

1 **Title:** Precipitable water and CAPE dependence of rainfall intensities in China

2
3 **Authors:** Wenhao Dong¹, Yanluan Lin¹, Jonathon S. Wright¹, Yuanyu Xie¹, Xungang
4 Yin², Jianping Guo³

5
6 ¹Ministry of Education Key Laboratory for Earth System Modeling, Department of
7 Earth System Science, and Joint Center for Global Change Studies (JCGCS), Tsinghua
8 University, Beijing 100084, China.

9 ²ERT, Inc., at NOAA National Climatic Data Center, Asheville, NC 28801, USA

10 ³State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric
11 Chemistry of China Meteorological Administration (CMA), Chinese Academy of
12 Meteorological Sciences, Beijing 100081, China.

13
14 Corresponding author: Yanluan Lin

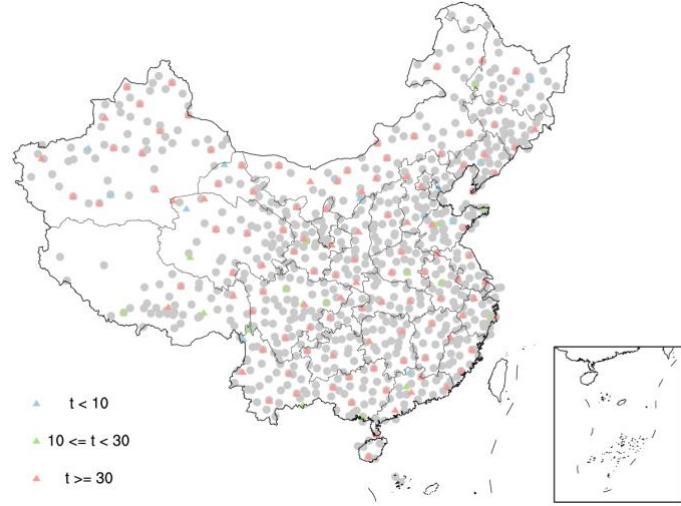
15 Email: yanluan@tsinghua.edu.cn, Tel: +1186 (10) 6279-7763

16
17 **Abstract**

18 The influence of temperature on precipitation in China is investigated from two aspects
19 of the atmospheric water cycle: available water vapor and atmospheric instability. Daily
20 observations are used to analyze how rainfall intensities and its spatial distribution in
21 mainland China depend on these two aspects. The results show that rainfall intensities,
22 and especially rainfall extremes, increase exponentially with available water vapor. The
23 efficiency of water vapor conversion to rainfall is higher in northwestern China where
24 water vapor is scarce than in southeastern China where water vapor is plentiful. The
25 results also reveal a power law relationship between rainfall intensity and convective
26 instability. The fraction of convective available potential energy (CAPE) converted to
27 upward velocity is much larger over southeastern China than over the arid northwest.
28 The sensitivities of precipitation to temperature-induced changes in available water
29 vapor and atmospheric convection are thus geographically reciprocal. Specifically,
30 while conversion of water vapor to rainfall is relatively less efficient in southeastern
31 China, conversion of CAPE to upward kinetic energy is more efficient. By contrast, in
32 northwestern China, water vapor is efficiently converted to rainfall but only a small
33 fraction of CAPE is converted to upward motion. The detailed features of these
34 relationships vary by location and season; however, the influences of atmospheric
35 temperature on rainfall intensities and rainfall extremes are predominantly expressed
36 through changes in available water vapor, with changes in convective instability playing
37 a secondary role.

38
39 **Keywords:** convective instability; available water vapor; rainfall intensity; China

40 **1. Introduction**


41 Relationships between atmospheric temperature and precipitation intensity are of
42 great concern for human society, particularly as climatic warming intensifies the
43 hydrologic cycle (Allen and Ingram, 2002; Wang and Zhou, 2005; Trenberth, 2011;
44 Donat *et al.*, 2016). Previous studies have helped to constrain these relationships on a
45 variety of time scales (Held and Soden, 2006; Allan and Soden, 2008; O’Gorman and
46 Schneider, 2009; Utsumi *et al.*, 2011; Berg *et al.*, 2009), but several aspects of the
47 results remain controversial. This lack of consensus is fueled in part by large seasonal
48 and regional variations in the temperature dependence of rainfall (Berg *et al.*, 2009;
49 Hardwick Jones *et al.*, 2010; Utsumi *et al.*, 2011).

50 The dependence of rainfall on temperatures has been explored from a variety of
51 perspectives (Allen and Ingram, 2002; Trenberth *et al.*, 2003; Haerter and Berg, 2009;
52 Lepore *et al.*, 2015). Many of these studies have focused on changes in the water vapor
53 saturation capacity of the atmosphere, which depends on tropospheric temperature via
54 the Clausius-Clapeyron relation. Increases in saturation capacity due to increasing
55 tropospheric temperatures lead to enhanced rainfall, provided that the enhanced
56 moisture eventually returns to the surface (Trenberth *et al.*, 2003; Donat *et al.*, 2016).
57 Rainfall intensity and extreme rainfall may also be controlled by variations in
58 atmospheric convection, particularly when precipitation is dominated by local surface
59 forcing (Trenberth and Shea, 2005; Adams and Souza, 2009; Lepore *et al.*, 2015).
60 Increases in convective instability under a warming climate may lead to an increase in
61 the proportion of convective rainfall, which could be modulated by changes in
62 environmental conditions, such as the moist adiabatic temperature lapse rate, or changes
63 in the average characteristics of convection, such as updraft velocities (Allen and
64 Ingram, 2002; Haerter and Berg, 2009; O’Gorman and Schneider, 2009; Singh and
65 O’Gorman, 2013; Brooks *et al.*, 2014). Thus, the roles of atmospheric moisture content
66 and convective properties should both be taken into consideration when evaluating the
67 response of rainfall to temperature variations.

68 Despite projections that the number of extreme precipitation events will increase
69 under global warming (Yuan *et al.*, 2015), few studies to date have investigated how
70 these two factors influence rainfall intensities in China. Here we investigate the
71 dependence of rainfall intensity on available moisture and convective instability using
72 daily observations from a large number of meteorological stations in mainland China.
73 The role of available moisture is evaluated using precipitable water (PW), while that of
74 convective instability is evaluated using convective available potential energy (CAPE).
75 PW measures the integrated water content in a column of the atmosphere, such that a
76 higher value of PW indicates a larger amount of available moisture. CAPE is an energy-
77 based measure of atmospheric potential instability that has been widely used to infer
78 key characteristics of convective instability (Brooks *et al.*, 1994; Lepore *et al.*, 2015).
79 This metric defines the theoretical maximum velocity that a positively buoyant air
80 parcel could acquire through adiabatic ascent (DeMott and Randall, 2004; North and
81 Erukhimova, 2009; Lepore *et al.*, 2015). Larger values of CAPE thus indicate greater
82 potential for strong updrafts in convective storms.

83 The data and methods used in this work are described in Section 2. Key results,

84 including the climatology and seasonal distributions of precipitation, PW, and CAPE
85 and the dependence of precipitation intensity on PW, CAPE, and their combination are
86 presented in Section 3. Our conclusions are summarized in Section 4.

87
88 **Figure 1. Station locations and types.** Gray dots represent CMA stations that provide rainfall
89 observations. Colored triangles represent radiosonde stations, with different colors corresponding to
90 different observation spans (in years) as indicated by the key.

