

32 **Abstract**

33 A recently assembled South China Sea Physical Oceanographic Dataset (SCSPOD)
34 provides the first observational evidence for mixed layer salinity changes in the South
35 China Sea (SCS) from 1960 to 2015. During this period, the mixed layer waters
36 freshened by 0.22 psu. The mixed layer salinity variability is found to be in sync with
37 the Pacific Decadal Oscillation (PDO); it freshened in the 1960s, started to salinify in
38 1974, freshened again from 1993, and then salinified once again from 2012, with linear
39 trends of -0.019 , 0.020 , and -0.024 psu/yr, respectively. A box-average salinity budget
40 analysis shows that the surface forcing, horizontal advection, and vertical entrainment
41 terms together can, to a large degree, explain the observed trend in mixed layer salinity.
42 The mixed layer freshening is driven by weakened surface fresh water loss and saline
43 water transport, while salinification is associated with enhanced surface freshwater loss
44 and salt transport through the Luzon Strait. The long-term mixed layer salinity changes
45 affect the stratification, inducing a thinner mixed layer and stronger barrier layer during
46 freshening periods that favor stronger regional ocean–atmosphere interaction.

47 **Key words:** South China Sea; mixed layer salinity; long-term variability

48

49

50

51

52

53

54 **1. Introduction**

55 The global water cycle is a key element of the climate system, yet it is poorly
56 understood primarily because most of it occurs over the vast and under-sampled oceans
57 (Schmitt, 1995; 2008). There is, however, ample evidence from salinity observations
58 and numerical results from climate models indicating that the water cycle has changed
59 over the past six decades (Wong et al., 1999; Munk, 2003) and that it has intensified
60 (Durack et al., 2012).

61 Ocean salinity is globally conserved and quantification of its variability is essential
62 to understanding the linkages between the water cycle and climate change (Curry et al.,
63 2003; Boyer et al., 2005; Schmitt and Blair, 2015). Salinity measurements are used to
64 diagnose changes in important components of the earth climate dynamics, such as
65 surface freshwater flux, freshwater transport, and ocean mixing (Lukas and Lindstrom,
66 1991; Wijffels et al., 1992; Dickson et al 2002; Li et al, 2016ab). Robust and spatially
67 coherent trends in salinity are found in the global ocean, where surface salinity
68 increases are observed in evaporation-dominated regions and decreases are observed in
69 precipitation-dominated regions (Durack et al., 2010; Skliris et al., 2014).

70 An abundance of historical records combined with recent observations from
71 various programs have been used to document salinity changes throughout the globe.
72 Long hydrographic records show that the salinity changes in the North Atlantic can be
73 associated with significant changes in the North Atlantic Oscillation index (Dickson et
74 al., 2002; Häkkinen, 2002; Curry et al., 2003; Holliday et al., 2008; Sarafanov et al.,

75 2008). Combined surface measurements document Pacific Decadal Oscillation (PDO)-
76 like signals in sea surface salinity in the tropical Pacific (Delcroix et al., 2007; Du et
77 al., 2015; Nan et al., 2015). Recent observations in the Southern Indian Ocean show a
78 fast freshening since 1995 with a particularly striking acceleration since 2006
79 (Anilkumar et al., 2015; Menezes et al., 2017; Du et al., 2015).

80 The South China Sea (SCS) is the largest tropical marginal sea and has one of the
81 lowest average surface salinity levels (~33 psu) (Zeng et al., 2014). It is located in the
82 Indo-Pacific Ocean, identified by Durack et al. (2012) as one of the areas that
83 experienced the most significant freshening during the 1950-2000 period. The
84 temperature and salinity variations and controlling factors in the SCS are remarkably
85 different from those in the open ocean. The South China Sea Throughflow (SCSTF)
86 connects the Pacific and Indian Oceans, acts as an oceanic bridge, and strongly affects
87 the heat and freshwater budgets in the SCS (Qu et al., 2006; Wang et al., 2006; Liu et
88 al., 2012; Gordon et al., 2012). The SCSTF consists of inflow through the Luzon Strait
89 and outflows through the Karimata, Mindoro, and Taiwan Straits, respectively (Figure
90 1). The large quantity of saline water brought through the Luzon Strait by the SCSTF
91 can contribute as much salinity variations in the SCS as the local freshwater flux.

92 Due to the limited amount of observations, only a few studies have focused on
93 salinity changes in the SCS and most of the attention has been on the northern SCS (Liu
94 et al., 2012; Nan et al., 2013, 2016; Zhao et al., 2014; Zeng et al., 2014, 2016). Nan et
95 al. (2013, 2016) showed that the freshening in the northeastern SCS in the 1990s and

96 2000s was associated with a weakening trend of the Kuroshio intrusion. Zeng et al.
97 (2014) also found that the extreme freshening event in the northern SCS during 2012
98 was caused by a weak Kuroshio intrusion. Year 2012 is also when a 20-year freshening
99 trend was reversed (Zeng et al., 2018). Decadal variability has been documented for
100 subsurface salinity in the northern SCS during 1960 and 2012 (Zeng et al., 2016a).
101 Finally, Liu et al. (2012) and Zhao et al. (2014) showed decadal changes in intermediate
102 waters along 18°N in the northern basin (Liu et al., 2012; Zhao et al., 2014). However,
103 very little is actually known about the decadal and long-term variability for the SCS as
104 a whole.

105 In this paper, we analyze a recent observational dataset with the aim of 1)
106 understanding the decadal and longer-term upper salinity changes in the SCS over the
107 past six decades and 2) assessing the factors that contribute to these changes using a
108 box-average mixed layer salinity budget analysis. The paper is organized as follows.
109 The data and variables used to compute the budget are presented in section 2. The
110 observed changes in salinity over the period 1960–2015 and the possible influence of
111 the PDO are presented in section 3. In section 4, the box-average mixed layer salinity
112 budget and the possible factors controlling variations in the mixed layer salinity are
113 documented. Finally, conclusion and discussions are given in section 5.

114 **2. Data and variables**

115 **2.1 In situ observational dataset**

116 The South China Sea Physical Oceanographic Dataset (SCSPOD14) consists of

117 validated in situ observations collected from the World Ocean Database 2009 (WOD09),
118 Argo floats, and the South China Sea Institute of Oceanology (SCSIO) measurements
119 for the period 1919–2014 (Zeng et al., 2016b). This dataset has been updated by adding
120 quality-controlled Argo float and SCSIO cruise measurements from 2015 (hereafter,
121 SCSP0D15). Details of the data sampling characteristics, processing method, and
122 quality control of this dataset can be found in Zeng et al. (2016b). We focus on the
123 1960–2015 period because the spatial and temporal coverage of the observations is
124 dense enough to document variability. Overall, 34,485 records located deeper than 50
125 m within the well-sampled region (107–121°E, 3–23°N) are used for the analysis
126 (Figure 2a). The spatial distributions of the observations as a function of longitude and
127 latitude are shown in Figure 2b and 2c, as well as their sources: WOD09, Argo, and
128 SCSIO. There are no salinity observations in SCSP0D15 for the year 2003, and several
129 years in the mid-1960s have few observations. The interior basin (110–120°E) and
130 northern basin (15–23°N) are sampled quite well with only a few years of poor data
131 coverage. However, in the region west of 110°E and south of 15°N, the sampling is
132 quite sparse between mid-1990s and mid-2000s. The mixed layer depth, mixed layer
133 salinity, and barrier layer thickness are calculated for each profile as described in detail
134 by Zeng et al. (2016b).

135 **2.3 Variables**

136 To assess the impact of the air-sea freshwater flux (i.e., evaporation–precipitation–
137 river runoff, $E-P-R$, positive freshwater flux indicates loss of freshwater from the

138 ocean), we use the evaporation data from the Objectively Analyzed air-sea Fluxes
139 version 3 (OAFlux; Yu and Weller, 2007) together with four precipitation products: the
140 Precipitation Reconstruction (PREC; Chen et al., 2002), the National Centers for
141 Environmental Prediction's Climate Prediction Center (CPC; Chen et al., 2002), the
142 Global Precipitation Climatology Project version 2.3 (GPCP; Adler et al., 2003), and
143 the Tropical Rainfall Measuring Mission 3B43 (TRMM; Huffman et al., 2007). The
144 four net freshwater $E-P$ flux datasets are hereafter referred to as PRECflux, CPCflux,
145 GPCPflux, and TRMMflux, respectively. The Mekong and Pearl river runoffs are
146 estimated from the river-basin-integrated precipitation as in Zeng et al. (2014).

147 To assess the impact of the horizontal salt transport, ocean currents from several
148 products are used. They include the Simple Ocean Data Assimilation (SODA version
149 2.2.4, $1/2^\circ$ spatial resolution) monthly reanalysis data from 1960 to 2012 (Carton et al.,
150 2008), the National Centers for Environmental Prediction (NCEP) Global Ocean Data
151 Assimilation System (GODAS, 0.333° latitude and 1° longitude spatial resolution)
152 monthly reanalysis data from 1980 to 2012 (Huang et al., 2010), daily reanalysis data
153 from 1993 to 2015 from the Hybrid Coordinate Ocean Model (HYCOM) data
154 assimilative system GOFS 3.1 (HYCOM + NCODA Global $1/12^\circ$ Analysis, Chassignet
155 et al., 2009; Metzger et al., 2014), monthly outputs from the quasi global OGCM for
156 the Earth Simulator (OFES, $1/2^\circ$ spatial resolution) hindcast simulation driven by daily
157 mean wind stress of the NCEP/NCAR reanalysis data from 1960 to 2010 (Sasaki et al.,
158 2008), and 3-day mean West Pacific (including the SCS) hindcast data from 1992 to

159 2015 using the Regional Ocean Modeling Systems (ROMS, $1/8^\circ$ spatial resolution; Xiu
160 et al., 2010). These reanalysis and model datasets all show similar multi-decadal
161 variations of upper layer salinity in the SCS. Finally, to assess the vertical entrainment,
162 we use NCEP wind stress, OFES vertical velocity outputs, and mixed layer depth
163 calculated from SCSPOD15 profiles.

164 **3. Observed features**

165 **3.1 Salinity change between 1960 and 2015 (56 years)**

166 We start by first looking at the long-term salinity change in the upper 250 m from
167 1960 to 2015 (56 years). The longitudinally and latitudinally averaged salinity changes
168 in the SCS for the upper 250 m were obtained using SCSPOD15 and its variability are
169 displayed in Figures 3a and 3b. Note that shallow regions less than 250 m are not
170 included in the average. Between 1960 and 2015, the salinity in the upper 50 m is marked
171 by a significant long-term decrease of 0.22 psu in salinity (Fig 3a), with an averaged
172 trend of -0.20 psu/50yr. This freshening trend can extend as far down as 100 m in the
173 western SCS. In the east, the freshening near the Luzon Strait is even deeper extending
174 as far down as 250 m. The freshening in the upper 100 m is also robust in the
175 latitudinally averaged section, especially in the northern and central basin (Fig 3b).
176 Below the freshening upper layer, both longitudinally and latitudinally averaged
177 salinity changes show an apparent subsurface salinification beneath 100 m in the central
178 basin (Figs 3a and 3b). Figure 3c gives the basin-wide averaged profile of salinity
179 changes from 1960 to 2015 in the SCS. The profile shows that the SCS experienced a

180 significant freshening in the top 100 m and weak salinification in the subsurface layers
181 (Fig 3c). Regions where the freshening magnitude exceeds 0.20 psu/50yr are limited to
182 the mixed layer waters.

