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Direct remote sensing observations (e.g., radar backscatter, ra-

diometer brightness temperature, or radio occultation bending 

angle) are often more effective for use in data assimilation (DA) 

than the corresponding geophysical retrievals (e.g., ocean sur-

face winds, soil moisture, or atmospheric water vapor). In the 

particular case of Global Navigation Satellite System Refec-

tometry (GNSS-R), the lower-level delay-Doppler map (DDM) 

observable shows a complicated relationship to the ocean surface 

wind feld. Prior studies have demonstrated DA using GNSS-

R wind retrievals inferred from DDMs. The complexity of the 

DDM dependence on winds, however, suggests that the alterna-

tive approach of directly ingesting DDM observables into DA 

systems, without performing a wind retrieval, may be benef-

cial. We demonstrate assimilation of DDM observables from the 

NASA Cyclone Global Navigation Satellite System (CYGNSS) 

mission into global ocean surface wind analyses using a two-

dimensional variational analysis method. Bias correction and 

quality control methods are described. Several models for the 

required observation error covariance matrix are developed and 

evaluated, concluding that a diagonal matrix performs as well as 

a fully populated matrix empirically tuned to a large ensemble of 

CYGNSS observation data. 10-meter surface winds from the Eu-
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ropean Centre for Medium-Range Weather Forecasts (ECMWF) 

operational forecast are used as the background (i.e., prior in the 

variational analysis). Results are compared to independent scat-

terometer (ASCAT, OSCAT) winds. For one month (June 2017) 

of data the root-mean-square difference (RMSD) was reduced 

from 1.17 to 1.07 m/s and bias from -0.14 to -0.08 m/s for the 

wind speed at the specular point. Within a 150-km-wide swath 

along the specular point track, the RMSD was reduced from 1.20 

to 1.13 m/s. These RMSD and bias statistics are smaller than 

other CYGNSS wind products available at this time. 

Keywords — GNSS-R, data assimilation, winds 

1 1 | INTRODUCTION 

2 Global Navigation Satellite System Refectometry (GNSS-R) is a remote sensing technique that uses satellite navigation (GNSS) 

3 transmitters as non-cooperative sources of opportunity in a bistatic radar confguration (Zavorotny et al., 2014). GNSS-R 

4 observations have been collected using receivers on stationary (Soulat et al., 2004), airborne (Garrison et al., 2002) and orbiting 

5 (Gleason et al., 2005; Foti et al., 2015; Ruf et al., 2018) platforms. Ocean surface wind speed is one variable that can be estimated 

6 from GNSS-R observations. The Rayleigh criterion indicates that the ocean surface, under most conditions, will appear rough in 

7 the L-band wavelength (≈ 20 cm) used by satellite navigation signals. GNSS signals are therefore scattered from a region on the 

8 rough ocean surface that is much larger than the frst Fresnel zone. That region, surrounding the specular refection point, is 

9 called the glistening zone. 

10 Early spaceborne GNSS-R missions, UK-DMC (Gleason et al., 2005; Clarizia et al., 2009) and TDS-1 (Foti et al., 2015), 

11 have successfully demonstrated the feasibility of measuring ocean surface winds from space. The NASA Cyclone Global 

12 Navigation Satellite System (CYGNSS) mission, launched in 2016, is a constellation of eight (8) micro-satellites using GNSS-R 

13 for sensing ocean surface winds (Ruf et al., 2013). All CYGNSS micro-satellites are in low Earth orbit (LEO) at an inclination of 

14 35◦, each capable of measuring 4 simultaneous refections, providing up to 32 measurements per second between -38◦ to 38◦ 

15 in latitude. Since precipitation is transparent at L-band frequencies, CYGNSS can give observations in regions experiencing 

16 heavy precipitation including mesoscale convective systems and the inner core of tropical cyclones (TCs). Such regions are 

17 rarely observed by conventional higher frequency satellite scatterometers, which experience signifcant rain attenuation and 

18 can only observe the surface in between areas of heavy precipitation. Those observations have the potential to improve the 

19 understanding of tropical oscillations and the prediction of TCs. Furthermore, the CYGNSS constellation of eight micro-satellites 

20 in low-inclination (35◦) orbits provides wind observations across the global tropics with a 7 hour mean revisit time, flling the 

21 temporal and spatial gaps from conventional microwave instruments, which are mostly in polar orbits (Ruf et al., 2016). 

22 The delay-Doppler map (DDM), generated by cross-correlating the received signal with a replica of the transmitted signal 

23 over a range of delays and Doppler frequencies, is the fundamental physical GNSS-R measurement. Many algorithms have been 

24 developed to retrieve ocean surface wind speed and other observables from the DDM (Clarizia et al., 2009, 2014; Rodriguez-

25 Alvarez and Garrison, 2016; Clarizia and Ruf, 2016; Clarizia et al., 2018; Clarizia and Ruf, 2017; Huang et al., 2019a; Reynolds 

26 et al., 2020; Clarizia and Ruf, 2020). Under nominal operations, the CYGNSS generates DDMs of 17 time delays × 11 Doppler 

27 frequencies in arbitrary units of “counts”. At the CYGNSS science operation center (SOC), the DDM counts are frst calibrated 

28 to units of power (W) and then converted to bistatic radar cross-section (BRCS), resulting in the Level 1 data product (Gleason 
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29 et al., 2016). Two observables, the normalized bistatic radar cross-section (NBRCS) and leading edge slope (LES), are computed 

30 using only a 3 × 5 delay-Doppler window of the DDM centered around the bin closest to the predicted specular point delay, 

31 thereby providing 25 km spatial resolution (Clarizia and Ruf, 2016). 25-km resolution surface wind speeds at specular points (a 

32 Level 2 data product) are retrieved using empirically-developed geophysical model functions (GMFs) relating wind speed to the 

33 NBRCS and LES (Ruf and Balasubramaniam, 2018). CYGNSS Level 2 wind speed retrievals were found to have an overall 

34 RMSD with respect to ECMWF analyses of 1.96 m/s below 20 m/s and an overall RMSD with NOAA P-3 Stepped Frequency 

35 Microwave Radiometer (SFMR) wind observations of 6.45 m/s above 20 m/s (Ruf et al., 2018). 

36 CYGNSS data, have the potential for improving NWP analyses and forecasts through data assimilation (DA). Before 

37 launch, synthetic retrieved wind speeds were produced by an end-to-end simulator for many DA studies. Assimilating simulated 

38 CYGNSS wind products, using the variational analysis method (VAM), into regional NWP analyses for hurricane cases showed 

39 the capability to correct the storm position (Leidner et al., 2018). Simulated winds were also assimilated into the Hurricane 

40 Weather Research and Forecasting (HWRF) model by a Gridpoint Statistical Interpolation (GSI) analysis system and evaluated 

41 by observing system simulation experiments (OSSEs). These results showed that CYGNSS observations could improve the 

42 forecast of TCs both in track and intensity (Zhang et al., 2017; Annane et al., 2018). Another DA experiment, based on multiscale 

43 tropical weather systems, showed that simulated CYGNSS winds could improve the low-level wind and temperature (Ying and 

44 Zhang, 2018). Recent results from assimilating actual CYGNSS winds also showed improvements in forecasts of TC track, 

45 intensity, and structure (Cui et al., 2019; Li et al., 2020). A preliminary study of assimilating CYGNSS winds into global NWP 

46 models demonstrate CYGNSS winds’ capability to provide more detail in the analysis of global tropical surface winds (Leidner 

47 et al., 2020). 

48 While the CYGNSS Level 2 retrieved wind speeds have been used in many DA studies, CYGNSS Level 1 DDM power can 

49 be assimilated directly, following similar approaches used for radiance (Andersson et al., 1994), radar backscatter, radiometer 

50 brightness temperature (Lievens et al., 2017) and radio occultation bending angle (Cucurull et al., 2013). Potential advantages of 

51 assimilating Level 1 DDMs, in contrast to Level 2 wind speed retrievals, include the following: 

52 1) The observables, NBRCS and LES, used for the CYGNSS wind retrieval are calculated by assuming the geometries 

53 and power parameters for all DDM bins in the 3 × 5 box are the same. The failure of this assumption can introduce 

54 non-geophysical dependence on the observables. Direct assimilation of the DDMs can account for these non-geophysical 

55 factors. 

56 2) Direct assimilation of DDMs using a physically-based forward operator can incorporate additional physical factors such as 

57 nonlocal components of the wave feld. 

58 3) The full DDM contains more information on the ocean refections over a larger region of the glistening surface than a wind 

59 speed retrieval estimated from only a few bins around the specular point. 

60 4) With a larger footprint (≈ 100 km), the assimilation of full DDMs can impact the analysis over a broader area. 