91 **2. Data and methodology**

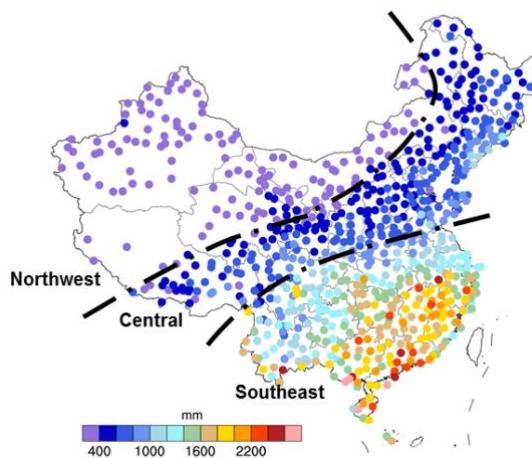
92 **2.1 Data sources**

93 Daily precipitation data are provided by the China Meteorological Administration
94 (CMA). These data were collected at 756 stations (Fig. 1; gray dots) during 1961–2014.
95 The stations are maintained according to standards set by the CMA, which follow both
96 the WMO Guide to the Global Observing System and CMA Technical Regulations on
97 Weather Observations. We exclude snowfall records in this study considering the large
98 uncertainties associated with snow observation.

99 PW and CAPE are derived from twice-daily (00 and 12 UTC) radiosonde profiles
100 taken from version 2 of the Integrated Global Radiosonde Archive (IGRA; Durre, *et al.*,
101 2006; Durre, *et al.*, 2009). IGRA is the most comprehensive and largest international
102 radiosonde data set compiled to date, and includes 144 stations in China (Fig. 1; colored
103 triangles). The earliest observations in China date back to the late 1930s, with nearly
104 80% (111) of the 144 radiosonde stations providing observations over 30 years or more.
105 The high temporal resolution, long record, and broad spatial sampling provided by
106 IGRA are essential to the success of this study.

107 **2.2 Methods**

108 Values of PW are derived from radiosonde profiles on pressure levels according to
109 the equation


$$110 \quad PW = \frac{1}{g_0} \int_{500}^{SRF} q dp$$

111 where g_0 is the average gravitational acceleration at Earth's surface, q is the specific

humidity, and p is pressure. PW is defined as the integrated water vapor content of the atmosphere below the 500 hPa isobaric surface. This choice reflects the fact that water vapor resides mainly at lower levels of the atmosphere, where temperatures are relatively warm. Values of CAPE are derived from the same profiles according to the equation

$$CAPE = R_d \int_{LFC}^{LNB} (T_p - T_e) d \ln p$$

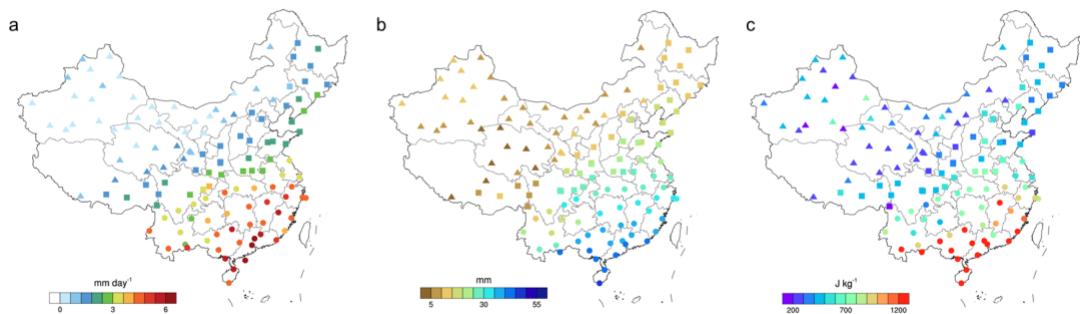
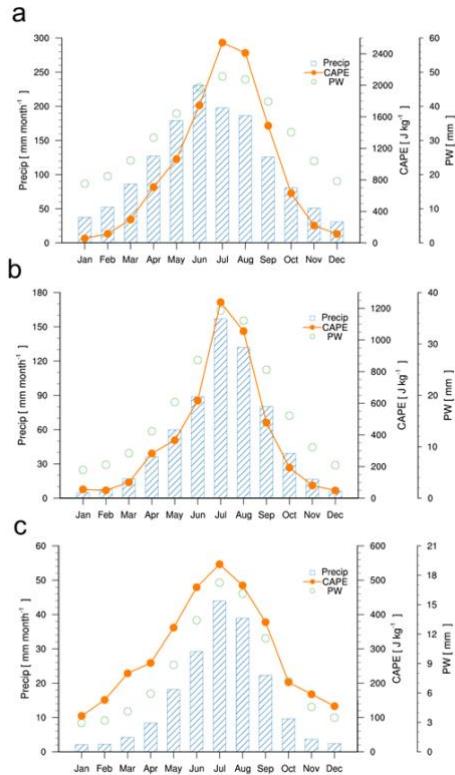

where R_d is the gas constant for dry air, T_p is the parcel temperature along a moist adiabat, and T_e is the environment temperature from the radiosonde profile. CAPE is conventionally defined as the integral of the positive portion of the parcel buoyancy between the level of free convection (LFC) and the level of neutral buoyancy (LNB). The effect of water vapor on the parcel buoyancy (the “virtual temperature correction”; Doswell and Rasmussen, 1994; Emanuel, 1994) was excluded here to better differentiate variations in available water from variations in convective instability. Twice-daily values are averaged to daily means for the analysis to reduce diurnal sampling biases associated with the large east–west span of China (PW and CAPE are recorded at regular intervals in Coordinated Universal Time).

Figure 2. Distribution of annual total precipitation from 756 CMA stations. We use this distribution to divide mainland China into three sub-regions: southeastern China (where annual precipitation is typically greater than ~1000 mm), central China (where annual precipitation is typically between 400~1000 mm), and northwestern China (where annual precipitation is typically less than ~400 mm).

We pair each radiosonde station with its nearest neighbor among the CMA precipitation stations. Any station pair covering less than 10 years is excluded from the analysis, yielding 127 pairs of stations. To account for large precipitation gradients across mainland China, we partition the analysis domain into three sub-regions corresponding to southeastern China, central China and northwestern China (Fig. 2) and pool the data within each subset. The classification is determined such that each sub-region has a unique regional rainfall regime and a reasonable number of stations. The number of paired stations in each sub-region is 43 (southeast), 42 (central), and 42 (northwest), indicating a relatively homogenous and representative distribution. This

145 procedure ensures consistent sample sizes and robust statistical comparisons among the
146 three sub-regions.


147
148 **Figure 3.** Climatological distributions of (a) precipitation, (b) PW, and (c) CAPE for 127 pairs of stations
149 over mainland China. Solid dots, boxes, and triangles in a–c indicate stations located in the southeastern,
150 central, and northwestern sub-regions, respectively (see Fig. 2 and text for details).

