

1 **Modelling the multiple action pathways of projected climate change on the**
2 **Pacific cod (*Gadus macrocephalus*) early life stages**

3 Giancarlo M. Correa^{1,2*}, Thomas P. Hurst³, William T. Stockhausen⁴, Lorenzo Ciannelli¹, Trond
4 Kristiansen^{5,6}, Darren J. Pilcher^{7,8}

5 ¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR,
6 USA

7 ²School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

8 ³National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Alaska
9 Fisheries Science Center, Newport, OR, USA

10 ⁴National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Alaska
11 Fisheries Science Center, Seattle, WA, USA

12 ⁵Farallon Institute, Petaluma, CA, USA

13 ⁶Norwegian Institute for Water Research (NIVA), Oslo, Norway

14 ⁷Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington,
15 Seattle, WA, USA

16 ⁸Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,
17 Seattle, WA, USA

18 *Corresponding author. Email: g.moroncorrea@gmail.com

19

20

21

22

23 **Abstract**

24 Understanding how future ocean conditions will impact early life stages and population
25 recruitment of fishes is critical for adapting fisheries communities to climate change. In this study,
26 we incorporated projected changes in physical and biological ecosystem dynamics from an
27 oceanographic model into a mechanistic individual-based model for larval and juvenile stages of
28 the Pacific cod (*Gadus macrocephalus*) in the eastern Bering Sea. We particularly investigated the
29 impacts of ocean currents, temperature, prey density, and pCO₂ on the hatching success, growth,
30 survival, and spatial distribution of this species during 2021-2100. We evaluated two CO₂ emission
31 scenarios: RCP8.5 (high CO₂ emissions, low mitigation efforts) and RCP4.5 (medium CO₂
32 emissions and mitigation efforts). We found that the increase in temperature and decrease in prey
33 density were the main drivers of faster growth rates and lower survival through increased
34 starvation by the end of the century. Conversely, pCO₂ had negligible impacts, which suggests that
35 this species might be resilient to ocean acidification. The largest effects were observed under the
36 high CO₂ emission scenario, while the RCP4.5 projections displayed minimal impacts. We also
37 identified an area with favourable conditions in the southeastern Bering Sea that will likely persist
38 in future decades. This study provides relevant information on the future impacts of climate change
39 on Pacific cod, and our results can be used to implement and inform climate-ready management
40 for this important stock in Alaska.

41 Keywords: climate change, Pacific cod, fish, ocean acidification, individual-based modelling

42

44 **1. Introduction**

45 In the last century, anthropogenic greenhouse gas emissions (e.g., CO₂) to the atmosphere, driven
 46 principally by human fossil fuel combustion, have played a key role in modulating the world's
 47 climate (IPCC, 2021). The ocean absorbs more than 25% of anthropogenic CO₂ production,
 48 changing the ocean's carbonate chemistry and altering fundamental chemical balances by a
 49 process known as ocean acidification (OA, Doney et al., 2009). The ocean also absorbs,
 50 redistributes, and stores heat on long timescales, which has produced a rise in ocean temperatures
 51 in the last decades (Cheng et al., 2019). OA and warming are known as the 'evil twins' of marine
 52 climate change (Nagelkerken et al., 2016), and both can alter the ocean environment and the
 53 species living therein in numerous ways. Some current effects of climate change on marine
 54 organisms include disruption in shell formation and physiological development, reduced somatic
 55 growth, habitat modification, and spatial distribution shifts (Cattano et al., 2020, 2018; Doney et
 56 al., 2009; Kleisner et al., 2017; Nagelkerken and Munday, 2016). These impacts may be
 57 aggravated in the future because ocean temperatures and CO₂ are predicted to rise even more
 58 rapidly during the present century (Meinshausen et al., 2011).

59 The response of the early life stages of fish to the environment is essential for recruitment, a
 60 primary driver of the abundance of a fish population (Duffy-Anderson et al., 2005). Fish larvae
 61 are especially susceptible to climate change (Dahlke et al., 2020; Koenigstein et al., 2016), where
 62 the impacts can be grouped into direct – those affecting the biology and behaviour of individuals
 63 - and indirect - via ecosystem processes - effects (Nagelkerken et al., 2016; Nagelkerken and
 64 Munday, 2016; Ottersen et al., 2010). Literature on the direct impacts of ocean warming on fish
 65 larvae is extensive, reporting changes in metabolism, growth, and development (Deutsch et al.,
 66 2015; Pinsky et al., 2013). Historically, fish were assumed to be resilient to ocean acidification
 67 through active ion transport (Kroeker et al., 2013); nevertheless, during the last decade, studies
 68 have demonstrated that acid-base regulation influences fish calcification, behaviour, and ion
 69 transport, affecting physiology and development, primarily during early life stages as they lack
 70 specialized internal pH regulatory mechanisms (Cattano et al., 2018). In addition to these direct
 71 effects, indirect effects may alter linked ecosystem processes. For example, increases in
 72 temperature and reductions in ocean pH may result in increased mortality of copepods (Cripps et
 73 al., 2014) and altered fatty acid composition (Garzke et al., 2016) of key prey species. A warmer
 74 ocean also alters heat content and currents (Mueter and Litzow, 2008; Munday et al., 2009), which
 75 may further impact larval behaviour and transport (Fuchs et al., 2020). These multiple action
 76 pathways modulate the overall impact of climate conditions on larvae ecology (Cominassi et al.,
 77 2020).

78 The Bering Sea is an ecosystem that has experienced changes in climate conditions in the last
 79 decades (Stabeno et al., 2017). This ecosystem supports a wide diversity of fish species, large-
 80 scale commercial fisheries representing 40% of the U.S. commercial catch, and small coastal
 81 fishing communities that depend on subsistence harvest (Haynie and Huntington, 2016). Pacific
 82 cod (*Gadus macrocephalus*) is a keystone species in the Bering Sea food web; it dwells on the
 83 continental shelves from the Sea of Japan across the North Pacific Rim to the California coast
 84 (West et al., 2020). The impacts of climate change on the ecology of this species are already being
 85 observed. For example, recent warming events have produced a northward movement of Pacific
 86 cod in the Bering Sea (Barbeaux and Hollowed, 2018; Stevenson and Lauth, 2019). Moreover,

87 recent studies have reported changes in the prey field available to Pacific cod larvae, with higher
88 dominance of small and less lipid-rich zooplankton taxa during warm years (Coyle et al., 2008;
89 Kimmel and Duffy-Anderson, 2020). Warming might also increase the relative risk of a trophic
90 mismatch of cod larvae with their primary food sources and trigger poor recruitment in Alaska, as
91 observed in recent years (Laurel et al., 2021). There is also evidence that ocean acidification may
92 impact the Pacific cod larval growth (Hurst et al., 2019) and survival of its congeners (Stiasny et
93 al., 2016), associated with impairments in physiological functioning and morphological
94 development (Frommel et al., 2012; Hurst et al., 2021; Stiasny et al., 2019).

95 Large biophysical changes are predicted to occur in the future to the Bering Sea ecosystem
96 (Hermann et al., 2019, 2016). Due to a warmer environment, large zooplankton taxa are expected
97 to be less abundant on the outer shelf (Hermann et al., 2019). The southward advection of ice,
98 critical for this ecosystem, is projected to decrease with winds becoming more northward, in turn
99 contributing to warmer areas in the south (Hermann et al., 2019). The Bering Sea is also
100 particularly vulnerable to ocean acidification since high-latitude waters are already naturally low
101 in carbonate ion concentrations, which can buffer the effect of increased CO₂ dissolution (Cross
102 et al., 2014; Fabry et al., 2009). High CO₂ emissions scenarios predicted for the future may produce
103 a pH average decrease of 0.3 to 0.4 units in the ocean, an unprecedented level in the last few
104 centuries (IPCC, 2021). A few studies have already evaluated the future impacts of climate change
105 on the larval ecology of marine species of economic importance in the Bering Sea, suggesting a
106 decrease in recruitment and fisheries revenues and profits for some crab species (Punt et al., 2016;
107 Szuwalski et al., 2021) and walleye pollock (*Gadus chalcogrammus*) (Mueter et al., 2011). Similar
108 results were found for several stocks of the Atlantic cod (*Gadus morhua*) in the North Atlantic
109 (Kristiansen et al., 2014). However, to date, no effort has been made to examine the cumulative
110 and interactive effects of the multiple action pathways by which climate change may affect the
111 ecology of Pacific cod's early life stages.

112 In this study, we used model projections of the Bering Sea ecosystem until the end of the century
113 (2021 - 2100) under two CO₂ emission scenarios to investigate the direct and indirect impacts of
114 future climate conditions on the Pacific cod's early life stages. We primarily focus on the effects
115 of warming, prey abundance, and ocean acidification. To accomplish our goals, we used an
116 individual-based model (IBM), previously applied to this species in this ecosystem (Correa et al.,
117 2024) and in the Gulf of Alaska (Hinckley et al., 2019), to mechanistically model the impacts of
118 the environment on fish ecology based on published evidence. We evaluated future changes in (1)
119 the environment experienced by fish, (2) hatching success, (3) growth, (4) survival, and (5) spatial
120 distribution. Understanding the extent to which cod is susceptible to climate change is of high
121 management, economic, and social interest since Pacific cod is the second most harvested species
122 in the Bering Sea (Haynie and Huntington, 2016). More broadly, our model and findings can be
123 incorporated into future studies that evaluate the multiple action pathways of climate change on
124 early life stages of fish and project population abundance, catches, and profit.

125 **2. Materials and methods**

126 This study combined projected changes in physical and biological ecosystem dynamics with an
127 IBM to evaluate their impacts on larval and juvenile stages of Pacific cod over the period 2021 –
128 2100. The IBM was initially developed by Hinckley et al. (2019), with the addition of a foraging
129 sub-model (Correa et al., 2024). A summary of each component is provided below. For more
130 details on the IBM, see Correa et al. (2024).

131 **2.1. Study region**

132 The EBS is situated between the Arctic Ocean and the North Pacific and is characterized by a
133 broad (>500 km) and shallow (<100 m) shelf (Figure 1). The shelf has three biophysical domains:
134 (1) a vertically well-mixed inner shelf domain (~0 – 50 m depth), (2) a middle shelf domain that
135 is well-mixed in winter but strongly stratified in summer (~50 – 100 m depth), and (3) an outer
136 shelf domain more gradually stratified (~100 – 200 m depth) (Kachel et al., 2002). The Alaska
137 Coastal Current and the Alaskan Stream enter the Bering Sea through passes in the Aleutian Island
138 chain and flow northward along the inner shelf and the slope (Stabeno et al., 2016). Ice formed
139 each winter in the northern Bering Sea is advected to the southeast, where it melts as it interacts
140 with warmer water (Hermann et al., 2019). The ice extent and timing of retreat vary annually,
141 being a major physical feature that influences community composition and species distribution in
142 this ecosystem (Mueter and Litzow, 2008). The EBS stands out because of its high productivity,
143 supported by nutrient-rich waters from the North Pacific Ocean and replenishment of nitrate,
144 phosphate, and silicate from deep waters to the shelf (Stabeno et al., 2001). High nutrient levels
145 trigger high primary productivity, which supports zooplankton populations, demersal and pelagic
146 fishes, top-predators, and numerous commercial fisheries (Aydin and Mueter, 2007).

147 **2.2. Simulating future oceanographic conditions**

148 We used the earth system models: Geophysical Fluid Dynamics Laboratory Earth System Model
149 2M (GFDL, Dunne et al., 2012), the National Center for Atmospheric Research Community Earth
150 System Model (CESM, Kay et al., 2015), and the Model for Interdisciplinary Research on Climate
151 (MIROC, Watanabe et al., 2011); all of them selected from the Climate Model Intercomparison
152 Project phase 5 (CMIP-5) (Taylor et al., 2012). The earth system models were driven with two
153 representative concentration pathways (Moss et al., 2010) from the IPCC Fifth Assessment Report
154 (IPCC, 2021) that describe different trajectories for future greenhouse gas emissions, mitigation,
155 and subsequent climate change: RCP8.5 and RCP4.5. The former scenario represents an
156 unmitigated pathway with high greenhouse emissions (also known as the ‘business as usual’
157 scenario), and the latter is an intermediate scenario that assumes the imposition of emissions
158 mitigation policies. CESM (RCP4.5) projections were only available until 2079.

159 We used the regional model Bering10K, thoroughly described in Hermann et al. (2016) and
160 Kearney et al. (2020). This regional model is based on the Regional Ocean Modeling System
161 (ROMS), which is a modelling system for developing time-varying, three-dimensional (3D)
162 regional ocean circulation models (Haidvogel et al., 2008; Shchepetkin and McWilliams, 2005).
163 The Bering10K model is driven at the sea surface and lateral ocean boundaries by variables from
164 the coarse resolution global earth system model to achieve a dynamic downscaling (Hermann et
165 al., 2019). The Bering10K regional grid has ~10km spatial horizontal resolution with 30 vertical
166 layers, and the domain spans the Bering Sea and the northern Gulf of Alaska. The Bering10K
167 model also includes the carbonate chemistry dynamics, with values of pCO₂, ocean pH, and
168 aragonite saturation (Pilcher et al., 2022, 2019). The model is coupled to a nutrient-phytoplankton-
169 zooplankton model (BESTNPZ) to simulate the lower-trophic-level ecosystem (Gibson and Spitz,
170 2011; Hermann et al., 2016; Kearney et al., 2020). Four prey categories in the form of bulk
171 zooplankton carbon ($mg\ C\cdot m^{-3}$) are modelled, which were then partitioned into size categories
172 using a relative size-frequency distribution of zooplankton (Daewel et al., 2007; Kristiansen et al.,
173 2011). The model output was saved at a weekly temporal resolution but temporally interpolated
174 within the IBM to obtain a daily resolution.

175 **2.3.Individual-based model**

176 DisMELS is an IBM framework written in the Java programming language (Arnold et al., 2005)
177 previously used to study dispersal mechanisms for the larvae of fish stocks in Alaska (Cooper et
178 al., 2013; Gibson et al., 2019; Hinckley et al., 2019; Stockhausen et al., 2019b, 2019a); including
179 the Pacific cod in the EBS (Correa et al., 2024). The base model used in this study is described in
180 Hinckley et al. (2019) and Correa et al. (2024). The main variables and equations are described in
181 Tables 1 and 2.

182 Pacific cod in the EBS spawn in the winter along the outer shelf break and along the Aleutian
183 Islands (Neidetcher et al., 2014). Eggs are demersal and are rarely sampled during ichthyoplankton
184 surveys. After hatching, yolk-sac larvae move to the surface and remain there during their early
185 life stages (Hurst et al., 2009). Unlike Pacific cod in the Gulf of Alaska, Pacific cod in the EBS do
186 not settle during their first six months after hatching and are found across the broad shelf in both
187 demersal and pelagic trawl surveys (Hurst et al., 2012). The transition timing between distinct
188 stages (see below) is principally temperature-dependent.

189 Five life stages were included in the IBM: egg, yolk-sac larvae, pre-flexion larvae, post-flexion
190 larvae, and epipelagic juvenile. Particles were released yearly from 206 spawning locations (Figure
191 1, Neidetcher et al., 2014) every seven days during March and tracked until September 15 (~ six
192 months). Here, the term ‘particle’ is the model unit, so each particle will have a standard length,
193 dry weight, hatching success, and state (see Section 2.3.2) associated with it for every model time
194 step. However, given the term ‘particle’ is mostly used in physical applications, we will use the
195 term ‘fish’ for simplicity hereafter, acknowledging that one ‘fish’ in the IBM might represent the
196 features and behaviour of one fish, ten fish, or one million fish in the field.

197 Eggs were released on the ocean bottom (~100 and 300 m depth) and remained in the same location
198 until hatching. Embryonic growth, egg stage duration, and hatching success were a function of
199 temperature (Equations 1-4; Hurst et al., 2010; Laurel et al., 2008; Laurel and Rogers, 2020). Upon
200 hatching, yolk-sac larvae migrated to the surface waters (Doyle and Mier, 2016; Hurst et al., 2009)
201 with vertical velocity 10^{-4} m/s (Hinckley et al., 2019). The number of days to complete the
202 absorption of the yolk sac and growth (when the yolk sac was present) was a function of
203 temperature (Equations 5 and 7; Hurst et al., 2010; Laurel et al., 2011, 2008). After the yolk-sac
204 absorption (YSA), larval growth was modelled as described in the bioenergetic section (see
205 Section 2.3.1). The number of days to reach the point of no return following YSA (PNR, when a
206 larva cannot recover from starvation, Equation 6) was temperature-dependent with an
207 exponentially decreasing shape (Laurel et al., 2011, 2008). If a larva ingested prey before the PNR,
208 it transitioned to the pre-flexion stage. During the pre-flexion stage, larvae moved vertically
209 between 0 and 60 m depth (Equation 10; Hurst et al., 2009). Larvae transitioned to the post-flexion
210 larval stage when their standard length (L) reached 13.5 mm. Diel vertical migration was initiated
211 in this stage with daytime depths of 30-60 m and nighttime depths of 0 and 30 m (Hurst et al.,
212 2015, 2009). When larvae reached a standard length of 25 mm, they passed to the epipelagic
213 juvenile stage.

214 **2.3.1. Feeding and growth**

215 In this section, we briefly describe the bioenergetic model used for larval and juvenile growth after
216 yolk-sac absorption.

217 We modelled the number of prey items encountered and ingested for each time step. The feeding
218 efficiency of fish is highly dependent on reactive distance (Equation 11), which is a function of
219 the light intensity in the environment. Light intensity was calculated based on depth, time of day,
220 and chlorophyll (Fiksen et al., 2002). Encounter rate ($enc, prey.s^{-1}$) was estimated on the ability
221 of fish to visually perceive the prey and formulated for pause-travel searchers (i.e., search for prey
222 only while pausing between swimming events) such as cod species (Equation 12, Aksnes and
223 Giske, 1993; Aksnes and Utne, 1997; Fiksen et al., 2002; Fiksen and MacKenzie, 2002;
224 MacKenzie and Kiørboe, 1995). Once prey is located within the field of perception, the fish moves
225 to the attack position. The probability of attack success (PCA) when $L < 17 mm$ was modelled as
226 described in Fiksen and MacKenzie (2002) (Equation 13) and when $L \geq 17 mm$ as in Daewel et
227 al. (2011) (formulated for larger larvae and juveniles, Equation 14).

228 Ingested prey biomass (Equation 16) was added to the food biomass already in the gut. If the larva
229 consumed enough food to grow at the physiological maximum, the growth was restricted by
230 temperature alone (Folkvord, 2005). In such circumstances, the instantaneous growth rate in
231 weight (g, d^{-1}) for non-egg stages depended on temperature ($T, ^\circ C$) and dry weight (w, mg)
232 (Equation 7, Hurst et al., 2010). If stomach content (S_t, mg , Equation 19) was lower than the food
233 biomass in the gut required to grow at the physiological maximum (D_{max} , Equation 18), growth
234 was food-limited and constrained by the food in the stomach (Kristiansen et al., 2014, 2009, 2007).
235 The available food biomass in the stomach at the current time-step (S_t, mg) was a function of the
236 ingested material (ing), the remaining stomach content from the previous time-step (S_{t-1}, mg),
237 and the food biomass used for growth, respiration, and loss to egestion ($D \in [0, D_{max}], mg$).

238 Then, the fish dry weight at time step t (w_t, mg) was calculated through increases from prey
239 digestion and decreases from metabolized energy (Equations 20-22). The standard length (L_t) was
240 estimated from dry weight based on an observed length-weight relationship collected in different
241 experiments (Figure S1; Equation 8; Hurst et al., 2019, 2010).

242 2.3.2. Fish state

243 We distinguish two fish states in every model time step: surviving or dead. A fish was considered
244 dead if it starved or its final location (to September 15) was out of the EBS. Starvation occurred
245 under two conditions: 1) reaching the PNR, or 2) when the body mass calculated at any time step
246 was 75% or less of the potential body mass (exclusively temperature-dependent) at the
247 corresponding time step (accounting for poor body condition) (Peck and Hufnagl, 2012). Dead
248 fish were only tracked until the last time step considered ‘surviving’ and then excluded from the
249 IBM. Our analyses used the percentage of surviving fish within a year or location as a metric of
250 survival.

251 2.4. Climate change impacts

252 This study focuses on the direct and indirect impacts of future ocean conditions, with a special
253 focus on temperature, prey density, and ocean acidification, on the ecology of Pacific cod’s early
254 life stages. The impacts of temperature and prey density are explicitly accounted for in the IBM;
255 however, the impacts of OA have been omitted from the IBM thus far. While there is evidence of
256 OA effects on a wide range of marine taxa, the impacts on lower trophic levels (i.e., prey fields)
257 or Pacific cod biology have not been sufficiently described to warrant model parameterization.
258 Therefore, we incorporated a range of generalized responses that describe the multiple action
259 pathways by which changes in pCO_2 concentration may impact the biology of the studied species.

