong similarities with 
the observed 1997 El Nino˜  (i.e, a series of strong WWEs in summer and fall asso-
ciated with the rapid eastward shift of the warm pool and SST anomalies reaching 
5◦C in the eastern Pacific, Fig. 11a,b,c and Fig. 7a,b,c). A similar comparison can 
be done with the median El Ninos˜  in our ensemble and the observed 2015 El Nino,˜  
both associated with a series of strong WWEs in summer and fall (weaker than in 
1997 though) and the rapid eastward shift of the warm pool and SST anomalies 
reaching 3◦C in the eastern Pacific ( Fig. 11d,e,f and Fig. 7d,e,f). On the other 
side of the distribution, the observed weak 2014 event lies at the lower end of this 
relationship, in line with studies suggesting that the 2014 El Nino˜  was linked to an 
absence of summer WWEs (Menkes et al, 2014). Indeed, the member associated 
with the weakest El Nino˜  exhibits weak SST anomalies in the central/eastern Pa-
cific (< 1◦C) and a reduced WWEs activity in summer/fall following the strong 
initial (Fig.12a and Fig. 11g,h,i) as in 2014 (Fig. 7g,h,i). 

We will now explore during which period of the forecast WWEs occurrence 
influences most the El Nino˜  amplitude at the end of the year. Fig. 13 shows the 
correlation between the December Nino-3˜  SST anomaly (i.e. El Nino˜  amplitude 
at its peak) and cumulative WWEs strength integrated progressively over longer 
periods between April and November. There is a large increase in correlation (from 
0.15 to 0.6) when including June, July and August in the averaging period, and 
a stabilization afterwards. This suggests that WWEs occurring during the June-
August period (i.e. boreal summer) are critical to set the El Nino˜  amplitude at 
the end of the year (this results is further confirmed in section 5). 
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December for the 100 members of the control ensemble simulation as a function of the period 
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threshold. 

465 We have demonstrated above a strong statistical link between April-November 
cumulative WWE strength (with June and July contributing most) and the El 
Nino˜  peak amplitude. Previous studies (Hu and Fedorov, 2016; Levine and McPhaden, 
2016) have also suggested that a series of EWEs in June and July (Fig. 7g) could 
have halted the 2014 El Nino˜  on its way. Yet, some strong EWEs occur in July in 
some of the members with the ten largest El Ninos˜  in our simulation (Fig. 12b). 
Symmetrically, there are members in our control ensemble which do not develop 
EWEs, but end up producing a weak El Nino˜  (not shown). The scatterplot between 
the April-November cumulative EWEs strength and the El Nino˜  amplitude shown 
in Fig. 12c further indicates that there is no significant correlation between the 
EWEs activity and El Nino˜  amplitude in neither our ensemble nor observations. 
In our ensemble simulation, there is hence a much stronger statistical relationship 
between El Nino˜  amplitude and WWEs than with EWEs (0.7 vs. -0.1 correlation, 
Fig. 12cd). This of course does not preclude that some EWEs may play a role 
in specific ensemble members, but suggests that their role is not as systematic as 
those of WWEs. We will come back to this in the discussion section. 

5 Necessary conditions for extreme El Nino˜  events 

This statistical relationship between WWEs activity and El Nino˜  amplitude does 
not reveal if WWEs only passively respond to warm pool displacements, or if they 
actively participate to El Niño growth. To investigate this, an additional ensemble 
is performed in which subsequent WWEs were artificially removed (hereafter called 
”no subsequent WWEs” ensemble - see section 2 for details). Fig. 14a,b compares 
the evolution and December values of Nino3˜  SST anomalies of the control and ”no 
subsequent WWEs” ensembles. As seen earlier for the control simulation (Fig. 11), 
the ”initial” WWE forces a downwelling Kelvin wave which induces an eastern 
Pacific warming from May to early July in both ensembles (Fig. 14a). From July 
onwards, however, the two ensemble mean start diverging. The mean Nino3˜  SST 
of the ”no subsequent WWEs” ensemble continues warming for two more months, 
but then stalls and even decays after September. This confirms the prominent 
impact of the subsequent WWEs occurring in summer, as suggested by Fig. 13. 
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One should however not only focus on the ensemble mean, as El Niño forecasts 
need to be considered as probabilistic forecasts. Fig. 14b hence further compares 
the probabilities for neutral, moderate or extreme ENSO state in the control and 
”no subsequent WWEs” ensembles. Subsequent WWEs strongly enhance the odds 
(54% vs. 10%) of a 2015-like extreme El Niño and reduce those of a 2014-like weak 
El Niño (30% vs. 8%, Fig. 14b). 

