

1 **Quantitative identification of moisture sources over the Tibetan Plateau and the**
2 **relationship between thermal forcing and moisture transport**

3
4 Chen Pan^{1,2,3,4}, Bin Zhu^{1,2,3,4}, Jinhui Gao^{1,2,3,4}, Hanqing Kang^{1,2,3,4}, Tong Zhu^{5,6}
5

6 ¹Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of
7 Information Science & Technology, Nanjing, China

8 ²Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of
9 Information Science & Technology, Nanjing, China

10 ³Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science
11 & Technology, Nanjing, China

12 ⁴Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of
13 Information Science & Technology, Nanjing, China

14 ⁵CIRA, Colorado State University, Fort Collins, Colorado, USA

15 ⁶NOAA/NESDIS/STAR/JCSDA, College Park, Maryland, USA

16
17 *Correspondence to:* Bin Zhu (E-mail: binzhu@nuiist.edu.cn; Tel.: 86-25-58699785)

18 **Abstract**

19 Despite the importance of the Tibetan Plateau (TP) to the surrounding water cycle, the moisture sources of the TP remain
20 uncertain. In this study, the moisture sources of the TP are quantitatively identified based on a 33-year simulation with a
21 horizontal resolution of $1.9^\circ \times 2.5^\circ$ using the Community Atmosphere Model version 5.1 (CAM5.1), in which atmospheric
22 water tracer technology is incorporated. Results demonstrate that the major moisture sources differ over the southern TP
23 (STP) and northern TP (NTP). During the winter, Africa, the TP, and India are the dominant source regions, contributing
24 nearly half of the water vapour over the STP. During the summer, the tropical Indian Ocean (TIO) supplies $28.5 \pm 3.6\%$ of
25 the water vapour over the STP and becomes the dominant source region. The dominant moisture source regions of the
26 water vapour over the NTP are Africa ($19.0 \pm 2.8\%$) during the winter and the TP ($25.8 \pm 2.4\%$) during the summer. The
27 overall relative contribution of each source region to the precipitation is similar to the contribution to the water vapour
28 over the TP. Like most models, CAM5.1 generally overestimates the precipitation over the TP, yielding uncertainty in the
29 absolute contributions to the precipitation. Composite analyses exhibit significant variations in the TIO-supplied moisture
30 transport and precipitation over the STP during the summer alongside anomalous TP heating. This relationship between
31 moisture transport from the TIO and the TP heating primarily involves the dynamic change in the TIO-supplied moisture
32 flux, which further controls the variation in the TIO-contributed precipitation over the STP.

33

34 **Key words:** Tibetan Plateau · Heat source · Moisture source apportionment · Moisture transport

35 **1. Introduction**

36 The Tibetan Plateau (TP), the highest plateau in the world, has important effects on its surrounding and global weather
37 and climate systems (Flohn 1957; Yeh et al. 1957). The TP acts as a barrier that splits the subtropical westerlies into two
38 branches during the winter (Bolin 1950; Manabe and Terpstra 1974). In addition, the TP regulates large-scale circulation
39 by acting as an elevated heat source during the summer (Yanai et al. 1992; Wu and Zhang 1998).

40 Many studies have suggested that the Asian summer monsoon (ASM) rainfall is related to heating over the TP. This
41 heating leads to an upper tropospheric divergent flow and a low-level convergent flow above the TP that brings
42 precipitation to Asia (Li and Yanai 1996; Duan and Wu 2005; Duan et al. 2008; Wu et al. 2012). The precipitation can
43 further intensify the upper-level thermal high pressure over the TP through the release of latent heat of condensation,
44 eventually enhancing the thermal pumping effect of the TP (Yanai and Wu 2006). Hsu and Liu (2003) noted that heating
45 over the TP during both spring and summer created wave-like circulation, such as Rossby waves, which further affected
46 the summer rainfall in East Asia. Duan et al. (2011), Xu et al. (2013), and Wang et al. (2014) found that the pattern of
47 summer precipitation in China was related to variation in spring thermal forcing over the TP. Wang et al. (2008) suggested
48 that increases in the temperature over the TP may result in more summer frontal rainfall over East Asia. Recently, Boos
49 and Kuang (2010) suggested that the TP thermal forcing has a negligible effect on the southwest summer monsoon.
50 Nevertheless, Xu et al. (2014) noted that even if this viewpoint was true, the TP heat source still greatly affects the
51 convective precipitation over the TP.

52 The identification of dominant moisture sources is a topic of research worldwide. Numerous source apportionment
53 methods, such as analytical models, isotopes, numerical atmospheric water tracers, and model sensitivity experiments,
54 have been developed and applied in this research area (Gimeno et al. 2012). Recently, many studies have focused on the
55 identification of moisture sources of atmospheric water over the TP. Using observation data and model sensitivity
56 experiments, Dong et al. (2016) established a new moisture transport pathway in which moisture is lifted by convection

57 over central-eastern India and is transported to the south-western TP by mid-tropospheric circulation. This moisture
58 contributes ~50 % of the summer precipitation over the south-western TP. Using the Lagrangian FLEXible PARTicle
59 (FLEXPART) dispersion model (Stohl and James 2004), Chen et al. (2012) found that a narrow band area, including the
60 Indian subcontinent, the Arabian Sea (AS), and the Indian Ocean in the Southern Hemisphere, is the dominant moisture
61 source of the water vapour over the TP. Using the same model, Sun and Wang (2014) suggested that, throughout the year,
62 most of the rainfall over the eastern TP originated from the Eurasian continent, even though the contribution from oceanic
63 sources is notable. Zhang et al. (2017) suggested that Eurasian land evaporation supplies more than 69 % of the annual
64 precipitation over the western-central TP, while greater than 21 % originates from the ocean. Curio et al. (2015) calculated
65 the water vapour flux towards the TP and suggested that ~40 % of precipitation over the TP originates from external
66 moisture sources, while the remaining ~60 % originates from local moisture recycling. Wang et al. (2017) suggested that
67 the annual variation in the summer precipitation over the southern TP is determined by remote moisture transport.
68 Meanwhile, local surface evaporation has a non-negligible effect on the summer precipitation. Yang et al. (2006) used the
69 $\delta^{18}\text{O}$ data to determine that the summer precipitation over the central and northern areas of the TP is mainly provided by
70 local evaporation. Based on isotope-incorporated atmospheric models, Yao et al. (2013) suggested that continental
71 recycling is an important moisture source on the TP during both winter and summer and that the Indian Ocean is the
72 dominant moisture source during the summer. Gimeno et al. (2012) summarized the main disadvantages of each method
73 that limit diagnostic studies of moisture sources. For instance, analytical models need simplified assumptions, isotope data
74 are influenced by signal sensitivity, Lagrangian methods allow limited consideration of cloud processes, and sensitivity
75 experiments suffer from non-linearities. In contrast, the Eulerian atmospheric water tracer (AWT) approach lacks these
76 weaknesses and is an efficient method to quantitatively identify the moisture source regions of precipitation or water
77 vapour over a certain region based on the detailed physical parameterizations of global or regional models (Koster et al.
78 1986; Numaguti 1999; Bosilovich and Schubert 2002; Sodemann et al. 2009; Knoche and Kunstmann 2013; Singh et al.

79 2016; Pan et al. 2017). However, this tracer method has never been used to determine the dominant moisture sources in the
80 TP region.

81 The TP is a key area that influences its own water resource allocation and that of its downstream regions (Barnett et al.
82 2005; Xu et al. 2008). The ASM delivers abundant moisture from the tropical oceans to the TP (Xu et al. 2014), while the
83 mid-latitude westerlies also control moisture over the TP (Bothe et al. 2011;). Further
84 investigation is required to understand the moisture sources and transport processes in the TP region (Yang et al. 2014).
85 Supplementary Fig. S1 shows the distribution of the deuterium isotope ratio (δD) in each month for 2006–2009 based on
86 hydrogen-deuterium-oxygen (HDO) and H_2O data from the Tropospheric Emission Spectrometer (TES) (Beer et al. 2001).
87 The value of δD is notably greater from May to July than during other months over the TP and its surrounding areas. The
88 increase in evapotranspiration over the TP and the transport of tropical moist air during the summer are two probable
89 explanations for this phenomenon (Worden et al. 2007). However, natural moisture from around the world is difficult to
90 quantify via measurements. Quantitative atmospheric water source apportionment may provide new insights into moisture
91 transport over the TP. The moisture that originates from the TP and external regions is quantitatively identified in this
92 study using the AWT method implemented in a global atmosphere model. We study the distributions of AWTs to further
93 explore the relationship between the TP heat source and moisture transport during the summer.

94 In this study, descriptions of the model, data, and methods are provided in Sect. 2. Evaluations of the simulation
95 results, moisture source apportionment on the TP, the relationship between the TP summer heat source and moisture
96 transport from the tropical ocean, and uncertainties in the AWT method are presented in Sects. 3.1–3.4, respectively.
97 Finally, a summary is provided in Sect. 4.

98

99 **2. Data and methods**100 **2.1 Model**

101 The Community Atmosphere Model version 5.1 (CAM5.1) (Neale et al. 2012), in which the tagged AWT method has
 102 been implemented, is used in this study. In this study, the chemistry mechanism is taken from the Model for Ozone and
 103 Related chemical Tracers, version 4 (Emmons et al., 2010), in which water vapour is invariant. In CAM5.1, the physical
 104 processes involved in the temporal evolutions of atmospheric water substances (water vapour, cloud droplets, cloud ice,
 105 rain, and snow) including deep convection, shallow convection, cloud macrophysics, cloud microphysics, advection, and
 106 vertical diffusion are simply expressed as

$$107 \frac{\partial q_k}{\partial t} + \frac{1}{\rho} \nabla \cdot [\rho \mathbf{u} q_k] = \left(\frac{\partial q_k}{\partial t} \right)_{dp} + \left(\frac{\partial q_k}{\partial t} \right)_{sh} + \left(\frac{\partial q_k}{\partial t} \right)_{macro} + \left(\frac{\partial q_k}{\partial t} \right)_{micro} + D(q_k) \quad (1)$$

$$108 \frac{\partial q_p}{\partial t} = \left(\frac{\partial q_p}{\partial t} \right)_{dp} + \left(\frac{\partial q_p}{\partial t} \right)_{sh} + \frac{1}{\rho} \frac{\partial (V_q \rho q_p)}{\partial z} + \left(\frac{\partial q_p}{\partial t} \right)_{micro} \quad (2)$$

109 where t is the time, \mathbf{u} is the three-dimensional wind vector, ρ is the air density, D is the turbulent diffusion operator,
 110 z is the height, and V_q is the mass-weighted terminal fall speeds. q_k is the mass mixing ratio (MMR), which is replaced
 111 by q_v , q_l , and q_i when calculating for water vapour, cloud droplets, and cloud ice, respectively. $\left(\frac{\partial q_k}{\partial t} \right)_{dp}$, $\left(\frac{\partial q_k}{\partial t} \right)_{sh}$,
 112 $\left(\frac{\partial q_k}{\partial t} \right)_{macro}$, and $\left(\frac{\partial q_k}{\partial t} \right)_{micro}$ are the tendencies in deep convection, shallow convection, cloud macrophysics, and cloud
 113 microphysical processes, respectively. q_p indicates the MMR of rain (q_r) or the MMR of snow (q_s). $\left(\frac{\partial q_p}{\partial t} \right)_{dp}$ and
 114 $\left(\frac{\partial q_p}{\partial t} \right)_{sh}$ are the net production of precipitation in deep convection and shallow convection, respectively. $\left(\frac{\partial q_p}{\partial t} \right)_{micro}$ is the
 115 grid-mean source/sink term for q_p in the cloud microphysics of CAM5.1.

116 The deep convection scheme is taken from Zhang and McFarlane (1995) and follows modifications presented by
 117 Richter and Rasch (2008) and Raymond and Blyth (1986, 1992). The shallow convection scheme is taken from Park and
 118 Bretherton (2009). The cloud macrophysics parameterization in CAM5.1 is described in Park et al. (2014). The cloud
 119 microphysical scheme is taken from Morrison and Gettleman (2008) but with modifications following Gettleman et al.