260 These were based on experimental studies of marine zooplankton, Pacific cod, and its congeners.
261 The referenced laboratory experiments generally contrasted responses between low-pCO₂ (~400-
262 500 μatm) and high-pCO₂ treatments (~1000-1500 μatm). Based on the responses observed, for
263 each variable described below, we identified a plausible magnitude of the effect that would be
264 expected to occur over CO₂ levels from 500 to 1500 μatm , and assumed a linear response between
265 these endpoints (Figure S2). The incorporated responses are detailed below and were applied at
266 each model time step.

267 *Metabolism*

268 Metabolism was a function of temperature as formulated in our model; however, OA has also been
269 reported to increase the metabolic rates in Atlantic cod, likely due to higher larval energetic
270 demands produced by a high CO₂ concentration in the environment (Dahlke et al., 2017). Based
271 on the findings of Dahlke et al. (2017), we increased the active metabolism (M_a , Equation 21) as
272 a function of pCO₂ by a maximum of 10% (direct effect).

273 *Growth*

274 Laboratory studies that examined the impacts of OA on the somatic growth of cod larvae have
275 shown divergent responses. High levels of CO₂ were observed to decrease growth rates during the
276 first two weeks after hatching and then increase during the subsequent three weeks (Hurst et al.,
277 2019). Conversely, Frommel et al. (2013) found no differences in the standard length of pre-
278 feeding Baltic cod larvae under different levels of pCO₂, while Frommel et al. (2012) only found
279 slightly larger sizes of Atlantic cod at 32 and 39 days post-hatching (dph) under high pCO₂
280 treatments. Based on results observed for Pacific cod larvae (Hurst et al. 2019), we reduced the
281 calculated growth rate by a maximum of 10% as a function of pCO₂ concentration during the first
282 two weeks after hatching and then increased it by a maximum of 15% within the subsequent three
283 weeks (direct effect).

284 *Probability of capture success (PCA)*

285 High CO₂ might impact the first feeding of cod larvae (Stiasny et al., 2016). For example, the swim
286 bladder inflation rate of walleye pollock larvae was negatively affected by high CO₂ treatments
287 (Hurst et al., 2021), which might lead to less successful feeding (Czesny et al., 2005) and
288 potentially affect long-term survival (Woolley and Qin, 2010). Because there is no quantification
289 of the impacts of OA on the feeding behaviour of gadids in the EBS, we assumed a reduction in
290 the probability of attack success (PCA) as a function of pCO₂ concentration by a maximum of 10%
291 (direct effect).

292 *Prey abundance*

293 Evidence suggests that copepods are generally resilient to OA, concluded from studies focused on
294 adult stages during short-term exposure to high levels of pCO₂ (Campoy et al., 2020; Wang et al.,
295 2018). However, this response might be stage- and species-specific. For example, pCO₂ levels
296 higher than 1000 μatm may increase the mortality of early life stages (nauplii) of some
297 zooplankton through disturbance in energy allocation, which may act as bottlenecks and then
298 decrease the recruitment and population abundance (Cripps et al., 2016, 2014; Lewis et al., 2013).
299 McLaskey et al. (2016) found negative effects of OA on krill larval development and survival in
300 the North Pacific. Also, the interaction of OA with other variables, such as thermal stress or food
301 limitation, might aggravate the overall impacts (Wang et al., 2018). Based on a review of the

302 effects of OA on several copepod species (Wang et al., 2018), we decreased the total zooplankton
303 abundance as a function of pCO₂ concentration by a maximum of 10% (indirect effect).

304 *Prey quality*

305 Temperature and OA may reduce body size of copepods (Garzke et al., 2016; Vehmaa et al., 2016)
306 by changing energy allocation between growth and defence against unfavourable environmental
307 conditions (Wang et al., 2018). This effect might be exacerbated if food becomes scarce (Escribano
308 and McLaren, 1992), as it is predicted to be in the Bering Sea in future years (Hermann et al.,
309 2019). Also, the amount of fatty acid in prey, crucial for good fish condition (Copeman and Laurel,
310 2010), might be impacted in some species (McLaskey et al., 2019), which may decrease the prey
311 quality for fish larvae. To simulate these two effects in our model, we reduced the prey's individual
312 weight (Huebert and Peck, 2014) as a function of pCO₂ by a maximum of 10% (Wang et al., 2018)
313 (indirect effect).

314 **2.5. Analysis of results**

315 We analysed changes in the average environmental conditions (temperature, pCO₂, and prey
316 density) experienced by fish through larval and juvenile stages (see Figure S3). We evaluated
317 temporal changes in the percentage of fish that survived to September 15, and then dead fish were
318 removed from the subsequent analyses. We evaluated changes in the following biological
319 variables: (1) hatching success (indicates the probability of successful hatching), (2) standard
320 length to September 15, and (3) growth performance. Growth performance is the ratio between the
321 potential maximum dry weight (exclusively temperature-dependent) and the realized dry weight
322 (temperature and food-dependent). A growth performance value equal to 1 means that growth has
323 not been limited by prey in the environment.

324 Temporal variations were explored by plotting the distribution of variables among fish by CO₂
325 emission scenario, oceanographic model, and decade. To explore spatiotemporal variation, the
326 temporal trend at each initial (i.e., release) location (Figure 1) was explored by using the slope
327 (*beta*) of the linear model:

328 $bio_{var} = alpha_z + beta_z * year$

329 Where *bio_{var}* represents the variable (either environmental or biological) and *z* indicates an initial
330 location. A positive or negative *beta* indicates that values at the initial location *z* increase or
331 decrease over the years, respectively. These values were analysed by emission scenario, and
332 information among oceanographic models was combined. Finally, changes in spatial distribution
333 were evaluated by comparing density maps of final locations by emission scenario and decade.

334 Table S2 shows the different model runs (i.e., combinations of Earth system model, emission
335 scenario, and assumed OA effects) examined in this study. Our main results assume that the OA
336 effects occur simultaneously on the five biological components described in the previous section.
337 However, we also aimed to examine the OA effects independently in order to explore their
338 influence on our results as a sensitivity analysis. This exploration was done only for the last decade
339 (2090-2100) when the highest pCO₂ is projected and, therefore, the largest effects are expected to
340 occur. A second sensitivity analysis explored how temperature, prey density, and light intensity
341 modulate the impacts of pCO₂ on Pacific cod. To do so, we ran the IBM with constant
342 environmental conditions and no movement during the fish lifespan, evaluating different values of
343 temperature (from 0 to 10°C), prey density (a factor multiplies a standard vector of prey densities:

344 Euphausiids = 5.5 mgC/m^3 , On-shelf large-bodied copepods = 1.5 mgC/m^3 , Off-shelf large-
345 bodied copepods = 1 mgC/m^3 , Small-bodied copepods = 4 mgC/m^3), light intensity (light-
346 limited vs. high light intensity), and pCO₂ (high -1500 μatm - vs. low -500 μatm - conditions) on
347 the fish standard length and the number of days to die from starvation. This second sensitivity
348 analysis does not aim to represent any particular environmental scenario but to explore how
349 different environmental variables interact and identify the conditions where the effect of OA would
350 be the largest.

351 The IBM was run on a laptop Intel Core i9-9880H with 32GB RAM. The analyses of the IBM
352 outputs were performed in R (R Core Team, 2022). The code to process the IBM outputs can be
353 found at: https://github.com/GiancarloMCorrea/PcodIBM_EBS_forecast.

354 3. Results

355 *Changes in the environment*

356 For the RCP8.5 scenario, Pacific cod experienced an environment that warmed and increased in
357 pCO₂ steadily between 2021 and 2100 (Figure 2). Comparing the initial and final analyzed decade,
358 we observed an increase in temperature (°C) between 43% and 85% among oceanographic models,
359 while pCO₂ increased up to ~100%. The RCP4.5 scenario did not display a clear temporal trend:
360 temperature increased ~16% for the MIROC and CESM but not for the GFDL model, and pCO₂
361 increased ~15%. Generally, we observed that the MIROC oceanographic model produced higher
362 pCO₂ values and warmer temperatures for both scenarios, while the GFDL displayed the smallest
363 changes over decades. Median euphausiids and small-bodied copepods density in the cod habitat
364 decreased by ~15% by 2100, especially for the MIROC model, under the RCP8.5 emission
365 scenario (Figure 3). On the other hand, we did not detect significant changes in large-bodied
366 copepods' density. The RCP4.5 scenario did not display substantial changes in prey density.

367 We observed that the increase in temperature and pCO₂ was less severe and uniform across release
368 locations for the RCP4.5 scenario (Figure S4). For the RCP8.5 scenario, the increase in
369 temperature was more rapid on the middle and inner shelves. In contrast, the increase in pCO₂
370 displayed the opposite pattern, exhibiting a rapid increase on the outer shelf. For prey density,
371 minor temporal trends were observed for the RCP4.5 scenario across release locations for all prey
372 items (Figure S5). Under the RCP8.5 scenario, densities of small-bodied copepods and euphausiids
373 encountered decreased across all the cod release locations, especially on the outer shelf, whereas
374 large-bodied copepods increased on the inner shelf but decreased on the outer shelf.

375 *Changes in survival*

376 The percentage of fish that remained in the EBS to September 15 was consistent over the decades
377 for both scenarios (Figure 4). Under the MIROC model, a few fish (~1%) were transported out of
378 the EBS domain, while ~7% of fish were advected out of the system under the GFDL and CESM
379 models. Fish with a higher probability of being advected out of the EBS were those released on
380 the northern portion of the outer shelf (Figure 5). Under the RCP4.5 scenario, the percentage of
381 fish that survived starvation remained ~70-80% and did not display a temporal trend. Conversely,
382 a large decline was observed for the RCP8.5 scenario: -83% for MIROC, -25% for CESM, and -
383 8% for GFDL. We found that fish that died from starvation were released mainly on the outer shelf
384 for both emission scenarios but also on the middle shelf for the RCP8.5 scenario. Moreover,
385 starvation generally occurred in deep areas (> 200 m depth) with limited light irradiance (Figure
386 S6).

387 *Changes in biological variables*

388 The temporal and spatiotemporal variability in biological features were reported only for surviving
389 fish. Hatching success fluctuated between 0.2 and 0.4 across decades for all emission scenarios
390 and models (Figure 6). MIROC (RCP8.5) was the only case that showed a clear negative temporal
391 trend. Hatch success decreased on the middle and outer shelf for the RCP4.5 scenario (Figure 7)
392 and increased across several release locations for the RCP8.5 scenario.

393 For RCP4.5, the CESM model predicted an increase in standard length to September 15 over
394 decades (+~15% by the end of the century), but no temporal trend was observed under MIROC
395 or GFDL. Conversely, all models showed an increase between 10% and 20% in standard length
396 for the RCP8.5 scenario. The MIROC and CESM models predicted the largest resulting fish sizes
397 and a reduction in length variability over time. Spatial trends showed that fish increased in size
398 most rapidly under the RCP8.5 scenario and on the middle and inner shelf.

399 Median growth performance was always higher than 95% and remained constant over decades for
400 both scenarios; however, there was a reduction in variance over time, a pattern that was clearer for
401 the RCP8.5 scenario (Figure 6). Temporal trends by release locations displayed stronger and
402 positive trends for fish released on the outer shelf and negative but weaker trends for fish released
403 on the middle and inner shelf (Figure 7).

404 *Changes in the spatial distribution*

405 Final locations showed that fish generally were not advected far from their release locations. The
406 highest fish density was observed in the southern margin of the Bering Sea consistently over the
407 modelled period and for both emission scenarios (Figures 8 and S7). This pattern was consistent
408 among the Earth System models as well. Secondary areas of concentration occurred on the middle
409 shelf. While the overall density of survivors decreased over time under the RCP8.5, especially on
410 the middle shelf, there were no marked shifts in the overall distribution of surviving juveniles.

411 *Impacts of ocean acidification*

412 We found that the incorporated effects of OA had negligible impacts on Pacific cod's growth and
413 survival (Figures S8 and S9). The first sensitivity analysis, which compared the impacts of
414 individual and cumulative effects described in Section 2.4, displayed no significant differences in
415 the percentage of surviving fish, standard length, and growth performance from the baseline
416 scenario (when no OA effects were assumed). The second sensitivity analysis, which analysed
417 suites of environmental conditions, showed that a high pCO₂ concentration would decrease the
418 time to starvation only in a constant light-limited environment. This impact would be exacerbated
419 by an increase in temperature and a decrease in prey density (Figure S10). On the other hand, the
420 standard length of surviving fish did not vary between low and high pCO₂ treatments regardless
421 of the other environmental variables (Figure S11).

422 **4. Discussion**

423 Using a modelling approach, we investigated how projected climate change scenarios may impact
424 the ecology of the Pacific cod's early life stages in the EBS. We found that the increase in
425 temperature and decrease in prey density were the main drivers of the observed changes in growth
426 and survival, while the effects of OA, either combined or independently, had only minimal impacts
427 on the biological metrics in our study. The magnitude of this impact varied by oceanographic

428 model, but we generally found that a warmer habitat under the RCP8.5 scenario could decrease
429 the percentage of fish surviving starvation between ~8% and ~83% and increase the standard
430 length of surviving fish up to 20%. Conversely, no clear temporal trend in any analysed variable
431 was identified under the RCP4.5 scenario, which suggests that Pacific cod early life stages may
432 not be impacted under these lower CO₂ emission conditions. The previously identified retention
433 area in the southeastern Bering Sea (Correa et al., 2024) is expected to persist in the future, offering
434 a suitable habitat for cod larvae and juveniles. Our study provides useful information on potential
435 changes in larval survival and growth over space and time, which could be incorporated into
436 fisheries management and adaptation decisions to climate change in this region. Moreover, this
437 study provides a framework for incorporating results from fish-related OA laboratory experiments
438 in IBMs that might be applied to other species.

439 Hermann et al. (2021, 2019) did a complete description of the projected biophysical conditions of
440 the Bering Sea up to 2100 using the Bering10K model. Under the RCP8.5 scenario, they reported
441 an increase of as much as ~4 and ~3 °C in surface and bottom temperature, respectively, especially
442 on the middle and inner shelf of the northern Bering Sea. Also, they predict a reduction in ice cover
443 and biomass of phytoplankton, small-bodied copepods, and euphausiids, especially on the middle
444 and outer shelf of the southern Bering Sea. Using the Bering10K model and CMIP5 projections,
445 Pilcher et al. (2022) predict a decrease in pH and the aragonite saturation state and an increase in
446 pCO₂ under the high-emission scenario in the Bering Sea, which will have a negative impact on
447 calcifying organisms. In this study, we examined the environmental conditions in the locations
448 where Pacific cod dwelled from spawning through their first summer of life. Under the RCP8.5
449 scenario, we also project a substantial increase in temperature (~ 2-3 °C) and pCO₂ (~ 400 μ atm)
450 and a reduction in small-bodied copepods and euphausiid density, two critical prey items for the
451 Pacific cod's early life stages. However, we did not notice significant temporal trends in any
452 environmental variable under the RCP4.5 scenario despite their effects being predicted to be
453 approximately half as intense as those expected under the high-emission scenario in the entire
454 Bering Sea (Hermann et al., 2019).

455 Correa et al. (2024) found temperature as a critical factor in modulating starvation for Pacific cod
456 in the EBS. Moreover, they found moderate evidence of a negative effect of temperature on annual
457 recruitment. They concluded that a warmer environment accelerates the yolk sac consumption and
458 the need for larvae to obtain food from their environment. Given that this species spawns on the
459 ocean bottom, newly hatched larvae need to reach the surface, where ideal conditions for
460 successful exogenous feeding can be found, as quickly as possible. However, a rapid yolk sac
461 absorption caused by a warmer environment may force larvae to search for prey in deeper areas,
462 where prey density is low and light is limited. We found that the rise in temperature in the cod
463 habitat under the RCP8.5 scenario might reduce the survival and recruitment through increased
464 starvation, particularly for larvae hatched on deeper areas of the outer and middle shelf of the EBS.
465 Despite the three oceanographic models predicting a reduction in surviving fish, the reduction level
466 was quite variable (from 8% to 83%). The potential decrease in recruitment under the RCP8.5
467 scenario can trigger a cascading effect, decreasing the population abundance and, therefore,
468 catches and profits, as also predicted for walleye pollock in this ecosystem (Mueter et al., 2011).
469 Future studies could include our predictions in population dynamics and bioeconomic models to
470 quantify this cascading effect (e.g., Punt et al., 2016).

471 Larger juvenile fish sizes are expected to be more frequent under a warmer environment in future
472 years, principally due to the increase in growth rates but also due to larger larvae size-at-hatch and

473 low survival of slow-growing fish. Moreover, the increase in fish size under the high-emission
474 scenario means that surviving fish could cope with the adverse conditions by finding suitable
475 habitats. The southeastern Bering Sea was identified as a retention area by Correa et al. (2024). In
476 our study, we observed that this area with high fish density persisted regardless of the emission
477 scenario. This area also had the smallest reduction in important prey items under the high-emission
478 emission scenario, shallow depth ($< \sim 150$ m), and low starvation frequency. The persistence of
479 this retention area in future years has relevant management implications since it could act as a
480 larval refuge and source under potential future adverse conditions. Conversely, the reduction in
481 the density of juveniles on the outer shelf over the decades under the high-emission scenario
482 suggests that this region may be the most affected.

483 Model-based estimates of prey density in the Pacific cod larval and juvenile habitat did not display
484 large variations from 2000 to 2020 (Correa et al., 2024), and their effects on growth and survival
485 were assumed to be secondary compared to temperature during this period. However, the relevance
486 of prey density on fish survival may become more significant in future years under the high-
487 emission scenario (Hermann et al., 2019). Due to their size and quality, small-bodied copepods
488 (*Pseudocalanus* sp.) are critical prey for a successful transition from endogenous to exogenous
489 feeding for gadids, as supported by field data (Bailey et al., 1995). Under the RCP8.5 scenario,
490 their expected decrease in abundance in the Bering Sea, especially on the outer shelf (Hermann et
491 al., 2019), may interact with the warmer environment and, therefore, contribute to the increase in
492 starvation after yolk-sac absorption in the future (Figure 9). The reduction of this prey item is
493 predicted to happen predominantly on the outer shelf; therefore, larvae hatched in this area might
494 be mostly affected. The projected decline in euphausiids did not impact the growth of surviving
495 fish since the growth performance index became larger during the last decades, meaning that their
496 growth was not food-limited.

497 As we described previously, several laboratory studies have aimed to investigate the impacts of
498 OA on diverse aspects of the biology of gadids in Alaska (T. Hurst et al., 2012; Hurst et al., 2021,
499 2019, 2013). Laboratory studies are useful since they can isolate individual effects of independent
500 variables on a response variable. However, it is difficult to extrapolate laboratory results to the
501 field since early life stages occur in a constantly fluctuating environment, being impacted by
502 several environmental variables simultaneously. To our knowledge, this is the first study that
503 integrates diverse effects, both directly upon physiology and indirectly via changes in prey
504 availability, from OA into an IBM for fish. This gives us the advantage of modelling multiple
505 pathways of OA effects on larval and juvenile fish. Here, we observed no significant overall impact
506 of OA on fish size, growth performance, and survival. There are a couple of main reasons that
507 could explain this result. First, OA is less important than temperature and prey density in
508 determining fish growth and survival, with its impacts on survival being masked by these more
509 important variables. Second, the median $p\text{CO}_2$ concentration in the cod habitat was found to be
510 generally $\sim 1000 \mu\text{atm}$ by the end of the century in the most extreme scenario, which is lower than
511 the level used in laboratory experiments on larval sensitivity ($\sim 1500 \mu\text{atm}$; Hurst et al., 2019). In
512 addition, the linear interpolation between low and high $p\text{CO}_2$ levels might underestimate the OA
513 effects at intermediate $p\text{CO}_2$ concentrations.

514 OA can also affect the biological aspects of larvae and juvenile fish that have yet to be examined
515 in the Pacific cod. For example, high $p\text{CO}_2$ level affects the calcification of otoliths for Atlantic
516 cod larvae (Maneja et al., 2013), potentially leading to changes in orientation and movement.
517 Hatch success might also be affected, as observed for Atlantic cod (Dahlke et al., 2017). There is

518 evidence that high levels of pCO₂ could also increase the incidence of morphological deformities
519 for Atlantic cod larvae (Dahlke et al., 2017; Frommel et al., 2012), which might decrease the
520 survival probability and recruitment (Stiasny et al., 2016). However, even for the same species,
521 the response of gadids to changes in pCO₂ levels could be ecosystem- (Frommel et al., 2013) and
522 stage-specific (Cattano et al., 2018). Additionally, more research is needed to understand the
523 impacts of OA on copepods and euphausiids in the Bering Sea, the main prey of the early life
524 stages of fish. Hare et al. (2007) found that high pCO₂ concentrations might provoke a shift in the
525 phytoplankton community in the Bering Sea, which could impact zooplankton dynamics. While
526 some studies suggest that non-calcifying organisms in the Bering Sea may be resilient to OA
527 (Mathis et al., 2015), more laboratory experiments are required to evaluate such effects for
528 inclusion in this modelling framework.