To investigate the role of the initial WWEs in the evolution of El Niño in 2014 
and 2015, a similar experiment is performed with the influence of the March WWE 
removed in the initial conditions (hereafter called ”no initial WWEs” ensemble; 
see section 2). Unlike the ”no subsequent WWEs” ensemble, the ensemble mean 
of the ”no initial WWEs” and control ensembles start diverging in May, revealing 
the strong impact of the initial March WWE on eastern Pacific SST (Fig. 14c). 
While subsequent WWEs continue to induce a rise in the ensemble-mean Niño3 
SST until the end of the year in the ”no initial WWEs” ensemble, it never catches 
up with the control ensemble, indicating the strong impact of the initial WWE 
on the peak El Niño amplitude. The occurrence of strong initial WWEs indeed 
significantly favours the advent of extreme El Niño events (54% against 18%) and 
prevents weak 2014-like El Niños (34% vs. 8%, Fig. 14d). 

A last experiment is finally conducted where both the initial and the subsequent 
WWEs are removed (hereafter called ”no WWEs” ensemble, Fig. 14e,f). In this 
experiment (as in ”no subsequent WWEs”), the ”intraseasonal Bjerknes feedback” 
(tendency for WWEs to induce an eastward displacement of the warm pool and 
more WWEs) has been suppressed. The ”initial kick” of the March WWE has also 
been suppressed, with the recharged WWV providing the only El Niño-favourable 
initial condition. The preconditionning by a recharged WWV still favors a warming 
at the end of year without the occurence of WWEs (Fig. 14e), which is purely the 
result of the classical ”low-frequency” Bjerknes feedback. However, the occurrence 
of an extreme El Niño such as that in 2015 is nullified in this ensemble and a weak-
borderline 2014-like El Niño become almost six times more likely (46% against 
8%,Fig. 14f). This clearly shows that sustained WWEs throughout the year are a 
necessary condition for extreme El Niños in that model. 

In observations, the three recent extreme El Niños all occurred after a recharged 
oceanic state and intense WWE activity (Fig. 1a). The results above demonstrate 
that when the equatorial Pacific is initially recharged, sustained WWEs are nec-
essary to yield an extreme El Niño. Is a recharged initial state also necessary for 
the development of an extreme El Niño? In the long-control run, a strong WWE 
activity throughout the year is also a necessary condition for extreme El Niños 
to occur, whatever the early-year recharge state (Fig. 15a). In this figure, ”No or 
weak (resp. strong) WWE” characterize the years with WWEs strength less or 
equal to (resp. larger than) one standard deviation and the discharged, neutral 
and recharged states are respectively defined as January-March WWV anomalies 
below -0.75, between -0.75 and 0.75 and above 0.75 standard deviation. While a 
recharged state excludes the occurrence of a La Niña, a strong WWE activity is 
also necessary to obtain an extreme El Niño (Fig. 15a). Extreme El Niños can 
also occur following a neutral state and intense WWEs but this is very rare in 
our experiments (5% versus 22% for a recharged state and strong WWEs and 4% 
when all cases were considered, Fig. 15a). In the long-control simulation, initial 
WWEs are also efficient in triggering extreme El Niño events (Fig. 15b), with all 
extreme El Niño being preceded by a strong WWE activity in JFM. More gener-



21 Title Suppressed Due to Excessive Length 

 

0

-1

1

2(o C
)