61 5) The CYGNSS specular point moves at a speed of about 6 km/s on the earth’s surface, allowing each point on the ocean 

62 surface along the track to be observed by more than 15 sequential DDMs. This feature provides a large number of 

63 “multi-look” observations and could achieve better accuracy if the observation errors are characterized properly to avoid 

64 over-ftting. 

65 Several DA system components are required to successfully assimilate remotely sensed data such as DDMs. First, DDM 

66 assimilation requires a forward model for DDM power as a function of the surface wind speeds. A forward operator and Jacobian 

67 have been developed, in which the states are wind speeds on a 10-km grid covering the glistening zone (Huang et al., 2020a). 

68 This high resolution grid can represent wind speed variation within the large footprint of the full DDM. Second, a bias correction 

69 scheme is required since the modeled DDM power computed by the forward operator is sensitive to bias in the estimated power 
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70 parameters. Third, the error covariance of the DDMs must be estimated. 

71 A comprehensive summary of our method of assimilating CYGNSS DDMs into global NWP analyses is presented in this 

72 study. A two-dimensional VAM is used as the DA method. A bias correction method is also described and error characteristics 

73 (covariance matrix) of the DDM observation are discussed. One month of CYGNSS DDMs were assimilated using a 20 minute 

74 cycle. The background is the short-range forecast of 10-meter near-surface winds of the European Centre for Medium-Range 

75 Weather Forecasts (ECMWF) model. DA performance is assessed by comparison with collocated scatterometer winds. We 

76 will show two benefts of DDM assimilation: 1) A positive impact on the VAM analyses over a swath at least 150-km wide; 2) 

77 The VAM wind vector retrievals at specular points are more accurate than CYGNSS Level 2 winds and other CYGNSS wind 

78 products. 

79 The outline of the paper is as follows. The DDM measurement is introduced in section 2. The DA method is presented in 

80 section 3. Methods for computing the DDM error covariance matrix are proposed in section 4. Section 5 assesses the DDM 

81 assimilation by validation against scatterometer winds and comparison to other CYGNSS wind products. Section 6 discusss the 

82 computational effciency of the DDM assimilation. Conclusion remarks are given in section 7. The Appendix provides details on 

83 the development of the DDM covariance matrix model. 

84 2 | GNSS-R DDM MEASUREMENTS 

85 The GNSS-R DDM is calculated by frst cross-correlating the refected signal with a model of the transmitted signal over a range 

86 of delays, τ , and Doppler frequencies, f , producing a complex function, X (t , τ, f ). The power of this complex voltage signal 

87 is then incoherently averaged to reduce the speckle noise. Bins at (τ , f ) known not to contain signal (shorter delay than that 

88 through the specular point) are used to estimate the noise foor, Yn , which is is subtracted from the average, giving 

ÕN 
1 

Y (t , τ, f ) = |X t ( , 2 (  + m − 1)TI , τ f ) | − Y
N n (1) 

m=1 

89 Y (t , τ, f ) is calibrated to units of power in the CYGNSS Level 1 product (Gleason et al., 2016). The CYGNSS receiver uses a 

90 coherent integration time of TI = 1 ms and averages N = 1000 samples, giving an incoherent integration time of 1 sec. CYGNSS 

91 DDMs are provided at 17 discrete delays at increments of 0.25 GPS C/A (Coarse Acquisition) code chip (244 ns) and 11 discrete 

92 Doppler frequencies at increments of 500 Hz. An example of the Level 1 DDM measurement is shown in Figure 1(a). 

93 The “horseshoe” shape of the DDM represents power refecting from the glistening zone, with a diameter ranging from 

94 100 to 150 km, depending on the incidence angle and receiver altitude. Each bin of the DDM at a specifc (τ, f ) is sensitive to 

95 refected power from points on the surface having a total path delay within one code chip and Doppler frequency within 1 kHz of 

96 (τ, f ). Due to the geometry and delay/Doppler range selected by the receiver, some delay-Doppler bins of the DDM contain 

97 little or no information about the surface wind speed. Those observations are not useful for DA and need to be discarded. An 

98 empirical method is applied to select informative DDM bins. Only bins with power magnitude larger than 10% of the peak 

99 DDM power are selected for use in DA. The informative bins of the DDM in Figure 1(a) are shown in Figure 1(b). All K of the 

100 informative DDM bins at one time, t , are grouped into a vector 

⎡⎢Y (t , τ1, f  ⎤1) ⎥⎢ ⎥⎢⎢Y (t , τ2, f2) ⎥⎥Y(t ) = ⎢ ⎥ (2)⎢ . ⎥⎢ . 
. ⎥⎢ ⎥⎢ ⎥⎣Y  (t , τK , fK )⎦  



5 HUANG ET AL. 

DDM observation

-2 -1 0 1 2

Doppler (kHz)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

D
e
la

y
 (

c
h
ip

)

0

2

4

6

8

10

10
-18 DDM observation

-2 -1 0 1 2

Doppler (kHz)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

D
e
la

y
 (

c
h
ip

)

0

2

4

6

8

10

10
-18

(a) (b) 

F I G U R E 1 An example of the CYGNSS Level 1 17 × 11 DDM power measurement (a) and DDM informative bins used in 
DA shown as black circles (b). Units in watt. 

101 which will be used as the observation in DA. 

102 3 | DATA ASSIMILATION METHOD 

103 3.1 | The variational analysis method 

104 This study uses a two-dimensional VAM, based on the surface wind vector feld, to assimilate DDMs. This approach was frst 

105 introduced in Hoffman (1982, 1984) and Hoffman et al. (2003) to resolve scatterometer wind ambiguities and then applied to 

106 assimilate satellite wind observations from a large-scale dataset in Atlas et al. (2011). Leidner et al. (2018) used it to add wind 

107 direction information to the CYGNSS retrieved wind speed in an OSSE. It was applied to demonstrate DDM assimilation using a 

108 few examples in Huang et al. (2020a). 

109 The VAM fnds the optimal feld of wind vectors, x, that minimizes a cost function 

J (x) = Jb (x) + Jo (x) + Jc (x) (3) 

110 composed of three terms: Jb , representing the difference between the wind feld and the background, 

1 
Jb (x)  = λb (x − x T

b ) (x − xb ), (4)
σ2 
b 

111 Jo , representing the difference between the wind feld and the observation, 

Jo (x) = λ T −1
ddm (h(x) − Y) R (h(x) − Y), (5) 

112 and Jc , the constraint term, 

Jc (x) = λl ap Jl ap (x) + λdiv Jd iv (x) + λvor Jvor (x) (6) 

113 where xb is the background wind vector feld, σ2 is the standard deviation the background wind components. h() 
b of is the DDM 
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114 forward operator. Y is the DDM observation. R is the observation error covariance matrix. Jl ap , Jd iv and Jvor are the Laplacian, 

115 divergence and vorticity of the increment. λb , λddm , λl ap , λdiv and λv or are the weights of each term. Details for calculation of 

116 the constraint terms are given in Hoffman et al. (2003). 

117 In the term Jb , the background error is characterized by a single constant value, σ2 
b . The background error correlations

118 are characterized by the constraint term Jc , which is derived from the Navier-Stokes equations for viscous fuid motion. The 

119 combination of Jb and Jc takes the place of the usual background term in a traditional DA variational DA that includes a 

120 full background covariance matrix, as explained in Hoffman et al. (2003). Rather than assimilating all DDMs in one cost 

121 function, the DDMs on each CYGNSS specular point track are assimilated sequentially to reduce the computation and memory 

122 requirements. One DDM will be assimilated at a time and the analysis wind feld will be updated after processing each DDM 

123 until all observations within the DA cycle have been assimilated. The observation error covariance matrix, R, represents the 

124 errors and correlations of all DDM bins at the same time (i.e., in one Y vector). The matrix R will be characterized in section 4. 

125 Tuning the background and observation weights λb and λddm can improve the a priori estimated errors of the background and 

126 observation in the VAM as these errors are usually based on limited information (Hoffman et al., 2003). The constraint weights 

127 λl ap , λdiv and λvor should be large enough to correctly shape the error correlations of the background wind feld. They are set to 

128 ensure that the infuence of the observations spreads out to the scale of the effective model resolution. The weight values used in 

129 the experiments will be specifed in section 5.2. 