529 Our IBM included several important aspects of the Pacific cod's early life stages; however, there
530 are some features that need to be accounted for in future studies, such as spatial variations in egg
531 density, changes in the parental stock, egg mortality, and prey quality. Spawning sites (i.e., release
532 locations) were considered uniform over time in our study; however, the Pacific cod's spatial
533 distribution is already being affected by rapid warming in the Bering Sea (Baker, 2021; Spies et
534 al., 2020; Stevenson and Lauth, 2019). Using species distribution models, Rooper et al. (2021)
535 predict that adult Pacific cod is not expected to move the centre of gravity of their distribution in
536 future years but may expand their area occupied. However, these studies focus on the average
537 distribution during summer, which could largely differ from the spawning areas during late winter
538 (Neidetcher et al., 2014). Bigman et al. (2023) predict an expansion of the Pacific cod spawning
539 habitat towards shallower and more northern areas in the EBS, especially under a high-emission
540 scenario. An inshore movement of spawning sites would benefit the survival of yolk-sac larvae
541 since they would reach surface waters quicker, finding ideal conditions for exogenous feeding and
542 counteracting the negative effects of a warmer environment.

543 In the field, the number of eggs produced every spawning season is a function of the spawning
544 biomass: more and larger females generate more and larger eggs (Hixon et al., 2014). In our model,
545 we assumed a constant number of eggs released throughout the forecast period, which implicitly
546 assumes that the spawning biomass remains constant. By projecting ecosystem dynamics at the
547 base of the food web, Whitehouse et al. (2021) estimated a reduction in the total biomass of Pacific
548 cod in the Bering Sea for both RCP4.5 and RCP8.5 scenarios in future years. A reduction in
549 spawning biomass might intensify the decrease in survival predicted in this study. In addition,
550 Whitehouse et al. (2021) also project an increase in jellyfish, an important predator of fish larvae
551 in the EBS (Brodeur et al., 2008), by 2100, which could negatively affect the cod larval survival.
552 Finally, small-bodied copepods and euphausiids are considered high-quality prey for Pacific cod
553 (Farley et al., 2016), and their projected decrease in abundance will affect not only the prey
554 ingestion rates (in grams) but also the energy and essential fatty acids (EFAs) intake. EFAs are an
555 important source of energy for gadids in Artic and sub-Artic waters and can modulate their growth
556 and survival (Copeman and Laurel, 2010). Future research might consider quantifying the energy
557 content in the prey items, their expected changes, and their impacts on the growth and survival of
558 Pacific cod larvae under climate change.

559 *Conclusions*

560 This study uses a model-based approach to study the impacts of climate change on the early life
561 stages of the Pacific cod in the EBS. We provide new insights about the direct and indirect impacts

562 of future changes in temperature, prey density, and OA on cod larvae and juveniles. Under the
563 high CO₂ emission scenario (RCP8.5), this study predicts an increase in the standard length of
564 Pacific cod juveniles by increasing the growth rates of surviving fish. Moreover, starvation is
565 expected to be more frequent, producing a decrease in survival during the first days after hatching,
566 especially for fish hatched in deeper areas on the middle and outer shelf of the EBS. The
567 temperature is the main variable driving changes in growth and survival, and the decrease in prey
568 density may exacerbate the negative impacts of the high-emission scenario. While more laboratory
569 studies are necessary to understand the full impact of OA on diverse aspects of the Pacific cod
570 biology, we have not found any cumulative impact of OA on Bering Sea Pacific cod length and
571 survival in response to the sensitivities described to date. We suggest the use of this framework
572 for the evaluation of multifactor climate effects on Bering Sea fish populations, communities, and
573 fisheries under climate change.

574 **Declaration of Competing Interest**

575 The authors declare that they have no known competing financial interests or personal
576 relationships that could have appeared to influence the work reported in this paper.

577 **Acknowledgements**

578 We thank Cheryl Barnes and the two anonymous reviewers for providing valuable comments on
579 an earlier version of this manuscript. We also thank NOAA's Alaska Integrated Assessment
580 Program (IEA) and the Alaska Climate Integrated Modeling Project (ACLIM) for providing
581 outputs of the high-resolution downscaled ROMSNPZ projections for the Bering Sea. Giancarlo
582 M. Correa was funded by a grant from NOAA's Ocean Acidification Program to TPH. This
583 publication is partially funded by the Cooperative Institute for Climate, Ocean, & Ecosystem
584 Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution No.
585 2023-1288. This is PMEL contribution No. 5516 and Eco-FOCI contribution No. 1056.

586

587 **Authorship contribution statement**

588 **Giancarlo M. Correa:** Conceptualization, methodology, formal analysis, Writing – Original
589 draft. **Thomas P. Hurst:** Conceptualization. Writing – review and editing. **William T.**
590 **Stockhausen:** Methodology. Software. Writing – review and editing. **Lorenzo Ciannelli:**
591 Conceptualization. Writing – review and editing. **Trond Kristiansen:** Methodology. Writing –
592 review and editing. **Darren J. Pilcher:** Methodology. Writing – review and editing.

593

594 **References**

595 Aksnes, D.L., Giske, J., 1993. A theoretical model of aquatic visual feeding. Ecological Modelling 67, 233–
596 250. [https://doi.org/10.1016/0304-3800\(93\)90007-F](https://doi.org/10.1016/0304-3800(93)90007-F)

597 Aksnes, D.L., Utne, A.C.W., 1997. A revised model of visual range in fish. Sarsia 82, 137–147.
598 <https://doi.org/10.1080/00364827.1997.10413647>

599 Arnold, K., Gosling, J., Holmes, D., 2005. The Java programming language. Addison Wesley Professional.

600 Aydin, K., Mueter, F., 2007. The Bering Sea—A dynamic food web perspective. Deep Sea Research Part
601 II: Topical Studies in Oceanography 54, 2501–2525. <https://doi.org/10.1016/j.dsr2.2007.08.022>

602 Bailey, K., Canino, M., Napp, J., Spring, S., Brown, A., 1995. Contrasting years of prey levels, feeding
603 conditions and mortality of larval walleye pollock *Theragra chalcogramma* in the western Gulf of Alaska.
604 Mar. Ecol. Prog. Ser. 119, 11–23. <https://doi.org/10.3354/meps119011>

605 Baker, M.R., 2021. Contrast of warm and cold phases in the Bering Sea to understand spatial
606 distributions of Arctic and sub-Arctic gadids. Polar Biol 44, 1083–1105. <https://doi.org/10.1007/s00300-021-02856-x>

608 Barbeaux, S.J., Hollowed, A.B., 2018. Ontogeny matters: Climate variability and effects on fish
609 distribution in the eastern Bering Sea. Fish Oceanogr 27, 1–15. <https://doi.org/10.1111/fog.12229>

610 Bigman, J.S., Laurel, B.J., Kearney, K., Hermann, A.J., Cheng, W., Holsman, K.K., Rogers, L.A., 2023.
611 Predicting Pacific cod thermal spawning habitat in a changing climate. ICES Journal of Marine Science
612 fsad096. <https://doi.org/10.1093/icesjms/fsad096>

613 Brodeur, R.D., Decker, M.B., Ciannelli, L., Purcell, J.E., Bond, N.A., Stabeno, P.J., Acuna, E., Hunt, G.L.,
614 2008. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Progress in
615 Oceanography 77, 103–111. <https://doi.org/10.1016/j.pocean.2008.03.017>

616 Campoy, A.N., Cruz, J., Ramos, J.B.E., Viveiros, F., Range, P., Alexandra Teodósio, M., 2020. Ocean
617 Acidification Impacts on Zooplankton, in: Teodósio, M.A., Barbosa, A.B. (Eds.), Zooplankton Ecology. CRC
618 Press, First. | Boca Raton: CRC Press, [2021], pp. 64–82. <https://doi.org/10.1201/9781351021821-5>

619 Cattano, C., Agostini, S., Harvey, B.P., Wada, S., Quattrocchi, F., Turco, G., Inaba, K., Hall-Spencer, J.M.,
620 Milazzo, M., 2020. Changes in fish communities due to benthic habitat shifts under ocean acidification
621 conditions. Science of The Total Environment 725, 138501.
622 <https://doi.org/10.1016/j.scitotenv.2020.138501>

623 Cattano, C., Claudet, J., Domenici, P., Milazzo, M., 2018. Living in a high CO₂ world: a global meta-
624 analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol Monogr 88, 320–335.
625 <https://doi.org/10.1002/ecm.1297>

626 Cheng, L., Abraham, J., Hausfather, Z., Trenberth, K.E., 2019. How fast are the oceans warming? Science
627 363, 128–129. <https://doi.org/10.1126/science.aav7619>

628 Cominassi, L., Moyano, M., Claireaux, G., Howald, S., Mark, F.C., Zambonino-Infante, J.-L., Peck, M.A.,
629 2020. Food availability modulates the combined effects of ocean acidification and warming on fish
630 growth. Sci Rep 10, 2338. <https://doi.org/10.1038/s41598-020-58846-2>

631 Cooper, D.W., Duffy-Anderson, J.T., Stockhausen, W.T., Cheng, W., 2013. Modeled connectivity between
632 northern rock sole (*Lepidopsetta polyxystra*) spawning and nursery areas in the eastern Bering Sea.
633 Journal of Sea Research 84, 2–12. <https://doi.org/10.1016/j.seares.2012.07.001>

634 Copeman, L.A., Laurel, B.J., 2010. Experimental evidence of fatty acid limited growth and survival in
635 Pacific cod larvae. Mar. Ecol. Prog. Ser. 412, 259–272. <https://doi.org/10.3354/meps08661>

636 Correa, G.M., Hurst, T.P., Stockhausen, W.T., Ciannelli, L., Kristiansen, T., Pilcher, D.J., 2024. Modeling
637 the larval growth and survival of Pacific cod (*Gadus macrocephalus*) in the eastern Bering Sea. *Progress*
638 in *Oceanography* 225, 103282. <https://doi.org/10.1016/j.pocean.2024.103282>

639 Coyle, K.O., Pinchuk, A.I., Eisner, L.B., Napp, J.M., 2008. Zooplankton species composition, abundance
640 and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column
641 stability and nutrients in structuring the zooplankton community. *Deep Sea Research Part II: Topical*
642 *Studies in Oceanography* 55, 1775–1791. <https://doi.org/10.1016/j.dsr2.2008.04.029>

643 Cripps, G., Flynn, K.J., Lindeque, P.K., 2016. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic
644 Transfer Efficiency. *PLoS ONE* 11, e0151739. <https://doi.org/10.1371/journal.pone.0151739>

645 Cripps, G., Lindeque, P., Flynn, K.J., 2014. Have we been underestimating the effects of ocean
646 acidification in zooplankton? *Glob Change Biol* 20, 3377–3385. <https://doi.org/10.1111/gcb.12582>

647 Cross, J.N., Mathis, J.T., Lomas, M.W., Moran, S.B., Baumann, M.S., Shull, D.H., Mordy, C.W., Ostendorf,
648 M.L., Bates, N.R., Stabeno, P.J., 2014. Integrated assessment of the carbon budget in the southeastern
649 Bering Sea. *Deep Sea Research Part II: Topical Studies in Oceanography* 109, 112–124.

650 Czesny, S.J., Graeb, B.D.S., Dettmers, J.M., 2005. Ecological Consequences of Swim Bladder Noninflation
651 for Larval Yellow Perch. *Transactions of the American Fisheries Society* 134, 1011–1020.
652 <https://doi.org/10.1577/T04-016.1>

653 Daewel, U., Peck, M.A., Schrum, C., 2011. Life history strategy and impacts of environmental variability
654 on early life stages of two marine fishes in the North Sea: an individual-based modelling approach.
655 *Canadian Journal of Fisheries and Aquatic Sciences* 68, 426–443. <https://doi.org/10.1139/F10-164>

656 Daewel, U., Peck, M.A., Schrum, C., St John, M.A., 2007. How best to include the effects of climate-
657 driven forcing on prey fields in larval fish individual-based models. *Journal of Plankton Research* 30, 1–5.
658 <https://doi.org/10.1093/plankt/fbm094>

659 Dahlke, F.T., Leo, E., Mark, F.C., Pörtner, H., Bickmeyer, U., Frickenhaus, S., Storch, D., 2017. Effects of
660 ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, *Gadus morhua*.
661 *Glob Change Biol* 23, 1499–1510. <https://doi.org/10.1111/gcb.13527>

662 Dahlke, F.T., Wohlrab, S., Butzin, M., Pörtner, H.-O., 2020. Thermal bottlenecks in the life cycle define
663 climate vulnerability of fish. *Science* 369, 65–70. <https://doi.org/10.1126/science.aaz3658>

664 Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., Huey, R.B., 2015. Climate change tightens a metabolic
665 constraint on marine habitats. *Science* 348, 1132–1135. <https://doi.org/10.1126/science.aaa1605>

666 Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 2009. Ocean Acidification: The Other CO₂ Problem.
667 *Annu. Rev. Mar. Sci.* 1, 169–192. <https://doi.org/10.1146/annurev.marine.010908.163834>

668 Doyle, M.J., Mier, K.L., 2016. Early life history pelagic exposure profiles of selected commercially
669 important fish species in the Gulf of Alaska. *Deep Sea Research Part II: Topical Studies in Oceanography*
670 132, 162–193. <https://doi.org/10.1016/j.dsr2.2015.06.019>

671 Duffy-Anderson, J.T., Bailey, K., Ciannelli, L., Cury, P., Belgrano, A., Stenseth, N.Chr., 2005. Phase
672 transitions in marine fish recruitment processes. *Ecological Complexity* 2, 205–218.
673 <https://doi.org/10.1016/j.ecocom.2004.12.002>

674 Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J., Cooke,
675 W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshov, S.L., Milly, P.C.D., Phillipps, P.J., Sentman, L.T.,
676 Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012. GFDL's ESM2 Global
677 Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation
678 Characteristics. *Journal of Climate* 25, 6646–6665. <https://doi.org/10.1175/JCLI-D-11-00560.1>

679 Escribano, R., McLaren, I.A., 1992. Influence of food and temperature on lengths and weights of two
680 marine copepods. *J. Exp. Mar. Biol. Ecol.* 159, 77–88.

681 Fabry, V.J., McClintock, J.B., Mathis, J.T., Grebmeier, J.M., 2009. Ocean acidification at high latitudes: the
682 bellwether. *Oceanography* 22, 160–171. <https://doi.org/10.5670/oceanog.2009.105>

683 Farley, E.V., Heintz, R.A., Andrews, A.G., Hurst, T.P., 2016. Size, diet, and condition of age-0 Pacific cod
684 (*Gadus macrocephalus*) during warm and cool climate states in the eastern Bering sea. *Deep Sea*
685 *Research Part II: Topical Studies in Oceanography* 134, 247–254.
686 <https://doi.org/10.1016/j.dsr2.2014.12.011>

687 Fiksen, Ø., Aksnes, D.L., Flyum, M.H., Giske, J., 2002. The influence of turbidity on growth and survival of
688 fish larvae: a numerical analysis. *Hydrobiologia* 484, 49–59. <https://doi.org/10.1023/A:1021396719733>

689 Fiksen, Ø., MacKenzie, B., 2002. Process-based models of feeding and prey selection in larval fish.
690 *Marine Ecology Progress Series* 243, 151–164. <https://doi.org/10.3354/meps243151>

691 Folkvord, A., 2005. Comparison of size-at-age of larval Atlantic cod (*Gadus morhua*) from different
692 populations based on size- and temperature-dependent growth models. *Canadian Journal of Fisheries*
693 and *Aquatic Sciences* 62, 1037–1052. <https://doi.org/10.1139/f05-008>

694 Frommel, A.Y., Maneja, R., Lowe, D., Malzahn, A.M., Geffen, A.J., Folkvord, A., Piatkowski, U., Reusch,
695 T.B.H., Clemmesen, C., 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean
696 acidification. *Nature Clim Change* 2, 42–46. <https://doi.org/10.1038/nclimate1324>

697 Frommel, A.Y., Schubert, A., Piatkowski, U., Clemmesen, C., 2013. Egg and early larval stages of Baltic
698 cod, *Gadus morhua*, are robust to high levels of ocean acidification. *Mar Biol* 160, 1825–1834.
699 <https://doi.org/10.1007/s00227-011-1876-3>

700 Fuchs, H.L., Chant, R.J., Hunter, E.J., Curchitser, E.N., Gerbi, G.P., Chen, E.Y., 2020. Wrong-way migrations
701 of benthic species driven by ocean warming and larval transport. *Nat. Clim. Chang.* 10, 1052–1056.
702 <https://doi.org/10.1038/s41558-020-0894-x>

703 Garzke, J., Hansen, T., Ismar, S.M.H., Sommer, U., 2016. Combined Effects of Ocean Warming and
704 Acidification on Copepod Abundance, Body Size and Fatty Acid Content. *PLoS ONE* 11, e0155952.
705 <https://doi.org/10.1371/journal.pone.0155952>

706 Gibson, G.A., Spitz, Y.H., 2011. Impacts of biological parameterization, initial conditions, and
707 environmental forcing on parameter sensitivity and uncertainty in a marine ecosystem model for the
708 Bering Sea. *Journal of Marine Systems* 88, 214–231. <https://doi.org/10.1016/j.jmarsys.2011.04.008>

709 Gibson, G.A., Stockhausen, W.T., Coyle, K.O., Hinckley, S., Parada, C., Hermann, A.J., Doyle, M., Ladd, C.,
710 2019. An individual-based model for sablefish: Exploring the connectivity between potential spawning
711 and nursery grounds in the Gulf of Alaska. *Deep Sea Research Part II: Topical Studies in Oceanography*
712 165, 89–112. <https://doi.org/10.1016/j.dsr2.2018.05.015>

713 Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K.,
714 Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell,
715 T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008. Ocean forecasting in
716 terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System.
717 *Journal of Computational Physics* 227, 3595–3624. <https://doi.org/10.1016/j.jcp.2007.06.016>

718 Hare, C., Leblanc, K., DiTullio, G., Kudela, R., Zhang, Y., Lee, P., Riseman, S., Hutchins, D., 2007.
719 Consequences of increased temperature and CO₂ for phytoplankton community structure in the Bering
720 Sea. *Mar. Ecol. Prog. Ser.* 352, 9–16. <https://doi.org/10.3354/meps07182>

721 Haynie, A.C., Huntington, H.P., 2016. Strong connections, loose coupling: the influence of the Bering Sea
722 ecosystem on commercial fisheries and subsistence harvests in Alaska. *E&S* 21, art6.
723 <https://doi.org/10.5751/ES-08729-210406>

724 Hermann, A.J., Gibson, G.A., Bond, N.A., Curchitser, E.N., Hedstrom, K., Cheng, W., Wang, M., Cokelet,
725 E.D., Stabeno, P.J., Aydin, K., 2016. Projected future biophysical states of the Bering Sea. *Deep Sea*
726 *Research Part II: Topical Studies in Oceanography* 134, 30–47.
727 <https://doi.org/10.1016/j.dsr2.2015.11.001>

728 Hermann, A.J., Gibson, G.A., Cheng, W., Ortiz, I., Aydin, K., Wang, M., Hollowed, A.B., Holsman, K.K.,
729 2019. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. *ICES*
730 *Journal of Marine Science* fsz043. <https://doi.org/10.1093/icesjms/fsz043>

731 Hermann, A.J., Kearney, K., Cheng, W., Pilcher, D., Aydin, K., Holsman, K.K., Hollowed, A.B., 2021.
732 Coupled modes of projected regional change in the Bering Sea from a dynamically downscaling model
733 under CMIP6 forcing. *Deep Sea Research Part II: Topical Studies in Oceanography* 194, 104974.
734 <https://doi.org/10.1016/j.dsr2.2021.104974>

735 Hinckley, S., Stockhausen, W.T., Coyle, K.O., Laurel, B.J., Gibson, G.A., Parada, C., Hermann, A.J., Doyle,
736 M.J., Hurst, T.P., Punt, A.E., Ladd, C., 2019. Connectivity between spawning and nursery areas for Pacific
737 cod (*Gadus macrocephalus*) in the Gulf of Alaska. *Deep Sea Research Part II: Topical Studies in*
738 *Oceanography* 165, 113–126. <https://doi.org/10.1016/j.dsr2.2019.05.007>

739 Hixon, M.A., Johnson, D.W., Sogard, S.M., 2014. BOFFFFs: on the importance of conserving old-growth
740 age structure in fishery populations. *ICES Journal of Marine Science* 71, 2171–2185.
741 <https://doi.org/10.1093/icesjms/fst200>

742 Huebert, K.B., Peck, M.A., 2014. A Day in the Life of Fish Larvae: Modeling Foraging and Growth Using
743 Quirks. *PLoS ONE* 9, e98205. <https://doi.org/10.1371/journal.pone.0098205>

744 Hurst, T., Fernandez, E., Mathis, J., Miller, J., Stinson, C., Ahgeak, E., 2012. Resiliency of juvenile walleye
745 pollock to projected levels of ocean acidification. *Aquat. Biol.* 17, 247–259.
746 <https://doi.org/10.3354/ab00483>

747 Hurst, T.P., Cooper, D.W., Duffy-Anderson, J.T., Farley, E.V., 2015. Contrasting coastal and shelf nursery
748 habitats of Pacific cod in the southeastern Bering Sea. ICES Journal of Marine Science 72, 515–527.
749 <https://doi.org/10.1093/icesjms/fsu141>

750 Hurst, T.P., Cooper, D.W., Scheingross, J.S., Seale, E.M., Laurel, B.J., Spencer, M.L., 2009. Effects of
751 ontogeny, temperature, and light on vertical movements of larval Pacific cod (*Gadus macrocephalus*).
752 Fisheries Oceanography 18, 301–311. <https://doi.org/10.1111/j.1365-2419.2009.00512.x>

753 Hurst, T.P., Copeman, L.A., Andrade, J.F., Stowell, M.A., Al-Samarrie, C.E., Sanders, J.L., Kent, M.L., 2021.
754 Expanding evaluation of ocean acidification responses in a marine gadid: elevated CO₂ impacts
755 development, but not size of larval walleye pollock. Mar Biol 168, 119. <https://doi.org/10.1007/s00227-021-03924-w>

757 Hurst, T.P., Copeman, L.A., Haines, S.A., Meredith, S.D., Daniels, K., Hubbard, K.M., 2019. Elevated CO₂
758 alters behavior, growth, and lipid composition of Pacific cod larvae. Marine Environmental Research
759 145, 52–65. <https://doi.org/10.1016/j.marenvres.2019.02.004>

760 Hurst, T.P., Fernandez, E.R., Mathis, J.T., 2013. Effects of ocean acidification on hatch size and larval
761 growth of walleye pollock (*Theragra chalcogramma*). ICES Journal of Marine Science 70, 812–822.
762 <https://doi.org/10.1093/icesjms/fst053>

763 Hurst, T.P., Laurel, Benjamin.J., Ciannelli, L., 2010. Ontogenetic patterns and temperature-dependent
764 growth rates in early life stages of Pacific cod (*Gadus macrocephalus*). Fishery Bulletin 382–392.