183 The linear trends in mixed layer salinity are calculated on $2^\circ \times 2^\circ$ bins and are
184 displayed in Figure 4. The crosses indicate the bins in which the computations of trends
185 are not reliable using a Mann-Kendall test. Overall, the mixed layer salinity in the SCS
186 has been decreasing over the past 56 years, with an averaged trend of -0.15 psu/50yr
187 (or -0.003 psu/yr). In the northeastern region, the long-term freshening trend is about -
188 0.175 psu/50yr. This trend is comparable to the value east of the Luzon Strait reported
189 by Durack et al. (2012), i.e., -0.15 to -0.20 psu over a 50-year period (1950–2000). The
190 freshening trend is weaker in the southern part of the basin than in the northern basin.
191 Note that we cannot clearly state how much of the spatial pattern in the southern basin
192 is due to less observational data distribution. But at the present stage, it will provide
193 valuable observational spatial salinity changing information in the SCS.

194 **3.2 Decadal variability**

195 The decrease in mixed layer salinity between 1960 and 2015 is not necessarily
196 linear; freshening during one time period could alternate with salinification during
197 another. To explore the decadal variability, we first show in Figure 5 the temperature-
198 salinity (T–S) diagram averaged basin-wide for each of the six decades. These T–S
199 curves are an effective way to distinguish freshening or salinification periods (decades)
200 from the climatological mean conditions. They show that the SCS has experienced

201 significant decadal variability over the past six decades. The upper ocean salinity is
202 highest in the 1990s and lowest in the 2010s. The great salinification of the 1990s also
203 occurred in the Atlantic, tropical Pacific, and Indian Ocean (Curry et al., 2003; Delcroix
204 et al., 2007; Skliris et al., 2014). These decadal differences can be seen in all of the
205 datasets (WOD09, SCSIO, and Argo) that comprise SCSPOD15. Different datasets
206 show important similarities in the decadal changes over the past sixty years. Except that
207 the saltier water brought by Argo floats from the western Pacific cause the difference
208 between Argo and SCSIO in 2010s in certain degree (Figure 5c and 5d).

209 To further illustrate the variability of the salinity in the SCS, in Figure 6a we plot
210 yearly variations of basin-wide averaged salinity for the upper 250 m from 1960 to 2015.
211 The upper ocean started to freshen in the 1960s and continued through the mid-1980s.
212 This was followed by a short salinification period in the late 1970s, then freshening
213 again until the mid-1990s. Significant freshening occurred yet again in the 2010s. This
214 variability, which can be as high as 0.4 psu, is clearly visible in the salinity anomaly
215 plot (Figure 6b), with phases of high salinity in the 1960s and mid-1990s and low
216 salinity in the mid-1970s and the 2010s. The salinity anomalies can extend down from
217 the surface to about 200 m, but the highest anomalies with amplitude of up to 0.4 psu
218 are mostly confined to the mixed layer. We therefore now focus on the mixed layer
219 salinity variability.

220 **3.3 Mixed layer salinity variability**

221 Figure 7 shows longitude–time sections of mixed layer salinity from 1960 to 2015

222 averaged between 3°N and 23°N. There is a striking difference between the SCS and
223 Pacific waters east of 121°E. The mixed layer salinity in the SCS is significantly lower
224 than that of Pacific waters. As discussed in the previous section, the mixed layer salinity
225 underwent freshening in the 1970s, salinification during the 1980s and 1990s (~0.4 psu),
226 and then freshening again. The lowest salinity was recorded in 2012 (Zeng et al., 2014).
227 This is summarized by Figure 8, which shows the temporal evolution of the basin-wide
228 mixed layer salinity, including the one standard errors. The error bar is estimated as the
229 standard error of all mixed layer salinity values for a given calendar year. The seven-
230 year band pass time series (in blue) can be divided into four periods separated by three
231 mixed layer salinity minima and maxima: 1974 (the secondary minimum mixed layer
232 salinity), 1993 (the maximum mixed layer salinity), and 2012 (the minimum mixed
233 layer salinity). The observed change in mixed layer salinity was first a decrease of about
234 ~0.4 psu during 1960–1974. The mixed layer salinity then increased by ~0.6 psu
235 between 1974 and 1993, followed by a sharp decrease of ~0.7 psu between 1993 and
236 2012. It increased again after 2012. The corresponding linear trends are -0.020, 0.019,
237 and -0.024 psu/yr, about one order of magnitude higher than the 56-year long-term
238 trend (-0.004 psu/yr). All trends reported here are statistically significant according to
239 the *t*-test. The salinity change rates in the mixed layer are about two to three times
240 higher than those reported for the subsurface layer by Zeng et al (2016a).

241 To explore the regional differences in mixed layer salinity variability, yearly
242 variations in the mixed layer salinity anomaly averaged over six well-sampled regions

243 are shown in Figure 9. The decadal timescale variability is similar for each region with
244 a salinification period that is slightly more noticeable in the northern basin than in the
245 southern basin.

246 **3.4 Mixed layer salinity variability and the PDO**

247 As the largest marginal sea in the northwest Pacific Ocean, the climate and
248 environment of the SCS are strongly influenced by the PDO. For example, a coral
249 geochemistry record in the northern SCS was reported to be significantly correlated
250 with the PDO index over the last century (Deng et al., 2013). In Figure 10, we
251 superimpose the mixed layer salinity anomaly on the PDO index and find that there is
252 a reasonably good agreement between the two curves.

253 The correlation between yearly mean mixed layer salinities and the PDO index is
254 0.45 at the 95% confidence level. Their correlation is much higher after the 1990s (0.52)
255 than prior (0.19). The freshening periods generally coincide with a declining stage of
256 the PDO index, while the salinification periods are associated with an ascending stage.
257 The largest change in PDO index and mixed layer salinity occurs after 2012 when both
258 the mixed layer salinity and the PDO index rise quickly. This salinification from late
259 2012 occurs when the phase of PDO switches from negative to positive has been
260 discussed in detail in our previous work (Zeng et al., 2018)

261 **4. Factors controlling variations in the mixed layer salinity**

262 What are the reasons for the salinification and freshening in the SCS mixed layer

263 salinity? In general, factors that can cause the mixed layer salinity changes include a)
264 net air-sea freshwater flux, b) the Luzon Strait transport induced horizontal salt
265 advection, and c) vertical entrainment and small-scale mixing processes. In this section,
266 we focus on the change in the surface freshwater flux and the surface current during
267 salinification/freshening periods (4.1); we then provide a more quantitative assessment
268 for each factor that contributes to the observed salinity change (4.2 and 4.3).

269 **4.1 Dry/wet conditions during salinification/freshening periods**

270 Figure 11a displays the spatial distribution of the long-term (1960–2015) mean net
271 surface freshwater flux (color shading) based on the GPCP and mixed layer circulation
272 (vectors) based on the OFES model simulation. GPCPflux dataset and the OFES surface
273 velocities are shown here because of their good spatio-temporal coverage in the SCS.
274 Over the 56-year period (Figure 11a), evaporation is lower than precipitation in the SCS,
275 except to the southwest of Taiwan. There is also a clear signature of the Kuroshio
276 intrusion across the Luzon Strait in the SCS circulation.

277 Figures 11b-c show the change in the surface freshwater flux and the mixed layer
278 current for a salinification period (1974-1993) and a freshening period (1993-2012).
279 During the 1974-1993 salinification period (Figure 11b), the increasing trend of
280 freshwater loss dominated almost everywhere, except for the central northern SCS
281 where the freshwater flux was negative. In the surface circulation, there is an anomalous
282 westward flow trend east of the Luzon Strait (red vectors, Figure 11b) that, according
283 to Yu and Qu (2013), is an indication of a northward shift of the North Equatorial

284 Current (NEC) bifurcation, suggesting a stronger Kuroshio intrusion or larger Luzon
285 Strait transport. During the 1993-2012 freshening period (Figure 11c), the net
286 freshwater flux and ocean current distribution were opposite to that of the 1974-1993
287 salinification period. There is a decreasing trend of net freshwater loss across almost
288 the entire basin and the eastward flow trend east of the Luzon Strait was unfavorable
289 for Kuroshio intrusion (black vectors, Figure 11c). In summary, the trends of enhanced
290 (decreased) freshwater loss and Luzon Strait transport provided salinification
291 (freshening) conditions during a salinification (freshening) period.

292 Previous studies have shown that the PDO has an important influence on Asian
293 monsoon and monsoon precipitation. The PDO can either strengthen or weaken the
294 Walker circulation over the Indo-Pacific Ocean depending on the phase of the PDO
295 (Krishnamurthy and Krishnamurthy, 2014). For the SCS, during positive PDO phases
296 the descending motion of the Walker circulation leads to drought conditions over the
297 basin, while during negative phases the ascending motion brings heavy rainfall to the
298 SCS. The net freshwater loss is generally above average during the ascent PDO stage
299 and below average during the declining PDO stage, with exceptions occurring during
300 the mid-1990s and 2000s (Figure 12). Du et al. (2015) also reported a reduction in
301 freshwater loss in the southeastern tropical Indian Ocean starting from the mid-1990s
302 due to intensified Walker circulation. Yu and Qu (2013) found a significant imprint of
303 the PDO on decadal SCSTF variability. They indicated that during positive PDO phases,
304 the NEC bifurcation shifts northward and is responsible for the southward intrusion of

305 the Aleutian low, leading to a weaker Kuroshio and stronger SCSTF in the upper 750
 306 m. As shown in Figure 12, we find that the Luzon Strait transport integrated within the
 307 mixed layer is also closely related to the PDO index and, in the previous section, we
 308 showed that the averaged SCS mixed layer salinity variations are in sync with the PDO.