130 3.2 | DDM forward operator and Jacobian 

131 A numerical forward operator and its Jacobian, which represent the measurement physics, are required in any DA system. In the 

132 case of DDM assimilation, the forward operator projects the discrete wind feld into the DDM measurement space. The DDM 

133 forward operator has been presented in Huang et al. (2020a). It is based on a Kirchoff Approximation and Geometric Optics 

134 (KA-GO) surface scattering model (Zavorotny and Voronovich, 2000). The ocean surface slope probability density function 

135 (PDF), a key parameter of the KA-GO model, is assumed to be an isotropic normal distribution defned by a single parameter, the 

136 omni-directional mean square slope (MSS). An empirical model derived from aircraft experiments (Katzberg et al., 2006) gives a 

137 monotonic relationship between MSS and wind speed. Waves driven by nonlocal winds (e.g., swell) are not considered in the 

138 forward model, but could be considered in the future if ancillary data such as signifcant wave height from a wave model were 

139 available. The wind feld around the specular point within an area of 120 km × 120 km is gridded into 0.125◦ spacing for input to 

140 the forward operator. The forward operator takes in the satellite geometries, transmitter Equivalent Isotropically Radiated Power 

141 (EIRP), specular bin indices from the CYGNSS Level 1 product, receiver antenna patterns, as well as the gridded wind feld to 

142 produce a modeled DDM in the same delay-Doppler coordinates as the measured one. The Jacobian represents the sensitivity of 

143 each DDM bin with respect to the wind speed of each surface grid point. It is computed analytically by linearizing the forward 

144 operator. Details of the computation in the forward operator and Jacobian are described in Huang et al. (2020a). The assessment 

145 of the forward operator in Huang et al. (2020a) shows that it performs well at a certain range of wind speed under adequate bias 

146 correction and quality control. In particular, in Huang et al. (2020a), we have assessed that the impact of swell is negligible 

147 except under very low wind speeds (e.g., < 2 m/s) and these cases are removed in this study during quality control (QC). 

148 3.3 | Bias correction 

149 It is crucial to have unbiased observations in order to obtain the Best Linear Unbiased Estimator (BLUE) in DA (Bouttier and 

150 Courtier, 2002). Bias can arise in the measurement or the forward operator and should be removed before assimilating the 

151 observations. The DDM forward operator requires an estimate of the transmitter Effective Isotropic Radiated Power (EIRP) and 

152 the receiver antenna patterns for each CYGNSS satellite. The CYGNSS mission uses a ground-based power monitor to estimate 
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153 the EIRP, which is provided in the Level 1 data (Wang et al., 2019). Receiver antenna patterns are estimated by pre-launch 

154 measurements and on-orbit corrections (Gleason et al., 2018). These patterns were made available to us by the CYGNSS project 

155 and are distributed as part of the forward model code (Huang et al., 2020b). Previous studies have found bias in the CYGNSS 

156 observations which largely resides in the estimated transmitter EIRP with some contribution from the receiver antenna patterns 

157 (Ruf et al., 2018; Huang et al., 2019b). In order to remove this bias, we assume that the GPS transmitter EIRP remains constant 

158 for all observations along the same CYGNSS specular point track. This is a reasonable assumption, given that the duration of a 

159 track is generally less than 20 minutes. This suggests a “track-wise” DDM bias correction scheme, similar to that used by Said 

160 et al. (2019) for correcting bias on the retrieved wind speed. In our DA approach, however, a bias correction will be applied to 

161 the DDM power. 

162 Our basic assumption is that the background wind feld from a global NWP model (e.g., ECMWF) is globally unbiased 

163 (Stoffelen and Vogelzang, 2018). Thus, comparing the average of a large sample of measurements against model predictions 

164 from a background reference can be used to correct the observation bias. In this scheme, DDMs on a continuous specular point 

165 track formed by one specifc pair of GPS transmitter and CYGNSS receiver are frst identifed. Assuming both the transmitter 

166 EIRP and uncertainty in the receiver antenna gain patterns are multiplicative error sources, a scaling term is computed as the 

167 mean proportion between the M measured DDMs and the corresponding modeled DDM computed from the background along 

168 the specular point track. 

ÕM  ÕK1 1 m  Yi (t m )
Φ = (7)

M Km hi (x, tm )m=1 i =1 

169 where tm is the time of the m-th DDM; Km is the number of informative bins of the m-th DDM; hi (x, tm ) is the power of the i-th 

170 modeled DDM bin at time tm , computed from the background wind feld using the forward operator. 

171 When assimilating DDMs on the track, each modeled DDM from the forward model is multiplied by the scaling term Φ, 

172 such that the cost function (5) becomes 

Jo (x) =  λddm (Φh(x T) − Y) R−1(Φh(x) − Y) (8) 

173 Figure 2 shows the specular bin power of DDM observations, DDM and bias-corrected DDM forward model estimates from 

174 an example track. The systematic bias between the models and observations is signifcantly reduced by the bias correction. 

175 3.4 | Quality control 

176 The following QC tests are applied to flter CYGNSS Level 1 DDM observations before DA. 

177 1) The netCDF variable “quality_fags” values in the CYGNSS L1 data are required to be zero. This discards cases in which 

178 the observation is over or close to land, the spacecraft has attitude rotation larger than 1◦ , the transmitter power has a high 

179 uncertainty or there are some calibration issues. 

180 2) All data with signal-to-noise ratio (SNR) less than 3 dB are discarded. Small SNR indicates high noise power, making it 

181 diffcult to extract informative DDM bins. 

182 3) All data with incidence angle larger than 60◦ are discarded. DDMs observed under large incidence angle can have a 

183 glistening zone larger than 120 km × 120 km, which cannot be modeled accurately by the forward operator. 

184 4) All data with background wind speed at the specular point less than 2 m/s or larger than 35 m/s are discarded. The swell 

185 at very low wind speed cases and the complicated sea state at very high wind speed cases cannot be modeled well by the 
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F I G U R E 2 Specular bin power (units in watt) of DDM observations (Y), DDM forward model estimates (h(x)) and 
bias-corrected DDM forward model estimates (Φh(x)) from an example track. Observations of the track were collected within 
22:22:49 to 22:28:27 UTC on 1 June 2017 with CYGNSS Space Vehicle (SV) 4 and GPS Psuedo Random Noise (PRN) 17. 

186 forward operator (Huang et al., 2020a). The reduced sensitivity of the DDM to high wind speed is also well known. 

187 5) Relative power difference and correlation coeffcient between the observed DDM and modeled DDM from the background 

188 are used to identify additional observation data quality issues and avoid model representativeness errors. They are discussed 

189 in detail in Huang et al. (2020a). Data with relative power difference larger than 100% and correlation coeffcient less than 

190 0.9 are discarded. 

The QC tests and the yield (percent passing) for each one are summarized in Table 1. 

Observation Characteristic Must be Yield 

CYGNSS L1 “quality_fags” variable 0 25% 

SNR > 3 dB 57% 

Incidence angle < 60◦ 88% 

Wind speed at specular points 2–35 m/s 87% 

Relative power difference < 100% 99.9% 

Correlation coeffcient > 0.9 99% 

TA B L E 1 QC tests and yields for the assimilation of CYGNSS DDMs. 

191 

192 4 | ERROR CHARACTERISTICS OF DDM OBSERVATIONS 

193 In addition to unbiased observations, an accurate observation error covariance matrix, R, is required for optimal estimation in 

194 DA. Observation errors usually include measurement error (error related to the instrument and measurement technique) and 

195 representation error (e.g., error related to the forward operator and differences in scales between the observation and the analysis) 
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196 (Janjić et al., 2018). This section will only focus on the statistics of the measurement error as the representation error can be 

197 accounted by varying the weights λddm in equation (5) as described in section 3.1. 

198 As stated earlier, the VAM assimilates one DDM each time and the observation error covariance matrix, R, represents the 

199 errors and correlations of all K informative bins in one measured DDM 

⎡⎢  σ2 ⎤
· · · σn ⎢ 1 1K ⎥o ⎥⎢ . . ⎥R = Å (Y T . − Å{Y}) (Y − Å{Y}) = ⎢ . . . ⎢ . . ⎥ . (9) . ⎥⎢ ⎥⎢σ K 1 · · ·  ⎣ σ2 ⎥

K ⎦ 
200 The observation Y is a vector assumed to follow a Gaussian distribution by the central limit theorem as it is an average value over 

201 a large number, N by equation (1). 