765 Hurst, T.P., Moss, J.H., Miller, J.A., 2012. Distributional patterns of 0-group Pacific cod (*Gadus
766 macrocephalus*) in the eastern Bering Sea under variable recruitment and thermal conditions. ICES
767 Journal of Marine Science 69, 163–174. <https://doi.org/10.1093/icesjms/fss011>

768 IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
769 Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P.
770 Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K.
771 Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
772 Cambridge University Press.

773 Kachel, N.B., Hunt, G.L., Salo, S.A., Schumacher, J.D., Stabeno, P.J., Whitledge, T.E., 2002. Characteristics
774 and variability of the inner front of the southeastern Bering Sea. Deep Sea Research Part II: Topical
775 Studies in Oceanography 49, 5889–5909. [https://doi.org/10.1016/S0967-0645\(02\)00324-7](https://doi.org/10.1016/S0967-0645(02)00324-7)

776 Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.C., Danabasoglu,
777 G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
778 Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M., 2015. The Community Earth System Model
779 (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of
780 Internal Climate Variability. Bulletin of the American Meteorological Society 96, 1333–1349.
781 <https://doi.org/10.1175/BAMS-D-13-00255.1>

782 Kearney, K., Hermann, A., Cheng, W., Ortiz, I., Aydin, K., 2020. A coupled pelagic–benthic–sympagic
783 biogeochemical model for the Bering Sea: documentation and validation of the BESTNPZ model
784 (v2019.08.23) within a high-resolution regional ocean model. Geoscientific Model Development 13,
785 597–650. <https://doi.org/10.5194/gmd-13-597-2020>

786 Kimmel, D.G., Duffy-Anderson, J.T., 2020. Zooplankton abundance trends and patterns in Shelikof Strait,
787 western Gulf of Alaska, USA, 1990–2017. *Journal of Plankton Research* 42, 334–354.
788 <https://doi.org/10.1093/plankt/fbaa019>

789 Kleisner, K.M., Fogarty, M.J., McGee, S., Hare, J.A., Moret, S., Perretti, C.T., Saba, V.S., 2017. Marine
790 species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming.
791 *Progress in Oceanography* 153, 24–36. <https://doi.org/10.1016/j.pocean.2017.04.001>

792 Koenigstein, S., Mark, F.C., Gößling-Reisemann, S., Reuter, H., Poertner, H.-O., 2016. Modelling climate
793 change impacts on marine fish populations: process-based integration of ocean warming, acidification
794 and other environmental drivers. *Fish Fish* 17, 972–1004. <https://doi.org/10.1111/faf.12155>

795 Kristiansen, T., Drinkwater, K.F., Lough, R.G., Sundby, S., 2011. Recruitment variability in north Atlantic
796 cod and match-mismatch dynamics. *PLoS ONE* 6, e17456.
797 <https://doi.org/10.1371/journal.pone.0017456>

798 Kristiansen, T., Fiksen, Ø., Folkvord, A., 2007. Modelling feeding, growth, and habitat selection in larval
799 Atlantic cod (*Gadus morhua*): observations and model predictions in a macrocosm environment. *Can. J.
800 Fish. Aquat. Sci.* 64, 136–151. <https://doi.org/10.1139/f06-176>

801 Kristiansen, T., Jorgensen, C., Lough, R.G., Vikebo, F., Fiksen, O., 2009. Modeling rule-based behavior:
802 habitat selection and the growth-survival trade-off in larval cod. *Behavioral Ecology* 20, 490–500.
803 <https://doi.org/10.1093/beheco/arp023>

804 Kristiansen, T., Stock, C., Drinkwater, K.F., Curchitser, E.N., 2014. Mechanistic insights into the effects of
805 climate change on larval cod. *Glob Change Biol* 20, 1559–1584. <https://doi.org/10.1111/gcb.12489>

806 Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., Gattuso, J., 2013.
807 Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with
808 warming. *Glob Change Biol* 19, 1884–1896. <https://doi.org/10.1111/gcb.12179>

809 Laurel, B.J., Hunsicker, M.E., Ciannelli, L., Hurst, T.P., Duffy-Anderson, J., O’Malley, R., Behrenfeld, M.,
810 2021. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. *Progress in
811 Oceanography* 193, 102555. <https://doi.org/10.1016/j.pocean.2021.102555>

812 Laurel, B.J., Hurst, T.P., Ciannelli, L., 2011. An experimental examination of temperature interactions in
813 the match–mismatch hypothesis for Pacific cod larvae. *Can. J. Fish. Aquat. Sci.* 68, 51–61.
814 <https://doi.org/10.1139/F10-130>

815 Laurel, B.J., Hurst, T.P., Copeman, L.A., Davis, M.W., 2008. The role of temperature on the growth and
816 survival of early and late hatching Pacific cod larvae (*Gadus macrocephalus*). *Journal of Plankton
817 Research* 30, 1051–1060. <https://doi.org/10.1093/plankt/fbn057>

818 Laurel, B.J., Rogers, L.A., 2020. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of
819 Alaska heatwave. *Can. J. Fish. Aquat. Sci.* 77, 644–650. <https://doi.org/10.1139/cjfas-2019-0238>

820 Lewis, C.N., Brown, K.A., Edwards, L.A., Cooper, G., Findlay, H.S., 2013. Sensitivity to ocean acidification
821 parallels natural pCO₂ gradients experienced by Arctic copepods under winter sea ice. *Proceedings of
822 the National Academy of Sciences* 110, E4960–E4967. <https://doi.org/10.1073/pnas.1315162110>

823 MacKenzie, B.R., Kiørboe, T., 1995. Encounter rates and swimming behavior of pause-travel and cruise
824 larval fish predators in calm and turbulent laboratory environments. Limnol. Oceanogr. 40, 1278–1289.
825 <https://doi.org/10.4319/lo.1995.40.7.1278>

826 Maneja, R., Frommel, A., Geffen, A., Folkvord, A., Piatkowski, U., Chang, M., Clemmesen, C., 2013.
827 Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod *Gadus morhua*. Mar.
828 Ecol. Prog. Ser. 477, 251–258. <https://doi.org/10.3354/meps10146>

829 Mathis, J., Cross, J., Evans, W., Doney, S., 2015. Ocean Acidification in the Surface Waters of the Pacific-
830 Arctic Boundary Regions. oceanog 25, 122–135. <https://doi.org/10.5670/oceanog.2015.36>

831 McLaskey, A., Keister, J., McElhany, P., Brady Olson, M., Shallin Busch, D., Maher, M., Winans, A., 2016.
832 Development of *Euphausia pacifica* (krill) larvae is impaired under pCO₂ levels currently observed in the
833 Northeast Pacific. Mar. Ecol. Prog. Ser. 555, 65–78. <https://doi.org/10.3354/meps11839>

834 McLaskey, A.K., Keister, J.E., Schoo, K.L., Olson, M.B., Love, B.A., 2019. Direct and indirect effects of
835 elevated CO₂ are revealed through shifts in phytoplankton, copepod development, and fatty acid
836 accumulation. PLoS ONE 14, e0213931. <https://doi.org/10.1371/journal.pone.0213931>

837 Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.-F., Matsumoto, K.,
838 Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., van Vuuren, D.P.P., 2011. The RCP
839 greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241.
840 <https://doi.org/10.1007/s10584-011-0156-z>

841 Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori,
842 S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer,
843 R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J., 2010. The next generation of scenarios for climate
844 change research and assessment. Nature 463, 747–756. <https://doi.org/10.1038/nature08823>

845 Mueter, F.J., Bond, N.A., Ianelli, J.N., Hollowed, A.B., 2011. Expected declines in recruitment of walleye
846 pollock (*Theragra chalcogramma*) in the eastern Bering Sea under future climate change. ICES Journal of
847 Marine Science 68, 1284–1296. <https://doi.org/10.1093/icesjms/fsr022>

848 Mueter, F.J., Litzow, M.A., 2008. Sea ice retreat alters biogeography of the Bering sea continental shelf.
849 Ecological Applications 18, 309–320. <https://doi.org/10.1890/07-0564.1>

850 Munday, P.L., Leis, J.M., Lough, J.M., Paris, C.B., Kingsford, M.J., Berumen, M.L., Lambrechts, J., 2009.
851 Climate change and coral reef connectivity. Coral Reefs 17.

852 Nagelkerken, I., Munday, P.L., 2016. Animal behaviour shapes the ecological effects of ocean
853 acidification and warming: moving from individual to community-level responses. Glob Change Biol 22,
854 974–989. <https://doi.org/10.1111/gcb.13167>

855 Nagelkerken, I., Russell, B.D., Gillanders, B.M., Connell, S.D., 2016. Ocean acidification alters fish
856 populations indirectly through habitat modification. Nature Clim Change 6, 89–93.
857 <https://doi.org/10.1038/nclimate2757>

858 Neidetcker, S.K., Hurst, T.P., Ciannelli, L., Logerwell, E.A., 2014. Spawning phenology and geography of
859 Aleutian Islands and eastern Bering Sea Pacific cod (*Gadus macrocephalus*). Deep Sea Research Part II:
860 Topical Studies in Oceanography 109, 204–214. <https://doi.org/10.1016/j.dsr2.2013.12.006>

861 Ottersen, G., Kim, S., Huse, G., Polovina, J.J., Stenseth, N.Chr., 2010. Major pathways by which climate
862 may force marine fish populations. *Journal of Marine Systems* 79, 343–360.
863 <https://doi.org/10.1016/j.jmarsys.2008.12.013>

864 Peck, M.A., Hufnagl, M., 2012. Can IBMs tell us why most larvae die in the sea? Model sensitivities and
865 scenarios reveal research needs. *Journal of Marine Systems* 93, 77–93.
866 <https://doi.org/10.1016/j.jmarsys.2011.08.005>

867 Pilcher, D.J., Cross, J.N., Hermann, A.J., Kearney, K.A., Cheng, W., Mathis, J.T., 2022. Dynamically
868 downscaled projections of ocean acidification for the Bering Sea. *Deep Sea Research Part II: Topical*
869 *Studies in Oceanography* 198, 105055. <https://doi.org/10.1016/j.dsr2.2022.105055>

870 Pilcher, D.J., Naiman, D.M., Cross, J.N., Hermann, A.J., Siedlecki, S.A., Gibson, G.A., Mathis, J.T., 2019.
871 Modeled Effect of Coastal Biogeochemical Processes, Climate Variability, and Ocean Acidification on
872 Aragonite Saturation State in the Bering Sea. *Front. Mar. Sci.* 5, 508.
873 <https://doi.org/10.3389/fmars.2018.00508>

874 Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L., Levin, S.A., 2013. Marine Taxa Track Local Climate
875 Velocities. *Science* 341, 1239–1242. <https://doi.org/10.1126/science.1239352>

876 Punt, A.E., Foy, R.J., Dalton, M.G., Long, W.C., Swiney, K.M., 2016. Effects of long-term exposure to
877 ocean acidification conditions on future southern Tanner crab (*Chionoecetes bairdii*) fisheries
878 management. *ICES Journal of Marine Science* 73, 849–864. <https://doi.org/10.1093/icesjms/fsv205>

879 R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for
880 Statistical Computing, Vienna, Austria.

881 Rooper, C.N., Ortiz, I., Hermann, A.J., Laman, N., Cheng, W., Kearney, K., Aydin, K., 2021. Predicted shifts
882 of groundfish distribution in the Eastern Bering Sea under climate change, with implications for fish
883 populations and fisheries management. *ICES Journal of Marine Science* 78, 220–234.
884 <https://doi.org/10.1093/icesjms/fsaa215>

885 Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit,
886 free-surface, topography-following-coordinate oceanic model. *Ocean Modelling* 9, 347–404.
887 <https://doi.org/10.1016/j.ocemod.2004.08.002>

888 Spies, I., Gruenthal, K.M., Drinan, D.P., Hollowed, A.B., Stevenson, D.E., Tarpey, C.M., Hauser, L., 2020.
889 Genetic evidence of a northward range expansion in the eastern Bering Sea stock of Pacific cod. *Evol
890 Appl* 13, 362–375. <https://doi.org/10.1111/eva.12874>

891 Stabeno, P.J., Bond, N.A., Kachel, N.B., Salo, S.A., Schumacher, J.D., 2001. On the temporal variability of
892 the physical environment over the south-eastern Bering Sea. *Fisheries Oceanography* 10, 81–98.
893 <https://doi.org/10.1046/j.1365-2419.2001.00157.x>

894 Stabeno, P.J., Danielson, S.L., Kachel, D.G., Kachel, N.B., Mordy, C.W., 2016. Currents and transport on
895 the Eastern Bering Sea shelf: An integration of over 20 years of data. *Deep Sea Research Part II: Topical*
896 *Studies in Oceanography* 134, 13–29. <https://doi.org/10.1016/j.dsr2.2016.05.010>

897 Stabeno, P.J., Duffy-Anderson, J.T., Eisner, L.B., Farley, E.V., Heintz, R.A., Mordy, C.W., 2017. Return of
898 warm conditions in the southeastern Bering Sea: Physics to fluorescence. *PLoS ONE* 12, e0185464.
899 <https://doi.org/10.1371/journal.pone.0185464>

900 Stevenson, D.E., Lauth, R.R., 2019. Bottom trawl surveys in the northern Bering Sea indicate recent shifts
901 in the distribution of marine species. *Polar Biol* 42, 407–421. <https://doi.org/10.1007/s00300-018-2431-1>

903 Stiasny, M.H., Mittermayer, F.H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M., Puvanendran, V.,
904 Mortensen, A., Reusch, T.B.H., Clemmesen, C., 2016. Ocean Acidification Effects on Atlantic Cod Larval
905 Survival and Recruitment to the Fished Population. *PLoS ONE* 11, e0155448.
906 <https://doi.org/10.1371/journal.pone.0155448>

907 Stiasny, M.H., Sswat, M., Mittermayer, F.H., Falk-Petersen, I., Schnell, N.K., Puvanendran, V., Mortensen,
908 A., Reusch, T.B.H., Clemmesen, C., 2019. Divergent responses of Atlantic cod to ocean acidification and
909 food limitation. *Glob Change Biol* 25, 839–849. <https://doi.org/10.1111/gcb.14554>

910 Stockhausen, W.T., Coyle, K.O., Hermann, A.J., Blood, D., Doyle, M.J., Gibson, G.A., Hinckley, S., Ladd, C.,
911 Parada, C., 2019a. Running the gauntlet: Connectivity between spawning and nursery areas for
912 arrowtooth flounder (*Atheresthes stomias*) in the Gulf of Alaska, as inferred from a biophysical
913 individual-based model. *Deep Sea Research Part II: Topical Studies in Oceanography* 165, 127–139.
914 <https://doi.org/10.1016/j.dsr2.2018.05.017>

915 Stockhausen, W.T., Coyle, K.O., Hermann, A.J., Doyle, M., Gibson, G.A., Hinckley, S., Ladd, C., Parada, C.,
916 2019b. Running the gauntlet: Connectivity between natal and nursery areas for Pacific ocean perch
917 (*Sebastes alutus*) in the Gulf of Alaska, as inferred from a biophysical individual-based model. *Deep Sea
918 Research Part II: Topical Studies in Oceanography* 165, 74–88.
919 <https://doi.org/10.1016/j.dsr2.2018.05.016>

920 Szuwalski, C., Cheng, W., Foy, R., Hermann, A.J., Hollowed, A., Holsman, K., Lee, J., Stockhausen, W.,
921 Zheng, J., 2021. Climate change and the future productivity and distribution of crab in the Bering Sea.
922 *ICES Journal of Marine Science* 78, 502–515. <https://doi.org/10.1093/icesjms/fsaa140>

923 Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An Overview of CMIP5 and the Experiment Design. *Bulletin
924 of the American Meteorological Society* 93, 485–498. <https://doi.org/10.1175/BAMS-D-11-00094.1>

925 Vehmaa, A., Almén, A.-K., Brutemark, A., Paul, A., Riebesell, U., Furuhamen, S., Engström-Öst, J., 2016.
926 Ocean acidification challenges copepod phenotypic plasticity. *Biogeosciences* 13, 6171–6182.
927 <https://doi.org/10.5194/bg-13-6171-2016>

928 Wang, M., Jeong, C.-B., Lee, Y.H., Lee, J.-S., 2018. Effects of ocean acidification on copepods. *Aquatic
929 Toxicology* 196, 17–24. <https://doi.org/10.1016/j.aquatox.2018.01.004>

930 Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H.,
931 Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M., 2011. MIROC-ESM
932 2010: model description and basic results of CMIP5-20c3m experiments. *Geosci. Model Dev.* 4, 845–872.
933 <https://doi.org/10.5194/gmd-4-845-2011>

934 West, C.F., Etnier, M.A., Barbeaux, S., Partlow, M.A., Orlov, A.M., 2020. Size distribution of Pacific cod
935 (*Gadus macrocephalus*) in the North Pacific Ocean over 6 millennia. *Quat. res.* 1–21.
936 <https://doi.org/10.1017/qua.2020.70>

937 Whitehouse, G.A., Aydin, K., Hollowed, A., Holsman, K., Cheng, W., Faig, A., Haynie, A.C., Hermann, A.,
938 Kearney, K., Punt, A.E., Essington, T.E., 2021. Bottom–Up Impacts of Forecasted Climate Change on the
939 Eastern Bering Sea Food Web. *Frontiers in Marine Science* 8, 20.
940 <https://doi.org/10.3389/fmars.2021.624301>

941 Woolley, L.D., Qin, J.G., 2010. Swimbladder inflation and its implication to the culture of marine finfish
942 larvae: Swimbladder inflation in fish larvae. *Reviews in Aquaculture* 2, 181–190.
943 <https://doi.org/10.1111/j.1753-5131.2010.01035.x>

944

1 Tables

2 Table 1. Variables and parameters in the individual-based model (IBM).

Symbol	Description	Units	Value
Parameters			
C_0	Inherent contrast (visibility) of the prey	—	0.3
K_e	Satiation parameter	$\mu E \cdot m^{-2} \cdot s^{-1}$	1
f	Pause frequency	s^{-1}	0.43
λ	Pause duration	s	2
l_{max}	Maximum prey length that a fish can capture relative to fish length	—	0.1
m_s	Mortality constant (only when stomach was empty)	s^{-1}	1.10^{-5}
K_p	Constant in visual predation (comprising all other factors such as predator density, efficiency, and predator swimming speed)	—	7.10^{-6}
Variables			
A_p	Prey area	mm^{-2}	
E_b	Local illumination level	$\mu mol \cdot m^{-2} \cdot s^{-1}$	
E'	Size-specific sensitivity of the visual system of the larvae	—	
c	Beam attenuation coefficient	mm^{-1}	
N	Prey density	$prey \cdot mm^{-3}$	
u	Prey swimming velocity	$mm \cdot s^{-1}$	
ω	Turbulent velocity	$mm \cdot s^{-1}$	
T	Temperature	$^{\circ}C$	
t	Time step index	—	

L	Fish standard length	mm	
TL	Fish total length	mm	
dt	Model time-step length	$days$	
l	Prey length	mm	
w_{prey}	Prey weight	mg	
i	Index over prey lengths	—	
j	Index over prey types	—	
k	Index over particles	—	
z	Index over initial locations	—	

