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ABSTRACT 

The Cyclone Global Navigation Satellite System (CYGNSS) 
constellation was launched for the purpose of improving trop-
ical cyclone forecasts using GNSS Refectometry (GNSS-R). 
CYGNSS wind speed estimates have been based on only a 
small window of the Delay-Doppler Maps (DDM) due to the 
resolution requirement. Direct assimilation of DDM data into 
a forecast model is an alternative approach, that could take 
advantage of contribution to the DDM from regions on the 
ocean away from the specular point. This paper will present 
a generalized forward model for assimilation of DDMs into a 
weather model. The forward operator and Jacobian matrix are 
derived and structured for use in data assimilation systems. 
The model has also been assessed using CYGNSS Level 1 
data from the 2017 Hurricane season. 

Index Terms— GPS, GNSS-R, DDM, data assimilation, 
ocean wind, VAM 

1. INTRODUCTION 

The Delay-Doppler Map (DDM) is produced from cross-
correlation between the local GPS baseband signal and the 
scattering power from the ocean surface (glistening zone) 
over a range of delays and Doppler frequencies [1]. The 
CYGNSS Level 1 product includes a calibrated 17 × 11 
DDM around the specular point with 17 delay bins (resolu-
tion of 0.25 chips) and 11 Doppler bins (resolution of 500 
Hz) [2]. Wind speed retrieval is a CYGNSS Level 2 prod-
uct. Limited by the 25 km spatial resolution requirement, the 
baseline wind speed retrieval uses observables only from the 
3 × 5 DDM aligned with the specular point [3], [4]. One 
major application of the CYGNSS products is to assimilate 
the data into numerical weather model to improve hurricane 
forecasts and there has been some research on assimilation of 
CYGNSS Level 2 wind speeds [5], [6]. 

However, the CYGNSS wind speeds are computed from 
only 8% of the pixels in the DDM, discarding a lot of poten-
tial information. The motivation of the research in the paper 
is to directly assimilate the calibrated full 17 × 11 DDMs 

This work was supported by NASA Grant NNX15AU18G, Assimilation 
of GNSS-R Delay-Doppler Maps into Hurricane Models. 

into a hurricane forecast model. The development of a for-
ward model which links the wind feld and the DDM is the 
prerequisite for data assimilation. A description of the for-
ward model is presented in section 2, the use of the model in 
data assimilation is described in section 3, assessment of the 
model on real data is shown in section 4 and the conclusions 
are stated in section 5. 

2. MODEL DESCRIPTION 

The forward operator produces a DDM from a feld of mean 
square slope (MSS), m by a numerical surface integration of 
the bistatic radar equation [1]. 

λ2Pt 
X Gt(ρ~ i)Gr(ρ~ i)

h(τ, f, m) = 3 R2
(4π) t (ρ~ i)R2 

r (ρ~ i)i 

× χ2 (Δτ(ρ~ i), Δf(ρ~ i)) σ
0(ρ~ i,mi)dSi (1) 

In the Kirchoff Approximation Geometric Optics model, the 
bistatic radar cross section (BRCS) is proportional to the 
probability density function of surface slopes P (m, ~s). 
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For our applications, the surface slopes ~s are assumed to have 
an isotropic normal distribution, � 
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P (m, ~s) = exp − (3)
2πm 2m 

allowing an analytical expression for the Jacobian to be de-
rived. 

The Jacobian matrix is computed by linearizing the for-
ward operator and then taking partial derivative respect to 
MSS, from Eq. (4). ⎡ ⎤ 
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In our implementation of the forward model, four input 
structures and two output structures are defned which are 
shown in Figure 1. The input structures are metadata, pow-
erParm, inputWindField and Geometry, where metadata de-
fnes the parameters of the DDM bins, thermal noise and sur-
face grid; powerParm stores power and antenna parameters of 
transmitter and receiver; inputWindField stores the wind feld 
data where the MSS can be calculated from the wind speed 
by an empirical model (e.g. [7]); and Geometry stores the 
positions and velocities of transmitter and receiver. The out-
put structures are DDM and Jacobian, which store the DDM 
power computed from the model and its corresponding Jaco-
bian matrix. 

Fig. 1. Structure of Forward Model 

In order to integrate the forward model into data assim-
ilation system, this model is designed to be a single callable 
function in C/C++ language with all inputs and outputs stored 
in memory that can be merged into data assimilation code. 
The Jacobian matrix is computed along with the simulated 
DDM. Signifcant code has been reused from the CYGNSS 
End-to-End Simulator (E2ES) [8]. 

3. DATA ASSIMILATION METHOD 

The approach used to assimilate DDMs is the Variational 
Analysis Method (VAM) which integrates DDMs into a two-
dimensional wind vector feld [9]. Starting with an a priori 
gridded wind vector feld (background), the VAM produces 
gridded VAM-CYGNSS vector winds (analysis) by minimiz-
ing a cost function J [10]. 