202 Measurement error is assumed to come from both background noise and speckle noise. Background noise includes thermal 

203 emission from the ocean, correlation of the signal with that from other GNSS transmitters, and receiver thermal noise (Gleason 

204 et al., 2019). In this study, the background noise is assumed to be stationary white Gaussian, as the impact of the correlation 

205 from ambient signals is negligible, as discussed in Gleason et al. (2019). Speckle is the result of distructive and constructive 

206 interference of random scattered signals during the coherent integration time. The background noise is additive while the 

207 speckle noise is multiplicative (Gleason et al., 2010). In previous studies, analytical models for second order statistics of the 

208 DDM complex voltage signal in the delay dimension, X (t , τ, 0), were derived by considering both thermal noise and speckle 

209 (Martín-Neira et al., 2011; Germain and Ruffni, 2006; Martín et al., 2014; Garrison, 2016). A detailed analytical model of 

210 the covariance matrix of the averaged DDM power in the delay dimension was derived and validated using actual data (Li 

211 et al., 2018). Analytical models, however, have practical limitations for direct use in DDM assimilation. First, those models 

212 require knowledge of the thermal noise statistics (equivalent thermal noise temperature) which is not estimated accurately for 

213 the CYGNSS mission. Second, present models only consider the correlations between measurements at different delays, while 

214 the correlations in the Doppler dimension and between the delay and Doppler are not characterised. Finally, analytical models 

215 require computation of a surface integral and convolution with the Woodward ambiguity function, which is computationally 

216 expensive and thus not practical for large scale DA. Another approach often used in NWP applications is to compute the error 

217 covariance directly from a large number of observation samples (Desroziers et al., 2005; Waller et al., 2016; Cordoba et al., 2017). 

218 This method has a very low computational cost at the expense of requiring a large ensemble of observations with the same error 

219 statistics. In the spaceborne GNSS-R application, however, the relatively low sampling frequency (1 Hz for CYGNSS) and high 

220 receiver speed (resulting in fast changes in the geometry, antenna gain and observed wind feld), limits the set of observations 

221 with similar statistics to a number too small to give a good estimation of the covariance matrix. 

222 In this section, two methods to compute the DDM error covariance matrix are proposed. One method assumes it to be a 

223 diagonal matrix with error proportional to the observation and another method uses an empirical model which includes the error 

224 correlations. 

225 4.1 | Scale method 

226 In the NWP data assimilation, it is common to use a diagonal observation error covariance matrix as the error correlations are 

227 generally diffcult to estimate. The use of a diagonal matrix R has simple implementation and low computational cost but may 

228 lose information from the observation error correlations (Hoffman, 2018). 

229 Gleason et al. (2016) estimated the error in CYGNSS Level 1 DDM power to be 0.50 dB (12%) and 0.23 dB (5%) for 

230 wind speed below and above 20 m/s, respectively, by analyzing each error source in the Level 1 calibration (Table II in Gleason 

231 et al. 2016). With this in mind, we simply model the error as proportional to the observation magnitude. We used a constant of 
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232 proportionality of 10% (in between the two values in (Gleason et al., 2016)) to create a diagonal covariance matrix with 

Ri i = (0.1Yi )
2 (10) 

233 4.2 | An empirical model 

234 In this section, a parametric model for the DDM error covariance matrix, incorporating off-diagonal elements, is empirically 

235 developed from a large set of CYGNSS Level 1 observations. We will show that this model provides a good representation 

236 of the DDM error statistics with a low computational cost. The Appendix provides a more detailed description of the model 

237 development. 

238 In this model, the diagonal elements (variance) and the off-diagonal elements (covariance) of the matrix are modeled 

239 separately by parametric ftting to sample covariance matrices computed from actual DDM observations. For each observation at 

a specifc delay-Dopler coordinate of the DDM, Y (t , τi , fi ), the variance is modeled as the sum of that from speckle, σ2 , and a 240 
i ,s 

241 background noise, σ2, assumed constant and independent of the delay-Dopler coordinate. n 

σ2 = σ2 + σ2 (11)i i ,s n 

242 Speckle noise for a single observation (before averaging) is proportional to the signal magnitude. Modeling variance of the 

243 incoherently-averaged observation, σ
i 
2 
,s , however, would require accounting for the correlation between sequential waveforms 

244 (Li et al., 2018). We attempted to approximate this with a simpler functional dependence, by assuming a general power law 

245 relationship, 

σi ,s = p[i ]Y q [i ]
, (12)

i 

246 Coeffcients, p[i ], and exponents, q [i ], are indepdendently estimated for each of the discrete 11 × 17 delay-Doppler bins, from a 

247 large set of data spanning a wide range of surface wind speeds and other conditions. 

248 The off-diagonal elements, σi j , represent correlation between a pair of bins from the same DDM, at different delay-Doppler 

249 coordinates, (τ, f )i and (τ, f )j . This can be normalized to defne the correlation coeffcient, ρi j 

σi j = σi σj ρi j . (13) 

250 We have observed that ρ has a dependence on wind speed , which could also be explained by several analytical models (listed in 

251 Appendix). An empirical parametric model for the dependence of the correlation coeffcient on wind speed is assumed to take 

252 the form of 

−1 −2ρi j = a[i , j ] + b[i , j ]u + c[i , j ]u (14) 

253 where u is the background wind speed at the specular point. Please refer to the Appendix for details of the development of the 

254 model and computation of the parameters a, b, c, p, q . 

255 Figure 3 presents a typical example for the comparsion of the different covariance matrix models. Figure 3(a) is the DDM 

256 observation collected by CYGNSS SV 2 with GPS PRN 20 at 22:58:59 UTC on 1 June 2017. Figure 3(b) is the corresponding 

257 diagonal covariance matrix computed by the scale method in section 4.1. Figure 3(c) is the corresponding non-diagonal covariance 

258 matrix computed by the empirical model developed in section 4.2. Figure 3(d) is the sample covariance matrix computed from 
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F I G U R E 3 Comparison between the modeled DDM error covariance matrices and DDM sample covariance matrix for the 
CYGNSS mission. (a) DDM observation with informative bins as red circles. (b) Diagonal covariance matrix computed by the 
scale method in section 4.1. (c) Non-diagonal covariance matrix computed by the model in section 4.2. (d) Sample covariance 
matrix computed from sequential 25 DDMs. 

259 DDM observations between 23:58:47 and 23:59:11 UTC with CYGNSS SV 2 and GPS PRN 20. Note that the sample covariance 

260 matrix can be noisy because it is computed using only 25 samples. It can be observed that the empirical non-diagonal covariance 

261 matrix model captures much of the structures of the sample covariance matrix. Note that the covariances in panels (b)–(d) appear 

262 patchy because we have to “unroll” the 2D DDM (e.g., panel (a)) into a vector for DA (equation (2)). The covariances presented 

263 here are computed for that “unrolled” vector. 

The inverse of the covariance matrix, R−1 
264 , is required in the VAM cost function (5). It is found that the covariance 

265 matrix computed by the empirical model is often ill-conditioned, making it diffcult to compute an accurate inverse. Ridge 

266 regression (Tabeart et al., 2020), a reconditioning method, is applied to reduce the condition number of the matrix to ~100. This 

267 method increases the diagonal values of the matrix by a fxed number and thus will also increase the modeled variances of the 

268 observations. 

269 5 | GLOBAL DATA ASSIMILATION RESULTS 

270 5.1 | Data description and experimental design 

271 5.1.1 | CYGNSS DDM observations 

272 CYGNSS version 2.1 Level 1 DDM data from 1 June 2017 to 30 June 2017 were used as observations. Details about the 

273 CYGNSS DDM observations were introduced in section 2. Level 1 data also include the transmitter EIRP and satellite geometries, 

274 estimated by the CYGNSS SOC. Receiver antenna patterns were separately provided by the SOC as well. 

275 5.1.2 | ECMWF background 

276 ECMWF is an independent intergovernmental organisation aiming to provide accurate medium-range global weather forecasts 

277 supported by most European countries (Owens and Hewson, 2018). Zonal and meridional (u, v) components of the 10-meter 

278 ocean surface winds provided by the ECMWF operational short-range forecast (background in the four-dimensional variational 

279 analysis system) from 1 June 2017 to 30 June 2017 were used for the background wind feld. The ocean surface winds in 

280 ECMWF are hourly forecasts initiated from analysis times at 00UTC and 12UTC on a grid spacing of 18 km. 
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281 5.1.3 | Scatterometer winds 

282 A scatterometer is an instrument to measure the roughness of a surface using radar backscatter. Spaceborne scatterometers have 

283 provided accurate wind feld information for meteorology and climate over the past decades. Scatterometer (SCAT) 10-meter 

284 ocean surface winds from ASCAT aboard the Metop satellites (Metop-A and Metop-B) and OSCAT aboard the ScatSat-1 satellite 

285 (OSI SAF/EARS Winds Team, 2019; OSI SAF Winds Team, 2018) were used for validation in this study. The Metop satellites 

286 were developed by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the ScatSat-1 

287 satellite was developed by the Indian Space Research Organisation (ISRO). ASCAT has two sets of three antennas measuring 

288 ocean surface winds in two 550-km-wide swaths on both sides of the satellite ground track. It provides 10-meter wind products 

289 with 25-km and 12.5-km cell spacing. OSCAT uses a dish rotating antenna measuring ocean surface winds in an 1800-km-wide 

290 swath, providing 10-meter wind products in 50-km and 25-km cell spacing. The 25-km products from both instruments were 

291 used in this study to evaluate the result of DDM assimilation. 