120 (2010). The moist turbulence scheme from Bretherton and Park (2009) is used to calculate the vertical diffusion of heat,
121 moisture, momentum, and tracers in CAM5.1. The finite volume dynamical core is used in this study because of its
122 excellent performance for tracer transport (Rasch et al. 2006). CAM5.1's simulations can be driven by offline
123 meteorological fields instead of online calculations; these simulations are called the specified dynamics simulations of
124 CAM5.1 (Lamarque et al. 2012). A procedure that allows for more accurate comparisons between measurements of
125 atmospheric composition and simulated results (Lamarque et al. 2012), first developed in the Model of Atmospheric
126 Transport and Chemistry (Rasch et al., 1997), is applied to input offline meteorological fields into CAM5.1. This
127 procedure requires horizontal wind fields, air temperature, surface pressure, surface temperature, surface geopotential,
128 surface horizontal stress, and sensible and latent heat fluxes. In this study, the Modern Era Retrospective analysis for
129 Research and Applications (MERRA) datasets (Rienecker et al. 2011) are used to drive the CAM5.1 model; the datasets
130 were recommended by Lamarque et al. (2012) and have a time resolution of 6 h. All the input fields are linearly
131 interpolated at time-steps between the reading times to avoid jumps and are then used to drive the CAM5.1's
132 parameterizations to generate the necessary variables and calculate the sub-grid-scale transport and hydrological cycle
133 (Lamarque et al. 2012). The sub-stepping procedure (Lauritzen et al. 2011) and the atmospheric mass fixer algorithm from
134 Rotman et al. (2004) are applied to ensure consistencies between the input and model-calculated velocity and mass fields
135 in CAM5.1 (Lamarque et al. 2012).

136 The tagged AWT method is described in Pan et al. (2017) and is similar to that in Numaguti (1999), Bosilovich and
137 Schubert (2002), and Knoche and Kunstmann (2013). The atmospheric water substances are “tagged” at their geographical
138 source region, and the formations of these substances start with evaporation at the surface (Knoche and Kunstmann 2013).
139 Within the source region, the surface emission of tagged water vapour equals the surface evaporation of regular water
140 vapour; outside the source region, the emission is zero. Then, these tagged atmospheric water substances undergo a series
141 of atmospheric processes that regular water substances experience, but these substances have no feedback on the

142 dynamical and thermal fields and are separate from regular water substances in CAM5.1. Accordingly, the time evolutions
143 of the tagged atmospheric water substances are expressed as

$$144 \frac{\partial q_{k,\text{tg}}}{\partial t} + \frac{1}{\rho} \nabla \cdot [\rho \mathbf{u} q_{k,\text{tg}}] = \left(\frac{\partial q_{k,\text{tg}}}{\partial t} \right)_{\text{dp}} + \left(\frac{\partial q_{k,\text{tg}}}{\partial t} \right)_{\text{sh}} + \left(\frac{\partial q_{k,\text{tg}}}{\partial t} \right)_{\text{macro}} + \left(\frac{\partial q_{k,\text{tg}}}{\partial t} \right)_{\text{micro}} + D(q_{k,\text{tg}}) \quad (3)$$

$$145 \frac{\partial q_{p,\text{tg}}}{\partial t} = \left(\frac{\partial q_{p,\text{tg}}}{\partial t} \right)_{\text{dp}} + \left(\frac{\partial q_{p,\text{tg}}}{\partial t} \right)_{\text{sh}} + \frac{1}{\rho} \frac{\partial (V_{\text{q}} \rho q_{p,\text{tg}})}{\partial z} + \left(\frac{\partial q_{p,\text{tg}}}{\partial t} \right)_{\text{micro}} \quad (4)$$

146 where $q_{k,\text{tg}}$ indicates various MMRs of tagged water vapour, tagged cloud droplets, and tagged cloud ice; that is, $q_{\text{v,tg}}$,
147 $q_{\text{l,tg}}$, and $q_{\text{i,tg}}$. $q_{p,\text{tg}}$ represents the MMR of tagged rain ($q_{\text{r,tg}}$) or the MMR of tagged snow ($q_{\text{s,tg}}$). The terms on the
148 right-hand sides of Eqs. (3) and (4) are generalized for conciseness, and detailed equations and treatments for various
149 tagged atmospheric water tracers are presented in Pan et al. (2017). In this study, the globe is divided into 25 tagged source
150 regions, as shown in Fig. 1. Regions 1–11 are oceanic source areas, and regions 12–25 are terrestrial source areas. Similar
151 to Knoche and Kunstmann (2013), precipitating tagged water does not remain “tagged” any longer as non-subsurface
152 tagged water in our method. Tagged water is completely lost when it precipitates outside its source region; tagged
153 precipitation returns as a newly tagged quantity to the model system when it precipitates inside its source region.

154 The simulation, with a latitudinal resolution of 1.9° and longitudinal resolution of 2.5° , begins on 01 January 1981,
155 and the initial MMRs of the tagged substances are set to zero in this study. The resolution of the MERRA datasets that are
156 used in this study are identical to those of CAM5.1, which are available on the Earth System Grid
157 (<https://www.earthsystemgrid.org/home.html>) and are generated from the original resolution ($1/2^{\circ} \times 2/3^{\circ}$) using a
158 conservative re-gridding procedure used in MERRA and CAM (Lamarque et al. 2012). The simulation result for the first
159 year is used for model spin up to attain stable initial concentrations of tagged water substances. We investigate the results
160 from 1982 to 2014.

161

162 **2.2 Water vapour data**

163 The Atmospheric Infrared Sounder (AIRS) water vapour dataset (Tian et al. 2014) from 2003 to 2014, which has $1^\circ \times 1^\circ$
164 horizontal resolution, is used in this study to assess the water vapour results over the TP. Additionally, the third Tibetan
165 Plateau Atmospheric Scientific Experiment (TIPEX III), which is supported by the China Meteorological Administration
166 (CMA), conducted daily vertical measurements of wind, air temperature, and moisture over the TP and its surrounding
167 areas from 21 June to 3 September 2014. Seventeen L-band rawinsonde and 5 Global Position System (GPS) pilot balloon
168 observation stations were used, whose locations are marked in Fig. 2c and d. These data are applied to validate the vertical
169 distribution of the simulated water vapour over the TP.

170

171 **2.3 Precipitation data**

172 Station-observed hourly precipitation over the TP for 1982–2013 is provided by the CMA. The number of stations
173 was 57 in the 1980s and has increased to 156 at present. The locations of these stations are shown in Fig. 4c. In addition,
174 the Global Precipitation Climatology Project (GPCP) version 2.2 combined precipitation dataset (Huffman and Bolvin
175 2011) for the period 1982–2014 and the Tropical Rainfall Measuring Mission (TRMM) 3A12 satellite rainfall dataset
176 (Huffman et al. 2007) from 1998 to 2014 are applied to estimate the simulated precipitation in this study.

177

178 **2.4 Atmospheric heat source**

179 The apparent heat source (Q_1) and apparent moisture sink (Q_2), as defined in Yanai et al. (1973), are calculated to
180 identify the variation in heating over the TP:

$$181 Q_1 = c_p \left(\frac{p}{p_0} \right)^\kappa \left(\frac{\partial \theta}{\partial t} + \vec{V} \cdot \nabla \theta + \omega \frac{\partial \theta}{\partial p} \right) \quad (5)$$

182
$$Q_2 = -L \left(\frac{\partial q_v}{\partial t} + \vec{V} \cdot \nabla q_v + \omega \frac{\partial q_v}{\partial p} \right) \quad (6)$$

183 where θ is the potential temperature; q_v is the specific humidity; \vec{V} is the horizontal velocity; p is the pressure; $p_0 =$
 184 1000 hPa; ω is the vertical p velocity; $\kappa = R/c_p$, where R is the gas constant, and c_p is the specific heat at a
 185 constant pressure of dry air; and L is the latent heat of water vapourisation.

186 Accordingly, the integrated Q_1 and Q_2 from the tropopause pressure (p_T) to the surface pressure (p_S) are expressed
 187 as

188
$$VQ_1 = \frac{1}{g} \int_{p_T}^{p_S} Q_1 dp \quad (7.1)$$

189
$$VQ_2 = \frac{1}{g} \int_{p_T}^{p_S} Q_2 dp \quad (8.1)$$

190 where g is the gravitational acceleration. Equations (7.1) and (8.1) can also be expressed as follows:

191
$$VQ_1 = LP + S + \frac{1}{g} \int_{p_T}^{p_S} Q_R dp \quad (7.2)$$

192
$$VQ_2 = L(P - E) \quad (8.2)$$

193 where P , E , and S are the precipitation rate, evaporation rate, and sensible heat flux at the surface, respectively, and Q_R
 194 is the radiative heating rate. The CAM5.1-calculated VQ_1 is compared to that from the National Centers for
 195 Environmental Prediction (NCEP) reanalysis data (Kalnay et al. 1996) in Supplementary Fig. S2.

196 The normalized VQ_1 is used to identify the heating anomaly over the TP from 1982 to 2014:

197
$$IQ_1 = \frac{VQ_1 - \bar{VQ}_1}{\sigma} \quad (9)$$

198 where \bar{VQ}_1 is the 33 year-averaged VQ_1 , and σ is the standard deviation of VQ_1 .

199

200 **2.5 The false discovery rate method**

201 The over-interpretation of multiple hypothesis tests is a common problem in atmospheric sciences, and controlling
 202 the false discovery rate (FDR) is a computationally straightforward method to prevent this problem (Wilks et al. 2016).

203 The FDR is the expected fraction of rejected local null hypotheses that are actually true (Benjamini and Hochberg 1995;
 204 Ventura et al. 2004; Wilks 2006, 2016). This approach first sorts the probabilities (denoted as p_i values, with $i = 1,$
 205 $2, \dots, N$) from N local hypothesis tests in ascending order. These sorted probabilities are denoted using parenthetical
 206 subscripts, that is, $p_{(1)} \leq p_{(2)} \leq \dots \leq p_{(N)}$. The local null hypotheses are rejected if the corresponding p_i values are no
 207 greater than a threshold level

$$208 \quad p_{\text{FDR}} = \max \left[p_{(i)} : p_{(i)} \leq \frac{i}{N} \alpha_{\text{FDR}} \right], i = 1, 2, \dots, N \quad (10)$$

209 where α_{FDR} is the chosen level for the FDR.

210

211 2.6 Moisture flux components

212 The moisture flux can be divided into a mean term and three anomalous terms (Wei et al. 2016):

$$213 \quad qu = (\bar{q} + q')(\bar{u} + u') = \bar{q}\bar{u} + \bar{q}u' + \bar{u}q' + q'u' \quad (11)$$

$$214 \quad qv = (\bar{q} + q')(\bar{v} + v') = \bar{q}\bar{v} + \bar{q}v' + \bar{v}q' + q'v' \quad (12)$$

215 where q is the water vapour content or the MMR of a water vapour tracer, u is the zonal wind speed, and v is the
 216 meridional wind speed. Here, the bars represent the 33-year mean, and the primes represent the deviation from the mean.

217 The rightmost three terms in Eqs. (11) and (12) represent the respective effects on the moisture transport by dynamic
 218 processes ($\bar{q}u'$ and $\bar{q}v'$), thermodynamic processes ($\bar{u}q'$ and $\bar{v}q'$), and the covariation of humidity and wind ($q'u'$ and
 219 $q'v'$).

220 On a longer timescale, the hydrological balance in the atmosphere can be expressed as (Brubaker et al. 1993)

$$221 \quad P - E = -\frac{1}{g} \nabla \cdot \int_{p_{\text{T}}}^{p_s} q \vec{V} dp \quad (13)$$

222 The right-hand sides of Eqs. (11) and (12) are substituted into the right-hand side of Eq. (13) (Wang et al. 2017):

$$223 \quad -\frac{1}{g} \nabla \cdot \int_{p_{\text{T}}}^{p_s} q \vec{V} dp = -\frac{1}{g} \left[\nabla \cdot \int_{p_{\text{T}}}^{p_s} \bar{q} \vec{V}_a dp + \nabla \cdot \int_{p_{\text{T}}}^{p_s} \bar{q} \vec{V}' dp + \nabla \cdot \int_{p_{\text{T}}}^{p_s} q' \vec{V}_a dp + \nabla \cdot \int_{p_{\text{T}}}^{p_s} q' \vec{V}' dp \right] \quad (14)$$

224 where \bar{q} and \vec{V}_a are the 33-year-averaged water vapour (or water vapour tracer) amount and horizontal wind fields,
225 respectively, and \vec{V}' is the deviation from \vec{V}_a . The second and third terms on the right-hand side of Eq. (14) represent the
226 convergence of moisture caused by dynamic and thermodynamic processes, respectively.