J(x) = Jb(x) + Jo(x) + Jc(x) (5) 

where x is the analysis wind feld, Jb(x), Jo(x) are normal-
ized misfts of the analysis to the background and observa-
tions, Jc(x) is the dynamic constraints. 

To start the minimization, the VAM analysis winds are 
frst set equal to the background winds. Then the increment 
in MSS is computed as: 

BHT 

Δm = (y − h(ma)) (6)
HBHT + R 

where ma is MSS feld of the analysis, y is the measured 
DDM, h() is the forward operator. B, R are estimated co-
variance matrices of the background and observation error, re-
spectively. The increment of MSS, Δm, is transformed into 
increment of wind speed magnitude by an empirical model 
(e.g. [7]). The increment of wind speed magnitude is then 
applied to the analysis winds without changing the wind di-
rection and the cost function J will be updated. The VAM’s 
solution is found by iteratively minimizing J until conver-
gence criteria are met. 

4. FORWARD MODEL ASSESSMENT 

To test the forward model, CYGNSS L1 data from hurri-
cane Irma on September 4, 2017 was processed. The track 
of CYGNSS passed over the hurricane around 23:40 UTC. 
Wind feld data for comparison were obtained from the Hur-
ricane Weather Research and Forecasting (HWRF) forecast 
model for 23:00 UTC. Figure 2 shows the CYGNSS satellite 
track and the HWRF 5-h forecast wind feld. 

Fig. 2. CYGNSS track and HWRF wind feld 

Two specular points were chosen for comparison between 
the observed CYGNSS DDM and the forward model com-
puted DDM. The frst is near the hurricane where surface 
wind speeds are high and variable. The other is far from the 
eye where winds are low and homogeneous. The positions 
and velocities of transmitter and receiver, all power parame-
ters from CYNGSS L1 data and wind feld from HWRF were 
read by the forward model. Figure 3 and 4 show good com-
parison between CYGNSS DDMs and forward model DDMs. 
They both show good match-up including the asymmetries in 
the pattern. 

Statistics were computed for comparison over a track of 
120 DDMs. For each pair of DDMs from observation and 
forward model, the average relative power difference of ef-



Fig. 3. DDM comparison near hurricane

Fig. 4. DDM comparison at low wind speed

fective bins is computed.

1 ∑ yk(τi, fj)− hk(τi, fj)
εk = (7)

N yk(τi, fj)i,j

where k is the sample index, y(τ, f) is the observed DDM,
h(τ, f) is the forward model DDM, (i, j) is the delay/Doppler
indices of effective bins,N is the number of effective bins and
ε is the relative difference.

Figure 5 shows that the relative differences of this track
are all below 40%. The differences between observed ones
and simulated ones are likely caused by an inaccurate trans-
mitter power, the presence of swell and limitations of the scat-
tering model.

Since an inaccurate transmitter power could result in a
proportional power error, an excess power is added as con-
trol variable into the forward model. For the track of DDMs
in this test, each forward model DDM is then added by an ex-
cess power by fitting them with the observed DDM using the
least squares method. Figure 6 shows the relative difference
after adding the excess power and Figure 7 shows the excess
power of the track in unit of dB.The average excess power of
the track is 1.37 dB and the comparison becomes much better
with the excess power.

The Jacobian matrix was validated by comparison with
finite differences. The forward model computes Jacobian ma-
trix by an analytical form which is very efficient (taking about
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Fig. 5. Relative differences of a track of DDMs
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Fig. 6. Relative differences with excess power

1s). The matrix could also be computed by finite difference
which could be more robust but inefficient (taking about 30s-
40s). Figure 8 shows the Jacobian matrices computed by ana-
lytical form and finite difference. It can be seen that they have
the similar patterns and values. The relative error is about 6%
in average and the correlation coefficient between the two ma-
trices is 0.9991. Thus the model Jacobian matrix is expected
to be a good representation of the sensitivity of wind field at
a low compuational cost.

5. CONCLUSION

A forward model has been developed for direct assimila-
tion of DDM into hurricane models. This model takes in
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Fig. 7. Excess power in unit of dB



 

  

   
   

 
     

 
     

 
     

  
   

   

  

 
 

   
  

  
   

Fig. 8. Computation of Jacobian matrix by analytical form 
and fnite difference 

CYGNSS level 1 data and outputs a DDM with a partial 
derivative matrix. These are designed for use in the VAM to 
assimilate CYGNSS measured DDMs and update a wind vec-
tor feld. The model has been tested against CYGNSS DDM 
measurements collected around Hurricane Irma. Simulated 
DDMs calculated by the forward operator show qualitatively 
agreement with CYGNSS measured DDMs. An excess power 
variable is added to the forward model to offset the error in 
transmitter power calibration. The Jacobian matrix is vali-
dated by comparison with fnite difference estimates. Future 
work could include incorporating data from the wave feld 
to improve its performance in low wind speed cases and in-
cluding additional variables to account for instrument effects, 
such as delay-Doppler offsets. 
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