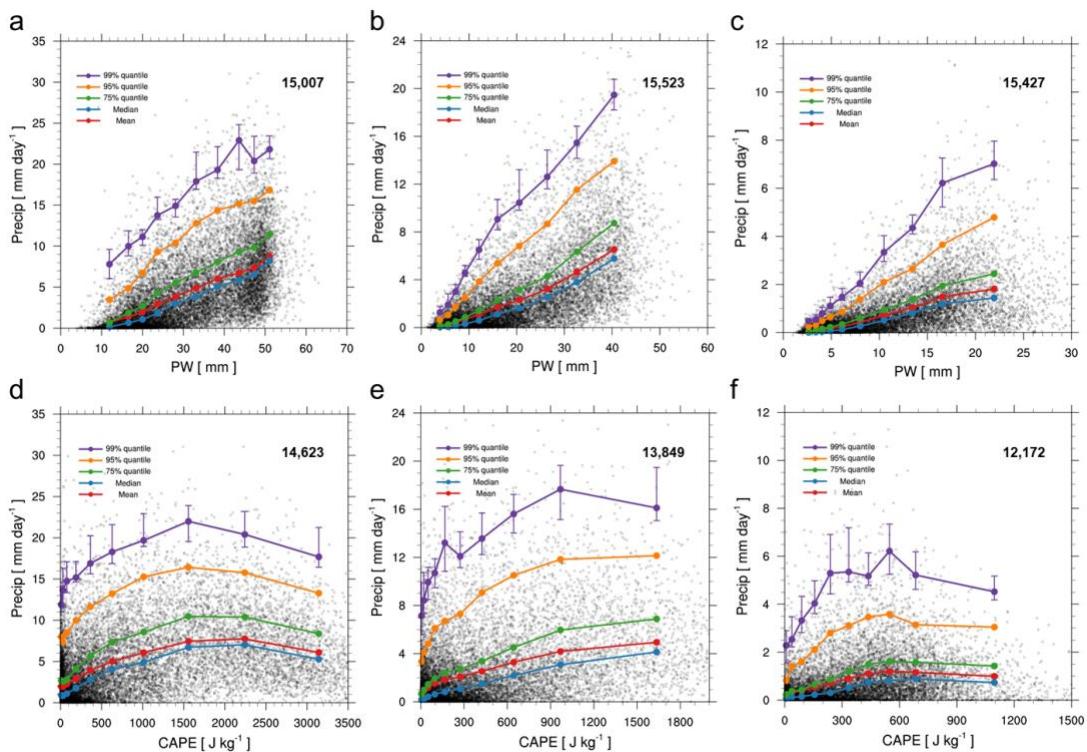
151

152 **3 Results**

153 **3.1 Climatologies and seasonalities of precipitation, PW, and CAPE**

154 Figure 3 shows geographical distributions of long-term mean daily precipitation,
155 PW, and CAPE in mainland China during 1961–2014. Intermittent instrument failures
156 mean that some radiosonde data are missing from the observation record, especially
157 during the earlier stages and winter months. To avoid biased results towards to
158 summertime values due to the sampling issue, we therefore calculate long-term means
159 for each day of the year individually before averaging to get climatological and seasonal
160 distributions. This approach allows us to construct representative climatologies using
161 the maximum amount of available data. All three variables share a common southeast–
162 northwest geographical gradient. Larger precipitation amounts are associated with
163 larger values of PW and CAPE in southeastern China, while smaller precipitation
164 amounts are associated with smaller values of PW and CAPE in northwestern China.
165 For instance, values of cumulative annual precipitation decrease from more than 2000
166 mm in the southeast to less than 400 mm in the northwest (Fig. 2; Zhai *et al.*, 2005).
167 Climatological mean values of PW (CAPE) similarly decline from more than 50 mm
168 (1000 J kg⁻¹) to approximately 5 mm (200 J kg⁻¹). The partitioning separates China into
169 three climatologically distinct sub-regions bounded by daily rainfall amounts of
170 approximately 3 mm day⁻¹ and 1 mm day⁻¹, respectively. These bounds roughly
171 correspond to values of 30 mm and 15 mm in PW and values of 700 J kg⁻¹ and 400 J
172 kg⁻¹ in CAPE (Fig. 3).

173


174 **Figure 4.** Seasonal cycles of precipitation (bars), PW (open circles), and CAPE (filled circles and solid
 175 lines) averaged over stations in (a) southeastern China (solid dots in Fig. 3), (b) central China (solid
 176 boxes in Fig. 3), and (c) northwestern China (solid triangles in Fig. 3). Note the different vertical scales
 177 in each panel.

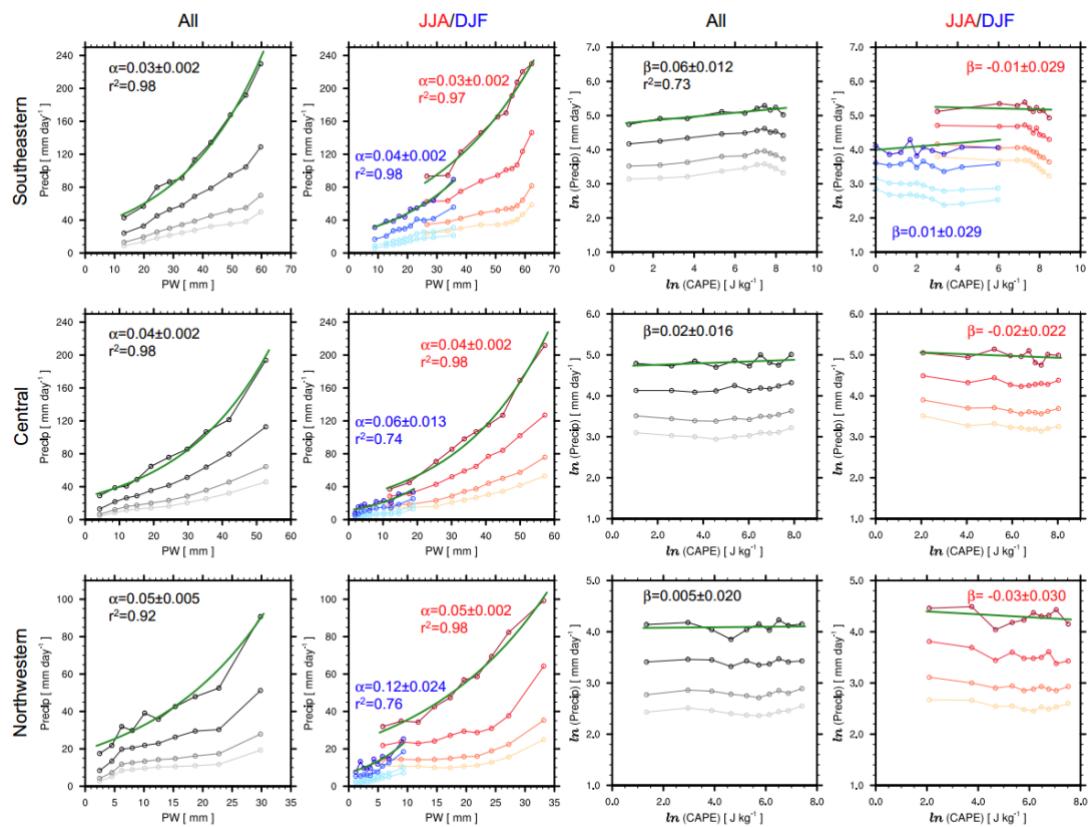
178

179 Figure 4 shows typical seasonal evolutions of precipitation, PW, and CAPE for the
 180 three sub-regions. For each sub-region, all three variables follow well-defined seasonal
 181 cycles, with peak values during summer months (June-July-August) and minimum
 182 values during winter months (December-January-February). The seasonal cycle of
 183 precipitation is highly correlated with the seasonal cycles of PW and CAPE in each
 184 sub-region. All three regions show significant correlation coefficients ($p < 0.001$)
 185 between the seasonal cycles of rainfall and PW, with r^2 equal to 0.86 (southeast), 0.98
 186 (central), and 0.98 (northwest). Correlation coefficients between rainfall and CAPE are
 187 also strong and significant, with values of 0.77, 0.98, and 0.94, respectively. Maximum
 188 values of rainfall, CAPE, and PW in central and northwestern China occur in July (Fig.
 189 4b–c). By contrast, maximum rainfall in southeastern China occurs in June, leading the
 190 maximum values of CAPE and PW by one month (Fig. 4a). This timing mismatch
 191 between peak rainfall and the peak values of convective instability and available
 192 moisture may be related to strong moisture convergence along the *Meiyu* front during
 193 the pre-monsoon period (Chen, 1994; Zhou and Li, 2002).