227

228 **3. Results and discussion**

229 **3.1 Model assessments**

230 A comparison between AIRS-measured and CAM5.1-simulated water vapour at 500 hPa is shown in Fig. 2. During
231 the boreal winter (December, January, and February), the water vapour is no greater than 1 g kg^{-1} over the TP. During the
232 summer (June, July, and August), a northward decreasing gradient in the water vapour at 500 hPa is present over the TP in
233 both the AIRS measurements and CAM5.1 simulation. Overall, the pattern of the water vapour over the TP and its
234 surrounding areas can be characterized by CAM5.1. The difference between the AIRS-measured and CAM5.1-simulated
235 water vapour is generally within the standard deviation of the AIRS measurement over most of the TP, except that the
236 simulated water vapour is overestimated over areas around $(32.5^\circ \text{N}, 95^\circ \text{E})$ during the summer.

237 Figure 3 shows a comparison between the station-observed and simulated specific humidity at altitudes from 2 to 16
238 km from July to August in 2014. The simulated specific humidity is sampled at the nearest grid-point around the
239 corresponding station in CAM5.1. Although the simulated specific humidity is overestimated compared with the
240 observations below 6 km for some areas of the southern TP, such as Nakqu, Lhasa, Shigatse, and Xichang, the vertical
241 distribution of the water vapour over the TP is generally well characterized by CAM5.1 during the summer.

242 Figure 4a and b show a comparison between the GPCP and CAM5.1 precipitation during the winter. The winter
243 precipitation is generally $\sim 1 \text{ mm d}^{-1}$ over the TP, and the centre of precipitation is located in the north-western TP region.
244 Figure 4c–f show the distributions of the summer precipitation based on the CMA station observations, TRMM data,

245 GPCP data, and CAM5.1 simulation results, respectively. CAM5.1 can adequately represent the spatial pattern of the
246 summer precipitation but significantly overestimates the precipitation along the southern and south-eastern edges of the TP.
247 In addition, a high precipitation centre over the north-western TP is observed in the TRMM data but does not occur in the
248 GPCP data and CAM5.1 results. To assess the inter-annual variation in the simulated summer precipitation in the TP
249 region, the GPCP data, TRMM data, and CAM5.1 results are interpolated onto the 156 CMA stations using the bilinear
250 interpolation method, which are shown in Fig. 5a. The correlation between the CMA data and CAM5.1 results is 0.44 at a
251 95 % significance level, and the correlation between the GPCP data and CAM5.1 results is 0.79 at a 99 % significance
252 level, suggesting that CAM5.1 can reasonably characterize the inter-annual variation in the summer precipitation over the
253 TP.

254 In addition, wind fields and potential temperature derived from the NCEP data are used to assess the CAM5.1 results,
255 as shown in Supplementary Fig. S3. Overall, the horizontal wind fields and potential temperature are adequately simulated
256 by CAM5.1.

257

258 **3.2 Sources of atmospheric moisture over the TP**

259 Yao et al. (2013) reported that 35° N is the northern edge of the Indian summer monsoon. Moreover, Figs. 2 and 4
260 show that the water vapour and precipitation south of 35° N (southern TP, or STP) are generally greater than those north of
261 35° N (northern TP, or NTP) during summer, implying that the sources of atmospheric waters may differ for these two
262 portions of the TP. The contributions of all the moisture sources to the water vapour and precipitation over the STP and
263 NTP are quantified using the AWT method, as shown in Fig. 6.

264

265 **3.2.1 Moisture source apportionment over the STP**

266 Figure 6a and b show the 33-year-averaged monthly contribution and percentage contribution of each source region
267 to the water vapour over the STP.

268 During the winter, the mean amount of water vapour is generally less than 3.5 kg m^{-2} over the STP. The dominant
269 source regions are Africa, the TP, and India, and the absolute (percentage) contributions of these regions are $0.48 \pm 0.13 \text{ kg}$
270 m^{-2} ($15.1 \pm 3.5 \%$), $0.69 \pm 0.12 \text{ kg m}^{-2}$ ($22.0 \pm 4.1 \%$), and $0.32 \pm 0.12 \text{ kg m}^{-2}$ ($10.2 \pm 3.3 \%$), respectively. The most important
271 oceanic source region is the northern Atlantic Ocean, which supplies $0.27 \pm 0.06 \text{ kg m}^{-2}$ ($8.7 \pm 1.7 \%$) of the water vapour. In
272 addition, only $\sim 30 \%$ of the winter water vapour originates from the oceans, indicating that the winter water vapour over
273 the STP is dominated by land-surface evaporation.

274 The moisture supplied from the tropical Indian Ocean (TIO), Bay of Bengal (BOB), and AS increases in May and
275 considerably decreases after September. During the summer, the TIO becomes the most important source region of the
276 water vapour over the STP, with an absolute (percentage) contribution of $4.64 \pm 0.94 \text{ kg m}^{-2}$ ($28.5 \pm 3.6 \%$). This is consistent
277 with Chen et al. (2012), who found that the Indian Ocean in the southern tropics is a dominant moisture source of the
278 water vapour over the TP. The absolute (percentage) contribution from the AS to the water vapour over the STP is
279 $0.81 \pm 0.23 \text{ kg m}^{-2}$ ($5.1 \pm 1.6 \%$) and that from the BOB is $0.49 \pm 0.13 \text{ kg m}^{-2}$ ($3.0 \pm 0.8 \%$) during the summer. Chen et al.
280 (2012) suggested that the AS is a dominant source region of the water vapour over the TP. The atmospheric water
281 substances are “tagged” at their geographical source, but precipitating tagged water no longer remains “tagged” in the
282 AWT method. A great loss of water vapour originating from the AS occurs en route (Sun and Wang 2014), likely
283 explaining the difference between our results and those of Chen et al. (2012). The TP and India remain important source
284 regions during the summer, with contributions of $2.93 \pm 0.48 \text{ kg m}^{-2}$ ($18.1 \pm 2.4 \%$) and $1.59 \pm 0.39 \text{ kg m}^{-2}$ ($9.7 \pm 1.6 \%$),
285 respectively.

286 Figure 6e and f show the 33-year-averaged monthly contribution and percentage contribution of each source region to
287 the precipitation over the STP. During winter, Africa, the TP, and India are the three most important source regions. Their
288 absolute (percentage) contributions are $0.15 \pm 0.09 \text{ mm d}^{-1}$ ($16.7 \pm 5.8 \text{ %}$), $0.13 \pm 0.06 \text{ mm d}^{-1}$ ($16.5 \pm 6.1 \text{ %}$), and 0.14 ± 0.09
289 mm d^{-1} ($15.9 \pm 7.0 \text{ %}$), respectively. During the summer, the TIO is the most dominant source region, with a contribution of
290 $2.69 \pm 0.68 \text{ mm d}^{-1}$ ($32.9 \pm 3.6 \text{ %}$). This result is consistent with that of Yao et al. (2013), who suggested that the Indian
291 Ocean is the dominant moisture source when monsoons develop. The TP is an important source region, supplying
292 $1.20 \pm 0.23 \text{ mm d}^{-1}$ ($14.9 \pm 2.0 \text{ %}$) of the precipitation. Similarly, Zhang et al. (2017) suggested that local surface evaporation
293 supplies approximately 18 % of the summer precipitation over the western-central areas of the STP. Wang et al. (2017)
294 also noted that local moisture is a substantial component of the summer precipitation over the STP. India is another
295 important source region, contributing $0.97 \pm 0.31 \text{ mm d}^{-1}$ ($11.7 \pm 1.9 \text{ %}$) of the summer precipitation.

296 The overall relative contribution of each source region to the precipitation is similar to the contribution to the water
297 vapour because the availability of water vapour is an important factor in forming and sustaining precipitation. Gimeno et al.
298 (2012) noted that the global distribution of precipitation is similar to the distribution of the total column of water vapour.

299

300 **3.2.2 Moisture source apportionment over the NTP**

301 Figure 6c and d show the contribution and relative contribution of each source region to the water vapour over the
302 NTP. Most of the water vapour over the NTP originates from evaporation from terrestrial source regions throughout the
303 year. The mean percentage contribution from terrestrial source regions is less (59.3 %) during the winter and greater
304 (80.9 %) during the summer, in contrast with the conditions over the STP because the NTP is influenced by westerlies, and
305 the STP is affected by the ASM during the summer (Yao et al. 2013).

306 During the winter, Africa is the dominant source region, supplying $0.52\pm0.12 \text{ kg m}^{-2}$ ($19.0\pm2.8 \text{ \%}$) of the water
307 vapour. In addition, the TP and Europe are two important terrestrial source regions of the winter water vapour, with
308 absolute (percentage) contributions of $0.39\pm0.08 \text{ kg m}^{-2}$ ($14.7\pm3.5 \text{ \%}$) and $0.24\pm0.07 \text{ kg m}^{-2}$ ($8.7\pm1.9 \text{ \%}$), respectively.
309 Approximately $0.45\pm0.09 \text{ kg m}^{-2}$ ($16.5\pm3.2 \text{ \%}$) of the winter water vapour over the NTP originates from the northern
310 Atlantic Ocean, an important oceanic source region. The AS supplies $0.14\pm0.07 \text{ kg m}^{-2}$ ($4.8\pm1.9 \text{ \%}$) of the water vapour
311 over the NTP.

312 During the summer, the TP is the most important source region, supplying $2.81\pm4.7 \text{ kg m}^{-2}$ ($25.8\pm2.4 \text{ \%}$) of the water
313 vapour over the NTP. Evaporation from Europe and northern Asia contributes $18.6\pm4.1 \text{ \%}$ and $20.6\pm3.7 \text{ \%}$ of the water
314 vapour, respectively. From June to September, the contribution of water vapour from the TIO is evidently greater than that
315 in other months; correspondingly, its absolute (percentage) contribution is $0.66\pm0.29 \text{ kg m}^{-2}$ ($5.9\pm2.1 \text{ \%}$). Additionally, the
316 northern Atlantic Ocean supplies $0.57\pm0.08 \text{ kg m}^{-2}$ ($5.3\pm1.1 \text{ \%}$) of the summer water vapour over the NTP.

317 As shown in Fig. 6g and h, the overall relative contribution of each source region to the precipitation is also similar to
318 the contribution to the water vapour over the NTP. During the winter, Africa, the northern Atlantic Ocean, Europe, and the
319 TP are the four major moisture source regions of the precipitation over the NTP, with contributions of $0.24\pm0.09 \text{ mm d}^{-1}$
320 ($25.2\pm3.7 \text{ \%}$), $0.12\pm0.05 \text{ mm d}^{-1}$ ($13.7\pm3.7 \text{ \%}$), $0.13\pm0.06 \text{ mm d}^{-1}$ ($12.9\pm3.0 \text{ \%}$), and $0.08\pm0.03 \text{ mm d}^{-1}$ ($8.8\pm3.5 \text{ \%}$),
321 respectively. During the summer, the TP is the most dominant source region of the precipitation over the NTP, with an
322 absolute (percentage) contribution of $0.67\pm0.15 \text{ mm d}^{-1}$ ($31.5\pm3.5 \text{ \%}$). Based on isotope data, Yang et al. (2006) also
323 suggested that the TP surface evaporation is important to the summer precipitation over the NTP, with a local recycling
324 ratio of at least 46.9 %. In addition, Europe and northern Asia are other two important sources of the summer precipitation,
325 with contributions of $0.27\pm0.11 \text{ mm d}^{-1}$ ($12.8\pm4.3 \text{ \%}$) and $0.33\pm0.13 \text{ mm d}^{-1}$ ($15.3\pm4.1 \text{ \%}$), respectively. Thomas et al.
326 (2016) suggested that local and northwesterly air masses have been important moisture sources of the north-eastern TP
327 over the past 30,000 years.