(o C
)

3

4

F M A M J J A S O N 10 20 30

No subsequent WWE mean

Control ensemble
Control ensemble mean
No subsequent WWE ensemble

a b

Extreme
 El Niño

Neutral
  state

 

0

-1

1

2

3

4

F M A M J J A S O N 10 20 30

c d

Moderate
 El Niño

No initial WWE mean

Control ensemble

No initial WWE ensemble
Control ensemble mean

 

0

-1

1

2

3

4

F M A M J J A S O N 10 20 30

e f

No WWE mean

Control ensemble

No WWE ensemble
Control ensemble mean

(o C
)

(%)

(%)

(%)

8%

38%

54%

8%

38%

54%

8%

38%

54%

30%

34%

46%

10%

0%

60%

48%

54%

18%

Extreme
 El Niño

Neutral
  state

Moderate
 El Niño

Extreme
 El Niño

Neutral
  state

Moderate
 El Niño
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544 ally, the WWE activity tends to shift the El Niño amplitude towards higher values 
545 for recharged and neutral states, but has little impact for discharged states (Fig. 
546 15a) 

547 This weakened impact of WWEs on El Niño during discharged state is likely 
548 due to the fact that the tendency for an initial WWE to induce successive ones also 
549 depends on the oceanic background state. When the Pacific is initially recharged, 
550 an initial WWE makes the occurrence of more WWEs later in the year 2.5 times 
551 more likely (Fig. 15c), in agreement with the results presented above and suggested 
552 in the observations (Lengaigne et al, 2004a). However, this relationship is modified 
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Fig. 15 a, Average December Nino3˜  SST anomalies when the ”initial (January-March) and 
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(see text for further details). b, Average December Nino3˜  SST anomalies when the ”initial” 
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average December Nino3˜  SST anomalies during all recharge and WWE activity conditions is 
also shown in black. c, Average standardized cumulative WWE strength for April-November 
when the initial WWE activity (January-March) is (blue) weak or (red) strong for 3 initial 
(January-March) recharge state of the Pacific in the CNRM-CM5 control simulation (see text 
for further details). On all panels, the boxes (whiskers) give the 1st, 25th, 75th, 99th per-
centiles and the median of the distributions. The percentage of extreme El Nino˜  (see method 
for further detail) for each categories are also given. On panel a, the distribution of December 
Nino3-SST˜ A for discharged state and strong WWE activity is not given because 0 year satisfied 
those criteria in the control simulation. 

when the Pacific exhibits neutral or discharged conditions, with a weaker impact 
of initial WWEs on the subsequent WWEs activity in neutral conditions (1.5 
times more likely) and no impact when the Pacific is discharged (Fig.15c). In this 
figure,”No or weak (resp. strong) initial WWE activity” on Fig. 15c characterize 
the years with initial (i.e. Jan to March) cumulative strength less or equal to 
(resp. larger than) one standard deviation. Overall, once an early year WWE has 
occurred in presence of elevated WWV, this enhances the odds for an extreme El 
Nino˜  (Fig. 15a). This positive feedback between initial and successive WWEs is 
reduced in presence of a neutral state, and nullified in a discharged state, hence 
reducing (or altogether cancelling) the odds for an extreme El Nino.˜  