309 **4.2 Box-average mixed layer salinity budget**

310 In this section, we address whether the contribution of freshwater flux and Luzon
 311 Strait salt transport changes can fully account for the observed mixed layer salinity
 312 variations. In order to quantify the factors affecting the mixed layer salinity in the SCS,
 313 we perform a mixed layer salinity budget:

$$314 \quad \frac{\partial S_m}{\partial t} = \underbrace{\frac{S_0 \cdot (E - P - R) \cdot A_{SCS}}{V_{SCS}}}_{\text{Salinity tendency}} + \underbrace{\frac{T_{in} \cdot \Delta S_{in}}{V_{SCS}} - \frac{T_{out} \cdot \Delta S_{out}}{V_{SCS}}}_{\text{Horizontal advection}} - \underbrace{\frac{\Gamma(w_e) \cdot (S_m - S_b)}{H}}_{\text{Vertical entrainment}} + \varepsilon \quad (1)$$

315 From left to right, the terms correspond to mixed layer salinity tendency; surface
 316 forcing (loss from ocean defined as positive); horizontal advection term (defined as
 317 positive into the SCS), which contain advections into (second term on right side) and
 318 out of (third term) the basin; vertical entrainment; and a residual term, which includes
 319 diffusion and other small effects. Here, S_m is mixed layer salinity, S_0 is the mean sea
 320 surface salinity, and A_{SCS} , H , and V_{SCS} are the surface area, mixed layer depth, and
 321 volume of the SCS (111° – 121° E, 16° – 22° N), respectively. E is the evaporation, P is the
 322 precipitation, and R is the river discharge; their net value is the net freshwater flux out
 323 of the basin (loss from the ocean is defined as positive).

324 Accurately quantifying the horizontal advection over the entire basin is difficult.

325 For a basin-wide study, the horizontal salinity transport can be represented by two
 326 components: inflow and outflow salt transport terms. Here, T_{in} and T_{out} are the volume
 327 transports into and out of the basin, respectively, and ΔS_{in} (ΔS_{out}) is the salinity
 328 difference between waters outside the inflow (outflow) straits and waters within the
 329 SCS, where a positive transport term means an enhanced salinity effect. As mentioned
 330 earlier, the exchange between the SCS and surrounding oceans consists mainly of
 331 inflow from the Kuroshio through the Luzon Strait, and outflow primarily through the
 332 Mindoro, Karimata, and Taiwan Straits (Yaremchuk et al., 2009). According to Qu et
 333 al. (2005), Song (2006) and Nan et al (2016), the freshwater exports across the outflow
 334 straits do not contribute much to the interannual SCS salinity budget, and we therefore
 335 did not take into account the freshwater export through the Taiwan, Mindoro and
 336 Karimata Straits.

337 The vertical processes contain vertical Ekman velocity and diapycnal mixing
 338 velocity (Michel et al., 2007). Following Michel et al. (2007) and Yu (2015), we have

$$339 \quad w_e = w_{Ek} + w_m = \frac{\nabla \times \tau}{\rho f} + \left(\frac{\partial H}{\partial t} + \nabla \cdot HU \right) \quad (2)$$

340 where τ denotes wind stress, ρ the mixed layer density, f the Coriolis frequency,
 341 and U includes Ekman and geostrophic current. The Ekman velocity w_{Ek} corresponds
 342 to the upwelling (downwelling) generated by the convergence (divergence) of the
 343 horizontal Ekman transport (Yu, 2011). The mixing velocity w_m , or the mixed layer
 344 depth tendency, can be influenced by wind, buoyancy, and other thermodynamic
 345 processes. In Eq. (1), Γ is the Heaviside function and w_e is the entrainment velocity at

346 the bottom of the mixed layer; S_b is defined as the salinity at 20 m below the mixed
347 layer depth (Ren et al., 2011); Γ is used to represent entrainment ($w_e > 0$) and
348 detrainment ($w_e < 0$) to the mixed layer. Only the entrainment of subsurface water
349 affects the mixed layer salinity; detrainment removes mixed layer water but does not
350 modify its salinity (Niiler and Kraus, 1977; Michel et al., 2007; Yu, 2015).

351 Thus, we have a simplified expression for the box-average mixed layer salinity
352 variation:

$$353 \frac{\partial S_m}{\partial t} = \frac{S_0 \cdot (E - P - R) \cdot A_{SCS}}{V_{SCS}} + \frac{LST \cdot \Delta S_{LZ}}{V_{SCS}} - \frac{\Gamma(w_e) \cdot (S_m - S_b)}{H} + \varepsilon \quad (3)$$

354 where ΔS_{LZ} is the salinity difference between two sides of the Luzon Strait, the Western
355 Pacific water east of the Luzon Strait (S_{WP}) and the SCS (S_{SCS}).

356 **4.3 Factors controlling the mixed layer salinity variability**

357 To quantify the impact of the uncertainties associated with different data products,
358 we use several datasets (introduced in Section 2) for the freshwater flux and the Luzon
359 Strait transport to calculate the contribution of the surface forcing and advection terms
360 to the salinity budget. The temporal evolution of the budget terms are displayed in
361 psu/yr in Figure 13. The surface forcing and the horizontal advection terms dominate
362 and the vertical mixing is smaller by one order of magnitude. The trends for each term
363 during the freshening and salinification periods, using the different datasets, are listed
364 in Table 1.

365 During the 1960–1974 freshening period, the trends in the surface forcing,
366 advection, and entrainment terms were -0.011 , -0.006 and -0.0003 psu/yr, respectively.

367 Their total contribution was about -0.017 psu/yr, roughly equivalent to the change in
368 mixed layer salinity of -0.020 psu/yr. This result indicates that the surface forcing and
369 advection terms basically determined the freshening trend. It also suggests that the
370 effect of horizontal advection through the Luzon Strait was of similar magnitude to that
371 of the surface forcing term. During the 1974–1993 salinification period, the surface
372 forcing, advection, and entrainment terms all exhibited positive trends, with values of
373 0.016 , 0.004 , and 0.0013 psu/yr, respectively. The sum of the three terms, 0.021 psu/yr,
374 was very close to the observed salinification trend of 0.019 psu/yr. This salinification
375 was driven by enhanced surface freshwater loss and salt transport through the Luzon
376 Strait. In contrast to the 1960–1974 freshening period, the surface forcing term was the
377 dominant factor contributing to this salinification trend. After the year of maximum
378 salinity (1993), the surface forcing, advection, and entrainment terms decreased again
379 with negative trends of -0.010 , -0.010 , and -0.0008 psu/yr, respectively. The total
380 impact of -0.021 psu/yr was close to the observed freshening trend of -0.024 psu/yr.
381 Similar as the 1960–1974 freshening period, the surface forcing and advection terms
382 basically determined the 1993–2012 freshening period. Overall, though admittedly
383 crude, this calculation was able to quantitatively account for most of the observed
384 mixed layer salinity changes (Figure 13d). In summary, the mixed layer freshening was
385 controlled by comparable contributions from the surface forcing and advection terms,
386 while the surface forcing is the dominant term for mixed layer salinification.

387 **5 Conclusion and Discussions**

388 In this paper, we examine the long-term variability of the mixed layer salinity in
389 the SCS over the past 56 years (1960–2015) using an in situ dataset (SCSPOD15) to
390 document the variability and a box-average salinity budget to quantify the factors
391 controlling these variations.

392 The mixed layer salinity exhibits significant variability on decadal and longer
393 timescales. During the 1960–2015 period, the mixed layer salinity freshened by more
394 than 0.2 psu, with an averaged trend of -0.20 psu/50yr (or -0.004 psu/yr). This
395 freshening trend is stronger in the northern basin than in the southern basin. The in situ
396 observations in the SCS show that it became fresher in the 1960s, started to salinify in
397 1974, freshened again from 1993, and then salinized yet again in 2012, with linear
398 trends of -0.019 , 0.020 , and -0.024 psu/yr, respectively. The mixed layer freshening is
399 controlled by comparable contributions from the surface forcing and advection terms,
400 while the surface forcing is the dominant term for mixed layer salinification (Figure
401 14). These decadal salinity change rates in the mixed layer are about two to three times
402 larger than those in the subsurface layer as reported by Zeng et al. (2016). We find that
403 the long-term variability in mixed layer salinity is in sync with the PDO. During the
404 ascent (declining) stage of the PDO, the ascending (descending) motion of the Walker
405 circulation leads to flood (drought) conditions over the basin, along with less (more)
406 intrusion of additional saline water by the Luzon Strait transport associated with a
407 stronger (weaker) Kuroshio; this results in freshening (salinification) in the SCS (see
408 schematic Figure 15).

409 Although the SCSPOD15 dataset provides unprecedented observational coverage
410 in the SCS, there are still gaps and insufficient and uneven observations in some years.
411 One of the largest uncertainties in the trends assessment comes from the assembled
412 observational dataset. However, because we find that the observed mixed layer salinity
413 variability is in good agreement with the variability derived from a box-average mixed
414 layer salinity budget, we are confident that the trends reported here are representative.
415 The mixed layer salinity budget analysis is then used to quantify the forcing factors
416 controlling long-term changes in mixed layer salinity. The results show that the
417 freshening period is associated with a reduction in both the surface freshwater loss and
418 the Luzon Strait transport advection terms, while salinification is associated with
419 enhanced surface freshwater loss and salt transport through the Luzon Strait. Note that
420 the mixed layer freshening is controlled by equal contributions from the surface forcing
421 and advection terms, while the salinification period is mostly controlled by enhanced
422 surface freshwater loss. While we have assessed the uncertainty by utilizing as many
423 surface forcing products and ocean current outputs as possible (both with and without
424 data assimilation), it is clear that the accuracy of different surface forcing products and
425 the realism of the ocean model current outputs remains an issue. In the simplified
426 salinity budget, the freshwater exports in the Taiwan, Mindoro and Karimata Straits
427 were not taken into account as the freshwater exports across the outflow straits does not
428 contribute much to the interannual SCS salinity budget (Qu et al., 2005, Song, 2006;
429 and Nan et al., 2016). However, there are freshwater inputs into the Indonesian Seas
430 that can influence the variability of Indonesian Throughflow (ITF) transport and induce

431 salinity changes in the eastern Indian Ocean (Gordon et al., 2003; Hu and Sprintall,
432 2016, 2017; Lee et al., 2019). Future studies could examine the potential influence of
433 the freshwater outflows of the SCS on the ITF variations and related salinity changes.

434 Finally, the question as to whether the mixed layer salinity changes (freshening or
435 salinification) can induce significant climate change in the SCS depends on the
436 magnitude of the trends. Sufficiently large salinity changes will modify the ocean
437 stratification and air-sea flux exchanges and, when exceeding a threshold, will impact
438 the SCS thermohaline circulation and the climate (Manabe and Stouffer, 1995; Wu et
439 al., 2004). Barreiro et al. (2008) showed that a freshwater input exceeding 0.3 Sv per
440 decade (a model-dependent value) can weaken the thermohaline circulation in the North
441 Atlantic. We are then led to ask what is the threshold that must be exceeded in the SCS
442 to significantly influence its thermohaline circulation? In the SCS, changes in the mixed
443 layer salinity regulate the mixed layer (Figure 16). The observed mixed layer salinity
444 freshening or salinification trends could constructively contribute to a reduction or
445 enhancement of the mixed layer density (Figure 16a). The shoaling or deepening of the
446 mixed layer depth generally coincides with a freshening or salinification of the mixed
447 layer salinity (Figure 16b). Variations in salinity stratification that forms a barrier layer
448 have an important influence on climate (Maes et al., 2002, 2005). For the SCS, there
449 was no significant change in the barrier layer during the salinification, but a shoaling
450 mixed layer depth was associated with a slight increase in the barrier layer during the
451 two freshening periods (Figure 16c). A combination of the relatively shallow mixed

452 layer and stronger barrier layer during the freshening period could lead to a
453 strengthening of the ocean–atmosphere coupling in the SCS. A realistic climate model
454 and well-designed experiments are needed to answer these questions. Future studies
455 could examine long-term changes in salinity, the threshold for major change, and
456 detailed processes affecting the thermohaline circulation and climate change.