328

329 **3.3 Relationship between the TP heating and moisture transport from the tropical Indian Ocean**

330 The vertical integrated apparent heat source (VQ_1 , see Eq. (7.2)) consists of the latent heat of precipitation (LP),
331 surface sensible heat (S), and vertical integrated atmospheric radiation heating (VQ_R). Figure 5b shows the inter-annual
332 evolution of the summer mean of VQ_1 , VQ_2 and their component terms over the TP. The value of LP approximates that
333 of VQ_1 , and a high correlation (the correlation coefficient $r = 0.97$) exists between them. This result is consistent with He
334 et al. (1987), who suggested that the heating over the TP mainly originates from the release of latent heat of condensation.
335 S is less than LP and exhibits an indistinctive inter-annual variation relative to LP . Radiation heating is negative, and its
336 absolute value is comparable to the surface sensible heat during the summer. All these results imply that the variation in
337 the TP summer heat source is primarily associated with the change in precipitation. The evolution of the normalized VQ_1
338 (see Eq. (9)) over the TP during the summer of 1982–2014 is shown in Fig. 5c. The TP heat source is anomalously strong
339 in 1987, 1988, 1995, 1998, and 2000, whereas 1986, 1997, 2002, 2006, and 2009 are years with anomalously weak heating
340 over the TP.

341 The dominant moisture source region that leads to precipitation over the STP during the summer is the TIO (Fig. 6).
342 We further studied the composite anomalies of precipitation contributions from the TIO over Asia in anomalous TP
343 heating years, as shown in Fig. 7a and b. The STP generally receives less TIO-contributed precipitation in weak heating
344 years and more TIO-contributed precipitation in strong heating years. Evaporation and moisture transport are two factors
345 that affect the precipitation at a seasonal scale (Eq. 13). Supplementary Fig. S4 generally shows no significant difference
346 in evaporation over the TIO between weak and strong TP heating years, implying that the change in evaporation over the
347 TIO barely influences the summer precipitation over the STP. Similarly, Wei et al. (2016) found that the variation in
348 Northeast Pacific evaporation barely influences the precipitation in California despite being the dominant source region of

349 California's precipitation. Figure 7c and d show the composite anomalies of the advective tendency of the TIO-contributed
350 water vapour during the summer in anomalous TP heating years. Similar to the anomalies in the TIO-contributed
351 precipitation (Fig. 7a and b), the inflow of TIO-contributed water vapour is significantly weaker (stronger) over the STP in
352 weak (strong) heating years. All these results indicate that the anomalies in the TP summer heat source are accompanied
353 by evident changes in water vapour transport from the TIO to the STP. The variation in the water vapour transport from
354 the TIO significantly changes the precipitation over the STP. The relationship between the TP heat source and moisture
355 transport from the TIO has been explained in previous studies—Duan and Wu (2005) and Wu et al. (2007) suggested that
356 the TP thermal forcing can cause the tropical moisture to converge towards and rise over the TP, resulting in abundant
357 rainfall. The latent heat of rainfall can further intensify the TP heat source (Yanai and Wu 2006).

358 Wind field and water vapour amount are two variables that control moisture transport (see Eqs. (11) and (12)), both
359 of which are associated with the dynamic and thermodynamic structures of the atmosphere, and their relative importance
360 varies over different scales and regions (Li et al. 2013; Wang et al. 2017). The aforementioned results demonstrate that
361 moisture transport (or precipitation) from the TIO has a strong connection to the TP summer heat source and suggest
362 further study of the relative importance of dynamic and thermodynamic variations in moisture transport from the TIO to
363 the TP when anomalous TP summer heating occurs. Figure 8 shows the composite vertical distributions of the
364 TIO-supplied moisture flux components on the right-hand sides of Eqs. (11) and (12) during the summer in anomalous TP
365 heating years. The dynamic component ($\bar{q}u'$) of the TIO-contributed zonal moisture flux below 400 hPa significantly
366 decreases (increases) over the STP and areas to the east in response to a weak (strong) TP heat source (Fig. 8a and b).
367 Figure 8e and f show that the thermodynamic component ($\bar{u}q'$) of the TIO-contributed zonal moisture flux below 400 hPa
368 also significantly decreases (increases) over areas between 90° and 100° E in the STP in weak (strong) TP heating years.
369 Similarly, Fig 8c and d show significant variation in the dynamic component ($\bar{q}v'$) of the TIO-contributed meridional
370 moisture flux over the STP and areas farther south in anomalous TP heating years. The thermodynamic component ($\bar{v}q'$)

371 of the TIO-contributed meridional moisture flux is evidently lower over the STP in weak heating years (Fig. 8g) but
372 becomes greater in strong heating years (Fig. 8h). The covariations of humidity and wind ($q'u'$ and $q'v'$) are negligible
373 quantities compared with the dynamic and thermodynamic components. Additionally, the absolute value of the dynamic
374 components ($\bar{q}u'$ and $\bar{q}v'$) are evidently greater than those of the thermodynamic components ($\bar{u}q'$ and $\bar{v}q'$) over the
375 STP, indicating that the variation in the TP summer heat source is more related to the dynamic change in moisture
376 transport from the tropical ocean.

377 Figure 5d shows the time series of summer averaged anomalies of the CMA station-observed precipitation and the
378 convergence of the TIO-contributed moisture flux caused by dynamic ($-\frac{1}{g}\nabla \cdot \int_{p_T}^{p_s} (\bar{q})_{\text{TIO}} \vec{V}' dp$) and thermodynamic ($-\frac{1}{g}\nabla \cdot$
379 $\int_{p_T}^{p_s} (q')_{\text{TIO}} \vec{V}_a dp$) processes over the STP for 1982–2013. The correlation between precipitation and the dynamic
380 component is 0.58, which is statistically significant at a 99 % confidence level. The correlation between precipitation and
381 the thermodynamic component is 0.31, which is statistically significant at a 90 % confidence level. A high correlation
382 exists between the TP summer heat source and *LP* (Fig. 5b). Therefore, Fig. 5d indicates that the variation in the TP
383 summer heat source is primarily related to the dynamic change in the TIO-supplied moisture transport. Duan and Wu
384 (2005) and Wu et al. (2007) suggested that mutually reinforcing roles exist between the TP heat source and the tropical
385 moisture transport during the summer. Wu et al. (2012) noted that the TP heat source can intensify the ASM circulation,
386 which strengthens the inflow of water vapour and eventually increases precipitation over the TP. Thus, the variation in TP
387 summer heating is primarily related to the dynamic component of the TIO-contributed moisture flux.

388

389 3.4 Uncertainties

390 The results of the AWT method depend on the performance of the model in reproducing the hydrological cycle
391 (Numaguti 1999). The comparisons between the observed and CAM5.1-simulated water vapour demonstrate that CAM5.1

392 can generally represent the water vapour amount over the TP and its surrounding areas, except that the water vapour
393 amount over some portions of the STP is overestimated. Therefore, biases may exist in the results of moisture source
394 apportionment to water vapour over these areas. The precipitation over the TP, especially over the southern margin of the
395 TP during the summer, is overestimated in CAM5.1 (Fig. 4). Therefore, uncertainty exists in the absolute contribution of
396 each source region to the precipitation over the TP in this study. However, the results for the percentage contributions to
397 precipitation are consistent with those of previous studies (Yang et al. 2006; Yao et al. 2013; Thomas et al. 2016; Wang et
398 al. 2017; Zhang et al. 2017), facilitating meaningful studies of the quantitative moisture source apportionment to
399 precipitation over the TP.

400 The coarse resolution of the model is a source of uncertainties and implies that the orographic barriers to moisture
401 transport are not correctly represented. On the other hand, previous studies have suggested that global climate models,
402 high-resolution regional climate models, and dynamical downscaling models overestimate the precipitation over the TP
403 (Yu et al. 2010; Gao et al. 2012; Su et al. 2013), indicating that the models' parameterizations also bring uncertainties to
404 the simulated results (Gao et al. 2012). Hence, simulations with higher resolution and further developments in models'
405 parameterizations are still required to improve the performance when simulating moisture transport and precipitation,
406 which should provide more accurate results from the AWT approach in the future.

407 Additionally, the surface evaporation flux from the MERRA dataset is used to drive CAM5.1 in this study, and thus
408 the bias in the MERRA surface evaporation could have produced uncertainties in the results of the AWT method. Jiménez
409 et al. (2011) suggested that the MERRA land evaporation is greater over southern and eastern Asia relative to other global
410 estimates. Bosilovich et al. (2011) noted that, compared with other reanalysis datasets, the MERRA ocean evaporation is
411 lower but much similar to observed data. Therefore, the bias in the MERRA surface evaporation may have produced the
412 greater land contribution and lower oceanic contribution to atmospheric moisture over the TP in this study.

413

414 **4. Conclusions**

415 Although the TP is a key region that affects global water cycles, its moisture sources remain uncertain. We used the
416 tagged AWT method implemented in CAM5.1 to quantitatively identify the moisture sources of water vapour and
417 precipitation over the STP and NTP for 1982–2014. Africa, the TP, and India are the three dominant moisture sources of
418 the winter water vapour over the STP, with absolute (percentage) contributions of $0.48 \pm 0.13 \text{ kg m}^{-2}$ ($15.1 \pm 3.5 \text{ \%}$),
419 $0.69 \pm 0.12 \text{ kg m}^{-2}$ ($22.0 \pm 4.1 \text{ \%}$), and $0.32 \pm 0.12 \text{ kg m}^{-2}$ ($10.2 \pm 3.3 \text{ \%}$), respectively. During the summer, the TIO becomes
420 the dominant source region because of the development of the Asian summer monsoon, which supplies $4.64 \pm 0.94 \text{ kg m}^{-2}$
421 ($28.5 \pm 3.6 \text{ \%}$) of the water vapour over the STP. During the winter, Africa is the dominant source region of the water
422 vapour over the NTP, supplying $0.52 \pm 0.12 \text{ kg m}^{-2}$ ($19.0 \pm 2.8 \text{ \%}$) of the water vapour. In addition, approximately $16.5 \pm 3.2 \text{ \%}$
423 of the winter water vapour originates from the northern Atlantic Ocean, which is an important oceanic source region.
424 During the summer, the TP supplies $2.81 \pm 4.7 \text{ kg m}^{-2}$ ($25.8 \pm 2.4 \text{ \%}$) of the water vapour over the NTP and becomes the
425 most important source region. The overall relative contribution of each source region to the precipitation is similar to the
426 contribution to the water vapour over the TP.

427 The TIO is the dominant moisture source of both the water vapour and precipitation over the STP in the summer.
428 Meanwhile, the TP heat source is primarily associated with the release of latent heat of precipitation during the summer.
429 Thus, we further investigated the relationship between the TP summer heating and the moisture transport from the TIO and
430 found that water vapour transport from the TIO to the STP and the TIO-contributed precipitation over the STP
431 significantly decrease (increase) in years with anomalously weak (strong) summer TP heating. However, the surface
432 evaporation over the TIO generally exhibits no evident changes between strong and weak heating years. These results
433 imply that anomalies in the TP summer heat source are related to changes in moisture transport from the TIO rather than to
434 its surface evaporation. After dividing the TIO-supplied moisture transport flux into dynamic and thermodynamic
435 components, we found that anomalies in the TP summer heating are primarily related to the dynamic component of

436 moisture transport from the TIO. This dynamic component further controls the variation in the TIO-contributed
437 precipitation over the STP.

438

439 **Acknowledgements**

440 This work was supported by the National Key Research and Development Program of China (2016YFA0602003), the
441 National Natural Science Foundation of China (Grant No. 91544229), and the projects of China Special Fund for
442 Meteorological Research in the Public Interest (GYHY201406001).