6 Summary and Discussion 

The strongest El Ninos on record were preceded by anomalously high upper ocean 
heat content combined with exceptionally strong westerly wind variability. Simi-
lar conditions evolved into a weak El Nino˜  in 2014 and forecasts failed to predict 
the peak amplitude of this event. Similar conditions also occurred in 2015, which 
turned into a record-breaking event by the end of the year. Why did similar equa-
torial conditions in early 2014 and 2015 evolved so differently? Unpredictable wind 
variability could be responsible for the 2014 El Nino˜  failure (Hu and Fedorov, 2016; 
Zhu et al, 2016; Menkes et al, 2014) and the advent of the extreme event in 2015 
(Hu and Fedorov, 2017). Unlike in 2015 and 1997, the summer and fall WWE 
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activity was indeed not as strong in 2014 (Fig. 7d,g). WWEs have a determinis-
tic component: they are more likely when the western Pacific warm pool extends 
anomalously eastward (Eisenman et al, 2005; Gebbie et al, 2007; Lengaigne et al, 
2003; Puy et al, 2015). This relationship, however, remains probabilistic: an ab-
normally warm central Pacific favors more WWEs than usual, but there is still a 
probability that less WWEs than usual may occur. In this study, we tested the hy-
pothesis that intrinsic WWEs stochasticity could explain the differences between 
2014 and 2015 El Niño evolutions. We also investigated conditions conducive to 
extreme El Niños: are early-year intense WWEs and recharged upper ocean heat 
content as observed prior to exceptionally strong El Niños always necessary? 

We used the CNRM-CM5 coupled ocean-atmosphere model because it repro-
duces the ENSO cycle, its preconditioning by WWV, WWEs characteristics and 
the influence of the warm pool displacements on WWEs quite exceptionally for 
a CGCM (Section. 3). Our ensemble simulations show that despite their deter-
ministic behaviour, WWEs still display a sufficiently strong stochastic component 
to explain the different 2014 and 2015 evolutions, consistently with the findings 
of Larson and Kirtman (2015). Although early-year strong WWEs and elevated 
WWV preclude the occurrence of La Niña events, El Niño amplitude ranges be-
tween weak 2014-like (with few WWEs) to extreme 2015-like El Niño events (with 
many WWEs). We showed that the diversity of El Niño magnitude is linearly re-
lated to the cumulative WWEs strength (a metric that characterize the WWEs 
activity) from April to November, with WWEs occurring in June-July contribut-
ing most. We further ran sensitivity ensemble experiments starting from the same 
initial conditions as above, but with WWEs filtered out (Fig. 16a). Extreme El 
Niños become five times less likely if summer and fall WWEs are artificially sup-
pressed and three times less likely when initial WWEs are removed. No extreme El 
Niño occur in the sensitivity ensemble experiment when all WWEs are removed. 
A weak El Niño such as in 2014 was not unlikely in ECMWF forecasts (29%, Fig. 
16b) but our experiments show that such a weak event becomes almost four times 
more likely if no initial or subsequent WWEs occur and five time more likely when 
both initial and subsequent WWEs are absent. These results confirm the hypoth-
esis of Menkes et al (2014) who suggested, using forced oceanic simulations, that 
the lack of summer WWEs could explain the stalled 2014 El Niño progression. 

The long control simulation allowed us to further investigate necessary condi-
tions for the development of extreme El Niños for various contexts, different than 
the 2014 and 2015 El Niños. In this simulation, extreme El Niños never occur when 
the equatorial Pacific is initially discharged. We also showed that they occur very 
rarely after a neutral state ( only 2.4% of the cases when a strong WWE activity 
is also present throughout the year), in line with precedent studies (Fedorov et al, 
2015). Extreme El Niños become the most frequent when the equatorial Pacific is 
initially recharged, but only when a strong WWE activity is also present through-
out the year, in which case they occur 17.8% of the time (corresponding to 4.5 
times more likely compared to the probability of occurrence of an extreme El Niño 
considering all cases). We also confirmed that an early-year WWE increases the 
probability of subsequent WWEs later in the year, as suggested in the observa-
tions. This effect is however more efficient when the equatorial Pacific is initially 
recharged. We speculate that this is due to the fact that recharged states are as-
sociated with a warm pool that extends further eastward, favouring subsequent 
WWEs. Recharged states are also associated with a more intense zonal sea surface 
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Fig. 16 a, Percentage of neutral state, moderate and extreme El Niños in the CNRM-CM5 
2014/15-like ensemble experiment (black) and for experiments where subsequent (April to 
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2015 (purple) operational forecasts. The boxes (whiskers) give the 25 and 75 (5 and 95) % 
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622 temperature gradient in the central Pacific which lead to a stronger SST response 
623 to a given WWEs (Puy et al, 2016), and hence is more efficient to shift the warm 
624 pool further eastward. 