194 Comparing the months of monsoon onset (May) and withdrawal (September) in
 195 southeastern China, larger values of CAPE are observed in September than in May. This
 196 difference is in line with sea surface temperatures off the coast of southeastern China
 197 remaining warm for 1~2 months following the peak summer insolation, so that the

198 ocean serves as a powerful source of heat and moisture to southeastern China during
 199 the autumn season. Situated far inland, oceanic influences on thermodynamic
 200 conditions in northwestern China are weak. The annual cycle of CAPE is thus more
 201 symmetric over northwestern China, with comparable values in May and September.
 202 By contrast, observed values of PW are larger in September than in May over central
 203 and northwestern China. This difference may reflect the "memory" of soil moisture
 204 following the infiltration of summer rainfall. Values of PW over southeastern China are
 205 more consistent in May and September due to the continuous supply of moisture from
 206 the surrounding oceans. These differences imply that PW may be more of a limiting
 207 factor for rainfall in arid northwestern China, while CAPE may be more of a limiting
 208 factor for rainfall in southeastern China. This hypothesis is explored in more detail
 209 below.

210 **Figure 5.** The mean dependence of rainfall on PW (a–c) and CAPE (d–f) averaged over southeastern
 211 China (a, d), central China (b, e), and northwestern China (c, f). Dots represent available events averaged
 212 over each sub-region. The number of samples in each sub-region is listed in the upper right quadrant of
 213 each panel. Error bars on the 99th percentile points indicate the 95% confidence level estimated using an
 214 interpolated order statistic approach. Note the different axis scales among the panels.
 215


216

217 3.2 Dependence of precipitation on PW

218 Most observations are associated with lighter precipitation and smaller values of
 219 PW. We therefore bin the daily samples into ten intervals based on the deciles of PW.
 220 This approach ensures that each bin contains roughly the same number of samples, as
 221 opposed to intervals of equal width in PW. Our conclusions are qualitatively insensitive
 222 to the number of selected bins. For the following analysis, we extract several
 223 precipitation quantiles from each bin. Confidence intervals for quantiles are estimated

224 based on the interpolated order statistic approach suggested by Hettmansperger and
 225 Sheather (1986) and Nyblom (1992).

226 We use two different methods to explore the dependence of rainfall on PW in each
 227 sub-region. In the first approach, we average all station records within the sub-region
 228 to identify the mean-state relationship between rainfall and PW (Fig. 5a–c). As expected,
 229 rainfall and PW have a positive relationship, with higher PW corresponding to larger
 230 precipitation (Ye *et al.*, 2014). This relationship is consistent throughout the three sub-
 231 regions, with the PW-dependence of each metric nearly linear across a wide range of
 232 precipitation intensities (mean precipitation and rainfall quantiles corresponding to the
 233 50th, 75th, 95th, and 99th percentiles). These results indicate that, on average, rainfall
 234 intensity has a simple scaling relationship with PW. The slopes of all quantile lines are
 235 less than one for all three sub-regions. This is consistent with indications that lower-
 236 tropospheric moisture content increases faster than rainfall (Trenberth 1998; Held and
 237 Soden, 2006).

238
 239 **Figure 6.** Dependence of extreme precipitation on PW (first and second columns) and CAPE (third and
 240 fourth columns) over southeastern China (upper panel), central China (middle panel), and northwestern
 241 China (bottom panel). The first and third columns show results for the entire calendar year. The second
 242 and fourth columns show results for the boreal winter (December–January–February, blue colors) and
 243 summer (June–July–August, red colors) solstice seasons. The green solid lines in the left two columns
 244 indicate exponential fit lines for the 99.9% precipitation quantiles. The green solid lines in the third and
 245 fourth columns indicate linear fit lines for the same 99.9% precipitation quantiles. For each plot, the
 246 intensity of the line color increases as the percentiles increase ($p=0.9, 0.95, 0.99$, and 0.999). Only results

247 for bins with sample sizes larger than 500 are shown. Fit coefficients (\pm one S.E.) are listed in each panel,
248 with values of r^2 included when the fit is statistically significant.

249
250 This first approach gives an overall understanding of the dependence of rainfall on
251 PW, but may average out the sensitivity of larger rainfall events, and especially rainfall
252 extremes. The second approach takes all available rainfall events into consideration,
253 focusing on four large precipitation quantiles ($p=0.9, 0.95, 0.99$, and 0.999). To explore
254 the dependence of rainfall on PW in different seasons, conditional analyses are applied
255 to events occurring during boreal summer (June-July-August) and winter (December-
256 January-February). The results are displayed in Fig. 6 for bins with sample sizes larger
257 than 500. Rainfall intensity at upper quantiles increases exponentially with PW (Fig. 6,
258 first column). The scaling factor, defined as the e -index of the exponential fit to the
259 quantile points, varies among the three sub-regions. For instance, the scaling factors for
260 the 99.9th percentiles are 0.03 ($r^2=0.98$) in southeastern China, 0.04 ($r^2=0.98$) in central
261 China, and 0.05 ($r^2=0.92$) in northwestern China, respectively. This scaling factor also
262 increases with increasing p for precipitation quantiles in all three sub-regions. These
263 results indicate that the intensities of rainfall extremes increase exponentially with
264 available moisture. The sensitivity of this dependence is largest in arid northwestern
265 China and smallest in the humid southeast.

266 The dependence of rainfall extremes on PW thus can be summarized as
267

$$\ln P = \alpha PW + c_1$$

268 where c_1 is a constant and α denotes the efficiency of water vapor being converted to
269 rainfall. This study indicates that α varies from 0.03 to 0.12 for different seasons and
270 sub-regions in China, with the largest values for winter in northwestern China and the
271 smallest values for summer in southeastern China.

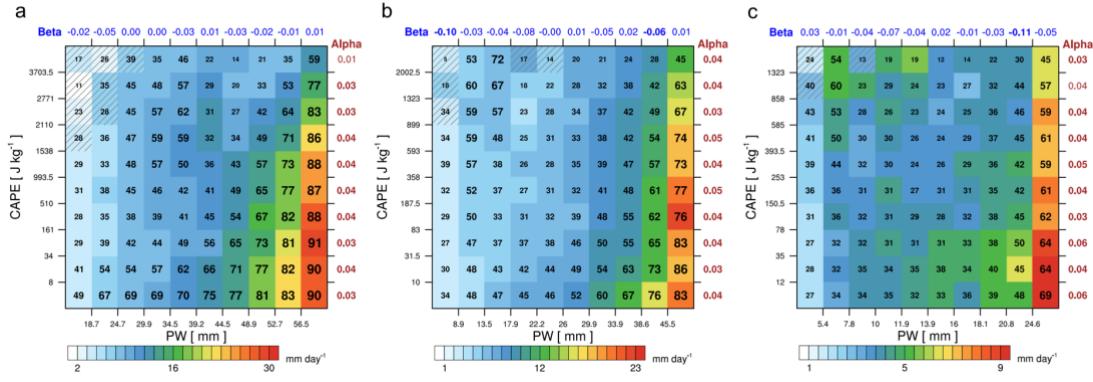
272 3.3 Dependence of precipitation on CAPE