3

4

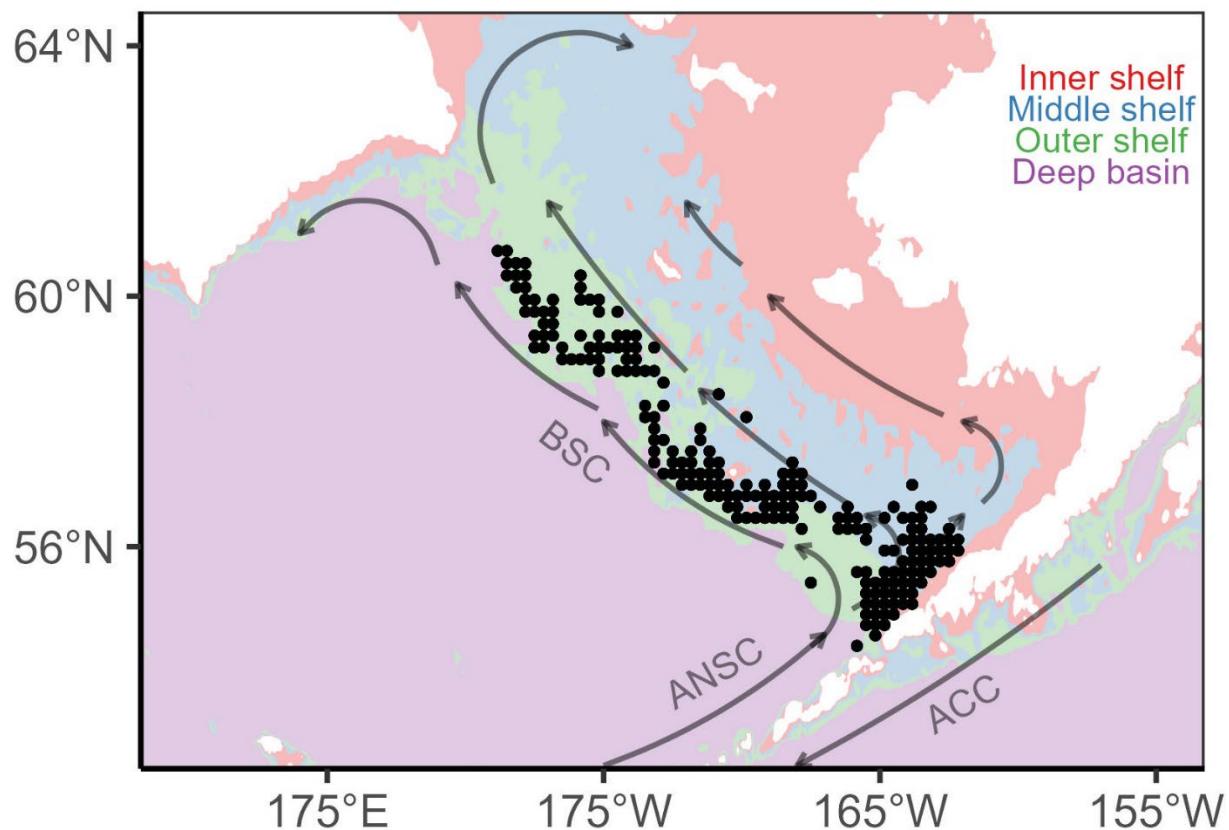
5

6

7

8

9


11 Table 2. Main equations in the individual-based model (IBM).

Symbol	Description	Equation	Units	Equation number	Source
Egg stage					
g_{EW}	Growth rate in weight	$3.807 + 1.493.T - 0.032.T^2$	$\frac{1}{d}$	1	(Hurst et al., 2010)
g_{El}	Growth rate in length	$0.104 + 0.024.T - 0.00002.T^2$	$mm.d^{-1}$	2	(Hurst et al., 2010)
d_E	Stage duration	$46.597 - 4.079.T$	d	3	(Hinckley et al., 2019)
h_E	Hatching success	$\frac{0.453}{1 + ((T - 4.192)/2.125)^2}$	—	4	(Laurel and Rogers, 2020)
Yolk-sac stage					
YSA	Days to yolk-sac absorption	$14.7662 \cdot \exp(-0.235.T)$	d	5	(Laurel et al., 2008)
PNR	Point of no-return	$34.67 \cdot \exp(-0.126.T)$	d	6	(Laurel et al., 2008)
Non-egg stages					
g	Growth rate in weight	$(0.454 + 1.61.T - 0.069.T^2 \exp(-2.225.w))$	$\frac{1}{d}$	7	(Hurst et al., 2010)

L	Fish standard length	$\left(\frac{w}{1.976 \cdot 10^{-6}}\right)^{\frac{1}{2.974}}$	mm	8	Estimates from Hurst et al. (2010)
TL	Fish total length	$\frac{L + 0.5169}{0.9315}$	mm	9	Estimates from Hurst et al. (2010)
ϑ_F	Vertical velocity	$\frac{(0.081221 + 0.043168 \cdot \log_{10} T) \cdot TL^{1.49652}}{1000}$	$m \cdot s^{-1}$	10	(Hinckley et al., 2019)
Bioenergetic model					
R	Reactive distance	$R^2 \exp(cR) = C_0 A_p E' \frac{E_b}{K_e + E_b}$	mm	11	(Fiksen and MacKenzie, 2002)
enc	Encounter rate	$\frac{2}{3} \pi R^3 N f + \pi R^2 N \sqrt{(u^2 + 2\omega^2) f \lambda}$	$prey \cdot s^{-1}$	12	(Fiksen and MacKenzie, 2002)
$PCA (L \leq 17 \text{ mm})$	Probability of attack success	Algorithm in Fiksen and MacKenzie (2002)	—	13	(Fiksen and MacKenzie, 2002)
$PCA (L > 17 \text{ mm})$	Probability of attack success	$1.1 - \left(\frac{1.1 \cdot l}{l_{max}}\right)$	—	14	(Daewel et al., 2011)
h	Handling time	$\exp(0.264 \cdot 10^{7.0151 \cdot \frac{l}{L}})$	s	15	(Walton et al., 1992)
ing	Ingested prey	$\frac{\sum_{i,j} enc_{i,j} \cdot PCA_{i,j} \cdot w_{prey_{i,j}}}{1 + \sum_{i,j} enc_{i,j} \cdot h_{i,j}}$	mg	16	(Daewel et al., 2011)
A	Assimilation efficiency	$0.8 \cdot (1 - 0.4 \cdot \exp(-0.002 \cdot (w \cdot 1000 - 50)))$	—	17	(Lough et al., 2005)

D_{max}	Ingested material required for maximum growth	$\frac{((\exp(g \cdot dt) - 1) \cdot w_{t-1} + M_a \cdot dt)}{A}$	mg	18	(Kristianse n et al., 2014)
S_t	Stomach content	$S_{t-1} - D + ing$	mg	19	(Kristianse n et al., 2014)
M_r	Routine metabolism	$2.38e^{-7}w^{0.9}\exp(0.088 \cdot T)$	$mg \cdot d^{-1}$	20	(Finn et al., 2002)
M_a	Active metabolism (when $E_b > 0.001$)	$\begin{cases} 2.5M_r & \text{if } L \geq 5.5 \text{ mm} \\ 1.4M_r & \text{if } L < 5.5 \text{ mm} \end{cases}$	$mg \cdot d^{-1}$	21	(Finn et al., 2002)
w_t	Fish dry weight	$\begin{cases} w_{t-1} \cdot \exp(g \cdot dt) & \text{if } D_{max} \leq S_t \\ w_{t-1} + S_t A - M_a \cdot dt & \text{if } D_{max} > S_t \end{cases}$	mg	22	(Kristianse n et al., 2014)

13

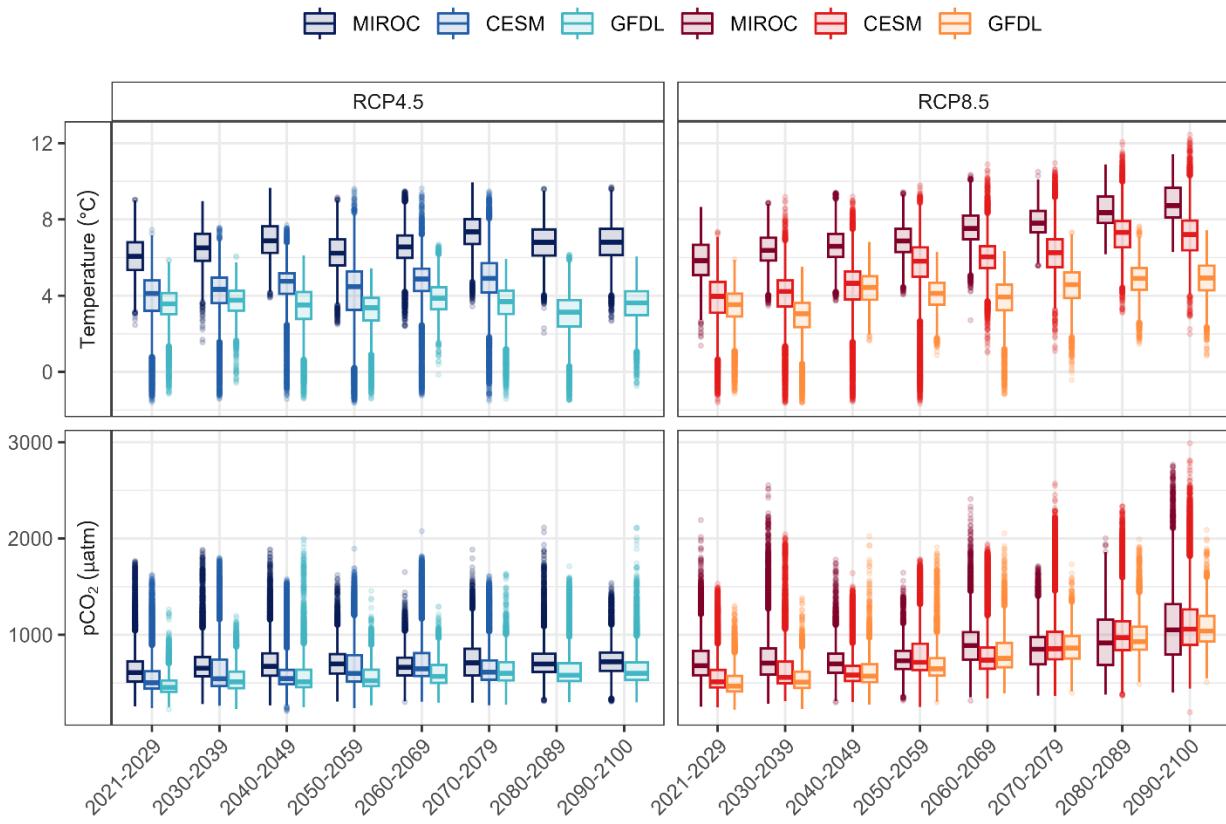
14 **Figures**

15

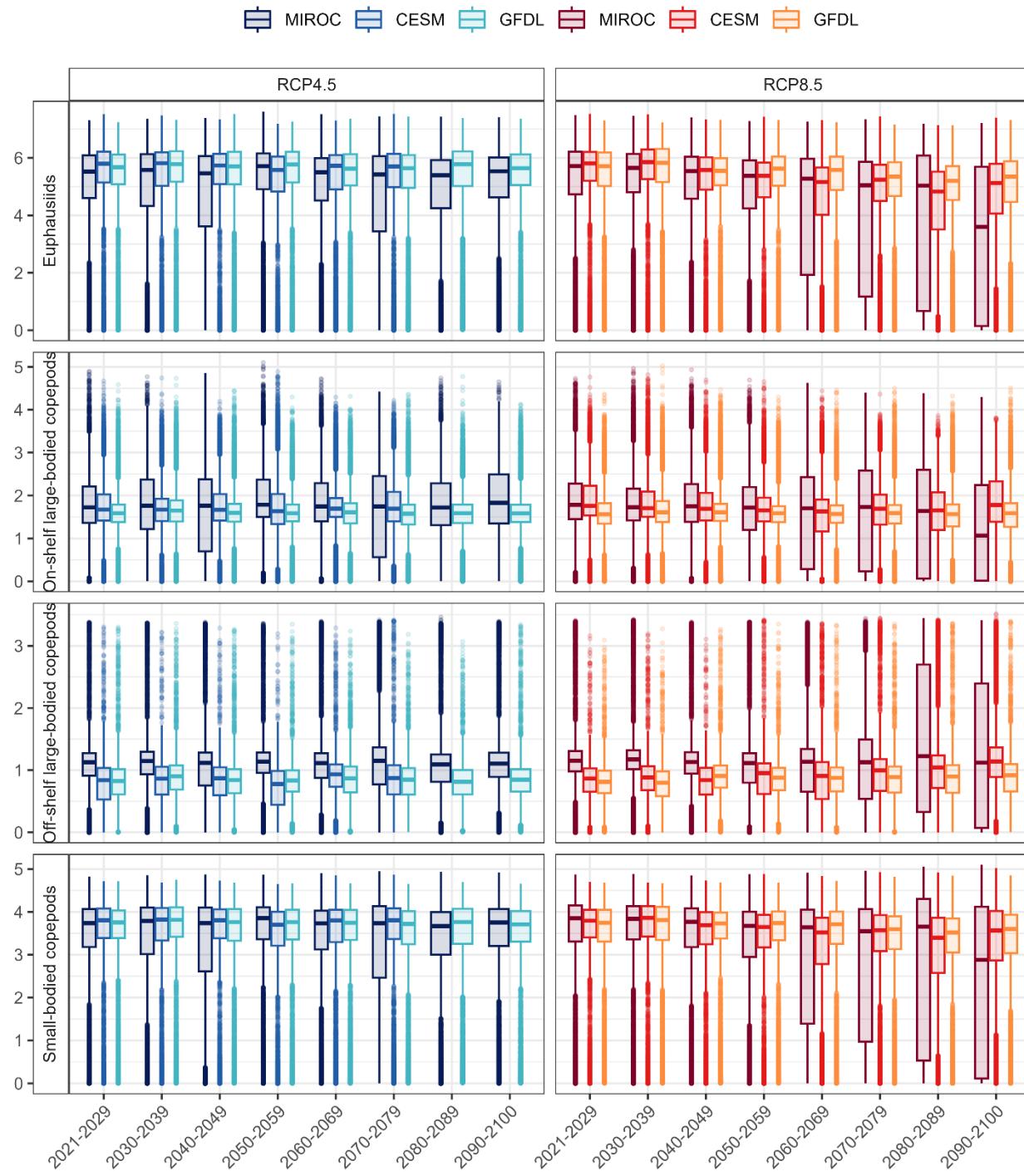
16 Figure 1. Study region (Bering Sea) with bathymetry (m) domains (colors). Red = inner shelf
17 domain (0-50 m), blue = middle shelf domain (50-100 m), green = outer shelf domain (100-200
18 m), purple = deep basin (>200 m). Main oceanic currents are shown (arrows) as described in
19 Stabeno et al. (2016). ANSC = Aleutian North Slope, BSC = Bering Slope Current, ACC = Alaska
20 Coastal Current. Black dots represent the locations where eggs were released every seven days
21 during March every year in the IBM.

22

23

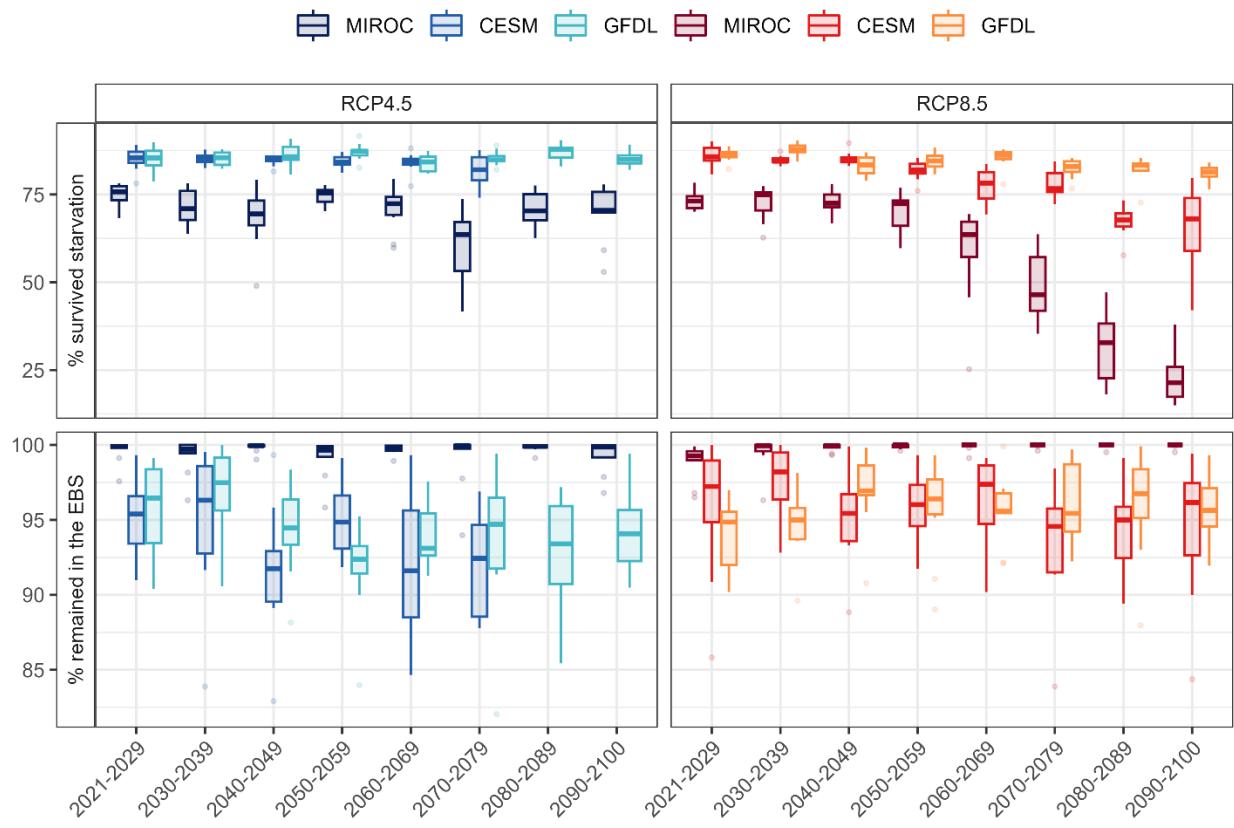

24

25


26

27

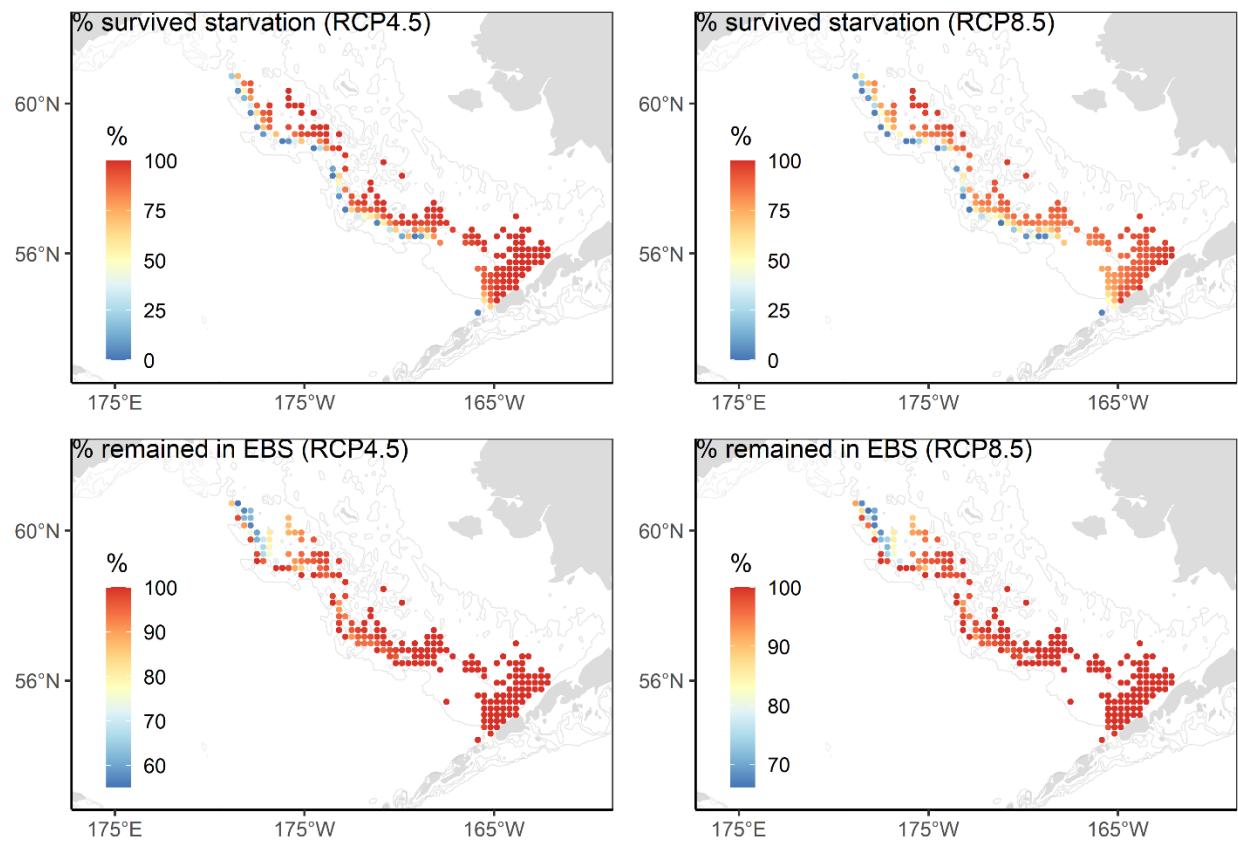
28



31 Figure 2. Average environmental conditions experienced by fish (surviving and dead) throughout
 32 the non-egg stages each decade. Values are shown for the RCP4.5 (blue tones) and RCP8.5 (red
 33 tones) emission scenarios and oceanographic models.