457 **Acknowledgements:**

458 We benefited from several observational datasets and numerical results made freely
459 available, including the SCSPOD dataset
460 (<https://figshare.com/s/e5327a334130cd44dc6a>), the OAFlux evaporation
461 (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3), the PREC precipitation
462 (<http://www.esrl.noaa.gov/psd/data/gridded/data.prec.html>), the CPC precipitation
463 (<http://apdrc.soest.hawaii.edu/data/data.php>), the GPCP precipitation
464 (<http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html>), the TRMM 3B43
465 precipitation (<http://mirador.gsfc.nasa.gov/cgi-bin/mirador/>), OFES outputs
466 (<http://apdrc.soest.hawaii.edu/data/data.php>), the SODA
467 (<http://sodaserver.tamu.edu/assim/>), the GODAS
468 (<http://www.esrl.noaa.gov/psd/data/gridded/data.godas.html>), and the HYCOM
469 (<http://hycom.org/dataserver/glb-reanalysis>). LZ is supported by the National Natural
470 Science Foundation of China (Nos. 42076209, 41776025, 41776026), Key Special
471 Project for Introduced Talents Team of Southern Marine Science and Engineering
472 Guangdong Laboratory (Guangzhou) (GML2019ZD0306), the Rising Star Foundation

473 of the South China Sea Institute of Oceanology (NHXX2019WL0101) and the Pearl
474 River S&T Nova Program of Guangzhou (201906010051). EPC and XX are
475 supported by the NOAA Climate Program Office MAPP Program (award
476 NA15OAR4310088) and the NSF Physical Oceanography Program (award 1537136).

477

478

479 **References:**

480 Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U.
481 Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin
482 (2003), The version-2 global precipitation climatology project (GPCP) monthly
483 precipitation analysis (1979-present), *J. Hydrometeor.*, 4, 1147-1167.

484 Anilkumar, N., Chacko, R., Sabu, P., & George, J. V. (2015). Freshening of Antarctic
485 bottom water in the Indian Ocean sector of southern ocean. *Deep Sea Research Part*
486 *II Topical Studies in Oceanography*, 118, 162-169.

487 Barreiro, M., Fedorov, A., Pacanowski, R., & Philander, S. G. (2008). Abrupt climate
488 changes: how freshening of the northern Atlantic affects the thermohaline and wind-
489 driven oceanic circulations. *Annual Review of Earth & Planetary Sciences*, 36(36),
490 33-58.

491 Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia (2005), Linear
492 trends in salinity for the World Ocean, 1955–1998, *Geophys. Res. Lett.*, 32, L01604,
493 doi:10.1029/2004GL021791.

494 Carton, J. A., and B. S. Giese (2008), A reanalysis of ocean climate using simple ocean
495 data assimilation (SODA), *Mon. Weather Rev.*, 136, 2999–3017.

496 Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., &
497 Wallcraft, A. J., et al. (2009). Global ocean prediction with the Hybrid Coordinate
498 Ocean Model (HYCOM). *Oceanography*, 22(2), 64-75.

499 Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin (2002), Global land precipitation:
500 A 50-yr monthly analysis based on gauge observations, *J. Hydrometeorol.*, 3, 249–

501 266.

502 Curry, R., Dickson, B., & Yashayaev, I. (2003). A change in the freshwater balance of
503 the Atlantic ocean over the past four decades. *Nature*, 426(6968), 826-829.

504 Delcroix, T., S. Cravatte, and M. J. McPhaden (2007), Decadal variations and trends in
505 tropical Pacific sea surface salinity since 1970, *J. Geophys. Res.*, 112 (C3) :266-281

506 Deng, W., G. Wei, L. Xie, T. Ke, Z. Wang, T. Zeng, and Y. Liu (2013), Variations in the
507 Pacific Decadal Oscillation since 1853 in a coral record from the northern South
508 China Sea, *J. Geophys. Res. Oceans*, 118, 2358–2366, doi:10.1002/jgrc.20180.

509 Dickson, B., Yashayaev, I., Meincke, J., Turrell, B., Dye, S., & Holfort, J. (2002). Rapid
510 freshening of the deep north Atlantic ocean over the past four decades. *Nature*,
511 416(6883), 832-7.

512 Du, Y., Y. Zhang., Ming Feng., T. Wang., N. Zhang, and S. Wijffels (2015), Decadal
513 trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. *Sci.*
514 *Rep.* 5, 16050; doi: 10.1038/srep16050 (2015).

515 Durack P. J., and S. E. Wijffels, (2010), Fifty-year trends in global ocean salinities and
516 their relationship to broadscale warming *J. Clim.* 23, 4342–4362

517 Durack, P. J., S. E. Wijffels, and R. J. Matear (2012), Ocean salinities reveal strong
518 global water cycle intensification during 1950 to 2000, *Science*, 336(6080), 455–
519 458, doi:10.1126/science.1212222.

520 Gordon, A. L., R. D. Susanto, and K. Vranes (2003), Cool Indonesian throughflow as a
521 consequence of restricted surface layer flow, *Nature*, 425(6960), 824-828.

522 Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi

523 (2012), South China Sea throughflow impact on the Indonesian throughflow,
524 Geophys. Res. Lett., 39 (11):117-128

525 Häkkinen, S., (2002), Freshening of the Labrador Sea surface waters in the 1990s:
526 Another great salinity anomaly? Geophys. Res. Lett., 29(24) 2232, doi:
527 10.1029/2002GL015243

528 Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A., Hansen, B., & Lavin,
529 A., et al. (2008), Reversal of the 1960s to 1990s freshening trend in the northeast
530 North Atlantic and Nordic Seas, Geophys. Res. Lett., 35(3), 3614

531 Hu, S., and J. Sprintall (2016), Interannual Variability of the Indonesian Throughflow:
532 the Salinity Effect, Journal of Geophysical Research: Oceans, 121, 2596-2615.

533 Hu, S., and J. Sprintall (2017), Observed Strengthening of Interbasin Exchange via the
534 Indonesian Seas Due to Rainfall Intensification, Geophysical Research Letters, 44(3),
535 1448-1456.

536 Huang, B. Y., Xue, Y., Zhang, D. X., Kumar, A., & McPhaden, M. J. (2010). The NCEP
537 GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal
538 to interannual time scales. Journal of Climate, 23(18), 4901-4925.

539 Huffman, G. J., R. F. Adler., D. T. Bolvin., G. Gu., E. J. Nelkin., K. P. Bowman., Y.
540 Hong., E. F. Stocker., and D. B. Wolff., (2007), The TRMM multi-satellite
541 precipitation analysis: quasi-global, multi-year, combined-sensor precipitation
542 estimates at fine scale. J. Hydrometeorol. 8 (1), 38-55.

543 Krishnamurthy, L., and Krishnamurthy, V. (2014). Influence of PDO on south Asian
544 summer monsoon and monsoon-ENSO relation. Climate Dynamics, 42(9-10), 1-14.

545 Lau, K. M. (2009). East Asian summer monsoon rainfall variability and climate
546 teleconnection. *Journal of the Meteorological Society of Japan*, 70(1B), p211-242.

547 Lee, T., S. Fournier, A. L. Gordon, and J. Sprintall (2019), Maritime Continent water
548 cycle regulates low-latitude chokepoint of global ocean circulation, *Nature
549 Communications*, 10(1), 2103, doi:10.1038/s41467-019-10109-z.

550 Liu, C., Wang, D., Chen, J., Du, Y., & Xie, Q. (2012). Freshening of the intermediate
551 water of the South China Sea between the 1960s and the 1980s. *Chinese Journal of
552 Oceanology and Limnology*, 30(6), 1010-1015.

553 Liu, Q., Huang, R., & Wang, D. (2012). Implication of the South China Sea throughflow
554 for the interannual variability of the regional upper-ocean heat content. *Adv. Atmos.
555 Sci.*, 29(1), 54-62.

556 Li, L. R. W. Schmitt, C. Ummenhofer, K. Karnauskis, 2016. North Atlantic Salinity as
557 a Predictor of Sahel Rainfall. *Science Advances*, 2, e1501588.

558 Li, L., R. W. Schmitt, C. Ummenhofer, K. Karnauskis, 2016. Implications of North
559 Atlantic Sea Surface Salinity for Summer Precipitation over the US Midwest:
560 Mechanisms and Predictive Value. *J. Climate*, 29, 3143-3159.

561 Lukas, R., & Lindstrom, E. (1991). The mixed layer of the western equatorial Pacific
562 Ocean. *Journal of Geophysical Research Atmospheres*, 96(S01), 3343-3358.

563 Maes, C., J. Picaut, and S. Belamari (2002), Salinity barrier layer and onset of El Nino
564 in a Pacific coupled model, *Geophys. Res. Lett.*, 29 (24), 59-1–59-4

565 Maes, C., J. Picaut, and S. Belamari (2005), Importance of salinity barrier layer for the
566 buildup of El Nino, *J. Clim.*, 18, 104–118

567 Manabe, S., and Stouffer, R. J. (1995). Simulation of abrupt climate change induced by
568 freshwater input to the north Atlantic Ocean. *Nature*, 378(6553), 165-167.

569 Menezes, V. V., Macdonald, A. M., Schatzman, C (2017) Accelerated freshening of
570 Antarctic Bottom Water over the last decade in the Southern Indian Ocean. *Sci. Adv.*
571 3, e1601426.

572 Michel, S., B. Chapron., J. Tournadre, and N. Reul (2007), Sea surface salinity
573 variability from a simplified mixed layer model of the global ocean. *Ocean Science*
574 *Discussions*, 4(1), 41-106.

575 Munk, W. (2003). Ocean freshening, sea level rising. *Science*, 300(5628), 2041-2043.

576 Nan, F., H. Xue, F. Chai, D. Wang, F. Yu, M. Shi, P. Guo, and P. Xiu (2013), Weakening
577 of the Kuroshio intrusion into the South China Sea over the past two decades, *J.*
578 *Clim.*, 26, 8097–8110.

579 Nan, F., Yu, F., Xue, H., Zeng, L., Wang, D., & Yang, S., et al. (2016). Freshening of
580 the upper ocean in the South China Sea since the early 1990s. *Deep Sea Research*
581 Part I *Oceanographic Research Papers*, 118, 20-29.