273 Using the same method, we explore the dependence of precipitation on CAPE by
274 first dividing the daily averages into unevenly spaced bins based on the ten deciles of
275 CAPE values. The mean dependence of precipitation on CAPE is shown in Fig. 5d-f.
276 When compared with the average relationship between precipitation and PW, the
277 relationship between precipitation and CAPE remains generally positive, but with a
278 parabolic structure that hints at saturation (if not reversal) of the relationship at large
279 values of CAPE. The mean rainfall intensity appears to decline for CAPE values
280 exceeding 2000 J kg^{-1} in southeastern China. Similar inflection points can be identified
281 near 800 J kg^{-1} over central China and 600 J kg^{-1} over northwestern China. Although
282 the declines are not statistically significant at the 95% confidence level, this result
283 indicates that larger values of CAPE do not imply larger rainfall amounts; indeed, mean
284 precipitation may decrease with increasing CAPE in certain situations. Note that this
285 relationship may be affected by sampling biases associated with pairing daily
286 precipitation with the average CAPE observed at 00 and 12 UTC (approximately 06~08
287 and 18~20 local solar time). We discuss this issue further below.

289 The tendency for precipitation amounts to decline at larger values of CAPE is not
290 statistically significant (Fig. 5d–f); however, indications of signal saturation are robust
291 across all three sub-regions, indicating that the conversion of CAPE into kinetic energy
292 becomes less efficient at larger values of CAPE. This conversion efficiency affects the
293 vertical velocities of convective air parcels, which in turn affect condensation rates and
294 ultimately rainfall intensities. Previous studies suggested that the variation of rainfall
295 quantiles with respect to CAPE may be approximated as CAPE^β (Lepore *et al.*, 2015).
296 The dependence of rainfall on CAPE can therefore be summarized as
297

$$\ln P = \beta \ln \text{CAPE} + c_2$$

298 where c_2 is a constant and β denotes the fixed fraction of CAPE converted to upward
299 velocity. Idealized air parcel theory yields a β value of approximately 0.5 (North and
300 Erukhimova, 2009). However, our results indicate values of β between 0.005 and 0.06
301 for the 99.9th percentile of all rainfall events, with larger values in southeastern China
302 and smaller values in northwestern China (Fig. 6, third column). The quantile curves
303 are nearly parallel to each other in all three sub-regions. When taking seasonal
304 variations into account, β shows a spread that ranges from -0.03 to 0.01, with negative
305 values during summer in all three sub-regions and small positive values during winter
306 in southeastern China. Conditions over China thus diverge considerably from the
307 idealized scenario, in which a large proportion of an increase in CAPE (with all other
308 environmental parameters fixed) translates to an increase in the intensity of the rainfall
309 (Cody *et al.*, 2007). In reality, the proportion of CAPE that is transformed into
310 precipitation is quite small. The weak dependence of rainfall intensities on CAPE is
311 largely due to declines in precipitation in the upper deciles of CAPE, which are
312 particularly pronounced in southeastern China during boreal summer.


313 The complexity of the dependence of rainfall extremes on CAPE may arise from a
314 combination of several factors, including wind shear, entrainment, and moisture loading,
315 among others (Lepore *et al.*, 2015). For example, conversion efficiency depends on the
316 environmental humidity of the entrained air (Derbyshire *et al.*, 2004), which varies
317 substantially between the southeast and northwest. Some studies have argued that
318 convective inhibition, a measure of the energy barrier inhibiting an air parcel from
319 rising from the surface to the level of free convection, fundamentally undermines the
320 relationship between precipitation and CAPE (Kirkpatrick *et al.*, 2011). When
321 convective inhibition is small, even a modest amount of CAPE can produce updrafts
322 strong enough for precipitation particles to coalesce effectively. Conversely, large
323 values of convective inhibition can be sufficient to suppress the occurrence of updrafts
324 even in the presence of large values of CAPE. The latter situation may contribute to our
325 results indicating a negative relationship between precipitation and CAPE. The
326 occurrence of different types of precipitation may also confound any simple
327 relationship between CAPE and precipitation. Precipitation can occur either due to slow
328 ascent of air in synoptic systems, such as along fronts, or be triggered by local instability
329 and convective motion in the atmosphere. The former type is usually associated with
330 low-intensity precipitation that lasts for several hours to days, while the latter type is
331 associated with stronger precipitation but with a shorter duration. The daily time scale

332 of the data used in this study biases the results toward large-scale precipitation,
333 potentially weakening the implied relationship between precipitation and CAPE (Berg
334 *et al.*, 2009; Haerter and Berg, 2009). Another potential contributing factor is the
335 inability of daily data to represent the phase relationship between CAPE and
336 precipitation (Subrahmanyam *et al.*, 2015). The relevant values of CAPE for a given
337 precipitation event are those preceding the event. As a rough check, we have examined
338 the sensitivity of the results to different permutations of the data, including shifting the
339 CAPE pairs 12 hours earlier (i.e. 12Z at day–1 and 00Z on current day) to better reflect
340 the lead–lag relationship between CAPE and precipitation and examining the daily
341 maximum CAPE rather than the daily mean. The results are qualitatively insensitive to
342 both adjustments.

343 Relationships of the type reported in this section are essential for identifying
344 appropriate parameter values for convective schemes in contemporary global climate
345 models, most of which rely on CAPE to compute cloud base mass flux (which in turn
346 controls the convective heating and thus the precipitation amount; (e.g., Arakawa and
347 Schubert, 1974). The extent to which the relationships identified in this work hold for
348 convective precipitation specifically, as opposed to all precipitation, would help to
349 determine the extent to which the parameters in these schemes must be adjusted to
350 adequately represent the behavior of convection in these three climate zones in China,
351 and perhaps in similar climate zones worldwide. Careful analysis of high-frequency
352 data collected at representative sites could help to resolve this issue.

354 **3.4 Joint dependence of extreme precipitation on PW and CAPE**

355 To further understand the joint effects of available moisture and atmospheric
356 convection on precipitation, we classify the rainfall events into discrete cells in the PW–
357 CAPE phase space. The joint quantiles of PW and CAPE (shown in Fig. 7) are
358 determined in two steps. First, we bin the daily samples into ten intervals based on the
359 deciles of PW. Second, for samples in each PW bin, we calculate ten decile bins of
360 CAPE using the same approach. This procedure yields in total 100 joint cells with each
361 row/column containing roughly the same number of samples. The grid is defined by the
362 ten decile bins of PW and CAPE used above, thus ensuring approximately equal sample
363 sizes in each column and each row. We then calculate the typical rainfall intensity and
364 the characteristic frequency of rainfall occurrence within each cell (Fig. 7). The
365 frequency of rainfall occurrence is defined as the ratio of rainy days (daily rainfall larger
366 than 0.1 mm) to the total sample sizes within each cell, and for each cell rainfall
367 intensity is calculated by averaging all the rainy events.