443

444 **References**

445 Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in
446 snow-dominated regions. *Nature* 438: 303–309. doi:10.1038/nature04141

447 Beer R, Glavich TA, Rider DM (2001) Tropospheric emission spectrometer for the Earth Observing System's Aura
448 satellite. *Appl Opt* 40: 2356–2367. doi:10.1364/AO.40.002356

449 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing.
450 *J Roy Stat Soc B* 57: 289–300

451 Bolin B (1950) On the Influence of the Earth's Orography on the General Character of the Westerlies. *Tellus* 2: 184–195.
452 doi:10.1111/j.2153-3490.1950.tb00330.x

453 Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating.
454 *Nature* 463: 218

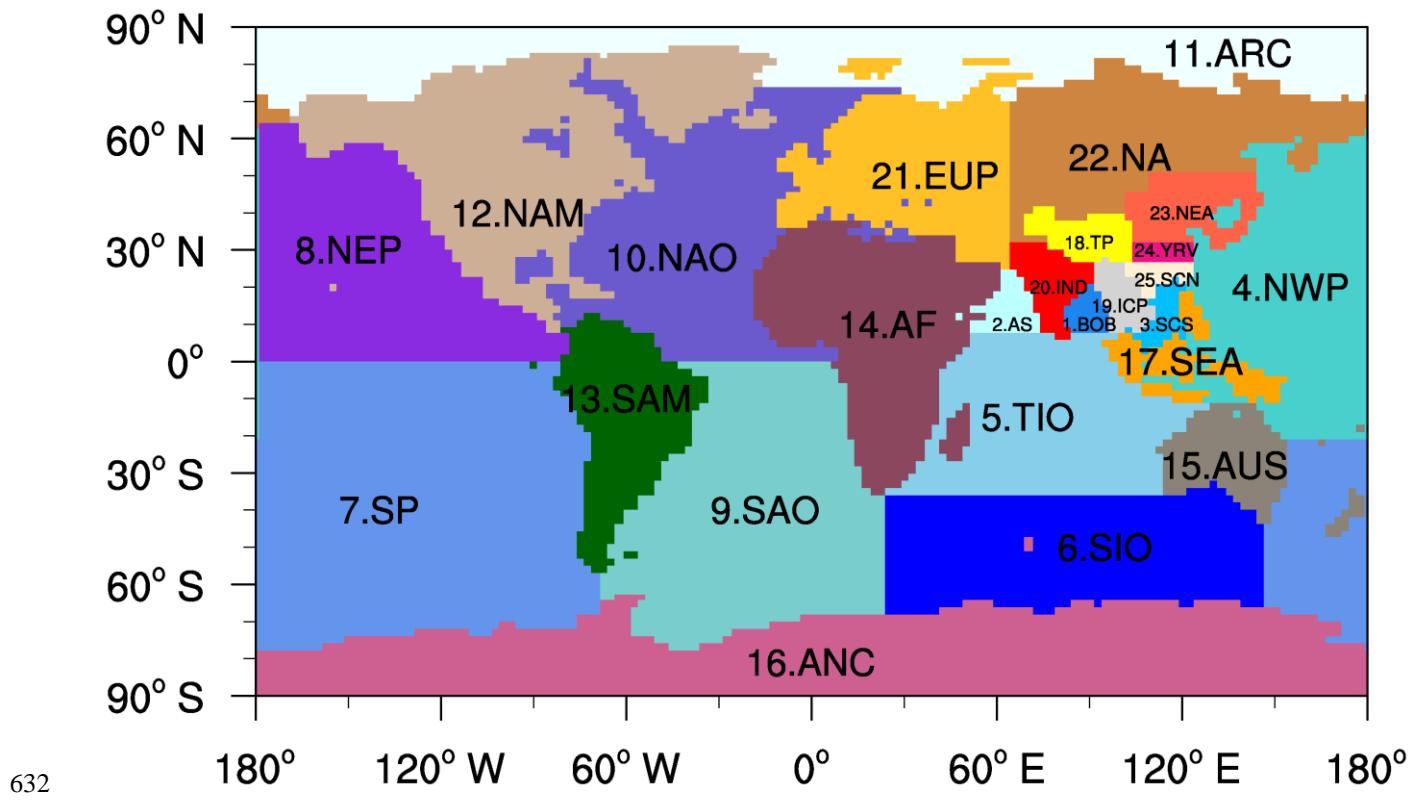
455 Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. *J Climate* 24: 5721–5739.
456 doi:10.1175/2011JCLI4175.1

- 457 Bosilovich MG, Schubert SD (2002) Water vapor tracers as diagnostics of the regional hydrologic cycle. *J Hydrometeorol*
- 458 3: 149–165. doi:10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2
- 459 Bothe O, Fraedrich K, Zhu X (2011) Large-scale circulations and Tibetan Plateau summer drought and wetness in a
- 460 high-resolution climate model. *Int J Climatol* 31: 832–846. doi:10.1002/joc.2124
- 461 Bretherton CS, Park S (2009) A new moist turbulence parameterization in the Community Atmosphere Model. *J Climate*
- 462 22: 3422–3448. doi:10.1175/2008JCLI2556.1
- 463 Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. *J Climate* 6: 1077–1089.
- 464 doi:10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2
- 465 Chen B, Xu XD, Yang S, Zhang W (2012) On the origin and destination of atmospheric moisture and air mass over the
- 466 Tibetan Plateau. *Theor Appl Climatol* 110: 423–435. doi:10.1007/s00704-012-0641-y
- 467 Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the
- 468 Tibetan Plateau. *Earth Syst Dynam* 6: 109–124. doi:10.5194/esd-6-109-2015
- 469 Dong W, Lin Y, Wright JS, Ming Y, Xie Y, Wang B, Luo Y, Huang W, Huang J, Wang L, Tian L, Peng Y, Xu F (2016)
- 470 Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent.
- 471 *Nat Commun* 7: 10925. doi:10.1038/ncomms10925
- 472 Duan A, Li F, Wang M, Wu G (2011) Persistent weakening trend in the spring sensible heat source over the Tibetan
- 473 Plateau and its impact on the Asian summer monsoon. *J Climate* 24: 5671–5682. doi:10.1175/JCLI-D-11-00052.1
- 474 Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical
- 475 Asia. *Clim Dynam* 24: 793–807. doi:10.1007/s00382-004-0488-8
- 476 Duan AM, Wu GX, Liang XY (2008) Influence of the Tibetan Plateau on the summer climate patterns over Asia in the
- 477 IAP/LASG SAMIL model. *Adv Atmos Sci* 25: 518–528. doi:10.1007/s00376-008-0518-2

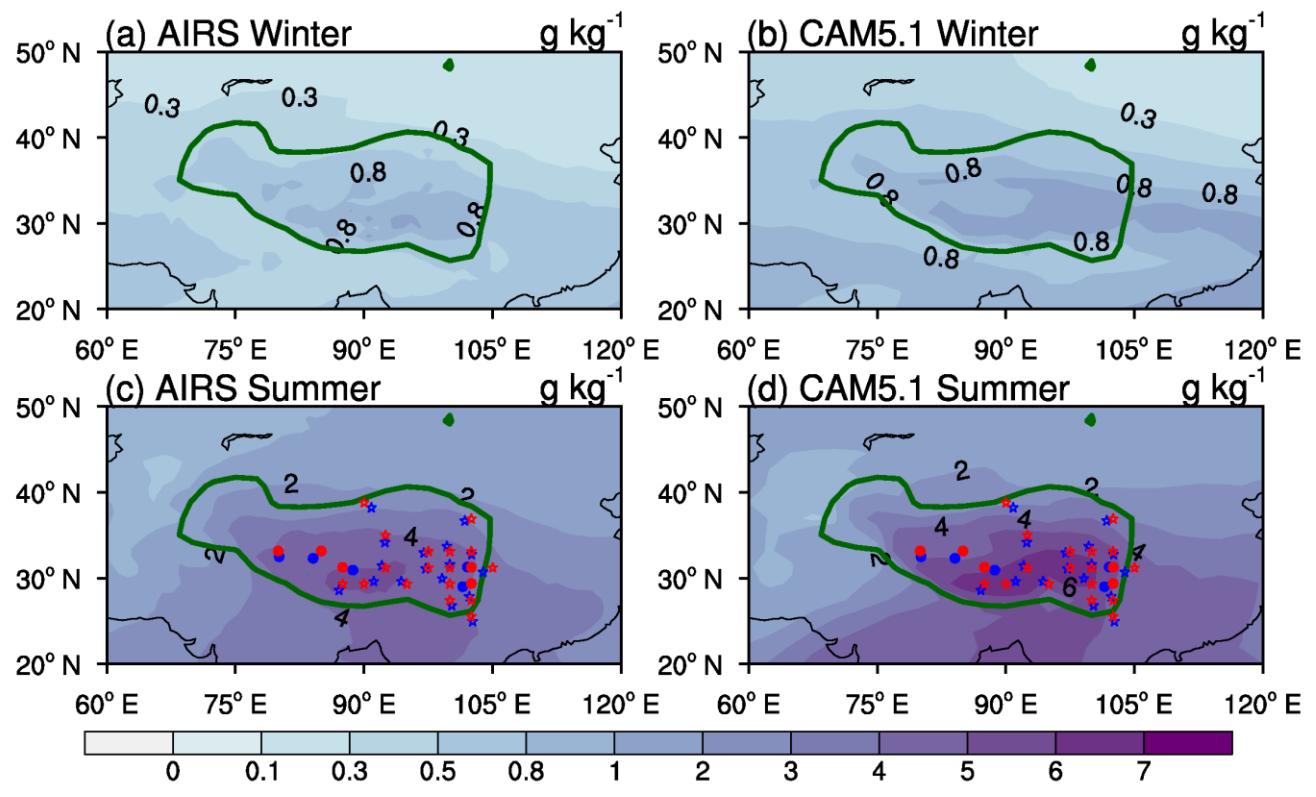
- 478 Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T,
- 479 Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughecum SL, Kloster S (2010) Description and evaluation of the
- 480 Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). *Geosci Model Dev* 3: 43–67.
- 481 doi:10.5194/gmd-3-43-2010
- 482 Flohn H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. *J Meteorol Soc Jpn* 75: 180–186
- 483 Gao X, Shi Y, Zhang D, Wu J, Giorgi F, Ji Z, Wang Y (2012) Uncertainties in monsoon precipitation projections over
- 484 China: results from two high-resolution RCM simulations. *Clim Res* 52: 213–226. doi:10.3354/cr01084
- 485 Gettelman A, Liu X, Ghan SJ, Morrison H, Park S, Conley AJ, Klein SA, Boyle J, Mitchell DL, Li J-LF (2010) Global
- 486 simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere
- 487 Model. *J Geophys Res* 115: D18216. doi:10.1029/2009JD013797
- 488 Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012)
- 489 Oceanic and terrestrial sources of continental precipitation. *Rev Geophys* 50: RG4003. doi:10.1029/2012RG000389
- 490 He H, McGinnis JW, Song Z, Yanai M (1987) Onset of the Asian Summer Monsoon in 1979 and the Effect of the Tibetan
- 491 Plateau. *Mon Weather Rev* 15: 1966–1995. doi:10.1175/1520-0493(1987)115<1966:OOTASM>2.0.CO;2
- 492 Hsu HH, Liu X (2003) Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall.
- 493 *Geophys Res Lett* 30: 2066. doi:10.1029/2003GL017909
- 494 Huffman GJ, Bolvin DT (2011) GPCP version 2.2 combined precipitation data set documentation. NASA Goddard Space
- 495 Flight Center, Mesoscale Atmospheric Processes Laboratory and Science Systems and Applications, Inc
- 496 Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM
- 497 multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine
- 498 scales. *J Hydrometeorol* 8: 38–55. doi:10.1175/JHM560.1

- 499 Jiménez C, Prigent C, Mueller B, Seneviratne SI, McCabe MF, Wood EF, Rossow WB, Balsamo G, Betts AK, Dirmeyer
500 PA, Fisher JB, Jung M, Kanamitsu M, Reichle RH, Reichstein M, Rodell M, Sheffield J, Tu K, Wang K (2011) Global
501 intercomparison of 12 land surface heat flux estimates. *J Geophys Res* 116: D02102. doi:10.1029/2010JD014545
- 502 Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y,
503 Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R,
504 Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. *B Am Meteorol Soc* 77: 437–471.
505 doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
- 506 Knoche HR, Kunstmann H (2013) Tracking atmospheric water pathways by direct evaporation tagging: A case study for
507 West Africa. *J Geophys Res-Atmos* 118: 12345–12358. doi:10.1002/2013JD019976
- 508 Koster R, Jouzel J, Suozzo R, Russell G, Broecker W, Rind D, Eagleson P (1986) Global sources of local precipitation as
509 determined by the NASA/GISS GCM. *Geophys Res Lett* 13: 121–124. doi: 10.1029/GL013i002p00121
- 510 Lamarque J-F, Emmons LK, Hess PG, Kinnison DE, Tilmes S, Vitt F, Heald CL, Holland EA, Lauritzen PH, Neu J,
511 Orlando JJ, Rasch PJ, Tyndall GK (2012) CAM-chem: description and evaluation of interactive atmospheric
512 chemistry in the Community Earth System Model. *Geosci Model Dev* 5: 369–411. doi:10.5194/gmd-5-369-2012
- 513 Lauritzen PH, Ullrich P A, Nair RD (2011) Atmospheric transport schemes: desirable properties and a semi-Lagrangian
514 view on finite-volume discretizations. *Numerical Techniques for Global Atmospheric Models, Lecture Notes in
515 Computational Science and Engineering* 80: 185–250. doi:10.1007/978-3-642-11640-7_8
- 516 Li C, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal
517 contrast. *J Clim* 9: 358–375. doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2
- 518 Li L, Li W, Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over
519 the southeastern United States. *Clim Dyn* 41: 613–631. doi:10.1007/s00382-013-1697-9