37 Figure 3. Average prey density (mg C/m^3) in the environment where fish (surviving and dead)
 38 dwelled through the non-egg stages. Values are shown for the RCP4.5 (blue tones) and RCP8.5
 39 (red tones) emission scenarios and oceanographic model by decade.

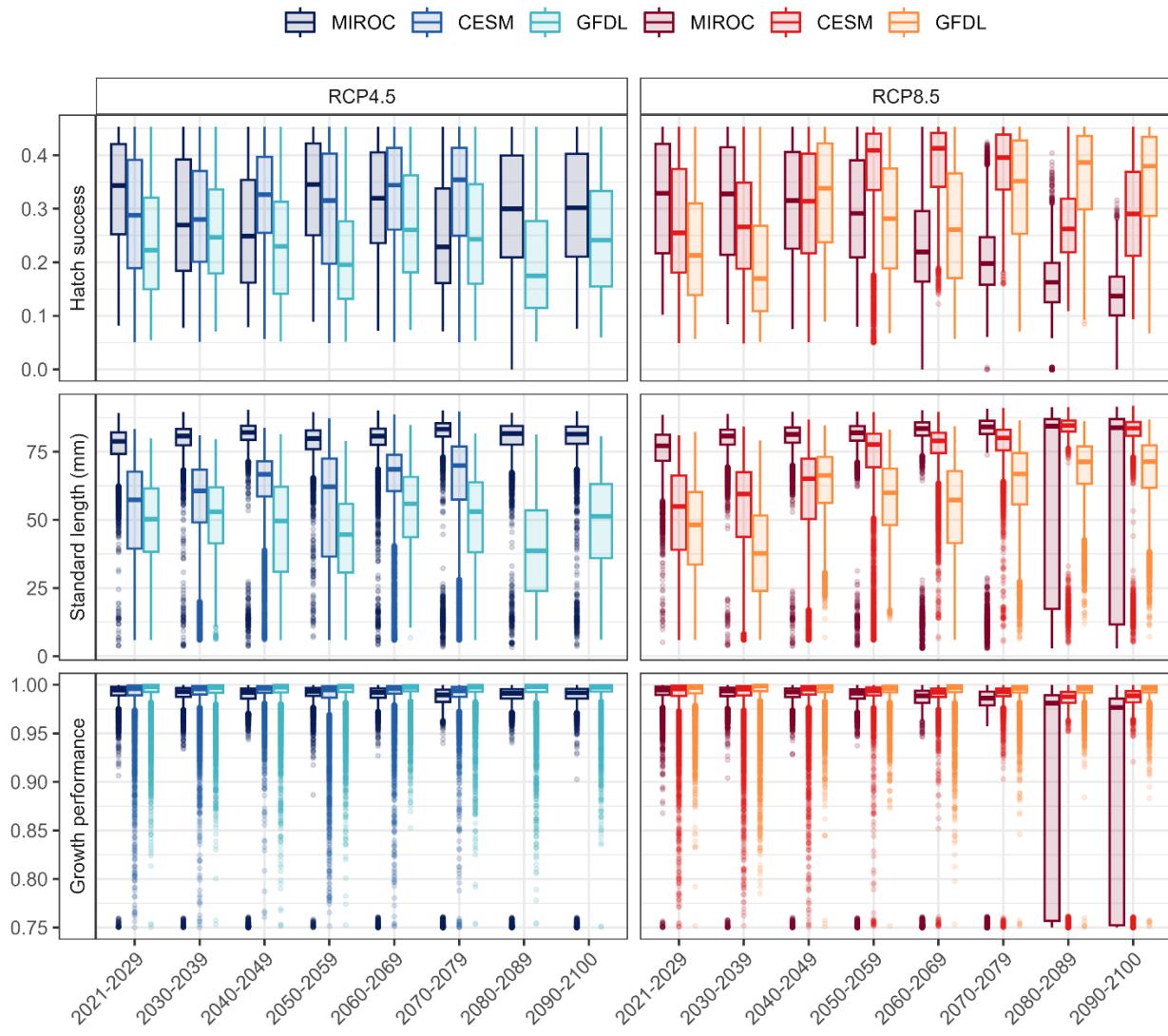
41

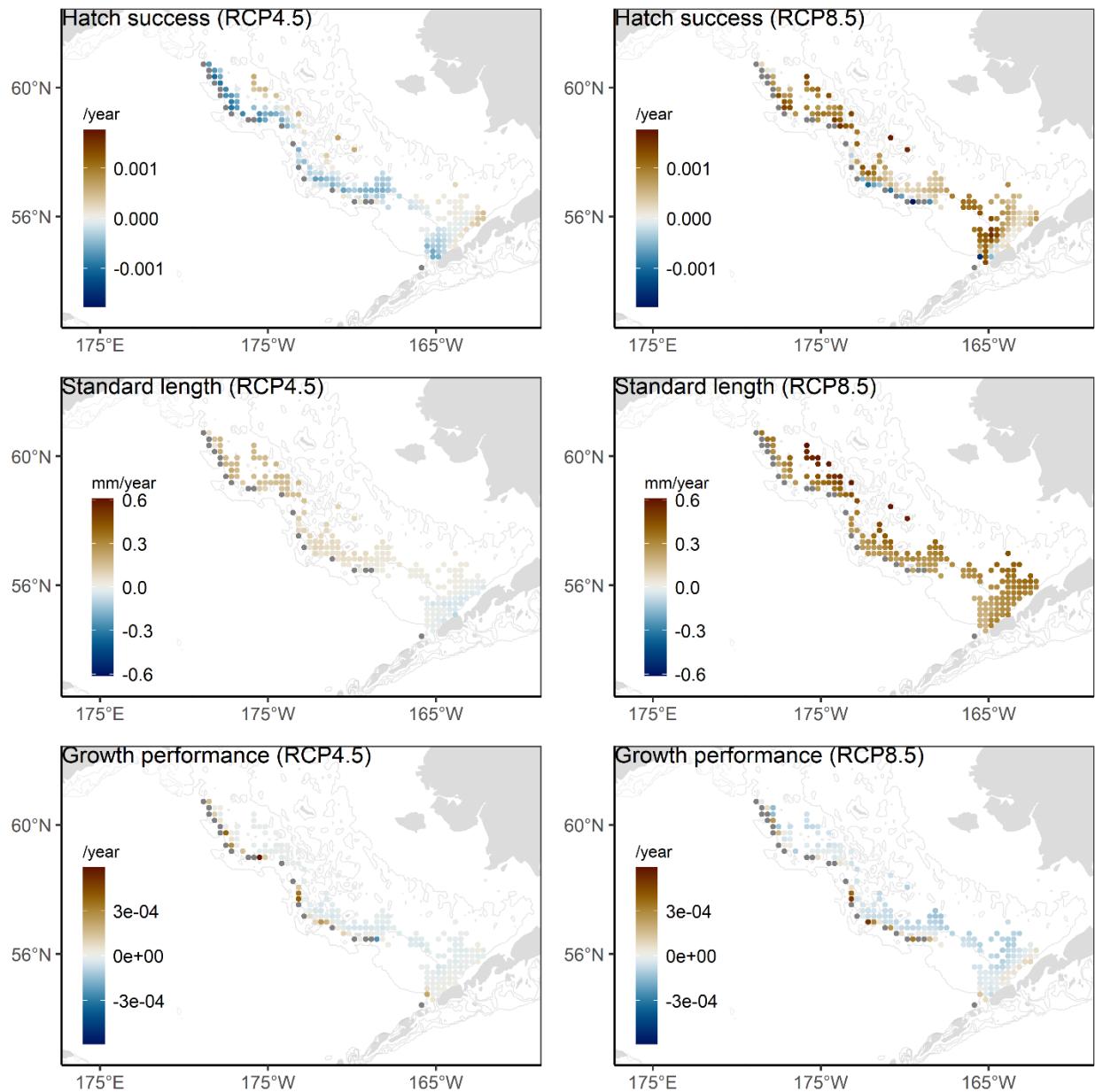


42

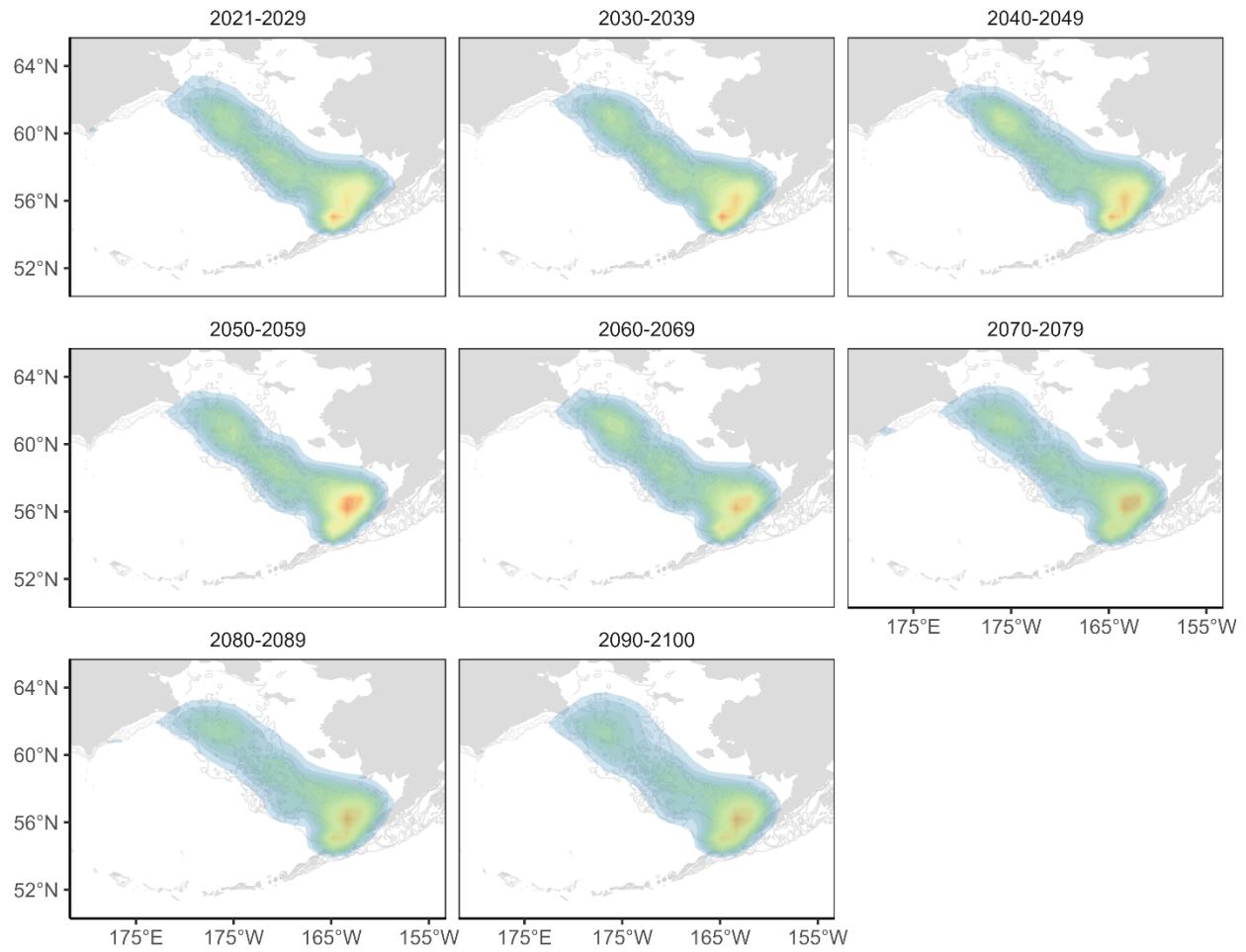
43 Figure 4. Percentage of fish that survived until Sep 15, separated by death cause. Values are shown
 44 for the RCP4.5 (blue tones) and RCP8.5 (red tones) emission scenarios and oceanographic model
 45 by decade.

46

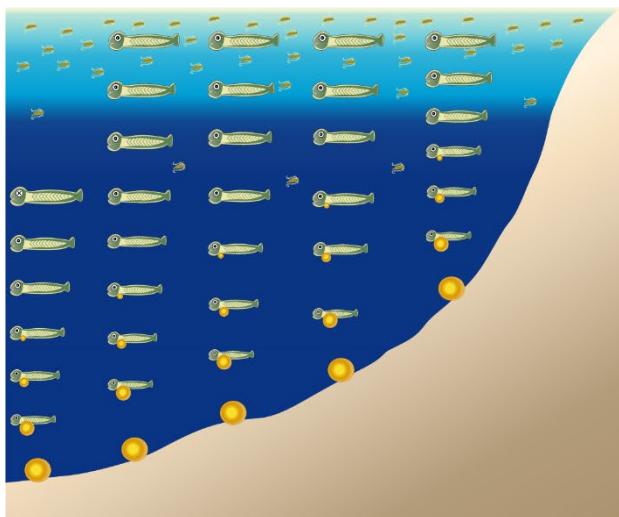

47


48

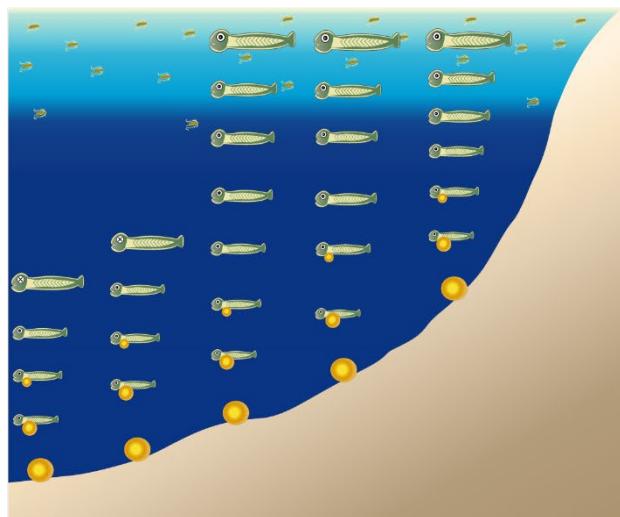
49 Figure 5. Percentage of fish that survived to Sep 15, separated by death cause, over the years and
 50 displayed by release location. Oceanographic models were combined. Values are shown for the
 51 RCP4.5 (left column) and RCP8.5 (right column) emission scenarios.


52

55 Figure 6. Biological variables for fish that survived until Sep 15. The standard length is calculated
 56 on Sep 15. Growth performance is the average value after yolk-sac absorption (YSA). Values are
 57 shown for the RCP4.5 (blue tones) and RCP8.5 (red tones) emission scenarios and oceanographic
 58 model by decade.



64 Figure 7. Temporal trends of biological variables displayed by release location. Values are shown
 65 for the RCP4.5 (left column) and RCP8.5 (right column) emission scenarios. Information from
 66 different oceanographic models was combined to estimate the temporal trend. Temporal trends
 67 were not calculated for fish that died more than 33% of the years (grey points).



70 Figure 8. Spatial density of final locations (Sep 15) by decade for the RCP8.5 emission scenario.
 71 Information from different oceanographic models was combined. Red and blue colors indicate
 72 higher and lower densities, respectively.

74 a) Current conditions

75 b) Future conditions (RCP8.5)

76 Figure 9. Representation of the impacts of climate on larval ecology during current and future
77 conditions (RCP8.5). We represent the transition from eggs to the epipelagic juvenile stage for
78 five fish vertically. In current conditions, prey density is high, especially in the epipelagic zone
79 (sky-blue area). Fish that hatched from eggs in deeper locations have a higher probability of
80 starvation since more time is spent in areas with no light (dark blue area) after yolk-sac absorption;
81 therefore, food ingestion is limited. In future conditions (RCP8.5), prey density is predicted to
82 decrease, and a warmer temperature produces a quicker yolk-sac absorption; therefore, more fish
83 are susceptible to starvation, especially those hatched in deeper areas.

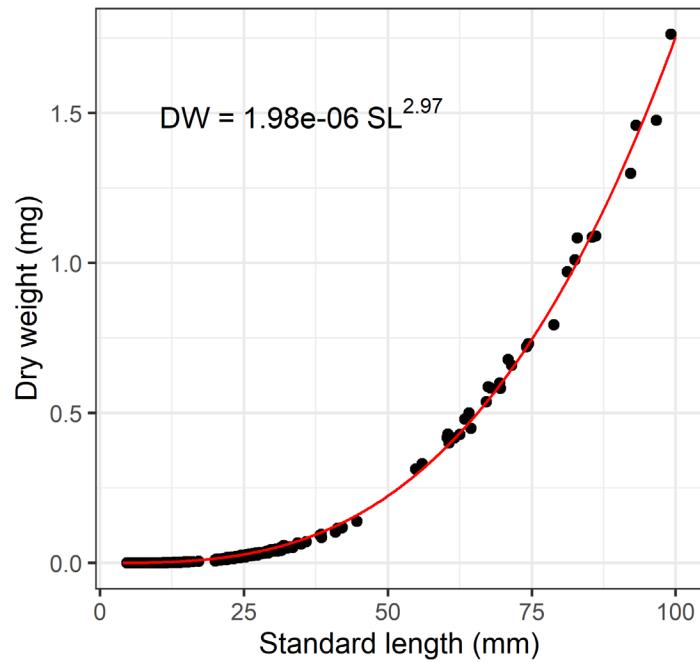
1 **Supplementary information**

2 **Tables**

3 Table S1. Prey items obtained from the Bering 10K model (bulk carbon biomass in $mg\ C.m^{-3}$).
4 Size range (mm) and parameters of the length-weight relationship ($w_{prey} = al^b$, w_{prey} is weight
5 in μg and l is the total length in μm) are given per prey item.

Description	Size range (mm)	Parameters	Source
Euphausiids (primarily <i>Thysanoessa inermis</i> and <i>Thysanoessa raschii</i>)	3-30	a = 1.38E-8, b = 2.92	(Becker and Warren, 2014; Harding, 1977; Saunders et al., 2013; Silva et al., 2017)
On-shelf large-bodied copepods (primarily <i>Calanus marshallae</i>)	0.4-3	a = 2.75E-12, b = 4.03	(Liu and Hopcroft, 2007)
Off-shelf large-bodied copepods (primarily <i>Neocalanus</i> sp.)	0.2-1.4	a = 1E-10, b = 3.56	(Liu and Hopcroft, 2006)
Small-bodied copepods (e.g. <i>Pseudocalanus</i> sp.)	0.2-1.4	a = 2.4E-8, b = 2.85	(Liu and Hopcroft, 2008)

6

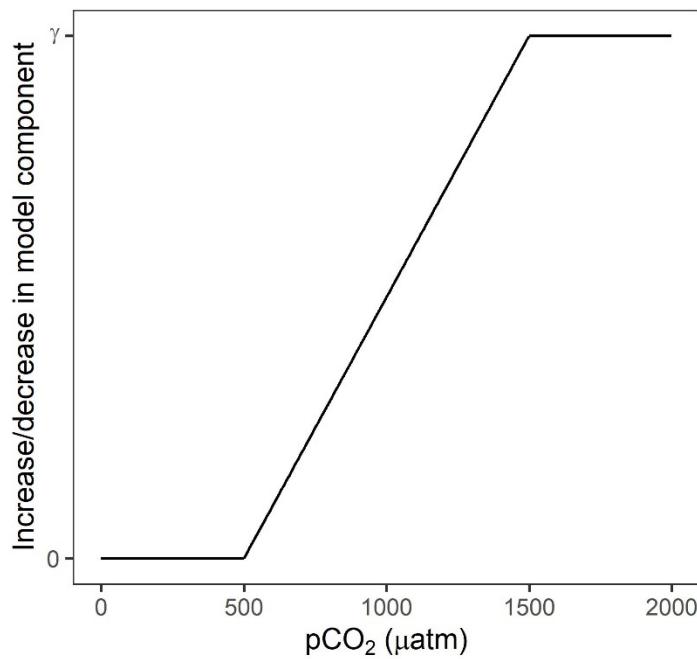

7

9 Table S2. Model runs performed. For the ocean acidification (OA) impacts, we assumed effects
 10 on five biological components individually, all of them simultaneously, or none of them. The
 11 period for which the OA effects were evaluated is also shown.