368

369 **Figure 7.** Joint dependence of precipitation on PW and CAPE over (a) southeastern China, (b) central
 370 China, and (c) northwestern China. Bold numbers in each cell indicate the frequency of rainfall
 371 occurrence, defined as the ratio of rainy days (daily rainfall larger than 0.1 mm) to the total samples in
 372 each cell. Larger font sizes indicate higher occurrence frequencies. Color shading denotes rainfall
 373 intensity averaged over all rainy days in each cell. The fit coefficients α and β (see text) for the 99.9th
 374 rainfall percentile along each row and column are listed along the top and right axes of each panel.
 375 Numbers in bold indicate the fit is significant at 95% confidence level. Detailed information for the fit
 376 coefficients is listed in Table 1. Hatching indicates cells with sample sizes less than 100, which are
 377 excluded from the fitting. Note the different (and irregular) scales for each pair of axes.

378

379 Generally, for each CAPE bin, rainfall intensity increases with increasing PW in
 380 all three sub-regions. Rainfall maxima consistently occur in the uppermost decile of
 381 PW. Although the bulk of precipitation events manifest as light precipitation when PW
 382 is relatively small, the frequency of rainfall occurrence within each cell is largely
 383 consistent with the distribution of rainfall intensity. Within each PW bin, the
 384 relationship between rainfall intensity and CAPE is curvilinear (Fig. 7). More
 385 specifically, precipitation and CAPE are positively correlated up to an “optimal” value,
 386 and then become negatively correlated with precipitation decreasing as CAPE
 387 continues to increase. Overall, the most intense rainfall and the highest frequencies of
 388 rainfall occurrence are typically associated with large values of PW but small-to-
 389 moderate values of CAPE.

390 Based on the relationships identified above, we expect the joint dependence of
 391 precipitation on PW and CAPE to take the following form:
 392

$$\ln P = \alpha PW + \beta \ln CAPE + c$$

393 Here, c is a constant, α denotes the efficiency of water vapor conversion to rainfall, and
 394 β denotes the fraction of CAPE converted to upward velocity. Among the three sub-
 395 regions, smaller values of α correspond to larger values of β in southeastern China,
 396 while larger values of α correspond to smaller values of β in northwestern China (Fig.
 397 6). We further examine the dependence of extreme precipitation on PW conditional on
 398 percentiles of CAPE and vice versa (Fig. 7 and Table 1). These conditional fits yield
 399 similar results to those shown in Fig. 6. Our results therefore imply that the efficiency
 400 of water vapor conversion to rainfall and the efficiency of CAPE conversion to upward

401 velocity are geographically complementary within mainland China. We emphasize,
 402 however, that moisture availability (rather than CAPE) is the primary limiting factor on
 403 both rainfall intensity and the occurrence of rainfall extremes throughout China.

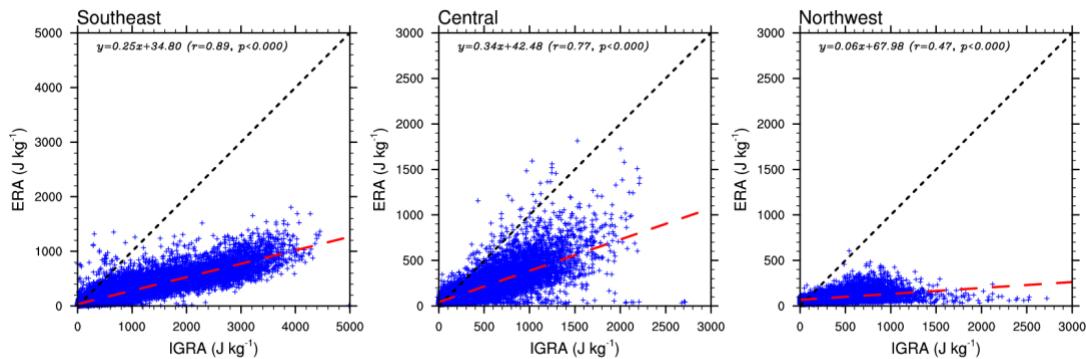
404
 405 **Table 1.** Detailed information of conditional fit coefficients (\pm S.E.) for three different rainfall percentiles
 406 ($p=0.95$, 0.99, and 0.999) over three sub-regions based on Fig. 7. For each rainfall percentile, fit
 407 coefficients are sorted in ascending order of PW/CAPE quantiles.

p	Southeastern China		Central China		Northwestern China	
	α	β	α	β	α	β
95	0.04\pm0.001	-0.00 \pm 0.014	0.04\pm0.002	-0.02 \pm 0.010	0.05\pm0.005	0.05\pm0.018
	0.04\pm0.002	-0.02 \pm 0.015	0.04\pm0.003	0.04\pm0.013	0.05\pm0.006	0.06\pm0.015
	0.04\pm0.002	0.01 \pm 0.009	0.04\pm0.003	-0.01 \pm 0.006	0.04\pm0.007	-0.01 \pm 0.024
	0.04\pm0.003	-0.00 \pm 0.016	0.04\pm0.003	-0.06\pm0.013	0.04\pm0.006	-0.01 \pm 0.022
	0.03\pm0.003	-0.02 \pm 0.016	0.04\pm0.002	-0.05\pm0.014	0.04\pm0.008	0.00 \pm 0.019
	0.04\pm0.003	-0.01 \pm 0.010	0.04\pm0.003	-0.02\pm0.009	0.04\pm0.005	-0.09\pm0.021
	0.03\pm0.004	-0.05\pm0.014	0.04\pm0.002	-0.07\pm0.011	0.03\pm0.008	-0.06 \pm 0.035
	0.02\pm0.004	-0.08\pm0.024	0.03\pm0.003	-0.04\pm0.010	0.03\pm0.009	-0.03 \pm 0.017
	0.01\pm0.003	-0.10\pm0.021	0.03\pm0.003	-0.05\pm0.014	0.01 \pm 0.014	-0.10\pm0.021
	0.02 \pm 0.006	-0.07\pm0.028	0.03\pm0.003	-0.04 \pm 0.021	0.01 \pm 0.009	-0.06\pm0.010
99	0.03\pm0.002	0.00 \pm 0.016	0.04\pm0.003	-0.05 \pm 0.021	0.05\pm0.005	0.01 \pm 0.034
	0.04\pm0.002	-0.01 \pm 0.024	0.04\pm0.003	-0.00 \pm 0.012	0.05\pm0.003	0.04 \pm 0.020
	0.04\pm0.002	0.02 \pm 0.020	0.04\pm0.003	-0.03 \pm 0.021	0.05\pm0.006	-0.01 \pm 0.021
	0.04\pm0.003	0.00 \pm 0.011	0.04\pm0.002	-0.09\pm0.026	0.04\pm0.008	-0.04 \pm 0.022
	0.03\pm0.002	-0.03 \pm 0.016	0.04\pm0.003	-0.06 \pm 0.030	0.04\pm0.005	-0.03 \pm 0.021
	0.03\pm0.002	0.00 \pm 0.017	0.04\pm0.002	-0.03\pm0.012	0.05\pm0.007	-0.05\pm0.012
	0.03\pm0.006	-0.04\pm0.015	0.04\pm0.003	-0.04\pm0.012	0.04\pm0.006	-0.05 \pm 0.047
	0.02\pm0.004	-0.04 \pm 0.027	0.04\pm0.003	-0.02 \pm 0.016	0.04\pm0.010	-0.05 \pm 0.034
	0.02\pm0.004	-0.06\pm0.025	0.04\pm0.005	-0.04\pm0.006	0.03 \pm 0.013	-0.06 \pm 0.029
	0.02 \pm 0.006	-0.04 \pm 0.024	0.03\pm0.003	-0.03 \pm 0.019	0.03\pm0.010	-0.06\pm0.017
99.9	0.03\pm0.005	-0.02 \pm 0.014	0.04\pm0.003	-0.10\pm0.026	0.06\pm0.007	0.03 \pm 0.043
	0.04\pm0.003	-0.05 \pm 0.027	0.03\pm0.004	-0.03 \pm 0.020	0.04\pm0.013	-0.01 \pm 0.044
	0.03\pm0.004	0.00 \pm 0.024	0.04\pm0.005	-0.04 \pm 0.021	0.06\pm0.007	-0.04 \pm 0.035
	0.04\pm0.003	0.00 \pm 0.016	0.04\pm0.003	-0.08 \pm 0.063	0.03\pm0.010	-0.07 \pm 0.045
	0.04\pm0.004	-0.03 \pm 0.019	0.05\pm0.007	-0.00 \pm 0.066	0.04\pm0.008	-0.04 \pm 0.049
	0.04\pm0.005	0.01 \pm 0.031	0.04\pm0.008	0.01 \pm 0.019	0.05\pm0.010	0.02 \pm 0.060
	0.04\pm0.006	-0.03 \pm 0.020	0.05\pm0.004	-0.05 \pm 0.027	0.04\pm0.010	-0.01 \pm 0.049
	0.03\pm0.005	-0.02 \pm 0.035	0.03\pm0.004	0.02 \pm 0.021	0.04\pm0.013	-0.03 \pm 0.049
	0.03\pm0.003	-0.01 \pm 0.023	0.04\pm0.007	-0.06\pm0.023	0.04 \pm 0.022	-0.11\pm0.037
	0.01 \pm 0.009	0.01 \pm 0.036	0.04\pm0.004	0.01 \pm 0.030	0.03\pm0.011	-0.05 \pm 0.032