292 The 25-km zonal and meridional wind components measured by both instruments have been validated to have error standard 

293 deviation less than 1 m/s by a triple collocation method compared to buoy wind measurements and NWP models (Stoffelen et al., 

294 2017; Verhoef et al., 2018). We never know the true wind speed in the real world. Buoy data are useful for validation, but have 

295 very limited spatial sampling compared to the satellite observations and can be affected by swell and wave refections in coastal 

296 areas. SCAT (ASCAT especially, and OSCAT to a lesser degree) are very well-known and characterized systems for the last 30 

297 years that provide accurate observation and excellent sampling of those parts of the ocean that CYGNSS measures. Given the 

298 high availability and accuracy of SCAT data (less than 1 m/s), SCAT data are used as “ground truth” in this study. It should be 

299 kept in mind that all validation statistics presented are statistics of differences, not errors. 

300 5.1.4 | CYGNSS wind products 

301 The CYGNSS Level 2 product, CYGNSS Climate Data Record (CDR) product and NOAA CYGNSS wind product are three 

302 different wind speed products retrieved from the CYGNSS Level 1 product using different algorithms. They will be compared to 

303 results of the DDM assimilation at the specular points. 

304 • CYGNSS Level 2 product v2.1: Two observables, NBRCS and LES are frst computed from a 3×5 window of the Level 1 

305 DDM BRCS around the specular point. Two GMFs are developed to retrieve the 25-km surface wind speed at the specular 

306 point from these two observables. The two resulting wind speeds are then optimally combined to derive the minimum 

307 variance (MV) wind speed (Clarizia and Ruf, 2016). 

308 • CYGNSS Level 2 CDR product v1.0: This is a new wind product released by CYGNSS SOC in 2020 (Ruf and Twigg, 2020). 

309 It is similar to the CYGNSS Level 2 product except that the observables NBRCS and LES are track-wise corrected using 

310 NASA’s MERRA-2 wind product to calibrate the GPS transmitter EIRP. Additional QC is also applied to the observables. 

311 • NOAA CYGNSS wind product: Prepared by the National Oceanic and Atmospheric Administration (NOAA), this product is 

312 a 25-km surface wind speed at the CYGNSS specular points (Said et al., 2019). A new GMF was derived that expresses 

313 the CYGNSS NBRCS observable as a function of wind speed, incidence angle and signifcant wave height. The NBRCS 

314 observables are also track-wise corrected using the ECMWF model. 25-km gridding is implemented along each track to 

315 avoid overlapping observations. Additional rigorous QC is applied to the data. 
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F I G U R E 4 An example of the collocation for CYGNSS specular points, 0.125◦ grid points of the CYGNSS 80-km-wide 
swath, and 25-km WVCs of the SCAT swath in the period 00:00–00:20 UTC on 10 June 2017. The CYGNSS observations are 
measured by CYGNSS SV 5 from GPS PRN 14 signals. The SCAT measurement locations are for ASCAT-A. 

316 5.1.5 | Experimental design 

317 The CYGNSS specular points were collocated with the SCAT wind vector cells (WVC) for all data from 1 June 2017 to 30 June 

318 2017. Maximum differences of 40 minutes in time and 25 km in distance were used as criteria for collocation. If a CYGNSS 

319 specular point is collocated with several WVCs from different satellites (Metop-A, Metrop-B or ScatSat-1) then the average 

320 value of the wind speeds in all collocated WVCs was used. The DA experiment was done using a 20 minute cycle (0–20, 20–40, 

321 40–60 minutes in each hour). In each 20-minute period, the analysis time is at the center of each cycle and the wind feld is 

322 assumed to be constant. Hourly ECMWF surface winds were quadratically interpolated to the center time of each cycle from 

323 0000 UTC on 1 June 2017 to 2400 UTC on 30 June 2017 and used as the background. The original ECMWF surface winds were 

324 also bilinearly interpolated to 0.125◦ grid spacing to match the working resolution of the DDM forward operator. In each cycle, 

325 all CYGNSS DDMs that were measured within the time period, passed the QC described in section 3.4, and were collocated 

326 with the SCAT WVCs were assimilated with the background using the VAM to produce the analysis on a 0.125◦ grid. 

327 Two comparisons were made between the analysis winds and the reference SCAT winds. 

328 • Comparison at the specular points: Wind vectors from the background and analysis wind feld are linearly interpolated to 

329 the CYGNSS specular points and then compared to the collocated SCAT winds. 

330 • Comparison over a swath along the specular point track: In order to evaluate the extent of the impact of assimilating DDMs, 

331 the wind vectors are compared over a much larger area than the one grid cell located at the specular point. CYGNSS data 

332 are frst separated into different tracks corresponding to a specifc pair of GPS transmitter and CYGNSS receiver. Along 
◦ 

333 each track, background and analysis wind vectors on the 0.125 grid within a swath of a certain width are compared with 

334 collocated SCAT observations. Wind speeds at SCAT WVCs are linearly interpolated to the 0.125◦ grid of VAM wind feld 

335 for the comparison. Figure 4 shows an example of the collocation for CYGNSS specular points, an 80-km-wide swath of 

336 the VAM gridded wind feld, and 25-km SCAT WVCs. 

337 The results of using three different DDM error covariance matrices are also compared: (a) a diagonal matrix using the scale 

338 method presented in section 4.1 (R-scale); (b) a diagonal matrix whose diagonal values are computed using the model presented 
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(a) (b) (c) 

F I G U R E 5 Wind speed increments (analysis−background) of assimilating a single DDM using different constraint weights. 
(λdiv , λvor , λl ap ) = (a) (50, 100, 25); (b) (200, 400, 100); (c) (800, 1600, 400). Higher weights increase the extent of the impact 
of new observations and reduce the increment’s intensity. The DDM is observed by CYGNSS SV 4 and GPS PRN 2 at 1:18:43 
UTC on 1 June 2017. The background and observation weights are 4 and 1/4 in all three cases. 

339 in section 4.2 (R-model-diagonal); (c) a non-diagonal matrix computed using the model presented in section 4.2 (R-model). 

340 5.2 | Tuning the weights 

341 As introduced in section 3.1, there are a number of coeffcients that can be used to weight the relative importance of the 

342 background winds vs. the new information. The constraint term and its weights describe background error correlations. In the 

343 study, the weight and standard deviation of the background wind components were fxed to be σb = 1 m/s and λb = 4. Only 

344 the ratio between these weights is important. The observation weight, λddm , and constraint weights, λl ap , λdiv , λv or were 

345 then determined by a series of sensitivity tests. In general, increasing the observation weight increases the intensity of the DA 

346 response, making the analysis closer to the observation, but does not change the shape of the response. Increasing the constraint 

347 weights increases the spatial scale of the response and decreases the intensity. λl ap controls the smoothness of the response. λdiv 

348 and λv or control the shape of the response. Increasing the observation and constraint weights will also increase the number of 

349 iterations and computation cost in the minimization. 

350 The constraint weights were frst determined by a sensitivity test. Since they describe the background error correlations, 

351 the spatial scale of the response should be similar to the scale of the background effective resolution. It is important to note 

352 that the NWP grid spacing size and the model’s effective resolution are different. In previous studies, the effective NWP model 

353 resolution was found to be 4-8 times larger than the grid spacing size (Skamarock, 2004; Abdalla et al., 2013). In our case, 

354 the effective model resolution of the ECMWF background is expected to be around 150 km (Stoffelen et al., 2018). Figure 5 

355 shows the responses of assimilating a single DDM observation using three different sets of constraint weights. This example 

356 clearly show that increasing the constraint weight increases the area over which observations would have an effect. The DDM 

357 covariance is computed by the scale method and the observation weight λddm is 1/4 in all three cases. 

358 Considering that the footprint of a DDM observation is around 100 km and the model’s effective resolution is around 150 

359 km, the scale of the response should be about 250 km. By the sensitivity test, the constraint weights were chosen to be 

(λdiv , λv or , λl ap ) = (200, 400, 100). (15) 

360 After determining the constraint weights, the observation weight λddm is determined by another sensitivity test. As the 

361 CYGNSS specular point moves at about 6 km/s on the earth surface and the impact area of a DDM is about 250 km, the analysis 
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F I G U R E 6 Wind speed RMSD at CYGNSS specular points versus observation weight in the VAM for different DDM error 
covariance matrices (R-scale, R-model-diagonal, R-model). The background wind speed RMSD at specular points is shown as 
the black dash line. Results are computed using data of one day on 10 June 2017. 