625 The potential impact of a series of EWEs halting the 2014 El Niño during its de-
626 velopment has also been suggested (Hu and Fedorov, 2016; Levine and McPhaden, 
627 2016). Yet, there was a similar EWE in June 2015 (Fig.7d,g) that did not stop 
628 the developing El Niño. Also, unlike for WWEs, we found no significant correla-
629 tion between summer/fall EWEs activity and El Niño amplitude in neither our 
630 ensemble nor observations (Fig. 12c). This indicates that the impact of EWEs on 
631 El Niño amplitude may be model-dependent (no impact in our model, an impact 
632 in (Hu and Fedorov, 2016; Levine and McPhaden, 2016)). More studies with other 
633 coupled models are hence probably needed to ascertain whether the summer 2014 
634 EWEs did indeed stop the El Niño on its way. Overall, our study does not exclude 
635 an EWE having played a role in 2014, but suggests that the effect of EWEs on 
636 El Niño is not systematic (as opposed to WWEs). Our alternative (but not neces-
637 sarily exclusive) explanation simply relates the uncertainty in El Niño amplitude 
638 forecasts to the WWE stochastic component: a moderate El Niño was more likely 
639 in 2014, but nature followed the less likely option in which few WWEs and a weak 
640 El Niño occurred. 

641 Due to its state-of-the-art oceanic and atmospheric initialization (Balmaseda 
642 et al, 2013) and ensemble generation methods (Weisheimer et al, 2014), the ECMWF 
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643 ensembles take into account the differences between 2014 and 2015 early-year ini-
tial conditions. April 2014 forecasts predicted almost equally likely odds for a 2014-
like weak (29%), moderate (37%) or extreme (34%) El Nino˜  (Fig. 16b). There is 
however a clear tendency for the April 2015 ECMWF forecast distribution to be 
shifted towards higher El Nino˜  amplitude relative to that of 2014, with significantly 
more chances for an extreme El Nino˜  in 2015 (59%), and less for no El Nino˜  (12%, 
Fig.16b). This change in the El Nino˜  amplitude distribution probability originates 
from other differences in initial conditions than those encapsulated in early-year 
WWV and cumulative WWE strength, which were very similar for both years. 
Other possibilities include the remote influence of SST anomalies external to the 
equatorial Pacific (Fig. 9, Zhu et al, 2016; Min et al, 2015) or the influence of 
remnants from the 2014 borderline weak El Nino˜  (Levine and McPhaden, 2016; 
Hu and Fedorov, 2017) which left the equatorial pacific 0.5 to 1oC warmer in early 
2015 when compared to early 2014 (Fig. 1cd). Future studies will need to inves-
tigate the non-stochastic causes for the different forecasts distributions for these 
two years in order to isolate the associated sources of El Nino˜  predictability. 
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Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Val-
cke S, Beau I, Alias A, Chevallier M, et al (2013) The cnrm-cm5. 1 global climate 
model: description and basic evaluation. Climate Dynamics 40(9-10):2091–2121 

Weisheimer A, Corti S, Palmer T, Vitart F (2014) Addressing model error through 
atmospheric stochastic physical parametrizations: impact on the coupled ecmwf 
seasonal forecasting system. Phil Trans R Soc A 372(2018):20130,290 

Yu L, Rienecker MM (1999) Mechanisms for the indian ocean warming during the 
1997–98 el nino. Geophysical Research Letters 26(6):735–738 

Zhang T, Sun DZ (2014) Enso asymmetry in cmip5 models. Journal of Climate 
27(11):4070–4093 

Zhu J, Kumar A, Huang B, Balmaseda MA, Hu ZZ, Marx L, Kinter III JL (2016) 
The role of off-equatorial surface temperature anomalies in the 2014 el nino˜  
prediction. Scientific reports 6 

Acknowledgements  JV  and  ML  acknowledge  funding  by  Institut  de  Recherche  pour  le  
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