Note: numbers in bold indicate the fit is significant at 95% confidence level

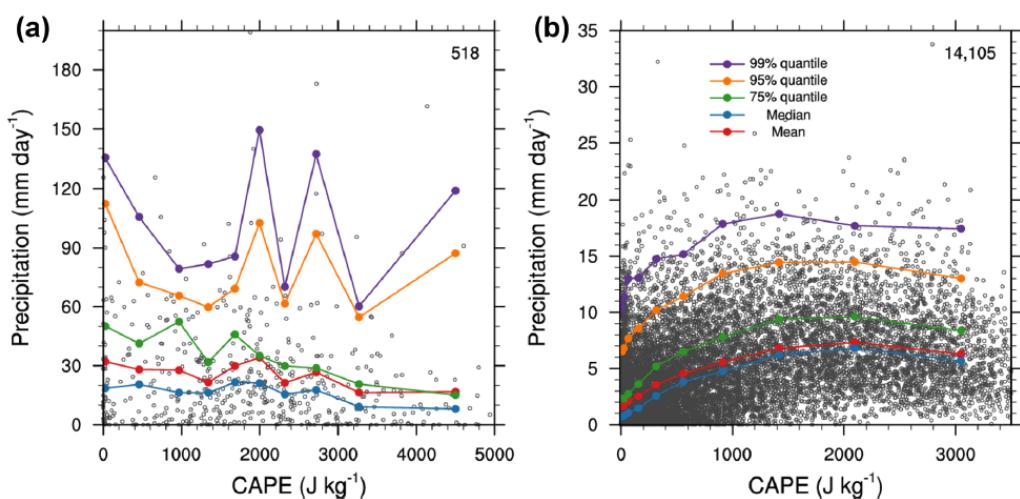
4 Summary and discussion

This study builds on previous research regarding the influence of atmospheric temperature on precipitation intensities by exploring two key mechanisms by which


these influences can be expressed: available water vapor and convective instability. We represent these two mechanisms by PW and CAPE, respectively, and examine how rainfall intensities, and especially rainfall extremes, depend on PW and CAPE within mainland China. Through this work, we intend to stimulate additional ideas and research targeting the influence of temperature on rainfall intensity. Our main findings can be summarized as follows.

1. To our knowledge, we present the first comprehensive evaluation of the spatial distributions and seasonal cycles of PW and CAPE over the mainland China based on radiosonde station observations. Dividing the 144 stations into three sub-regions (southeastern China, central China, and northwestern China), we find that precipitation, PW, and CAPE consistently decrease across China from the southeast to the northwest. All three variables follow well-defined seasonal cycles, with maximum values during boreal summer and minimum values during winter.
2. Rainfall and PW are positively correlated, with rainfall extremes increasing exponentially with PW (i.e., $\ln(P) \sim \alpha \cdot PW$). The parameter α varies by season and location, and represents the efficiency with which available water vapor is converted to rainfall. This efficiency is higher in northwestern China, where water vapor is scarce, than in southeastern China, where water vapor is plentiful.
3. We find a power law relationship between rainfall intensity and CAPE (i.e., $\ln(P) \sim \beta \cdot \ln(CAPE)$). The parameter β also varies by location and seasons, with indications that it may be negative during boreal summer. This result indicates that the fraction of CAPE converted to upward velocity is much less than that implied by idealized calculations. This difference can be attributed to a variety of environmental factors, as discussed in section 3.3. In contrast to the conversion of water vapor to rainfall, the conversion of CAPE to upward motion is more efficient in the humid southeast than it is in the arid northwest.
4. The joint dependence of precipitation on PW and CAPE can thus be summarized in the form $\ln(P) \sim \alpha \cdot PW + \beta \cdot \ln(CAPE)$. Our results indicate that the geographical values of α and β are complementary among the three sub-regions: a lower efficiency of water vapor conversion to rainfall corresponds to a larger fraction of CAPE converted to upward velocity in southeastern China, while a smaller fraction of CAPE converted to upward velocity corresponds to a higher efficiency of water vapor conversion to rainfall in northwestern China. However, rainfall intensity, and especially the intensity of rainfall extremes, is predominantly controlled by variations in water vapor availability (PW) in all three sub-regions, with the intensity of convection (CAPE) playing a secondary role.

The findings presented in this work provide a useful starting point for further research on this topic, but several important questions remain unanswered. For example, the causes for the weak dependence of rainfall intensities on CAPE found in this work are unclear. We have proposed several factors that may contribute to this weak dependence, but distinguishing among these possibilities will require data with improved precision and temporal sampling. Data sets that can better distinguish the type, duration, and diurnal cycles of rainfall and its co-variations with PW and CAPE will be necessary to resolve this issue. Reanalysis products can provide estimates of