582 Niiler, P. P. and E. B. Kraus, One-dimensional models of the upper ocean, in *Modeling*
583 and *Prediction of the Upper Layers of the Ocean*, edited by E. B. Kraus, Pergamon,
584 New York, 325 pp., 143–172, 1977.

585 Qu, T., Du, Y., & Sasaki, H. (2006). South China Sea throughflow: A heat and
586 freshwater conveyor. *Geophysical Research Letters*. 332 (23): 430-452

587 Qu, T., Du, Y., Meyers, G., Ishida, A., Wang, D., (2005). Connecting the tropical Pacific
588 with Indian Ocean through South China Sea. *Geophys. Res. Lett.* 32, L24609.

589 <http://dx.doi.org/10.1029/2005GL024698>.

590 Ren, L., K. Speer, and E. P. Chassignet (2011), The mixed layer salinity budget and sea
591 ice in the Southern Ocean, *J. Geophys. Res.*, 116 (C8): 239-255.

592 Sarafanov, A., A. Falina, A. Sokov, and A. Demidov (2008), Intense warming and
593 salinification of intermediate waters of southern origin in the eastern subpolar North
594 Atlantic in the 1990s to mid-2000s, *J. Geophys. Res.*, 113 (C12): 451-459.

595 Sasaki, H, M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma (2007), An
596 eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on
597 the Earth Simulator. *High Resolution Numerical Modeling of the Atmosphere and*
598 *Ocean*, W. Ohfuchi and K. Hamilton, Eds., Springer, 157–185.

599 Schmitt, R. W., 1995. The ocean component of the global water cycle. U.S. National
600 Report to International Union of Geodesy and Geophysics, 1991–1994, Supplement
601 to *Reviews of Geophysics*, pp. 1395–1409.

602 Schmitt, R. W., 2008. Salinity and the Global Water Cycle. *Oceanography*, 21 (1), 12-
603 19.

604 Schmitt, R. W. and A. Blair, (2015). A River of Salt. *Oceanography*, 28 (1), 40-45

605 Skliris, N., Marsh, R., Josey, S. A., Good, S. A., Liu, C., & Allan, R. P. (2014). Salinity
606 changes in the world ocean since 1950 in relation to changing surface freshwater
607 fluxes. *Climate Dynamics*, 43(3-4), 709-736.

608 Song, Y. T. (2006), Estimation of interbasin transport using ocean bottom pressure:
609 Theory and model for Asian marginal seas, *J. Geophys. Res.*, 111, C11S19,
610 doi:10.1029/2005JC003189.

611 Wang, B., Zhang, Y., & Lu, M. M. (2004). Definition of South China Sea monsoon
612 onset and commencement of the east Asia summer monsoon. *Journal of Climate*,
613 17(4), 699-710.

614 Wang, D., Q. Liu, R. X. Huang, Y. Du, and T. Qu (2006), Interannual variability of the
615 South China Sea throughflow inferred from wind data and an ocean data assimilation
616 product. *Geophys. Res. Lett.*, 33 (14): 110-118.

617 Wijffels, S., Schmitt, R., Bryden, H. & Stigebrandt (1992), A. Transport of freshwater
618 by the oceans. *J. Phys. Oceanogr.* 22, 155–162.

619 Wong, A. P. S., Bindoff, N. L. & Church, J. L. (1999), Large-scale freshening of
620 intermediate waters in the Pacific and Indian Oceans. *Nature* 400, 440–443

621 Wu, P., R. Wood, and P. Stott (2004), Does the recent freshening trend in the North
622 Atlantic indicate a weakening thermohaline circulation? *Geophys. Res. Lett.*, 31
623 (2) :2301

624 Xiu, P., F. Chai, L. Shi, H. J. Xue., and Y. Chao (2010), A census of eddy activities in
625 the South China Sea during 1993–2007. *J. Geophys. Res.*, 115, C03012, doi:
626 10.1029/2009JC005657.

627 Yaremchuk, M., J. McCreary Jr., Z. Yu, and R. Furue, 2009: The South China Sea
628 throughflow retrieved from climatological data. *J. Phys. Oceanogr.*, 39, 753–767

629 Yu, L., and R. A. Weller (2007), Objectively Analyzed Air–Sea Heat Fluxes for the
630 Global Ice-free Oceans (1981–2005). *Bull. Ameri. Meteor. Soc.*, 88, 527–539.

631 Yu, L. (2015), Sea-surface salinity fronts and associated salinity-minimum zones in the
632 tropical ocean, *J. Geophys. Res. Oceans*, 120(6), 4205-4225.

633 Yu, K., and T. Qu (2013), Imprint of the Pacific Decadal Oscillation on the South China
634 Sea throughflow variability, *J. Clim.*, 26(24), 9797–9805.

635 Zeng, L., W. T. Liu, H. Xue, P. Xiu, and D. Wang (2014), Freshening in the South China
636 Sea during 2012 revealed by Aquarius and in situ data, *J. Geophys. Res. Oceans*,
637 119(12), 8296-8314.

638 Zeng L., D. Wang., P. Xiu., Y. Shu., Q. Wang and J. Chen., 2016, Decadal variation and
639 trends in subsurface salinity from 1960 to 2012 in the northern South China Sea.
640 *Geophysical Research Letter*, 43, 12181–12189

641 Zeng, L., D. Wang., J. Chen., W. Wang., and R. Chen (2016b), SCSPOD14, a South
642 China Sea physical oceanographic dataset derived from in situ measurements during
643 1919–2014. *Sci. Data*, 3:160029 doi: 10.1038/sdata.2016.29

644 Zeng, L., Chassignet, E. P., Schmitt, R. W., Xu, X., and Wang, D. (2018). Salinification
645 in the South China Sea since late 2012: A reversal of the freshening since the 1990s.
646 *Geophysical Research Letters*, 45. 2744–2751

647 Zhao, D., W. Wang., H. Qin., Q. Mao., D. Wang., and R. Chen (2014), Decadal changes
648 of the intermediate water at 18°N in the South China Sea. *Acta Oceanologica Sinica*
649 (in Chinese), 36(9): 56-64

650

651

652

653

654

655

656

657 Table 1: Long-term trends of each term in equation (3) in the SCS during the periods
658 1960–1974, 1974–1993, and 1993–2012. Units: psu/yr.

659

Mixed layer salinity trend	Surface forcing	Horizontal advection	Vertical entrainment	Sum of 3 terms	Observed trend
1960-1974	CPC:-0.014 PREC:-0.008 Mean:-0.011	SODA: -0.007 OFES: -0.006 Mean: -0.006	-0.0003	-0.017	-0.020
1974-1993	CPC:0.016 PREC:0.016 Mean:0.016	SODA: 0.002 OFES: 0.004 Mean: 0.003	0.0013	0.020	0.019
1993-2012	CPC:-0.011 PREC:-0.010 GPCP:-0.009 TRMM:-0.013 Mean:-0.010	SODA: -0.005 OFES: -0.006 GODAS:-0.009 ROMS:-0.010 HYCOM:-0.017 Mean:-0.010	-0.0008	-0.021	-0.024