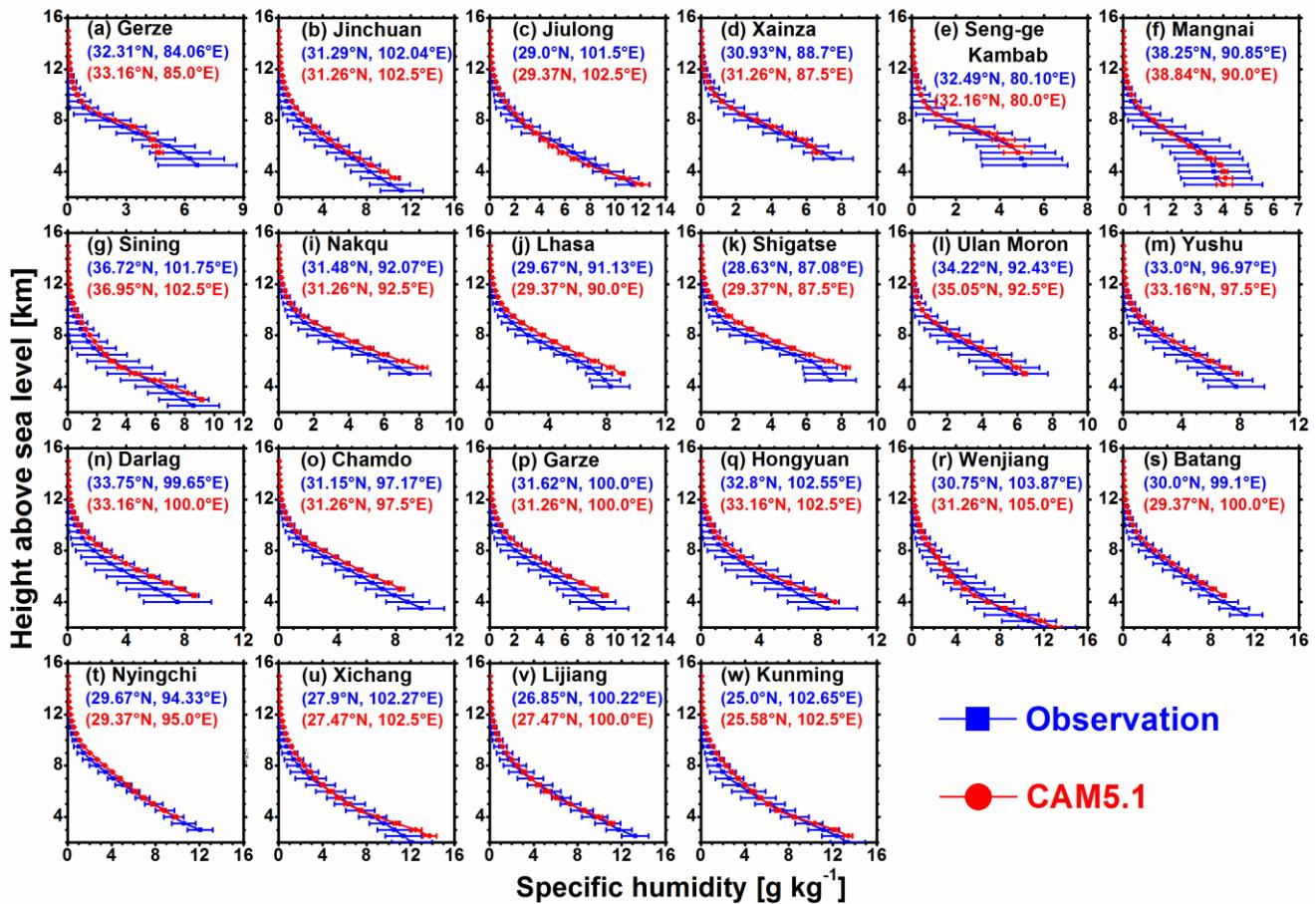
- 520 Manabe S, Terpstra TB (1974) The effects of mountains on the general circulation of the atmosphere as identified by
521 —
522 —
523 —
524 Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the Community
525 Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. *J Climate* 21: 3642–3659.
526 doi:10.1175/2008JCLI2105.1
527 Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque
528 J-F, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter
529 RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2012) Description of the NCAR Community Atmosphere Model (CAM5).
530 NCAR Technical Note NCAR/TN-486+STR, 275 pp
531 Numaguti A (1999) Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using
532 an atmospheric general circulation model. *J Geophys Res* 104: 1957–1972. doi:10.1029/1998JD200026
533 —
534 —
535 Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their
536 impact on climate simulations with the Community Atmosphere Model. *J Climate* 22: 3449–3469.
537 doi:10.1175/2008JCLI2557.1
538 Park S, Bretherton CS, Rasch PJ (2014) Integrating cloud processes in the Community Atmosphere Model, version 5. *J*
539 *Climate* 27: 6821–6856. doi:10.1175/JCLI-D-14-00087.1


- 540 Rasch PJ, Coleman DB, Mahowald N, Williamson DL (2006) Characteristics of Atmospheric Transport Using Three
541 Numerical Formulations for Atmospheric Dynamics in a Single GCM Framework. *J Climate* 19: 2243–2266.
542 doi:10.1175/JCLI3763.1
- 543 Rasch PJ, Mahowald NM, Eaton BE (1997) Representations of transport, convection, and the hydrologic cycle in chemical
544 transport models: Implications for the modeling of short-lived and soluble species. *J Geophys Res* 102: 28127–28138.
545 doi:10.1029/97JD02087
- 546 Raymond DJ, Blyth AM (1986) A stochastic mixing model for nonprecipitating cumulus clouds. *J Atmos Sci* 43: 2708–
547 2718. doi:10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2
- 548 Raymond DJ, Blyth AM (1992) Extension of the stochastic mixing model to cumulonimbus clouds. *J Atmos Sci* 49: 1968–
549 1983. doi:10.1175/1520-0469(1992)049<1968:EOTSMM>2.0.CO;2
- 550 Richter JH, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the community
551 atmosphere model, version 3. *J Climate* 21: 1487–1499. doi:10.1175/2007JCLI1789.1
- 552 Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K,
553 Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T,
554 Pawson S, Pégion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA:
555 NASA's Modern-Era Retrospective analysis for Research and Applications. *J Climate* 24: 3624–3648.
556 doi:10.1175/JCLI-D-11-00015.1
- 557 Rotman DA, Atherton CS, Bergmann DJ, Cameron-Smith PJ, Chuang CC, Connell PS, Connell PS, Dignon JE, Franz A,
558 Grant KE, Kinnison DE, Molenkamp CR, Proctor DD, Tannahill JR (2004) IMPACT, the LLNL 3-D global
559 atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis
560 of ozone and other trace gases. *J Geophys Res* 109: D04303. doi:10.1029/2002JD003155

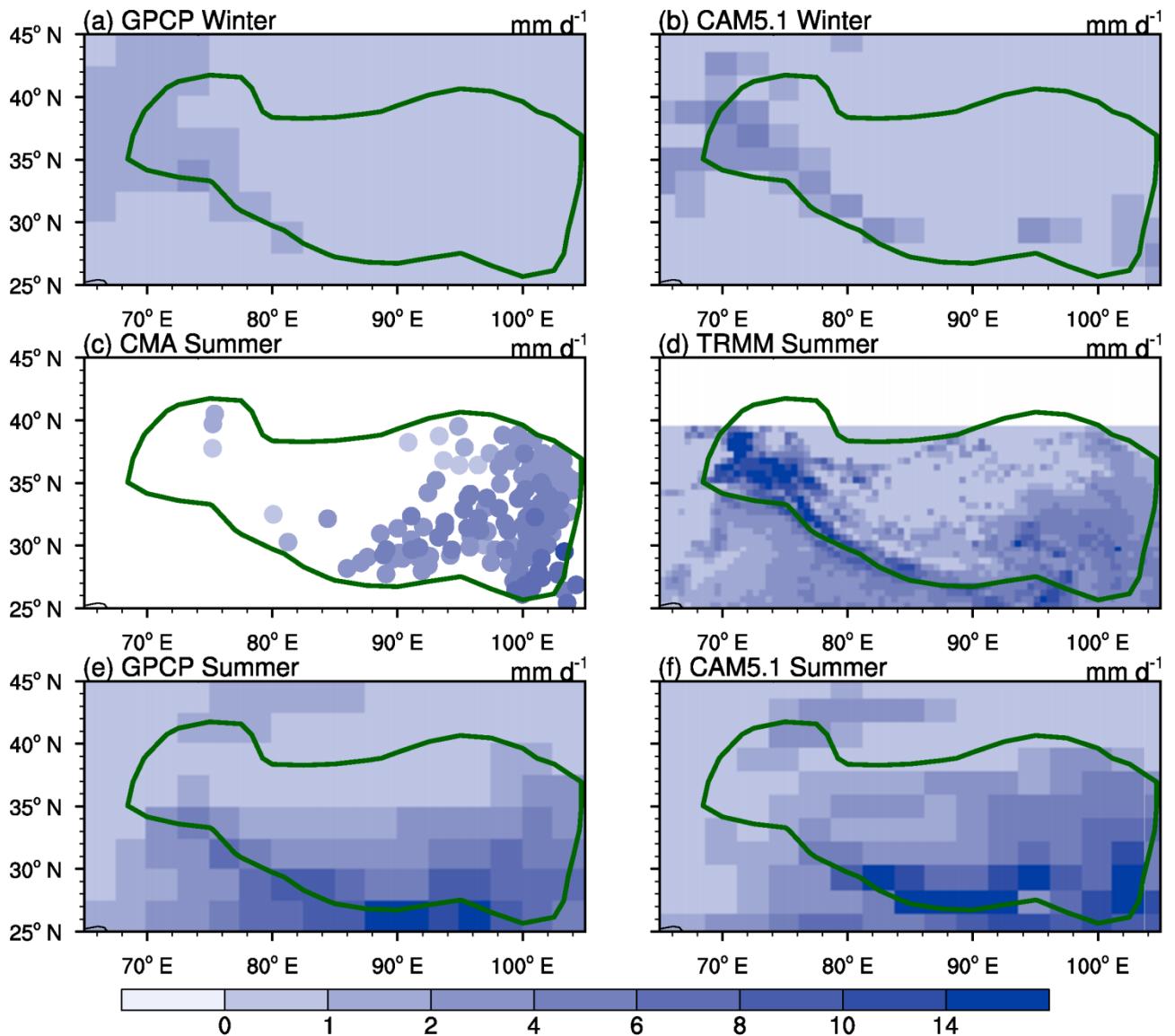
- 561 Singh HA, Bitz CM, Nusbaumer J, Noone DC (2016) A mathematical framework for analysis of water tracers: Part 1:
562 Development of theory and application to the preindustrial mean state. *J Adv Model Earth Syst* 8: 991–1013.
563 doi:10.1002/2016MS000649
- 564 Sodemann H, Wernli H, Schwierz C (2009) Sources of water vapour contributing to the Elbe flood in August 2002—A
565 tagging study in a mesoscale model. *QJR Meteorol Soc* 135: 205–223. doi:10.1002/qj.374
- 566 Stohl A, James P (2004) A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method
567 description, validation, and demonstration for the August 2002 flooding in central Europe. *J Hydrometeorol* 5: 656–
568 678. doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2
- 569 Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan
570 Plateau. *J Climate* 26: 3187–3208. doi:10.1175/JCLI-D-12-00321.1
- 571 Sun B, Wang H (2014) Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART.
572 *J Climate* 27: 2457–2474. doi:10.1175/JCLI-D-13-00517.1
- 573 Thomas EK, Huang Y, Clemens SC, Colman SM, Morrill C, Wegener P, Zhao J (2016) Changes in dominant moisture
574 sources and the consequences for hydroclimate on the northeastern Tibetan Plateau during the past 32 kyr. *Quaternary*
575 *Sci Rev* 131: 157–167. doi:10.1016/j.quascirev.2015.11.003
- 576 Tian B, Manning E, Fetzer E, Olsen E, Olsen E, Wong S (2014) AIRS/AMSU/HSB Version 6 Level 3 Product User Guide.
577 Tech. Rep., Jet Propulsion Laboratory, Pasadena.
578 https://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_L3_User_Guide.pdf
- 579 Ventura V, Paciorek JI, Risbey JS (2004) Controlling the Proportion of Falsely Rejected Hypotheses when Conducting
580 Multiple Tests with Climatological Data. *J Climate* 17: 4343–4356. doi: 10.1175/3199.1
- 581 Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia.
582 *Geophys Res Lett* 35: L14702. doi:10.1029/2008GL034330