456 CAPE at higher spatial and temporal resolution, and represent a potentially viable
457 alternative data source for this type of study (cf. Lepore et al. 2015). However, we
458 argue that these reanalysis-based estimates should be used with caution. For example,
459 although the ERA-Interim reanalysis assimilates a variety of qualitychecked
460 observations, the CAPE products are calculated from forecast fields (i.e. prior to the
461 data assimilation step; Dee et al. 2011). In addition, despite the increased coverage,
462 reanalysis-based estimates of CAPE are not necessarily more representative than the
463 radiosonde-based estimates we have used in this study. Again using ERA-Interim as an
464 example, we find that the reanalysis CAPE product substantially underestimates our
465 observationally-based estimates (Fig. 8), especially in northwestern China where the
466 topography is complex. This result is consistent with the conclusions of Taszarek et al.
467 (2018), who compared 1 million sounding based measurements of CAPE with estimates
468 from ERA-Interim in Europe. They found that the reanalysis products were largely
469 unable to capture the observed variations, and suggested that this may arise from
470 deficiencies in boundary layer representations. A detailed intercomparison between
471 radiosonde and reanalysis-based estimates would undoubtedly be instructive, but would
472 need to carefully account for differences in definitions and calculation methods, and is
473 beyond the scope of this study. Intense rainfall associated with typhoons may confound
474 the deduced dependence of rainfall intensities on CAPE, particularly along the
475 southeastern coast of China. Here we briefly investigate the potential sensitivity of our
476 results to the impacts of typhoons. We divide the observed rainfall events in
477 southeastern China into two groups based on whether they are ‘affected’ or ‘unaffected’
478 by typhoon events. Given that the average typhoon size in the western North Pacific is
479 about 200 km (Lu et al. 2011; Chan and Chan 2012), a rainfall event is labelled as
480 ‘affected’ if a typhoon was active within 200 km of the station where the observations
481 were collected. Based on this criterion, there are a total of 3794 time steps that qualify
482 as ‘affected’ during 1961–2015. However, these time steps comprise only 518 rainfall
483 events (when both CAPE values and rainfall records are available), against 14,105
484 rainfall events that were not affected by a typhoon. The dependence of rainfall
485 intensities on CAPE with and without typhoon effects are shown in Fig. 9. The mean
486 dependence of precipitation events affected by typhoons (Fig. 9a) shows a general
487 decrease in precipitation intensity as CAPE increases. By contrast, the dependence of
488 precipitation intensity on CAPE during ‘unaffected’ events is similar to that shown in
489 Fig. 5d, with a generally positive relationship but hints of a decline at larger values of
490 CAPE (Fig. 9b). This is also consistent with the third column in Fig. 6, in which the
491 curves for different rainfall percentiles are nearly parallel to each other, indicating that
492 the relationships are robust across a large range of rainfall intensities. Although not
493 statistically significant, these results suggest that rainfall events affected by typhoons
494 have a quite different relationship with CAPE. However, the potential influences of
495 typhoons concern less than 3% of the total sample size, and have no meaningful impact
496 on the results.

497

498 **Figure 8.** Scatter plots of daily CAPE values using ERA-Interim forecast products (y-axis)
 499 and radiosonde observations (x-axis) during 1979–2015 for the three sub-regions. Red dashed lines show
 500 least-squares linear fits, with equations as listed along the inside of the top axis in each panel.
 501

502 Finally, we emphasize the complementary geographic variations between the
 503 efficiency of water vapor conversion to rainfall and the fraction of CAPE converted to
 504 upward velocity are not yet well understood. Numerical simulations will be needed to
 505 better understand the reasons for these geographically distinct sensitivities of rainfall
 506 intensity to atmospheric temperature among different climate zones in mainland China.
 507 Research along these lines will be important for evaluating and improving the reliability
 508 of climate projections in China and beyond.
 509

510
 511 **Figure 9.** The mean dependence of precipitation intensity on CAPE for precipitation events that are a
 512 affected and b unaffected by typhoons in southeastern China (see text for details). Dots represent
 513 available events within each category. The number of samples is listed at the top right corner of each
 514 panel. Note the different axis scales between the two panels.
 515

516

Acknowledgments and Data

517 We gratefully acknowledge NOAA National Centers for Environment Information for
 518 providing public access to the IGRA radiosonde data (doi:10.7289/V5X63K0Q), which

519 are available at <https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive>. We would like to thank National Meteorological
520 Information Center of Chinese Meteorological Administration for providing daily
521 gauge-based precipitation data (<http://data.cma.cn/en>). This work was supported by the
522 Ministry of Science and Technology of China (2014CB441303).
523

524 525 References

- 526 1. Berg, P. and coauthors (2009), Seasonal characteristics of the relationship between
527 daily precipitation intensity and surface temperature, *J. Geophys. Res.*, 114, D18102,
528 doi:10.1029/2009JD012008.
- 529 2. Brooks, H. E., G. W. Carbin and P. T. Marsh (2014), Increased variability of tornado
530 occurrence in the United States, *Science*, 346, 349–352.
- 531 3. Brooks, H. (1994), On the environments of tornadic and nontornadic mesocyclones,
532 *Weather ad Forecasting*, 9, 606–618.
- 533 4. Chen, G. T.-J. (1994), Large-scale circulations associated with the East Asian
534 summer monsoon and the Mei-Yu over South China and Taiwan, *J. Meteorol. Soc.*
535 *Jpn.*, 72, 959–983.
- 536 5. Kirkpatrick, C., E. W. McCaul, and C. Cohen, (2011), Sensitivities of simulated
537 convective storms to environmental CAPE. *Mon. Wea. Rev.*, 139, 3514–3532.
- 538 6. Dee, D. P., *et al.* (2011), The ERA-Interim reanalysis: Configuration and
539 performance of the data assimilation system, *Q. J. R. Meteorol. Soc.*, 137(656),
540 553–597.
- 541 7. DeMott, C. A., and D. A. Randall (2004), Observed variations of tropical convective
542 available potential energy, *J. Geophys. Res.*, 109, D02102.
- 543 8. Derbyshire, S. H., I. Beau, P. Bechtold, J. –Y. Grandpeix, J. –M. Piriou, J. –L.
544 Redelsperger and P. Soares (2004), Sensitivity of moist convection to
545 environmental humidity, *Q. J. R. Meteorol. Soc.*, 130, 3055–3079.
- 546 9. Donat, M., A. L. Lowry, L. V. Alexander, P. A. O’Gorman and N. Maher (2016),
547 More extreme precipitation in the world’s dry and wet regions, *Nature Clim.*
548 *Change*, 6, 508–513.
- 549 10. Donner, L. J. & V. T. Phillips (2003), Boundary layer control on convective
550 available potential energy: Implications for cumulus parameterization. *J. Geophys.*
551 *Res.*, 108(D22), 4701.
- 552 11. Doswell, C. A., III, and E. N. Rasmussen, The effect of neglecting the virtual
553 temperature correction on CAPE calculations, *Weather Forecast.*, 9, 625–629, 1994.
- 554 12. Durre, I., R. S. Vose, and D. B. Wuertz (2006), Overview of the Integrated Global
555 Radiosonde Archive, *J. Clim.*, 19, 53–68.
- 556 13. Durre, I., Williams, C. N., Yin, X., & Vose, R. S. (2009). Radiosonde-based trends
557 in precipitable water over the Northern Hemisphere: An update. *J. Geophys. Res.:*
558 *Atmospheres*, 114(D5).
- 559 14. Emanuel, K. A., *Atmospheric Convection*, 580 pp., Oxford Univ. Press, New York,
560 1994.
- 561 15. Gordon, N. D., A. K. Jonko, P. M. Forster, and K. M. Shell (2013), An
562 observationally based constraint on the water-vapor feedback, *J. Geophys. Res.*

607 32. Wang, Y., and L. Zhou (2005), Observed trends in extreme precipitation events in
608 China during 1961–2001 and the associated changes in large-scale circulation,
609 *Geophys. Res. Lett.*, 32, L09707.

610 33. Ye, H. and coauthors (2014), Impact of increased water vapor on precipitation
611 efficiency over northern Eurasia, *Geophys. Res. Lett.*, 41, 2941–2947,
612 doi:10.1002/2014GL059830.

613 34. Yuan, Z. *et al.* (2015), Historical changes and future projection of extreme
614 precipitation in China, *Theor. Appl. Climatol.* doi:10.1007/s00704-015-1643-3.

615 35. Zhou, T. and Z. Li, (2002), Simulation of the East Asian summer monsoon using a
616 variable resolution atmospheric GCM. *Climate Dyn.*, 19, 167–180

617