362 wind speed at a point on the ocean surface can be impacted by 35–40 DDMs. Since the area impacted by a DDM through 

363 DA (~250 km) is larger than the area of its glistening zone (~100 km), the analysis wind speed at one point on the ocean 

364 surface can be affected by DDMs that, by themselves, are not sensitive to winds at that point. Due to this feature of overlapping 

365 measurements, in general λddm should be much smaller than λb as a “deweighting” or equivalent “thining” of the observations. 

366 A total of ~25,000 DDMs from one day (10 June 2017) are processed by the VAM using a set of different observation weights, 

367 λddm = (1/64, 1/16, 1/4, 1, 4, 16), for each of the three DDM error covariance matrices. In each case, the Root Mean Square 

368 Difference (RMSD) between the VAM and SCAT wind speeds, evaluated at the specular point, was computed. Figure 6 shows 

369 the RMSD for all cases in the sensitivity test. The optimal λddm for each DDM covariance matrix can be found by choosing the 

370 one with the minimal RMSD. 

371 This result shows that the best observation weights λddm for the three DDM error covariance matrices (R-scale, R-model-

372 diagonal, R-model) are 1/4, 1/16 and 1, respectively. The optimal weight for the non-diagonal matrix (R-model) is larger than 

373 that for a diagonal matrix (R-model-diagonal) because adding error correlations and reconditioning the covariance matrix will 

374 reduce the weight of the observation (Tabeart et al., 2020). When λddm decreases, the analysis wind feld approaches that of 

375 the background, so it is expected that the RMSD in each case would likewise approach the background RMSD. When λddm 

376 increases beyond its optimal value, the RMSD increases dramatically due to overftting. Therefore, if the optimal λddm cannot be 

377 precisely decided in an experiment, it is generally preferable to use a smaller one. 

378 5.3 | Use of observation error covariance matrix 

379 Results from our study using one day of data (Figure 6) show that, if the optimal λddm is selected, there is little difference in the 

380 RMSD from using either of the three DDM error covariance matrices. To additionally validate the performance of using the three 

381 matrices, a total of ~170,000 DDMs from 5 days data (10 June 2017 to 14 June 2017) were processed using the three matrices 

382 combined with the corresponding optimal weights. The comparison was made both at the specular points and over swaths with 

383 two different widths. The results are listed in Table 2. 

384 The conclusion of this study is that there is no signifcant difference in the accuracy of DA results, from comparisons at 

385 either the specular points or over a swath, using either of the three observation error covariance matrices. The slight differences 
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DDM error covariance matrix 

R-scale 

R-model-diagonal 

Specular 

1.03 

1.04 

80-km swath 

1.05 

1.07 

120-km swath 

1.07 

1.10 

R-model 1.06 1.08 1.10 

TA B L E 2 Wind speed RMSD compared to SCAT at CYGNSS specular points, over 80-km swath, and over 120-km swath. 
Comparison of results using different error covariance matrices. 5 days (10 June 2017 to 14 June 2017) of data. All units in m/s. 

386 in the results of using the three matrices are possibly the results of testing only a single set of discrete values of λddm . Similar 

387 performance for all three covariance matrics could be explained by the following reasons: 

388 1) The VAM is heuristic. The observation error covariance matrix and the λddm weight together determine the relative 

389 contribution of the observation in the analysis. Error in modeling the observation covariance matrix is compensated by 

390 choosing the optimal weight in the sensitivity study. This explains why the optimal λddm for the three different covariance 

391 matrices are different whereas their fnal RMSD results are almost the same. 

392 2) Each DDM bin observes an area defned by its delay and Doppler coordinate. This area on the ocean surface is usually 10–50 

393 km across, which is much smaller than the ECMWF effective model resolution (150 km). Although the error correlations 

394 between each DDM bin may provide extra information, this small-scale information is smoothed out by the constraint terms 

395 in the VAM which are controlled by the effective model resolution of the background. 

396 3) The reconditioning method used to decrease the large condition number of the non-diagonal error covariance matrix could 

397 add extra noise to the DA process, counteracting the beneft of additional information contained in the off-diagonal elements. 

398 It is valuable to note in Figure 6, that the RMSD for R-model increases more slowly than the RMSD for R-scale when 

399 λddm increases beyond its optimal value. This means that results from using R-model would be less sensitive to the choice of 

400 λddm . One possible reason for this effect could be that the performance of DDM assimilation is mainly dependent on the error 

401 variances of DDM bins near the specular point and the weight λddm . So if λddm is selected to accurately correct the observation 

402 error covariance, the result is not sensitive to the method computing the covariance matrix. Whereas, if λddm is not optimal, 

403 more accurately estimated covariances of DDM bins away from the specular point (from R-model) could mitigate the effect of 

404 sub-optimal weighting. 

405 Our conclusion is that the three DDM error covariance matrices should give similar results when the optimal λddm is selected. 

406 For the remainder of this study, the covariance matrix R-scale with its optimal weight will be applied, due to its simplicity. 

407 The non-diagonal covariance matrix R-model accounting for error correlations in the DDM could be valuable if DDMs are 

408 assimilated into DA systems at mesoscale or smaller spatial scales, e.g., a regional weather forecast model. 

409 5.4 | Assimilation results 

410 One month of CYGNSS Level 1 data from 1 June 2017 to 30 June 2017 (~663,000 DDMs, after applying the QC in section 

411 3.4) was assimilated with the ECMWF background into the VAM to produce the analysis wind feld (ECMWF-CY-DDM). The 

412 R-scale covariance matrix was used with weights determined in section 5.2 (λddm = 1/4). Figure 7 shows an example of the 

413 wind feld background, analysis, and increment for the 20-minute period from 6:40–7:00 UTC on 1 June 2017. This fgure 

414 demonstrates that the impact of assimilating a track of DDMs extends over a 200–250 km wide swath, which is consistent with 

415 the 150 km background correlation length scale seen in Figure 5(b), given that the footprint of a DDM observation is around 

416 100 km. Figure 8 shows the wind vectors on the contour maps of the background, analysis and increment for a closer look at a 
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F I G U R E 7 Wind feld maps (m/s) of the ECMWF background, VAM analysis and increment (analysis−background) at 6:50 
UTC on 1 June 2017. The CYGNSS specular point track is shown as the black circles on the background map. 

417 region in the same time period. Since an isotropic slope PDF is assumed, with MSS a monotonic function of wind speed, the 

418 DDM observations will contain essentially no wind direction information. Analysis wind directions from the VAM are almost 

419 the same as those in the background, except for some negligibly slight changes due to the fow-dependent constraint terms. 

420 A pair of density scatterplots showing a comparison of background and analysis wind speeds at CYGNSS specular points to 

421 SCAT winds is shown in Figure 9. The symmetric distribution of the samples with respect to the 1:1 line in both subfgures 

422 shows that both background and analysis are almost unbiased. The total wind speed RMSD at the specular points decreases 

423 from 1.17 to 1.07 m/s and the mean difference (bias) decreases from -0.14 to -0.08 m/s as a result of assimilating the DDMs. 

424 Wind speeds from both the background and analysis are smaller than SCAT wind speeds in general. The reduction of this bias, 

425 therefore, implies that the assimilation of CYGNSS DDMs increase the wind speeds from the ECMWF background on average. 

426 The wind speed RMSD and bias at the specular points for the background and analysis at different ranges of SCAT wind speed 

427 are shown in Table 3. Both the RMSD and bias of the background are signifcantly decreased by the assimilation of CYGNSS 

428 DDMs for wind speed less than 15 m/s, while the statistics almost remain the same for wind speed larger than 15 m/s. The 

429 decrease of the performance on high wind speed cases is mainly related to the decrease in sensitivity of the DDM measurements 

430 (surface slope PDF) to wind speed at high wind speeds, which is an intrinsic limitation of the physics of GNSS-R (Ruf et al., 

431 2018). Also, the impact of wave age and fetch length at high wind speeds, which are not considered in the forward operator, 

432 could be another source of error. Nevertheless, the bias correction scheme prevents the assimilation of DDMs from introducing 
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F I G U R E 8 Wind contour maps and wind vector felds of the ECMWF background, VAM analysis and increment 
(analysis−background) at 6:50 UTC on 1 June 2017. Only a small part of the region plotted in Figure 7 is presented here. The 
CYGNSS specular point track is shown as the white circles in the background map. Wind vectors on the increment map are 
shown at a scale 5 times larger than that used on the Background and Analysis maps. 