Earth system model	CO ₂ emission scenario	Ocean acidification impact
Geophysical Fluid Dynamics Laboratory Earth System Model 2M (GFDL)	- RCP4.5 - RCP8.5	- All (2021-2100) - Metabolism (2090-2100) - Growth (2090-2100) - Probability of capture success (2090-2100) - Prey abundance (2090-2100) - Prey quality (2090-2100) - None (2090-2100)
National Center for Atmospheric Research Community Earth System Model (CESM)	- RCP4.5 - RCP8.5	- All (2021-2100) - Metabolism (2090-2100) - Growth (2090-2100) - Probability of capture success (2090-2100) - Prey abundance (2090-2100) - Prey quality (2090-2100) - None (2090-2100)
Model for Interdisciplinary Research on Climate (MIROC)	- RCP4.5 - RCP8.5	- All (2021-2100) - Metabolism (2090-2100) - Growth (2090-2100) - Probability of capture success (2090-2100) - Prey abundance (2090-2100) - Prey quality (2090-2100) - None (2090-2100)

14

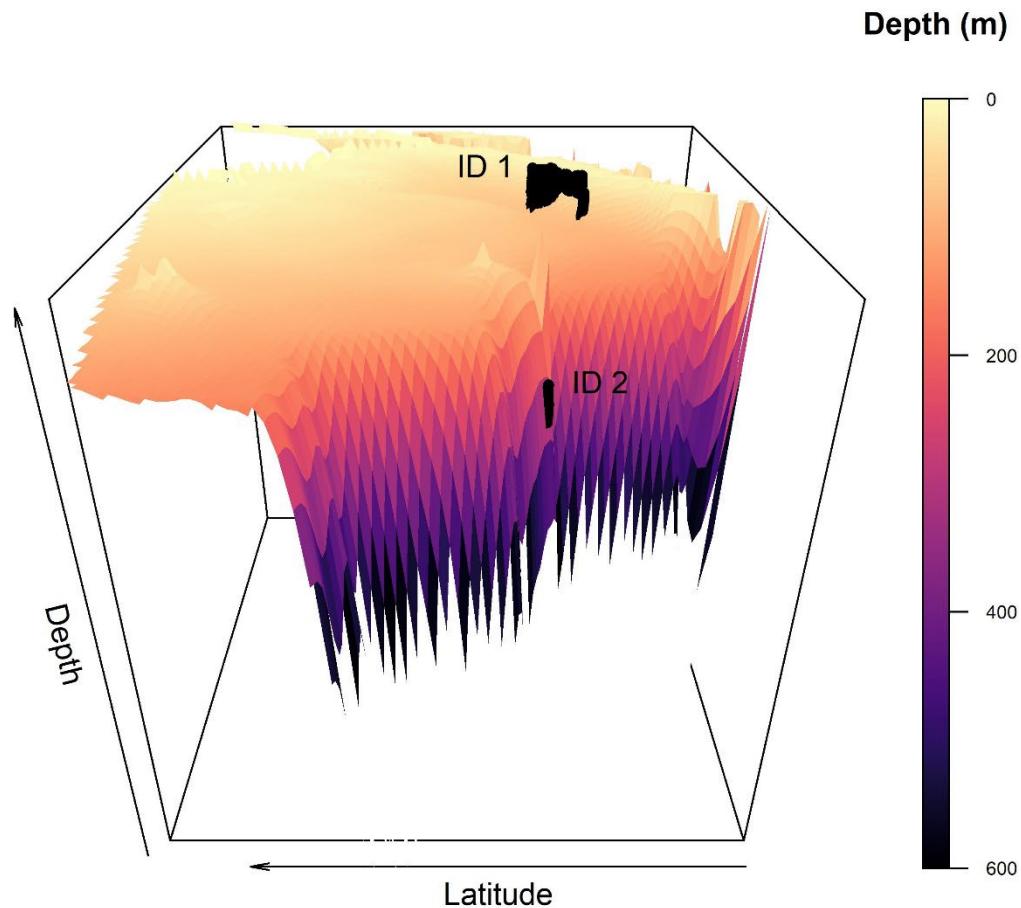
15 **Figures**

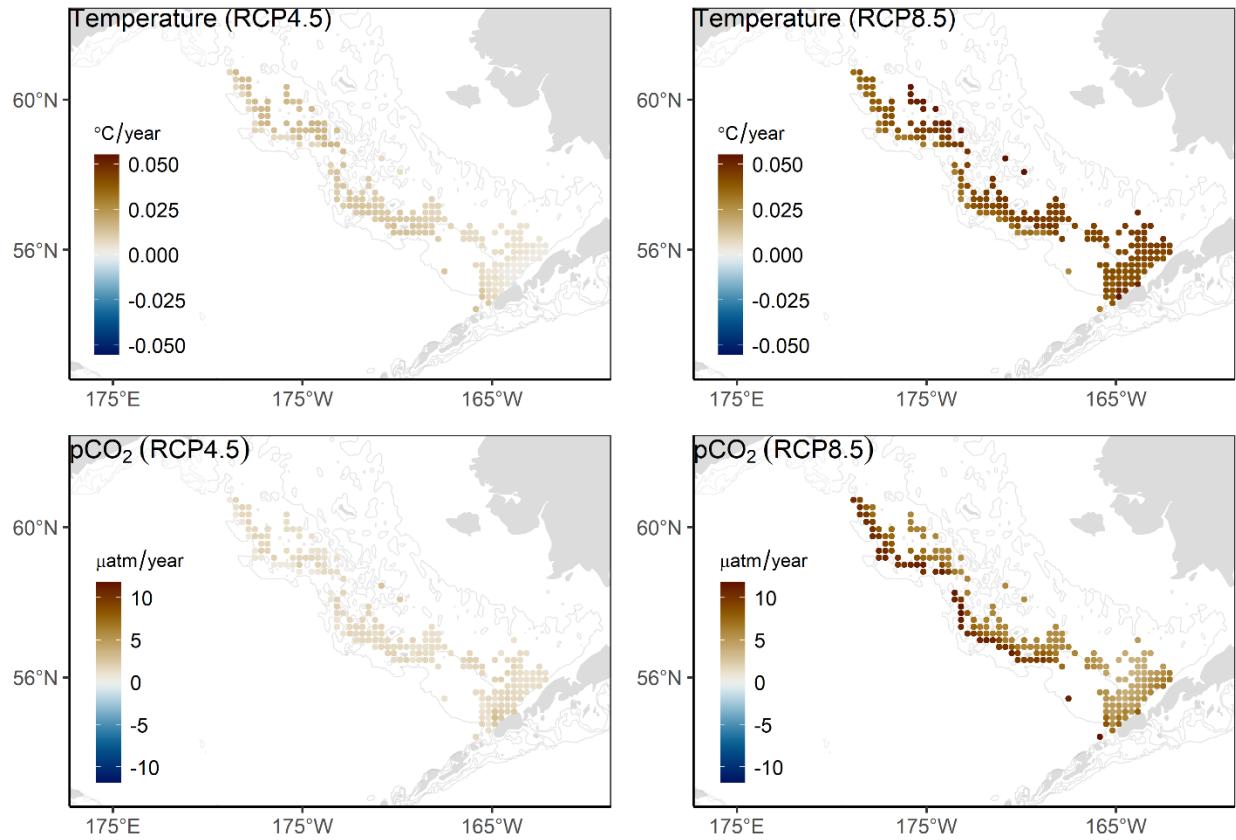


16

17 Figure S1. Observed standard length-dry weight relationship and fitted curve to predict fish
18 standard length (L) based on dry weight (w).

19


20

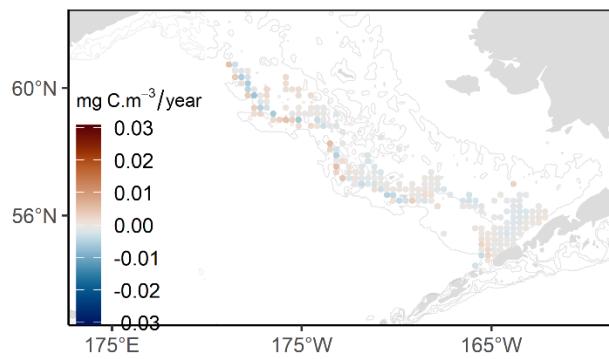

21

22 Figure S2. Impacts of a range of $p\text{CO}_2$ values on selected model variables in our model. $\gamma = -10\%$
23 for active metabolism. $\gamma = -10\%$ for growth rates within the first two weeks after hatching and
24 then $+10\%$ within the next five weeks. $\gamma = -10\%$ for prey abundance. $\gamma = -10\%$ for prey weight.
25 $\gamma = -10\%$ for the probability of capture success (PCA).

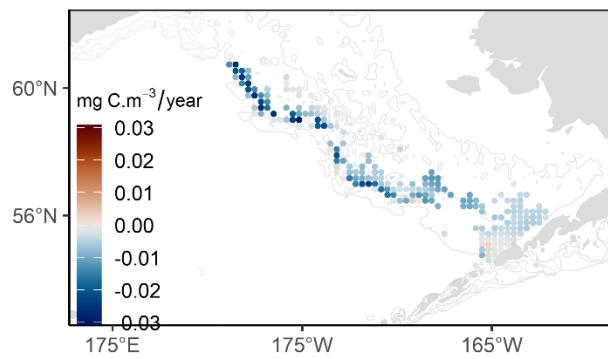
26

29 Figure S3. Trajectories of two particles (i.e., fish) in the IBM. The coloured area represents the
 30 ocean bottom. The black dots represent the fish location in every model time step. ID 1 was
 31 released on a shallower area and survived until the end of the model period (Sep 15th). ID 2 was
 32 released in a deeper area and died from starvation (reaching the PNR). Average environmental
 33 conditions in the fish habitat were calculated during the fish lifespan.

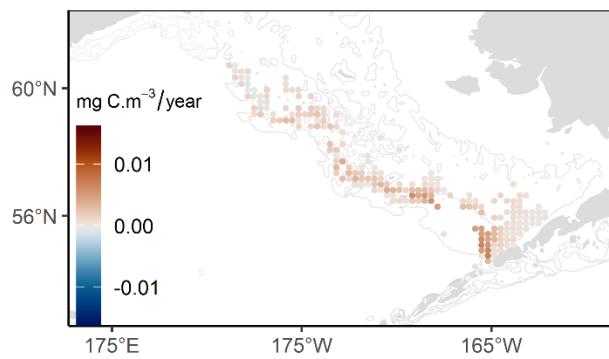
36

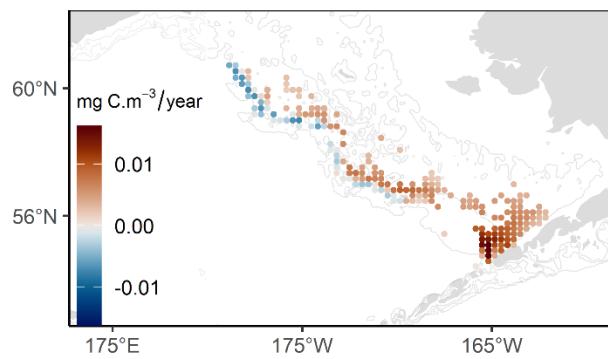

37 Figure S4. Temporal trends of average environmental conditions where fish (surviving and dead)
 38 dwelled throughout the non-egg stages displayed by release location. Values are shown for the
 39 RCP4.5 (left column) and RCP8.5 (right column) emission scenarios. Information from different
 40 oceanographic models was combined to estimate temporal trends.

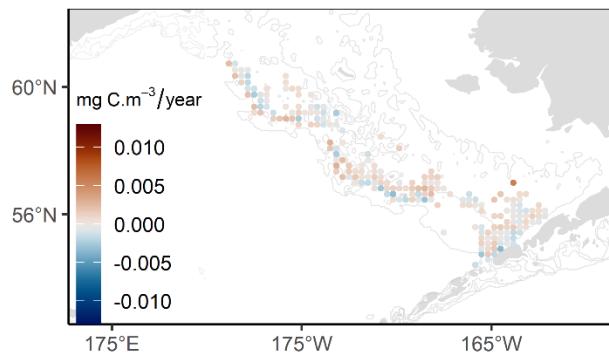
41

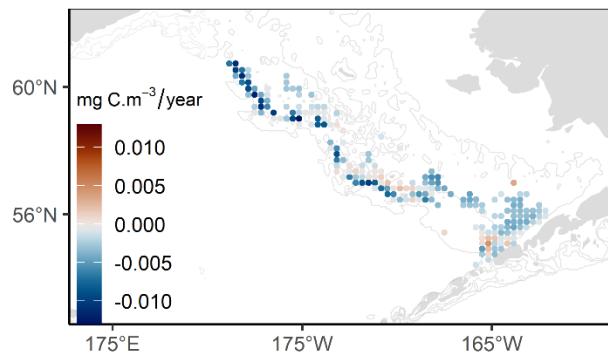

42

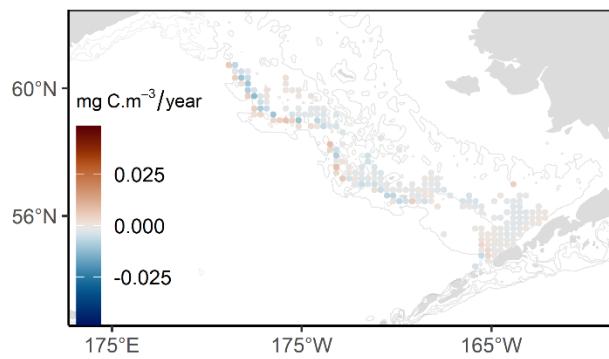
43

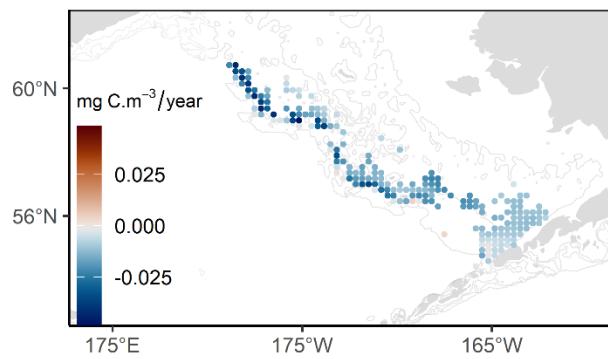

Small-bodied copepods (RCP4.5)


Small-bodied copepods (RCP8.5)

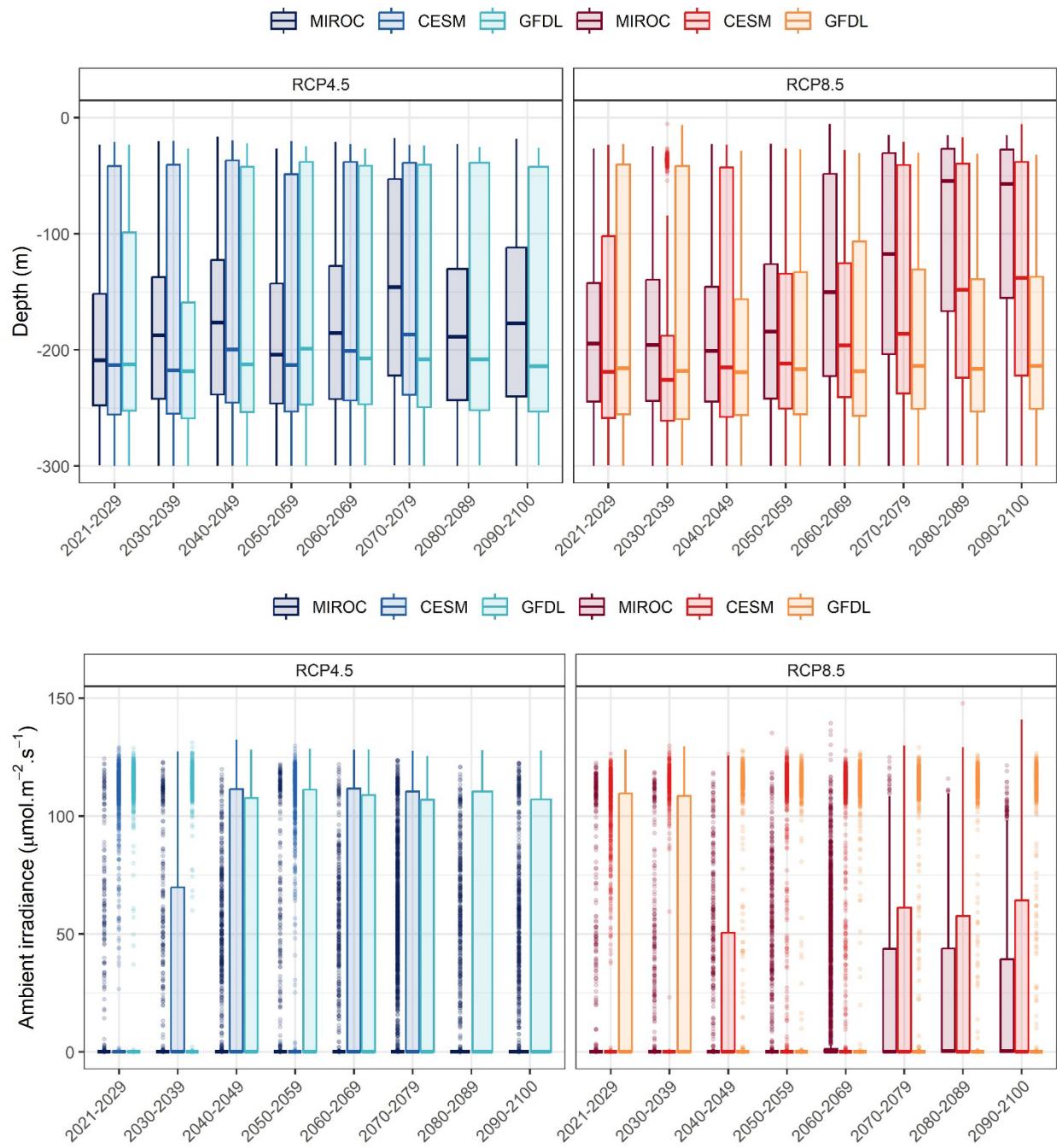

Off-shelf large-bodied copepods (RCP4.5)

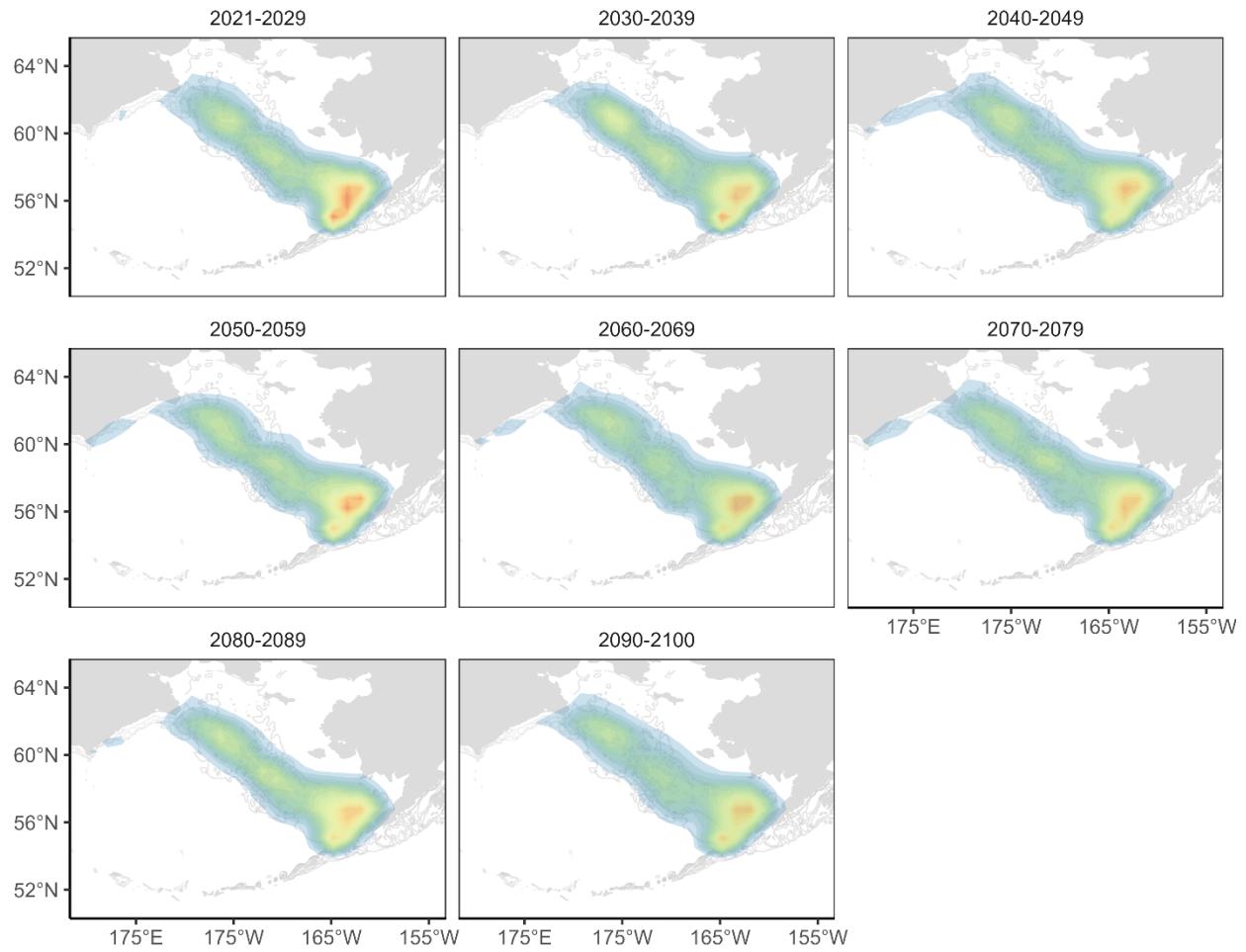

Off-shelf large-bodied copepods (RCP8.5)