- 583 Wang Z, Duan A, Wu G (2014) Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall
584 anomaly in East China: case studies using the WRF model. *Clim Dyn* 42: 2885–2898.
585 doi:10.1007/s00382-013-1800-2
- 586 Wang Z, Duan A, Yang S, Ullah K (2017) Atmospheric moisture budget and its regulation on the variability of summer
587 precipitation over the Tibetan Plateau. *J Geophys Res-Atmos* 122: 614–630. doi:10.1002/2016JD02551
- 588 Wei J, Jin Q, Yang Z-L, Dirmeyer PA (2016) Role of ocean evaporation in California droughts and floods. *Geophys Res*
589 *Lett* 43: 6554–6562. doi:10.1002/2016GL069386
- 590 Wilks DS (2006) On “field significance” and the false discovery rate. *J Appl Meteor Climatol* 45: 1181–1189.
591 doi:10.1175/JAM2404.1
- 592 Wilks DS (2016) “The Stippling Shows Statistically Significant Grid Points”: How Research Results are Routinely
593 Overstated and Overinterpreted, and What to Do about It. *B Am Meteorol Soc* 97: 2263–2273.
594 doi:10.1175/BAMS-D-15-00267.1
- 595 Worden J, Noone D, Bowman K, Beer R, Eldering A, Fisher B, Gunson M, Goldman A, Herman R, Kulawik SS, Lampel
596 M, Osterman G, Rinsland C, Rodgers C, Sander S, Shephard M, Webster CR, Lampel M (2007) Importance of rain
597 evaporation and continental convection in the tropical water cycle. *Nature* 445: 528–532. doi:10.1038/nature05508
- 598 Wu G, Liu Y, He B, Bao Q, Duan A, Jin FF (2012) Thermal controls on the Asian summer monsoon. *Sci Rep* 2: 404.
599 doi:10.1038/srep00404
- 600 Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of mechanical and
601 thermal forcing by the Tibetan Plateau on Asian climate. *J Hydrol* 38: 770–789. doi:10.1175/JHM609.1
- 602 Wu G, Zhang Y (1998) Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China
603 Sea. *Mon Weather Rev* 126: 913–927. doi:10.1175/1520-0493

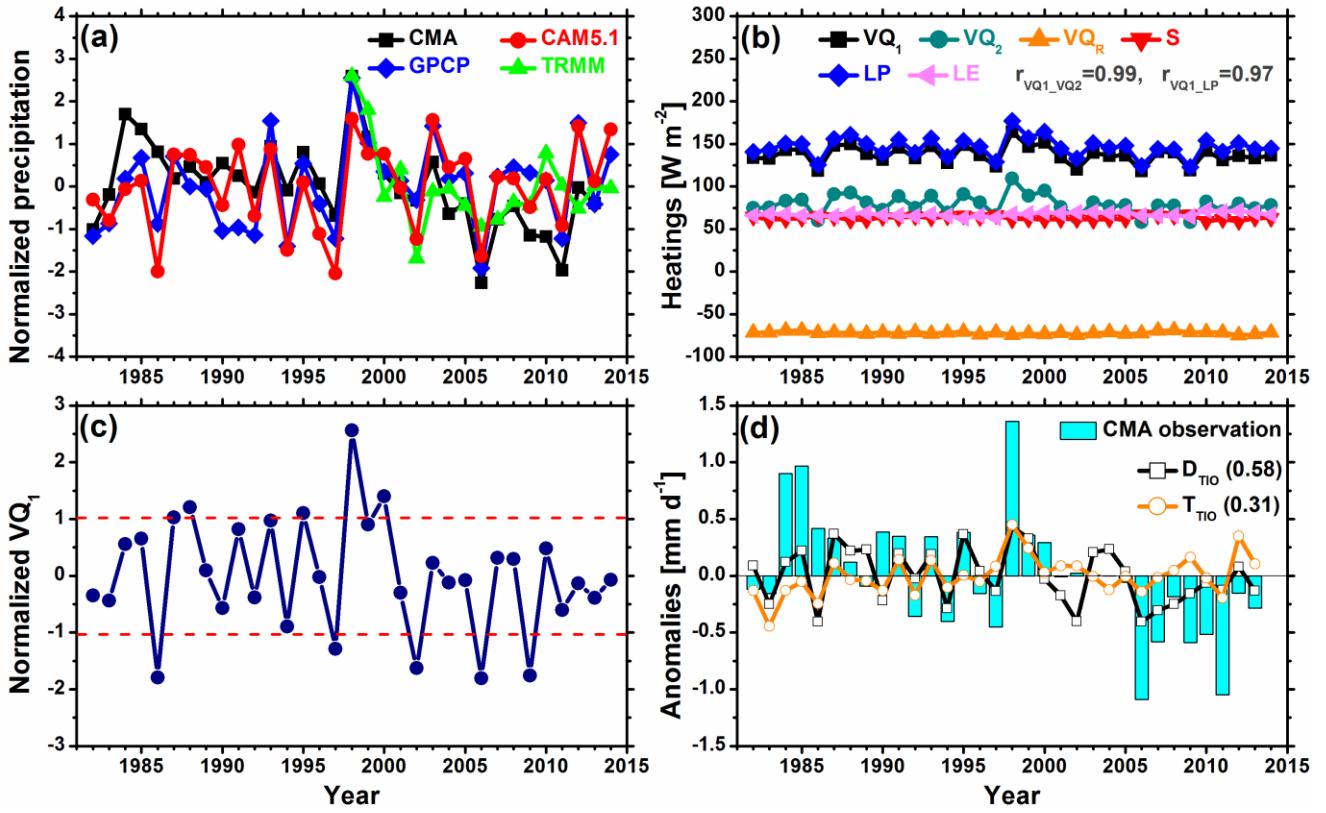
- 604 Xu X, Lu C, Ding Y, Shi X, Guo Y, Zhu W (2013) What is the relationship between China summer precipitation and the
605 change of apparent heat source over the Tibetan Plateau? *Atmos Sci Let* 14: 227–234. doi:10.1002/asl2.444
- 606 Xu X, Lu C, Shi X, Gao S (2008) World water tower: An atmospheric perspective. *Geophys Res Lett* 35: L20815.
607 doi:10.1029/2008GL035867
- 608 Xu X, Zhao T, Lu C, Guo Y, Chen B, Liu R, Li Y, Shi X (2014) An important mechanism sustaining the atmospheric"
609 "water tower" over the Tibetan Plateau. *Atmos Chem Phys* 14: 11287–11295. doi:10.5194/acp-14-11287-2014
- 610 Yanai M, Esbensen S, Chu JH (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and
611 moisture budgets. *J Atmos Sci* 30: 611–627. doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
- 612 Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) *The Asian monsoon*. Springer, Berlin/Heidelberg,
613 pp 514–549
- 614 Yanai MH, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian
615 summer monsoon. *J Meteorol Soc Jpn* 70: 319–351
- 616 Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts
617 on energy and water cycle: A review. *Global Planet Change* 112: 79–91. doi:10.1016/j.gloplacha.2013.12.001
- 618 Yang M, Yao T, Wang H, Tian L, Gou X (2006) Estimating the criterion for determining water vapour sources of summer
619 precipitation on the northern Tibetan Plateau. *Hydrol Process* 20: 505–513. doi:10.1002/hyp.5918
- 620 Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou
621 S (2013) A review of climatic controls on $\delta^{18}\text{O}$ in precipitation over the Tibetan Plateau: Observations and simulations.
622 *Rev Geophys* 51: 525–548. doi:10.1002/rog.20023
- 623 Yeh TC, Lo SW, Chu PC (1957) The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its
624 surrounding. *Acta Meteor Sin* 28: 108–121


- 625 Yu ET, Wang HJ, Sun JQ (2010) A quick report on a dynamical downscaling simulation over China using the nested model.
- 626 Atmos Oceanic Sci Lett 3: 325–329. doi:10.1080/16742834.2010.11446886
- 627 Zhang C, Tang Q, Chen D (2017) Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. J.
- 628 Climate 30: 1807–1819. doi:10.1175/JCLI-D-15-0842.1
- 629 Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the
- 630 Canadian Climate Centre general circulation model. Atmos Ocean 33: 407–446.
- 631 doi:10.1080/07055900.1995.9649539

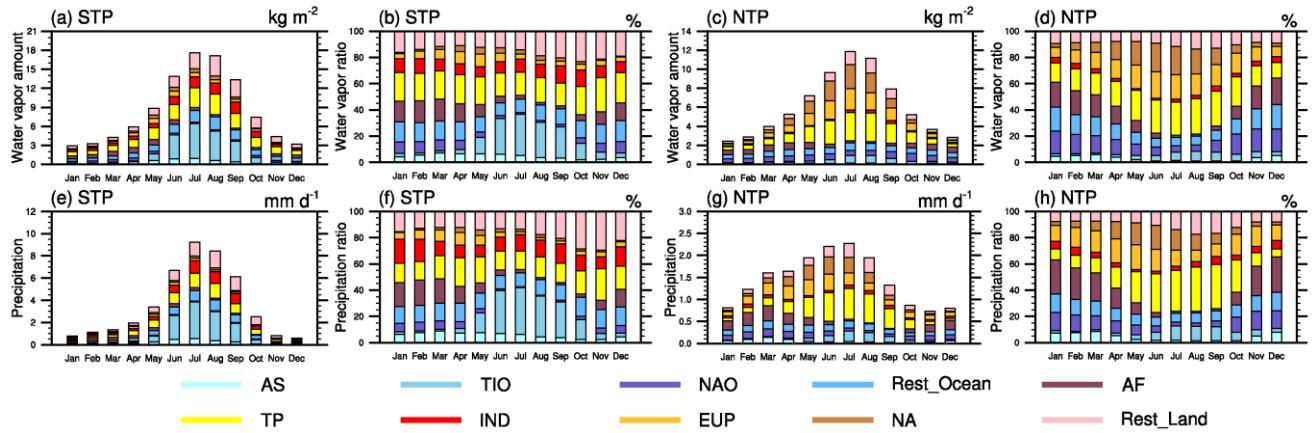
632 **Fig. 1** Moisture source regions: (1) Bay of Bengal (BOB); (2) Arabian Sea (AS); (3) South China Sea (SCS); (4)
 633 Northwest Pacific (NWP); (5) tropical Indian Ocean (TIO); (6) southern Indian Ocean (SIO); (7) southern Pacific (SP); (8)
 634 Northeast Pacific (NEP); (9) southern Atlantic Ocean (SAO); (10) northern Atlantic Ocean (NAO); (11) Arctic Ocean
 635 (ARC); (12) North America (NAM); (13) South America (SAM); (14) Africa (AF); (15) Australia (AUS); (16) Antarctic
 636 (ANC); (17) Southeast Asia (SEA); (18) Tibetan Plateau (TP); (19) Indo-China Peninsula (ICP); (20) India (IND); (21)
 637 Europe (EUP); (22) North Asia (NA); (23) Northeast Asia (NEA); (24) Yangtze River valley (YRV); and (25) South China
 638 (SCN)