660

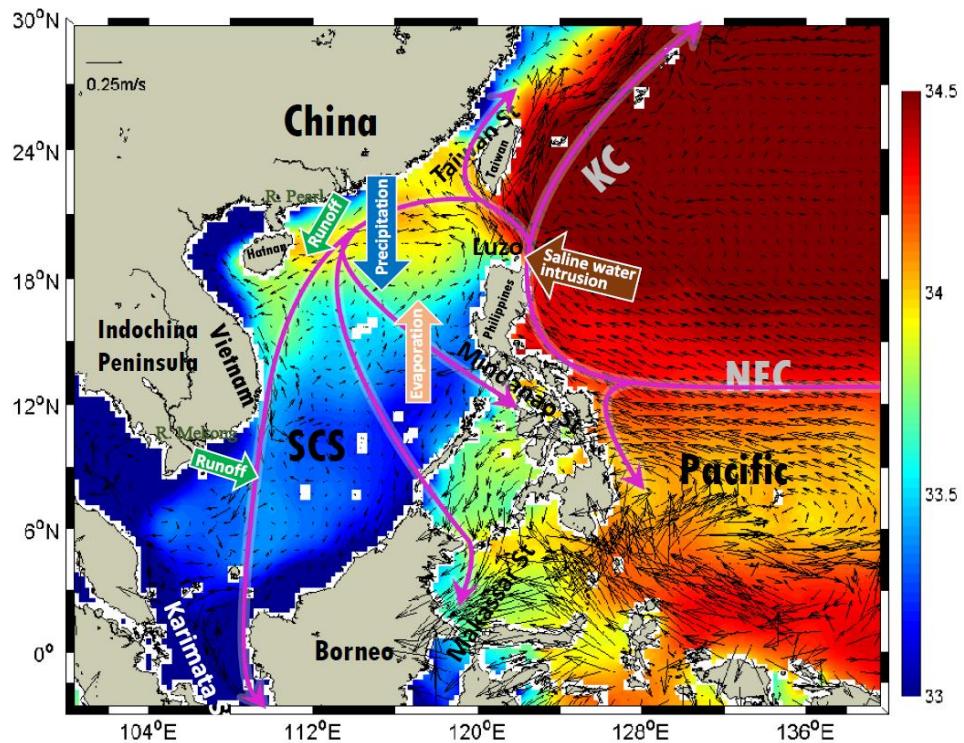
661

662

663

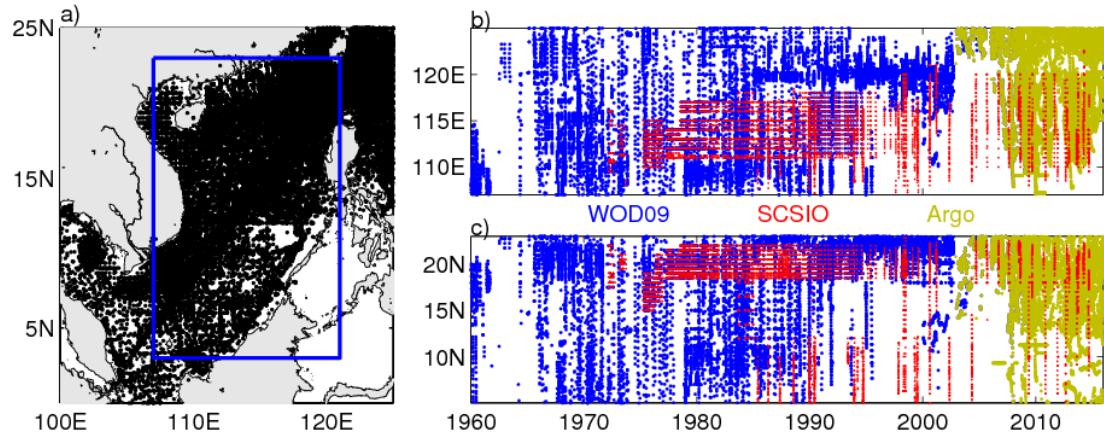
664

665

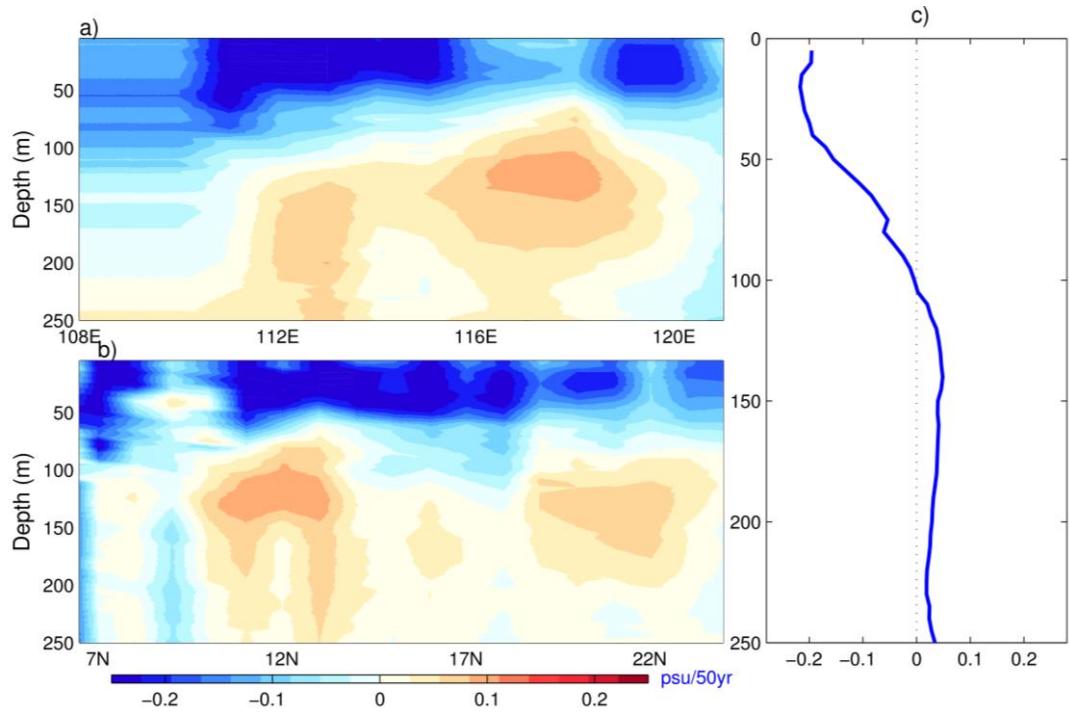

666

667

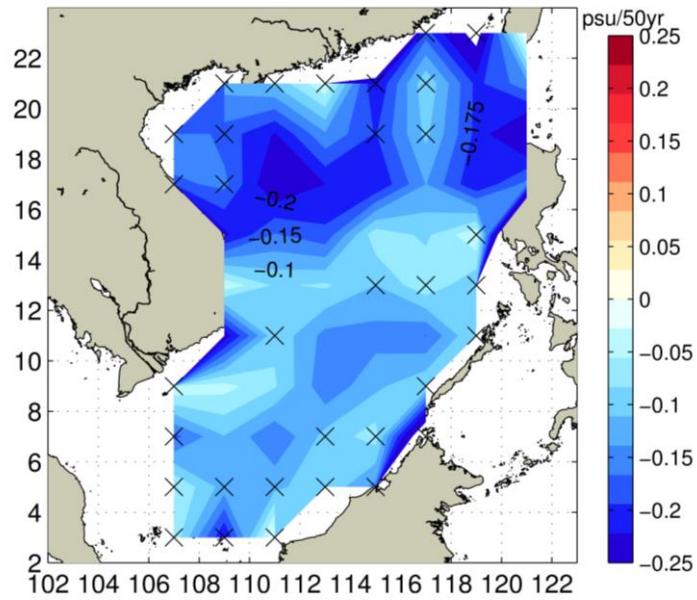
668


669

670


671

672 Figure 1. WOA mean surface salinity and OSCAR mean surface currents. Major
 673 currents in the SCS and adjacent waters are from Qu et al. (2006) and Hu et al.
 674 (2015), indicated by magenta lines. Abbreviations: SCS, South China Sea; NEC,
 675 North Equatorial Current; KC, Kuroshio Current.
 676


677

678 Figure 2. (a) Spatial distributions of observations from the SCSPOD15 dataset. The
 679 blue box represents the study area (SCS; 107–121°E, 3–23°N). (b) Longitude–time
 680 sections for the 3–23°N band of observations. (c) Latitude–time sections for the 107–
 681 121°E band of observations. The three data sources are marked by different colors:
 682 WOD09 (blue dots), SCSIO (red dots), and Argo (green dots).
 683

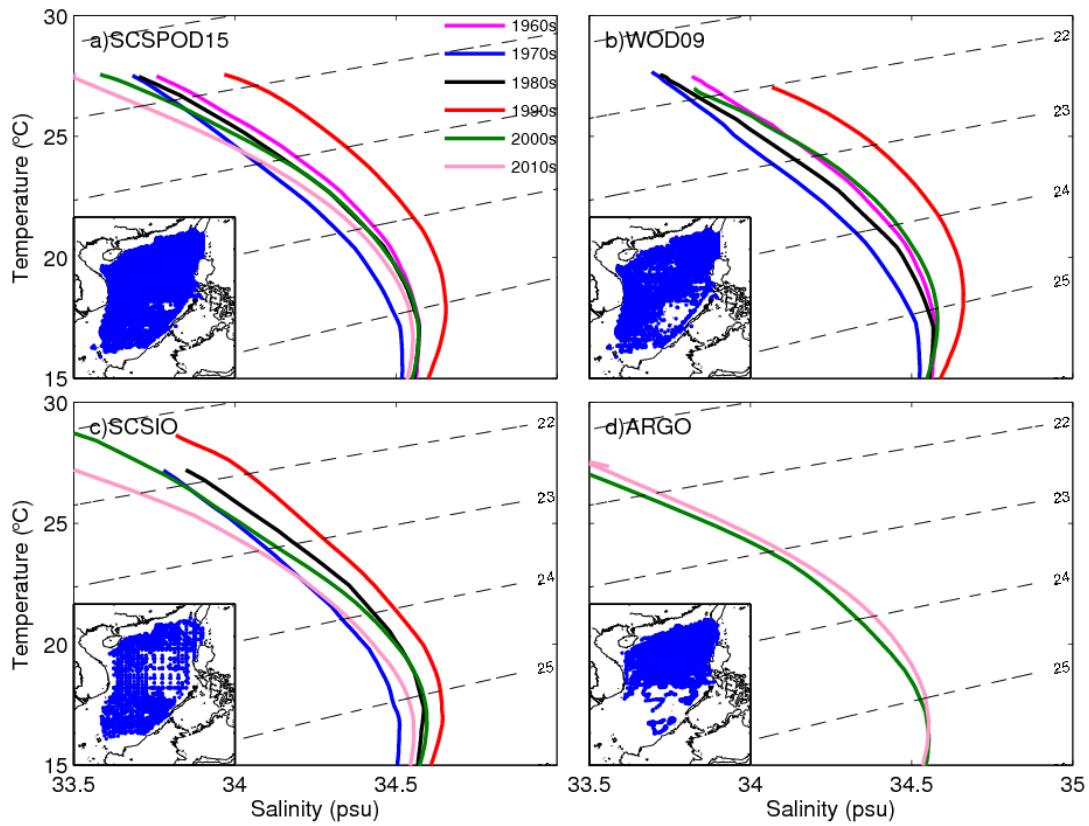
684

685 Figure 3. Vertical distributions of upper salinity change (psu/yr) from 1960 to 2015 in
 686 the SCS (basin area is defined as the region shown in Fig 2a). (a) Longitudinally
 687 average, (b) Latitudinally average, and (c) basin-wide average for the SCS. In order to
 688 compare with the trend identified by Durack et al. (2012), the unit is psu/50yr in this
 689 figure.
 690
 691

692

693 Figure 4. The linear trends in the mixed layer salinity calculated within each $2^\circ \times 2^\circ$
 694 bins in the SCS. The cross delimits bins where the calculations of trends are not
 695 reliable in Mann-Kendall test. In order to compare with the trend identified by Durack
 696 et al. (2012), the unit is psu/50yr in this figure.