433 additional errors into the analysis relative to the background at high wind speeds. In the comparison of wind directions, data with 

434 collocated SCAT wind speeds less than 4 m/s are excluded because SCAT wind directions are less accurate at low wind speeds 

435 (Singh et al., 2011). The wind direction RMSDs of the background and analysis at specular points for the one month of data are 

436 20.73◦ and 20.70◦, the biases are 0.011◦ and 0.003◦, respectively, compared to SCAT wind directions. Thus, the analysis retains 

437 the wind direction information from the background while the wind speeds are changed by the DDM assimilation. 

438 Wind speed statistics are also computed over swaths of various widths (80, 120, and 150 km) along the CYGNSS specular 

439 point tracks. These results are listed in Table 4. Assimilation of CYGNSS DDMs is shown to improve the wind feld accuracy, 

440 both at the specular point and over all swath widths. This improvement decreases as the swath width increases, which we 

441 interpret to be a consequence of the reduced sensitivity of the DDM away from the specular points. These results demonstrate 

442 the capability of CYGNSS DDM assimilation to improve the analyses of global NWP systems. The reduction of RMSD and bias 

443 of the ECMWF background is comparable to results from assimilating conventional scatterometer winds at global NWP centers 
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F I G U R E 9 Density scatterplots for ECMWF background wind speeds (ECMWF), left panel and VAM analysis wind speeds 
(ECMWF-CY-DDM), right panel versus SCAT wind speeds at the CYGNSS specular points for one month of data (June 2017). 
The color scale indicates the density (normalized number) of the samples. 

Wind speed range < 5 m/s 5–10 m/s 10–15 m/s > 15 m/s Total 

Nobs 178,498 393,826 80,918 9,425 663,909 

ECMWF RMSD 1.14 1.08 1.39 2.45 1.17 

ECMWF-CY-DDM RMSD 0.98 0.99 1.34 2.45 1.07 

ECMWF Bias 0.33 -0.21 -0.66 -1.48 -0.14 

ECMWF-CY-DDM Bias 0.22 -0.07 -0.62 -1.50 -0.08 

TA B L E 3 Wind speed RMSD (m/s) and mean difference (bias, m/s) of ECMWF background and VAM analysis 
(ECMWF-CY-DDM) compared to SCAT wind speeds over different ranges of SCAT wind speeds. The number of observations 
(Nobs) in each wind speed range is listed as well. 

(Singh et al., 2011; Laloyaux et al., 2016). 

Specular 80-km swath 120-km swath 150-km swath 

ECMWF 1.17 1.18 1.19 1.20 

ECMWF-CY-DDM 1.07 1.10 1.11 1.13 

TA B L E 4 Wind speed RMSD (m/s) of the ECMWF background and VAM analysis (ECMWF-CY-DDM) at the CYGNSS 
specular points and over a swath with different widths (80-km, 120-km and 150-km) compared to SCAT wind speeds. 

445 Another beneft of DDM assimilation is that the interpolated wind vectors from the VAM analyses can subsequently be used 

446 in other systems, provided it is recognized that the result is a combination of the DDM observation and ECMWF background 

447 information—essentially a wind retrieval from the DDM observable using the ECMWF background as a prior. To evaluate the 

448 performance of those wind speed retrievals, the interpolated wind speeds at the specular points from ECMWF-CY-DDM are 

449 compared to several other CYGNSS wind products: CYGNSS Level 2, CYGNSS Level 2 CDR, and NOAA-CYGNSS, which 

450 are described in section 5.1.4. All three products are 25-km wind speeds at the CYGNSS specular points retrieved from the 

451 CYGNSS Level 1 product. Both the CYGNSS Level 2 CDR product and the NOAA CYGNSS wind product apply a track-wise 



20 HUANG ET AL. 

452 correction on the retrieved wind speeds using referenced NWP models. Wind speeds in the three products retrieved from the 

453 same CYGNSS Level 1 product for the one month of data in this study are compared to collocated SCAT winds. Note that 

454 all the three products apply some additional QCs and the NOAA CYGNSS wind product implements 25-km gridding along 

455 the track. Therefore, there are fewer collocated wind speeds from these three products (especially in the case of the NOAA 

456 product) than the number of CYGNSS Level 1 observations used in the DDM assimilation. RMSD and bias of all four products 

457 are compared in Table 5. The wind speeds from ECMWF-CY-DDM are shown to have smaller RMSD and bias than any of the 

458 other CYGNSS products. Another advantage of those retrievals is that a wind direction is assigned to each specular point, which 

459 might be benefcial to DA systems. 

CYGNSS-L2 

CYGNSS-CDR 

NOAA-CYGNSS 

ECMWF 

Nobs RMSD (m/s) Bias (m/s) 

661,230 1.50 -0.45 

520,432 1.57 -0.44 

135,931 1.20 -0.33 

663,909 1.17 -0.14 

ECMWF-CY-DDM 663,909 1.07 -0.08 

TA B L E 5 Wind speed RMSD and bias at CYGNSS specular points compared to collocated SCAT wind speeds for CYGNSS 
Level 2 product (CYGNSS-L2), CYGNSS CDR product (CYGNSS-CDR), NOAA CYGNSS wind product (NOAA-CYGNSS), 
ECMWF background and VAM analysis (ECMWF-CY-DDM), for one month of data (June 2017). 

460 6 | COMPUTATIONAL EFFICIENCY 

461 Although DDM assimilation has been shown to improve global NWP analyses and produce wind speed estimates at a higher 

462 accuracy than conventional Level 2 products, it does come with a signifcant computational cost. The DDM forward operator 

463 is evaluated at each iteration of the optimization. The cost function in the VAM is minimized by a Quasi-Newton algorithm 

464 (Bonnans et al., 2006), using the convergence criteria listed in Table 6. About 30–50 function evaluations (including the forward 

465 operator) are generally required to reach the minimum. 

Maximum infnity norm for the gradient of the cost function 10−6 

Maximum infnity norm for the change of the state between two iterations 10−6 

Maximum number of iterations 30 

Maximum number of function evaluations 50 

TA B L E 6 The convergence criterion in VAM’s minimization. 

466 The experiment tasks in this study were run in parallel on two servers using Intel Xeon processors (one with 10 cores at 

467 3.10-GHz, another with 12 cores at 2.53-GHz). Running the forward operator one time to compute a simulated DDM and a 

468 Jacobian matrix takes 0.4–0.5 CPU seconds on either server. Assimilating one DDM in the VAM takes about 20–30 CPU seconds. 

469 In total, it takes about 20 days elapsed time to process one month of data with ~663,000 DDMs using both servers running in 

470 parallel by GNU parallel (Tange, 2018). 

471 The wind feld grid size in this study is small (0.125◦), which makes the computational cost of the DDM assimilation 
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472 relatively high. The computational cost can be reduced by using a larger grid size of the wind feld. Computing the forward 

473 operator by GPUs should also signifcantly improve the computational effciency (Cervelló et al., 2020). Alternatively, a machine 

474 learning (ML) model could be trained to emulate results from the physically-based model. 

475 7 | CONCLUSIONS 

476 A variational analysis method (VAM) for assimilating CYGNSS Level 1 DDM power into global NWP analyses has been 

477 demonstrated, validated and assessed. A track-wise bias correction scheme was found to be necessary. The best results were 

478 obtained using a simple diagonal observation covariance matrix combined with optimal selection of the cost function weights. 

479 However, we did fnd a lower sensitivity to the observation weight when a non-diagonal covariance matrix was used. Our 

480 explanation for this effect is that the observation weight can counteract an inaccurate covariance matrix and the small-scale 

481 information in the error correlations is smoothed out by the constraint terms in the VAM. For some applications, such as regional 

482 forecast models, a full observation covariance matrix accounting for correlation between delay-Doppler bins may be benefcial. 

483 We demonstrated our approach on one month (June 2017) of CYGNSS data collocated with SCAT observations, consisting 

484 of ~663,000 Level 1 DDMs. The VAM used ECMWF background winds in a cycle of 20 minutes to produce analysis winds on 

485 a 0.125◦ grid. Assimilation of a track of DDMs was shown to have an impact over a 200–250 km wide swath, corresponding 

486 approximately to the total extent of the DDM footprint (~100 km) plus the ECMWF effective model resolution (~150 km). These 

487 results also showed a reduction of the RMSD from 1.17 to 1.07 m/s and bias from -0.14 to -0.08 m/s as compared to reference 

488 scatterometer wind speeds. Wind directions were not changed signifcantly in the analyses, with an RMSD of 20.7◦ and bias of 

489 0.0◦ compared to scatterometer data. DDM assimilation was also shown to improve the background wind feld over a swath up 

490 to 150 km wide, reducing the wind speed RMSD from 1.20 to 1.13 m/s. These improvements in RMSD and bias are small, but 

491 are statistically signifcant considering the large sample of observations in our one-month study period. Because the ECMWF 

492 background we use has high accuracy and very small bias, there is not much room for improvement. Furthermore, we show that 

493 we can avoid overftting with the proper setting of the weights in the VAM. Overall, these results indicate that assimilation of 

494 GNSS-R DDMs can have a positive impact on NWP analyses. The impact of GNSS-R DDM assimilation on regional weather 

495 forecast is the subject of a future study. We found that improvement was mostly limited to wind speeds below 15 m/s, however, 

496 probably as a result of the lower sensitivity of DDM observations to higher winds. 