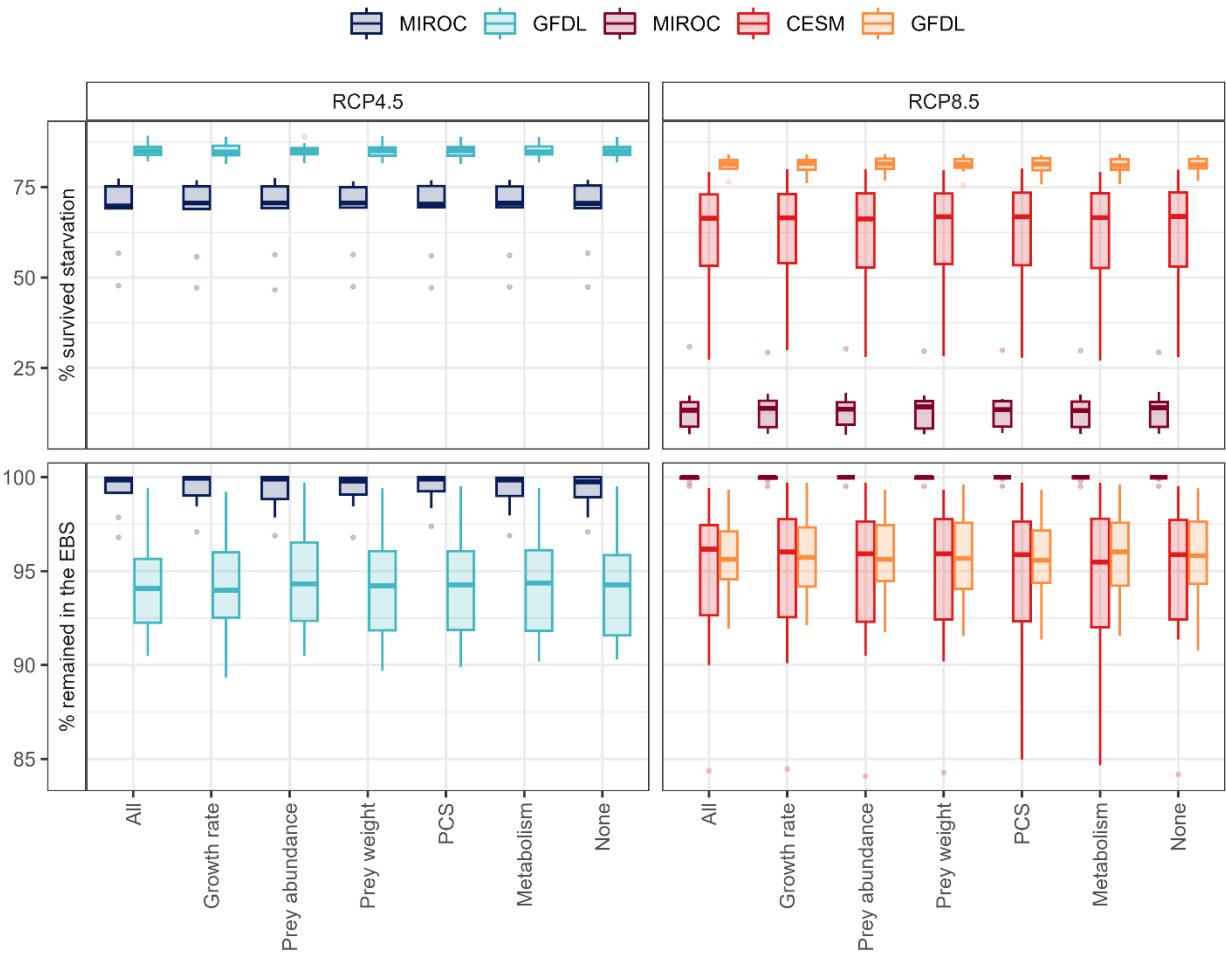

On-shelf large-bodied copepods (RCP4.5)


On-shelf large-bodied copepods (RCP8.5)

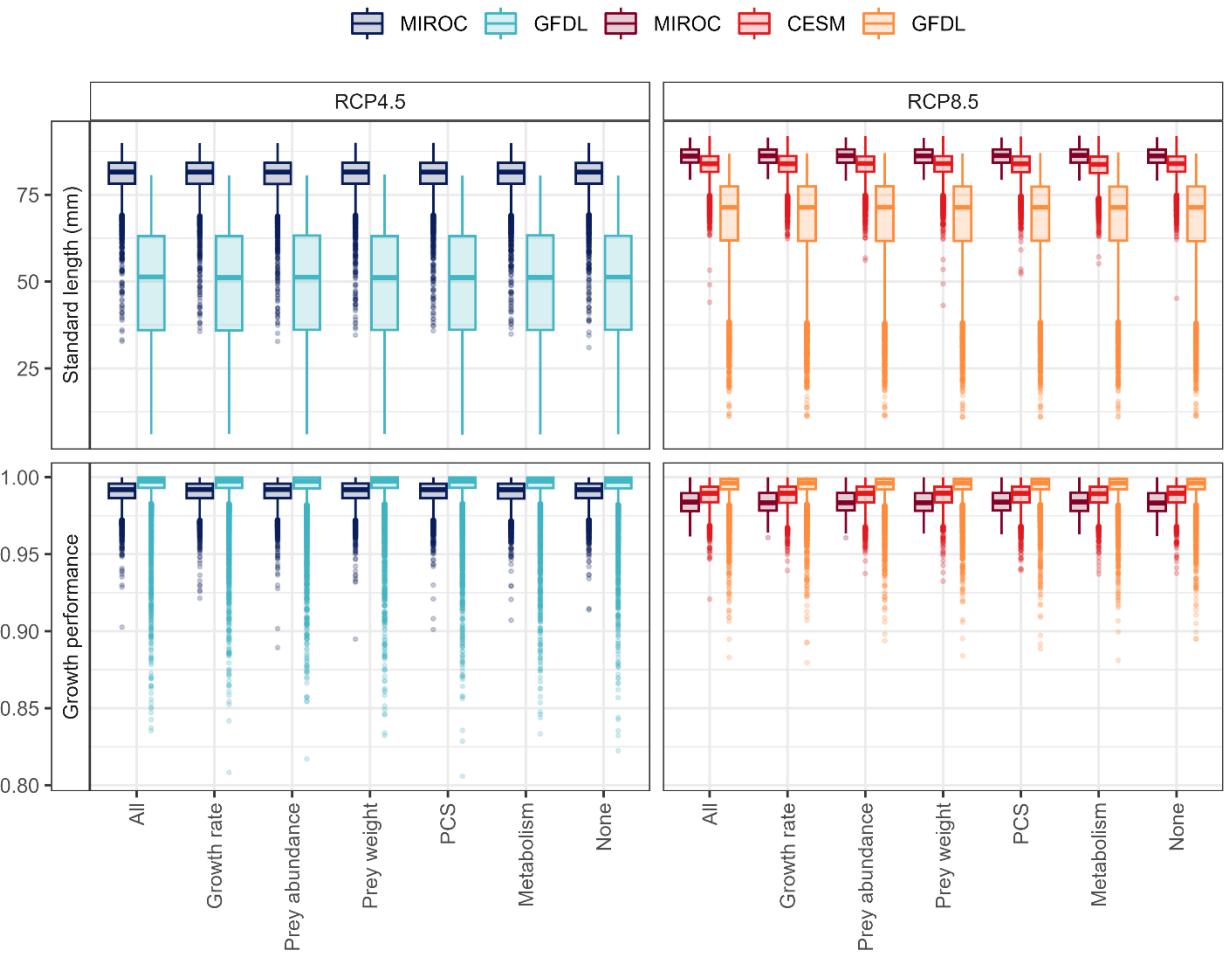
Euphausiids (RCP4.5)




Euphausiids (RCP8.5)


45 Figure S5. Temporal trends of average prey density in the environment where fish (surviving and
46 dead) dwelled throughout the non-egg stages displayed by release location. Values are shown for
47 the RCP4.5 (left column) and RCP8.5 (right column) emission scenarios. Information from
48 different oceanographic models was combined to estimate temporal trends.

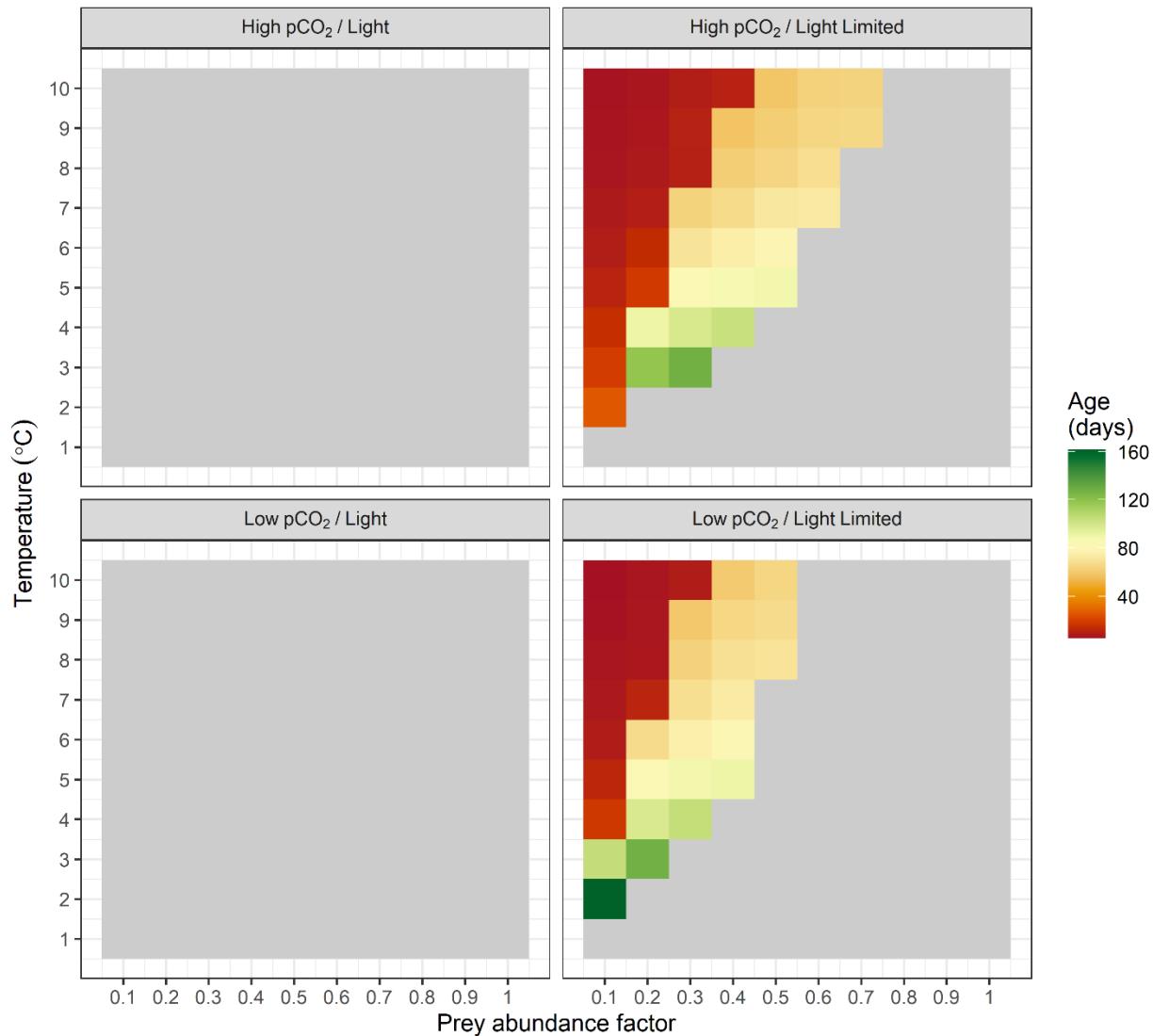
49


56 Figure S7. Spatial density of final locations (September 15) by decade for the RCP4.5 emission
 57 scenario. Information from different oceanographic models was combined. Red and blue colours
 58 indicate higher and lower densities, respectively.

61

62 Figure S8. Sensitivity analysis of the impacts of ocean acidification assumed in this study.
 63 Percentage of fish that survived to September 15, separated by death cause, only for last decade
 64 (2090-2100). All = include the impacts of ocean acidification on all variables, None = no impact
 65 of ocean acidification on any variable. No statistical differences (KS test) were found among
 66 assumed impacts (p-value > 0.1).

67

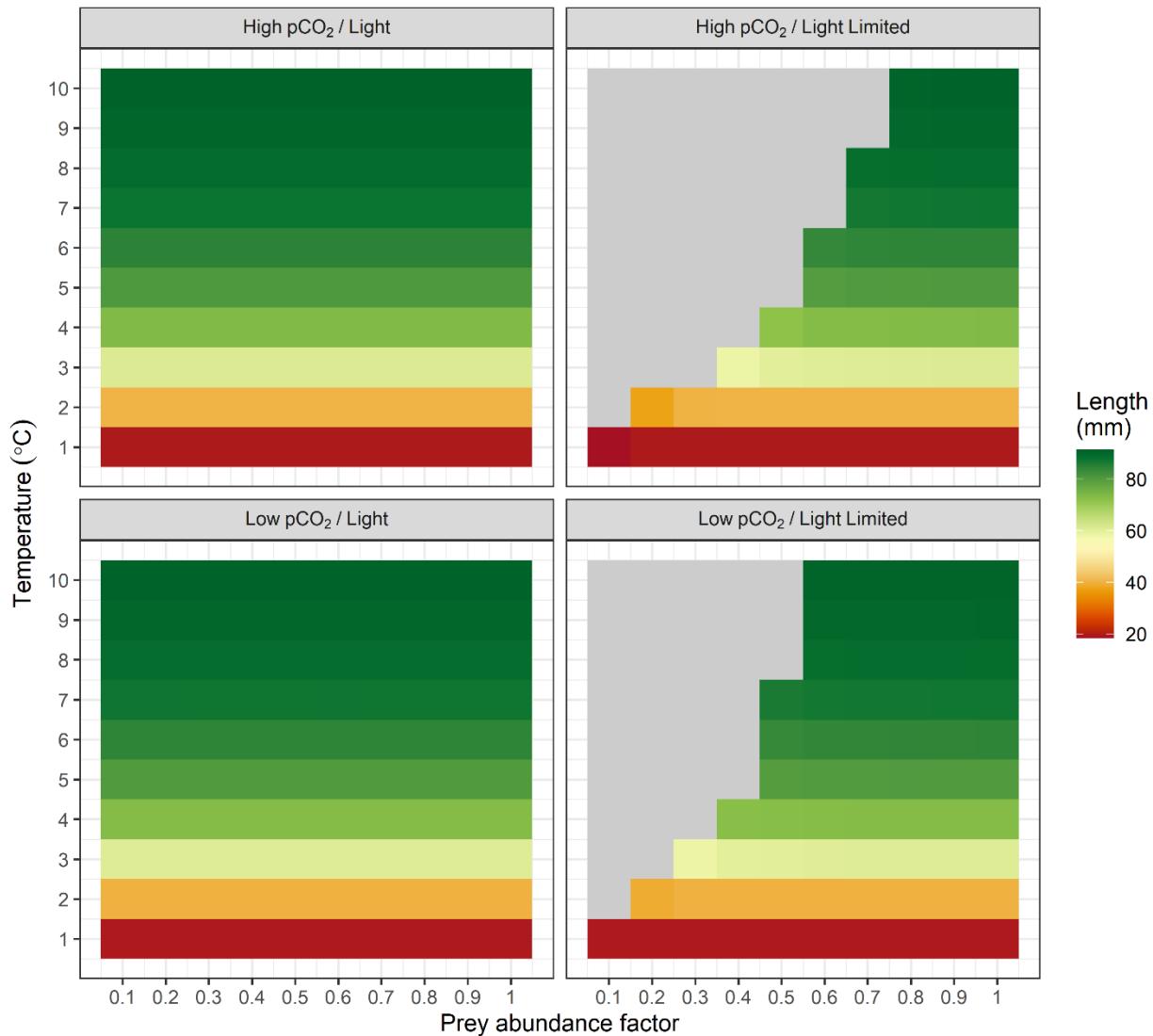

68

69 Figure S9. Sensitivity analysis of the impacts of ocean acidification assumed in this study.
70 Standard length and growth performance for surviving fish, only for the last decade (2090-2100).
71 All = include the impacts of ocean acidification on all variables, None = no impact of ocean
72 acidification on any variable. No statistical differences (KS test) were found among assumed
73 impacts (p -value > 0.1).

74

75

76



77

78 Figure S10. Impacts of low (500 μatm) and high (1500 μatm) pCO₂ on the number of days to die
 79 from starvation of a larva dwelling in a fixed environment with hypothetical conditions. ‘Light’ =
 80 environment with high light intensity, ‘Light limited’ = environment with low light intensity. Gray
 81 grids are combinations where the larva survived 165 days. The prey abundance factor multiplies a
 82 standard vector of prey densities: Euphausiids = 5.5 mgC/m³, On-shelf large-bodied copepods =
 83 1.5 mgC/m³, Off-shelf large-bodied copepods = 1 mgC/m³, Small-bodied copepods = 4
 84 mgC/m³.

85

86

87

88 Figure S11. Impacts of low ($500 \mu\text{atm}$) and high ($1500 \mu\text{atm}$) $p\text{CO}_2$ on the final standard length
 89 (165 days) of a larva dwelling in a fixed environment with hypothetical conditions. ‘Light’ =
 90 environment with high light intensity, ‘Light limited’ = environment with low light intensity. Gray
 91 grids are combinations where the larva died from starvation. The prey abundance factor multiplies
 92 a standard vector of prey densities: Euphausiids = 5.5 mgC/m^3 , On-shelf large-bodied copepods
 93 = 1.5 mgC/m^3 , Off-shelf large-bodied copepods = 1 mgC/m^3 , Small-bodied copepods = 4 mgC/m^3 .
 94

95

96

97 **References**

98 Becker, K.N., Warren, J.D., 2014. Material properties of Northeast Pacific zooplankton. ICES
99 Journal of Marine Science 71, 2550–2563. <https://doi.org/10.1093/icesjms/fsu109>

100 Harding, G., 1977. Surface Area of the Euphausiid *Thysanoessa raschii* and Its Relation to Body
101 Length, Weight, and Respiration. J. Fish. Res. Broad Can. 34, 225–231.
<https://doi.org/10.1139/f77-033>

102 Liu, H., Hopcroft, R.R., 2008. Growth and development of *Pseudocalanus* spp. in the northern
103 Gulf of Alaska. Journal of Plankton Research 30, 923–935.
<https://doi.org/10.1093/plankt/fbn046>

104 Liu, H., Hopcroft, R.R., 2007. A comparison of seasonal growth and development of the
105 copepods *Calanus marshallae* and *C. pacificus* in the northern Gulf of Alaska. Journal of
106 Plankton Research 29, 569–581. <https://doi.org/10.1093/plankt/fbm039>

107 Liu, H., Hopcroft, R.R., 2006. Growth and development of *Neocalanus flemingeri/plumchrus* in
108 the northern Gulf of Alaska: validation of the artificial-cohort method in cold waters.
109 Journal of Plankton Research 28, 87–101. <https://doi.org/10.1093/plankt/fbi102>

110 Saunders, R.A., Rasmussen, J., Tarling, G.A., Brierley, A.S., 2013. Distribution, population
111 dynamics and growth rates of *Thysanopoda acutifrons*, *Thysanoessa inermis* and
112 *Nematobrachion boöpis* in the Irminger Sea, North Atlantic. J. Mar. Biol. Ass. 93, 1287–
113 1301. <https://doi.org/10.1017/S0025315412001385>

114 Silva, T., Gislason, A., Astthorsson, O.S., Marteinsdóttir, G., 2017. Distribution, maturity and
115 population structure of *Meganyctiphanes norvegica* and *Thysanoessa inermis* around
116 Iceland in spring. PLoS ONE 12, e0187360.
<https://doi.org/10.1371/journal.pone.0187360>

117

118

119

120