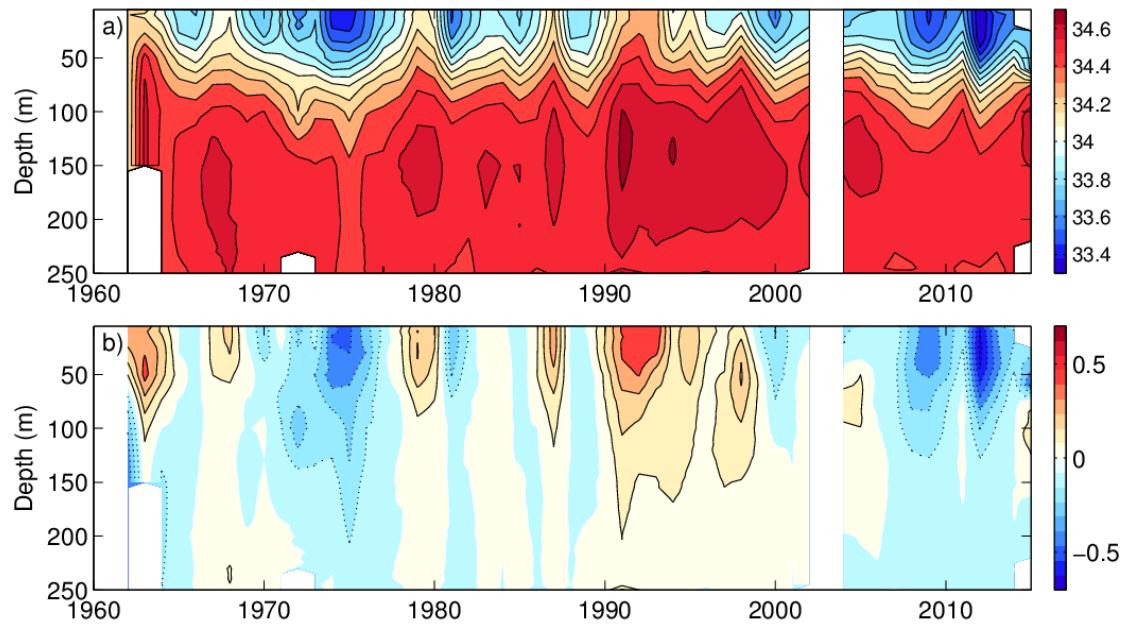
697


698

699

700

701


702

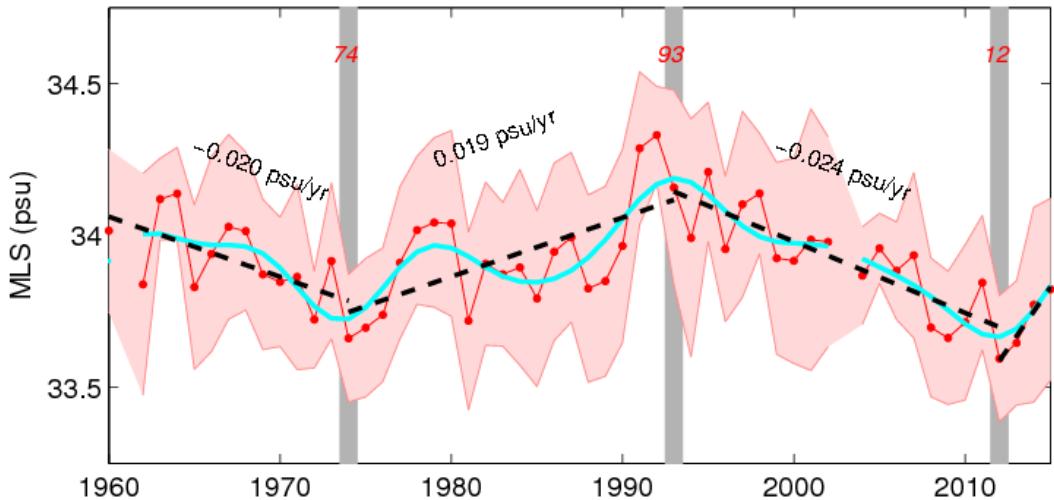
703

704 Figure 5. Decadal mean T - S curves from 1960 to 2015 in the upper SCS (1960s:
705 magenta; 1970s: blue; 1980s: black; 1990s: red; 2000s: green; 2010s: pink) based on,
706 (a) SCSPOD15; (b) WOD09; (c) SCSIO; (d) Argo.

707

708

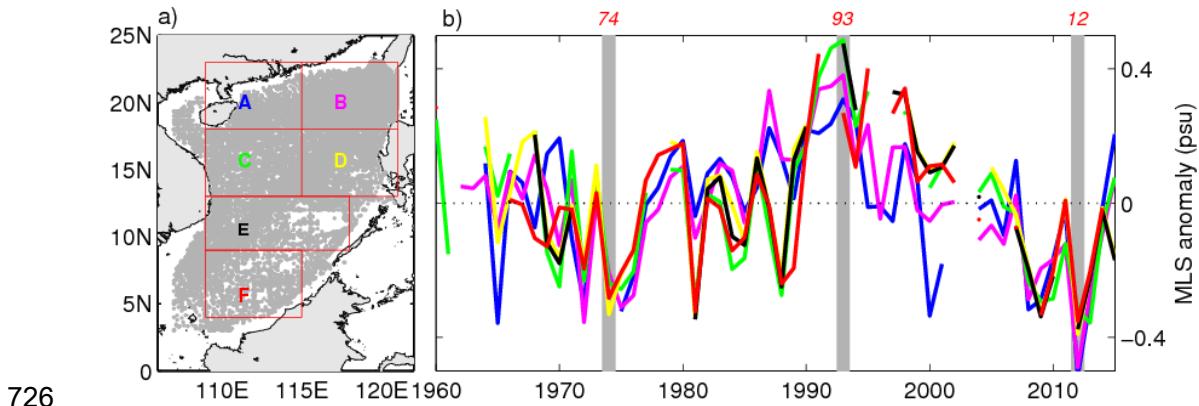
709 Figure 6. Time-depth sections of basin-wide averaged yearly mean (a) salinity, and
 710 (b) salinity anomalies (take off the temporal averaged yearly time-depth section,
 711 positive salinity anomaly: red; negative salinity anomaly: blue) in the upper SCS.
 712


713

714

Figure 7. Longitude-time sections of mixed layer salinity (color, psu) for the 3–23°N

715 band from 1960 to 2015 in the SCS.


716

717

718 Figure 8. Time series of average yearly basin-wide mixed layer salinity from 1960 to
 719 2015 in the SCS. Shading (light red) indicates error bars. The error bar is estimated as
 720 the standard error of all mixed layer salinity values for a given calendar year. The
 721 low-frequency curve (blue) represents the seven-year filtered values used to highlight
 722 long-term changes. The dashed line represents the linear least squares fit of the yearly
 723 values used to quantify linear trends (psu/yr). The gray shaded areas indicate turning
 724 points in 1974, 1993, and 2012.

725

726

727 Figure 9. (a) Spatial distributions of selected SCSPOD15 observations in the study
 728 area (107–121°E, 3–23°N) and six selected areas (boxes) used for spatial averages.

729 (b) Time series of yearly mixed layer salinity anomalies averaged in the six areas
 730 (take off the box-averaged yearly mixed layer salinity) from 1960 to 2015 in the SCS
 731 indicated by boxes in (a). The gray shaded areas indicate turning points in 1974, 1993,
 732 and 2012.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

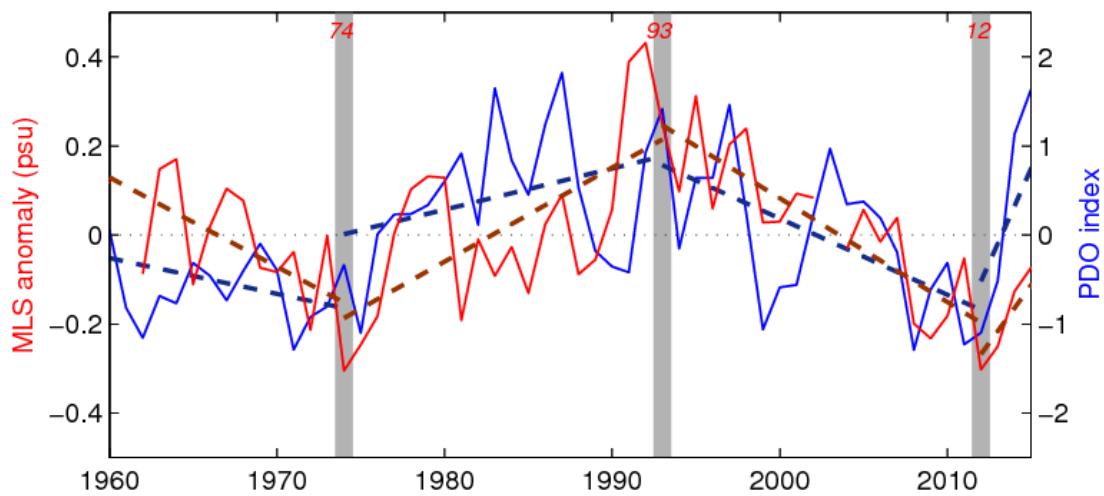
752

753

754

755

756


757

758

759

760

761

762 Figure 10. Time series of yearly PDO index (blue) and mixed layer salinity anomaly
763 (take off the basin-averaged yearly mixed layer salinity, red) in the SCS from 1960 to
764 2015. The gray shaded areas indicate turning points in 1974, 1993, and 2012. The
765 blue and red dashed line represents the linear least squares fit of the yearly values
766 used to quantify linear trends for PDO and mixed layer salinity anomaly, respectively.