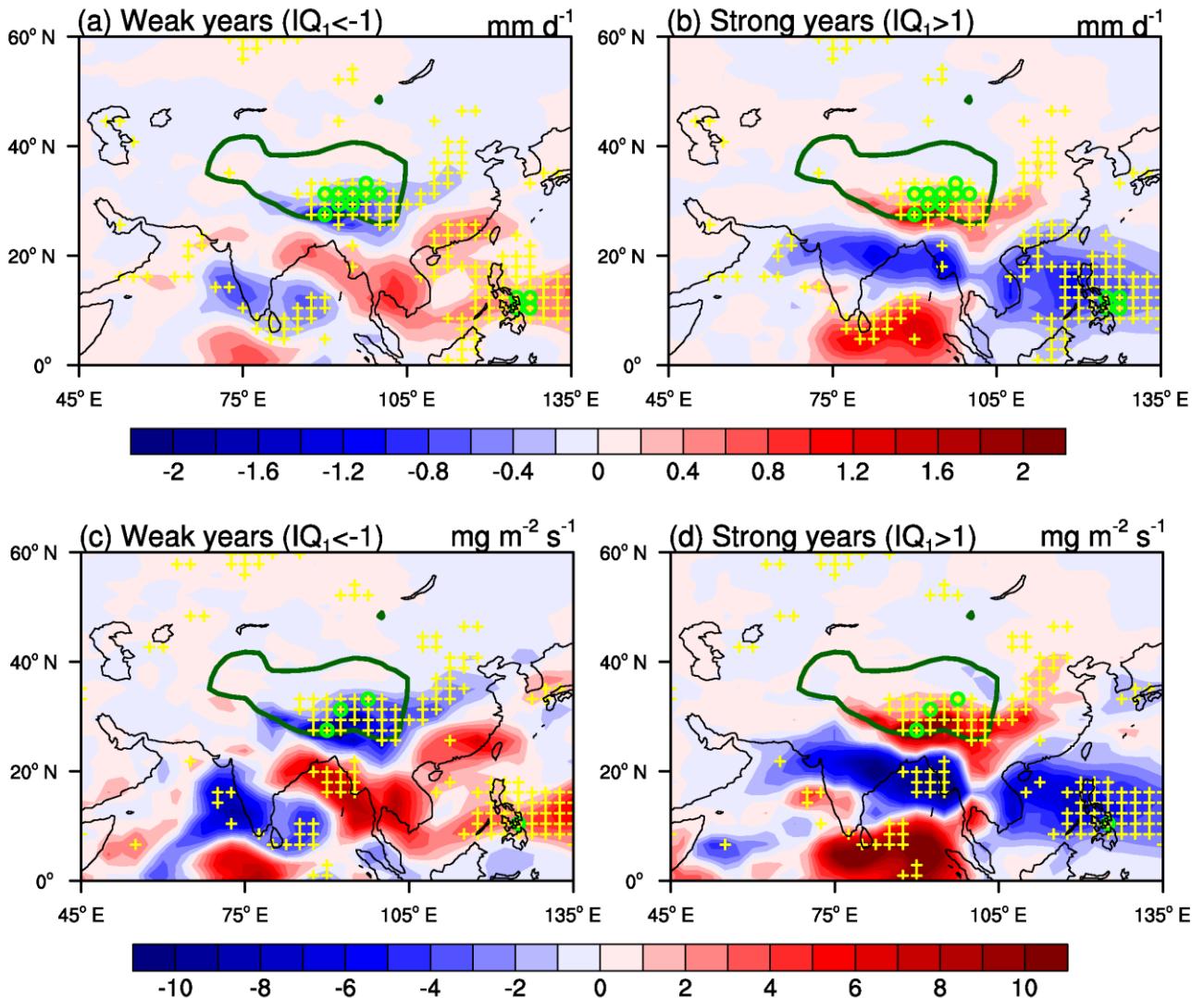
641 **Fig. 2** Comparisons between the (a, c) AIRS-measured and (b, d) CAM5.1-modelled water vapour (units: g kg^{-1}) at 500
 642 hPa during the winter and summer for 2003–2014. In Fig. 2c and d, the blue stars and circles represent the locations of 17
 643 L-band rawinsonde and 5 Global Position System (GPS) pilot balloon observation stations, respectively. The red stars and
 644 circles represent the nearest grid-points around the corresponding stations in CAM5.1. The bold dark-green contours
 645 indicate an orographic height of 2000 m


646

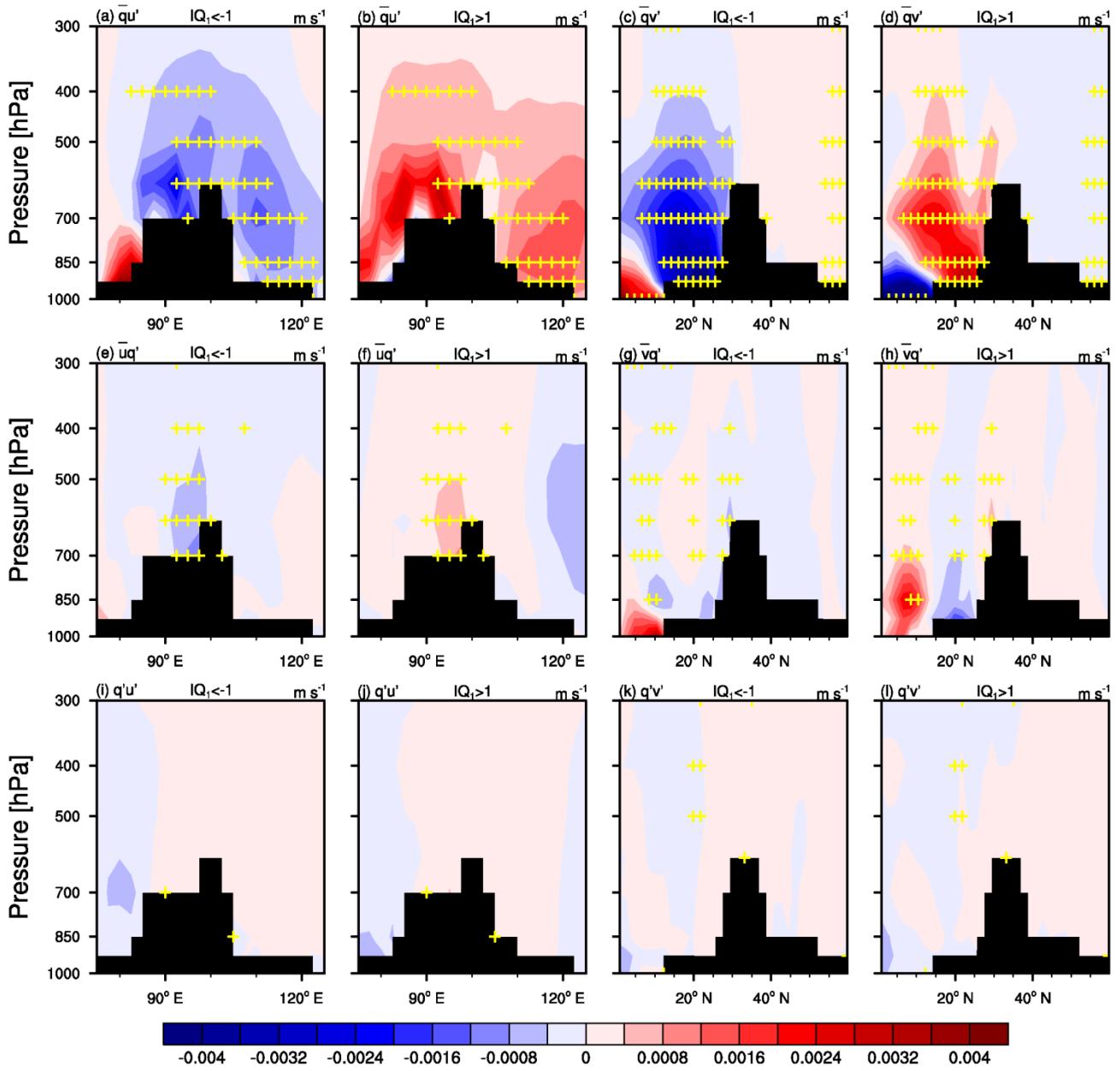
647 **Fig. 3** Vertical profiles of the observed (22 stations) and simulated (CAM5.1) specific humidity (units: g kg^{-1}) during July
 648 and August of 2014. The blue diamonds and error bars represent the mean values and standard deviations of the observed
 649 specific humidity, respectively. Similarly, the red circles and error bars represent the mean values and standard deviations
 650 of the simulated specific humidity, respectively. The blue coordinates represent the locations of the observation stations,
 651 and the red coordinates denote the corresponding nearest grid points in CAM5.1. The locations of the 22 stations are
 652 shown in Fig. 2c and d


653

654 **Fig. 4** Spatial distributions of the winter averaged precipitation (a) based on the GPCP data and (b) based on the CAM5.1
 655 simulation from 1982 to 2014. Spatial distributions of the summer averaged precipitation (c) based on the CMA station
 656 observational data from 1982 to 2013, (d) based on the TRMM data from 1998 to 2014, (e) based on the GPCP data from
 657 1982 to 2014, and (f) based on the CAM5.1 simulation from 1982 to 2014. All values are in units of mm d^{-1} . The
 658 dark-green contours indicate an orographic height of 2000 m


659

660 **Fig. 5** (a) Time series of the normalized average summer precipitation of the CMA stations; the black, blue, green, and red
 661 curves represent the CMA station observations, GPCP, TRMM, and CAM5.1, respectively. (b) Time series of the vertically
 662 integrated apparent heat source (VQ_1 , black), vertically integrated apparent moisture sink (VQ_2 , dark-green), vertically
 663 integrated radiative heating (VQ_R , orange), surface sensible heat (S , red), latent heat of precipitation (LP , blue), and latent
 664 heat of evaporation (LE , pink) during the summer over the TP for 1982–2014, all with units of $W\ m^{-2}$. The correlation
 665 coefficient is $r_{VQ_1-VQ_2} = 0.99$ between VQ_1 and VQ_2 , and the correlation coefficient is $r_{VQ_1-LP} = 0.97$ between VQ_1
 666 and LP . (c) Time series of the normalized VQ_1 during the summer over the TP, which is derived from the CAM5.1
 667 simulation between 1982 and 2014. (d) Time series of the averaged summer anomalies of the CMA observed precipitation
 668 and the convergence of the TIO-contributed moisture flux caused by dynamic (D_{TIO}) and thermodynamic (T_{TIO}) processes
 669 over the STP for the period of 1982–2013, all with units of $mm\ d^{-1}$. The values in brackets are correlation coefficients
 670 between the observed precipitation and corresponding variables


671

672 **Fig. 6** (a) Monthly averaged evaporative contributions (units: kg m^{-2}) of the global source regions to the tropospheric total
 673 water vapour amount over the STP. (b) Same as (a) but for the percentage contributions (units: %) to the water vapour over
 674 the STP. (c) Monthly averaged evaporative contributions (units: kg m^{-2}) of the global source regions to the tropospheric
 675 total water vapour amount over the NTP. (d) Same as (c) but for the percentage contributions (units: %) to the water
 676 vapour over the NTP. Fig. 6e–h are same as Fig. 6a–d, respectively, but for the absolute contributions (units: mm d^{-1}) and
 677 percentage contributions (units: %) to the precipitation over the STP and NTP. Only percentage contributions of source
 678 regions to the water vapour or precipitation greater than 5 % are shown individually, with stacked column colours
 679 corresponding to the source region colours in Fig. 1. The remaining oceanic/terrestrial source regions are merged into one
 680 region, Rest_Ocean/Rest_Land

681

682 **Fig. 7** (top) Composite summer mean precipitation anomalies supplied from the TIO (unit: mm d^{-1}) in the (a) five weak TP
 683 summer heating years and (b) five strong TP summer heating years. (bottom) Composite June–August mean advective
 684 tendency anomalies of water vapour that originated from the TIO (unit: $\text{mg m}^{-2} \text{s}^{-1}$) in the (c) five weak TP summer heating
 685 years and (d) five strong TP summer heating years. The yellow pluses indicate regions where the differences between the
 686 weak and strong composites are statistically significant at a 95 % confidence level according to a *t* test. The green circles
 687 indicate regions where the differences between the weak and strong composites satisfy the FDR criterion with $\alpha_{\text{FDR}} =$
 688 0.20. The dark-green contours indicate an orographic height of 2000 m

689

690 **Fig. 8** (left two columns) Composite vertical profiles of the summer mean TIO-supplied zonal moisture flux components
 691 (units: m s^{-1}) in the (a, e, and i) five weak TP summer heating years and (b, f, and j) five strong TP summer heating years
 692 across a pressure-longitude cross section (27.5° – 35° N average). (right two columns) Composite vertical profiles of the
 693 summer mean TIO-supplied meridional moisture flux components (units: m s^{-1}) in the (c, g, and k) five weak TP summer
 694 heating years and (d, h, and l) five strong TP summer heating years across a pressure-latitude cross section (85° – 102.5° E
 695 average). The yellow pluses indicate regions where the differences between the weak and strong composites are
 696 statistically significant at a 95 % confidence level according to a t test. The black areas are areas with unavailable data