497 Wind vectors interpolated to the CYGNSS specular points from the VAM analysis can also be considered to be wind 

498 retrievals from the Level 1 DDM observables using the ECMWF background as a prior, essentially a Level 2 product with 

499 complicated error characteristics. These retrievals were compared to wind speeds from other CYGNSS wind products (Level 2, 

500 Level 2 CDR and NOAA). The RMSD and bias of VAM retrieved wind speeds were found to be lower than those of these other 

501 three products, as compared to scatterometer data. 

502 Results presented here show substantial potential for assimilating DDMs directly into more complex DA systems. Future 

503 improvements and enhancements include streamlining the implementation of the forward model (possibly using ML) to improve 

504 computational effciency, implementing the forward model within more complex DA systems, and accounting for the wave 

505 components driven by nonlocal winds in coupled DA systems. 
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685 A | APPENDIX 

686 Additional details concerning the development of an empirical model for the DDM error covariance, described in section 4.2, are 

687 presented here. 

688 Recall that standard deviation of the speckle component of the DDM at each delay-Doppler coordinate is assumed to follow 

689 a power-law dependence on the DDM magnitude in equation (12). This assumption is justifed from knowledge that speckle 

690 (before averaging) is a multiplicative noise having an exponential distribution in which the standard deviation is proportional to 

691 signal power (Gleason et al., 2010). The actual DDM, however, is formed from the incoherent average of 1000 cross-correlations 

692 every second. Correlation time of the DDM observation from a spaceborne receiver is typically a few milliseconds (Li et al., 

693 2018), resulting in an incoherent average containing fewer than 1000 equivalent independent samples. The correlation time 

694 depends on the geometry, delay, and Doppler of the corresponding DDM bin (Zuffada et al., 2003). The noise distribution will 

695 therefore be a function of the delay and Doppler coordinates. Generally, correlation time decreases with longer delays (You et al., 

696 2006). A nonlinear model for the standard deviation of the speckle noise as a function of signal expectation and correlation time 

697 was given in Clarizia et al. (2018). Our empirical model is an attempt to account for this variation through assigning unique 

698 coeffcients in (12) at each delay-Doppler coordinate. 

699 Similarly, the correlation between DDM observations at different delay-Doppler pairs, defned by a correlation coeffcient 

700 (13), is modelled as a polynomial function of the inverse wind speed (14). This dependence on wind speed was found to ft 

701 the data well and could be explained by the structure of models for the bin-bin (“fast time”) covariance (e.g., equation (41) in 

702 Garrison (2016) or equation (29) in Martín et al. (2014)). 

703 Our basic approach is to estimate arrays of coeffcients, p , q , a , b , and c, which best ft the functions (12) and (14) to a 

704 month of CYGNSS Level 1 v2.1 DDM data (June 2017), encompassing the expected range of geometry and surface conditions. 

705 10-meter ocean surface wind speeds provided by the ECMWF ERA5 reanalysis (ECMWF, 2020) in a 0.25◦ latitude-longitude 

706 grid were used as the reference. The ECMWF ERA5 reanalysis winds were interpolated linearly in time and space to the specular 

707 point of each DDM. Given the approximate velocity of a CYGNSS specular point on the earth surface of around 6 km/s (Ruf 

708 et al., 2016), and approximating the DDM covariance matrix as constant over scales equal to the effective ECMWF model 

709 resolution (150 km, (Stoffelen et al., 2018)), batches of 25 sequential DDMs were used to compute the sample covariance. The 

710 satellite geometries, transmitter power, and antenna patterns were also assumed to remain constant within the corresponding 25 
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F I G U R E 1 0 Speckle variance, σi ,s vs. DDM power magnitude at two different delay-Doppler coordinates. The color scale 
indicates the density of the points. In the titles of the two fgures, “Delay” and “Doppler” are relative to that of the specular point 
in units of bins (0.25 chip, 500 Hz). Black dashed lines on both fgures show the best ft of equation (12). 

711 second time period. Such small batches of data will result in a large uncertainty in the individual covariance estimates. However, 

712 combining a large number of these batches together to estimate a small number of parameters defning the empirical model in 

713 (12) and (14) is expected to average out the uncertainty in the individual sample covariances. 

714 The following quality control (QC) tests were applied to the data used to compute the covariance matrices: 

715 • The “quality_fags” variable in the CYGNSS Level 1 data for each DDM is zero. 

716 • The signal-to-noise ratio (SNR) for each DDM is larger than 3 dB. 

717 • The minimum of wind speeds for each batch is larger than 3 m/s. This is to avoid the impact of the swell and coherent 

718 scattering (Huang et al., 2020a). 

719 • The range of wind speeds for each batch is less than 10% of the average wind speed for the batch. This is to confrm that the 

720 wind speed almost remains the same during the time of a batch, in case there is a high variational wind condition. 

721 In contrast to the QC approach defned in section 3.4 for DA, we did not set requirements on the relative power difference or 

722 correlation coeffcient. A total of 119193 DDM batches in June 2017 passed these QC tests. 

723 The contribution of thermal noise was assumed constant in time and independent of the delay-Doppler coordinate. An 

724 average of the sample variances for the frst two rows (assumed not to contain any refected signal) was used to compute a value 

of σ̂2 = 9.576 × 10−38 W2 
725 n .

726 The sample variance for the i-th delay-Doppler coordinate of the DDM, σ̂2 
i was computed for each batch as well. The

727 thermal noise contribution was then subtracted to produce an estimate of the speckle contribution to the standard deviation, q 
σ̂i ,s = σ̂2 − σ̂2 

n . i (16)

728 Figure 10 shows scatterplots for the speckle noise contribution, σ̂i ,s vs. the DDM magnitude from all batches for two different 

729 delay-Doppler coordinates. Although there is large scattering on both fgures due to the small sample size in each batch, a clear 

730 trend with DDM magnitude is visible. The best ft of equation (12), through estimating p and q , is shown as the dashed black 

731 line on these fgures. This model ftting was applied to all DDMs over discrete delay range [-1,10] and Doppler range [-3,3], in 

732 bins defned relative to the specular point delay and Doppler. This provides 12 × 7 matrices, P and Q, containing values of p and 
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F I G U R E 1 1 Correlation coeffcient between the DDM at the specular point (0,0) and that sampled at (1,0), versus incidence 
angle (a) and wind speed (b). The color scale indicates the density of the points. The black dashed line shows the best ft of 
equation (14). 

733 q for each bin of the DDM in delay-Doppler space. 

734 A similar approach was applied to determine numerical values in the correlation coeffcient model (14). The correlation 

735 coeffcient at two different delay-Doppler coordinates, (τ, f )i and (τ, f )j , was computed as 

σ̂i j 
ρ̂i j = (17)

σ̂i σ̂j 

736 where σ̂i j is the sample covariance of the DDM at (τ, f )i and (τ, f )j , computed from the same 25-member batch as σ̂i and σ̂j . 

737 Figure 11 shows scatterplots of the correlation coeffcient between at the (0,0) and (1,0) delay-Doppler coordinate vs incidence 

738 angle (a) and wind speed (b). These fgures show little dependence on the incidence angle, but an evident dependence on the 

739 wind speed. Scatterplots generated at different delay-Doppler coordinates all show similar patterns, supporting our assumption 

740 that the correlation coeffcient does not strongly depend on SNR, DDM power magnitude, transmitter EIRP, or receiver antenna 

741 gain (not shown), but does exhibit some dependence on wind speed. These sensitivity studies were used to determine the form of 

742 (14). The black dashed line on Figure 11(b) shows the ftting of this function to the data. This approach was applied to every pair 

743 of DDM observables over the delay range [-1,10] and Doppler range [-3,3]. Fitting the model produces (84 × 84) symmetric 

744 matrices, A, B and C containing the three coeffcients defning the model in (14). Diagonal values of A are all ones and diagonal 

745 values of B and C are all zeros. 

746 Numerical values for matrices, P, Q, A, B and C are provided as supplemental material. 
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