767

768

769

770

771

772

773

774

775

776

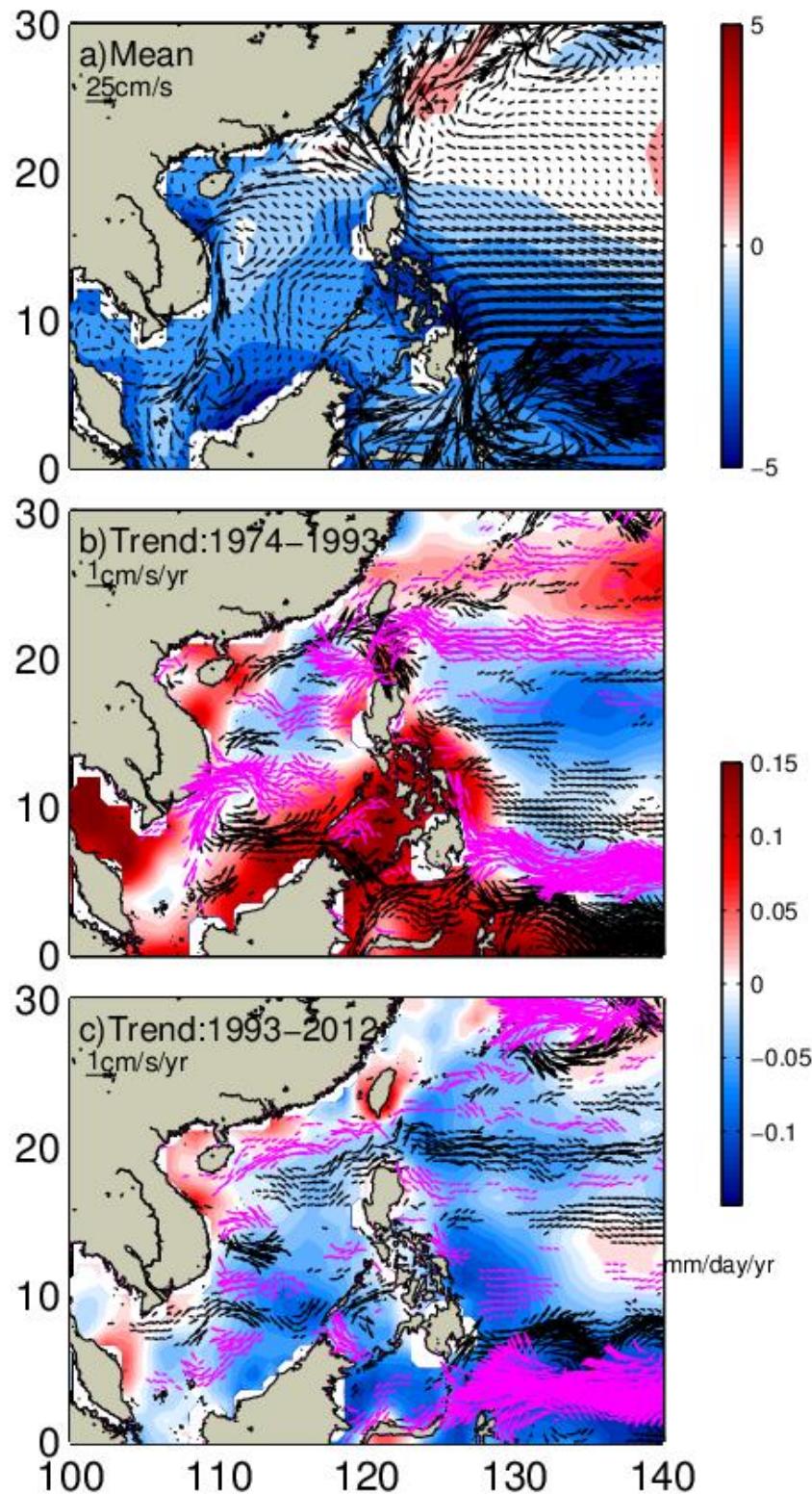
777

778

779

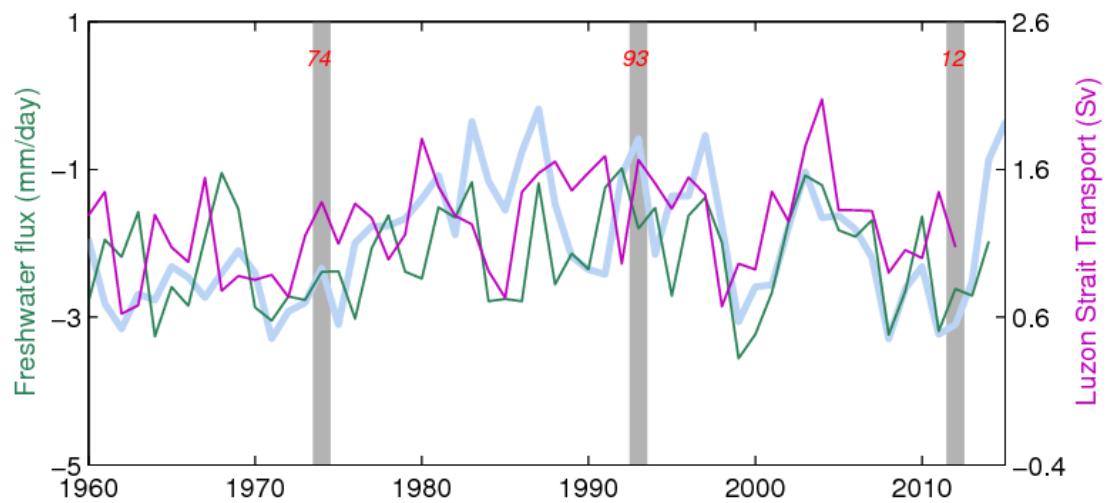
780

781

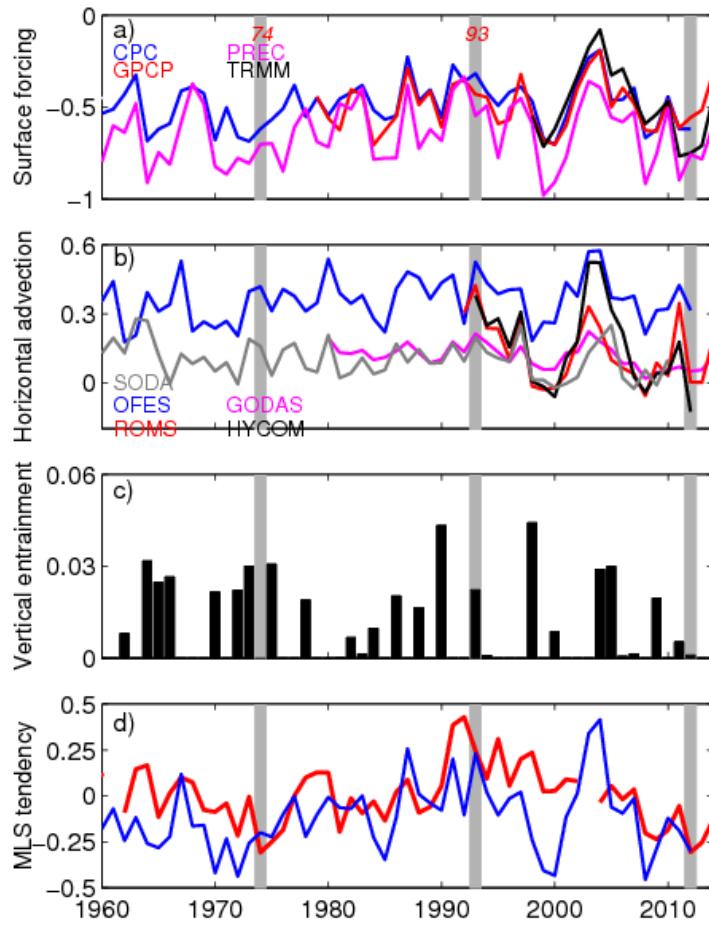

782

783

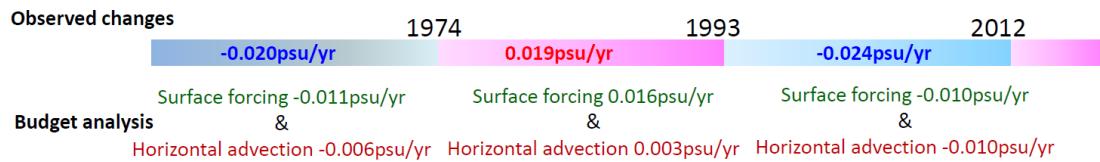
784


785

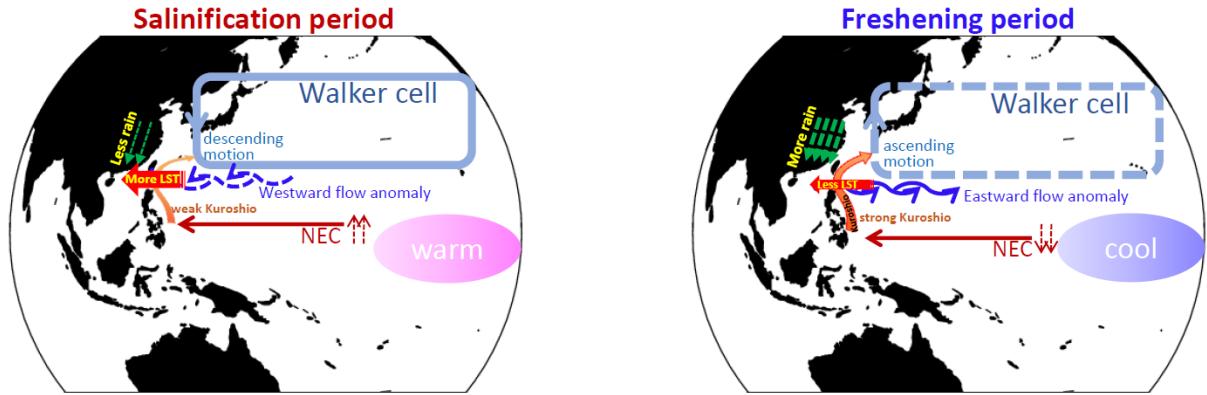
786



787


788 Figure 11. (a) Long-term mean GPCP freshwater flux ($E-P$, shading, unit: mm/d) and
 789 OFES mixed layer circulation (vectors, unit: cm/s). (b) Linear trend of GPCP
 790 freshwater flux (shading, unit: mm/d/yr) and OFES circulation from 1974 to 1993
 791 (magenta vectors: westerly currents; black vectors: easterly currents; unit: cm/s/yr).
 792 (c) Same as (b), but for the period 1993 to 2012.

793
 794 Figure 12. Time series of yearly PREC net freshwater flux ($E-P$, green, unit: mm/d),
 795 OFES Luzon Strait transport (purple, unit: Sv) and yearly PDO index (light blue,
 796 PDO-2 is shown). The gray shaded areas indicate turning points in 1974, 1993, and
 797 2012.
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809



810
811 Figure 13. Spatial average of each term in equation (3) for the SCS (unit: psu/yr). (a)
812 Net freshwater flux term (CPCflux: blue; PRECflux: magenta; GPCPflux: red;
813 TRMMflux: black). (b) Luzon Strait transport induced horizontal advection term
814 (SODAadv: gray; OFESadv: blue; GODASadv: magenta; ROMSadv: red;
815 HYCOMadv: black). (c) Vertical entrainment term. (d) Mixed layer salinity tendency,
816 and the sum of the freshwater flux, horizontal advection, and vertical entrainment
817 terms.
818

819
820 Figure 14. Schematic timeline of the observed salinity changes (shading bars) in the
821 SCS during the periods 1960–1974, 1974–1993, and 1993–2012. The contribution of
822 surface forcing and horizontal advection terms are given below. Units: psu/yr.

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

849

850 Figure 15. Schematic diagram of the (a) salinification and (b) freshening periods in
 851 the SCS.

852

853

854

855

856

857

858

859

860

861

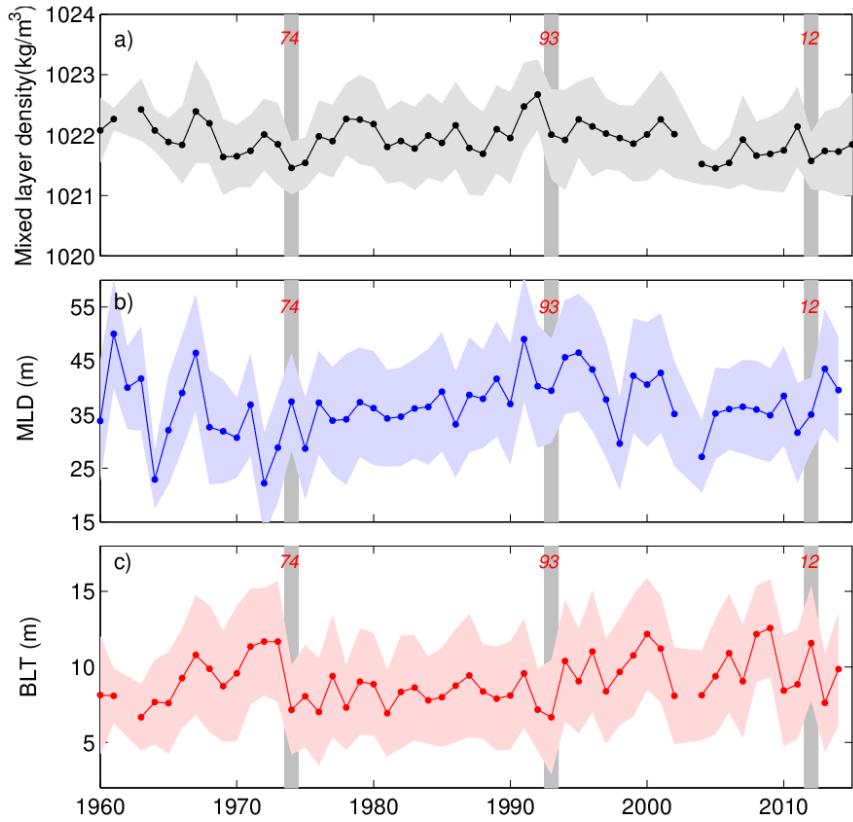
862

863

864

865

866


867

868

869

870

871

872
 873 Figure 16. Time series of yearly (a) mixed layer density, (b)
 874 mixed layer depth, and
 875 (c) BLT averaged in the SCS. Error bars are shown in light shading.
 876 The gray shaded
 877 areas indicate turning points in 1974, 1993, and 2012.
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888