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Abstract—Delay-Doppler maps (DDMs) are generally the 
lowest-level of calibrated observables produced from Global 
Navigation Satellite System Refectometry (GNSS-R). A forward 
model is presented to relate the DDM, in units of absolute power 
at the receiver, to the ocean surface wind feld. This model 
and the related Jacobian are designed for use in assimilating 
DDM observables into weather forecast models. Given that the 
forward model represents a full set of DDM measurements, direct 
assimilation of this lower-level data product is expected to be 
more effective than using individual specular-point wind speed 
retrievals. The forward model is assessed by comparing DDMs 
computed from Hurricane Weather Research and Forecasting 
(HWRF) model winds against measured DDMs from the Cyclone 
Global Navigation Satellite System (CYGNSS) Level 1a data. 
Quality controls are proposed as a result of observed discrepan-
cies due to the effect of swell, power calibration bias, inaccurate 
specular point position and model representativeness error. DDM 
assimilation is demonstrated using a Variational Analysis Method 
(VAM) applied to three cases from June 2017, specifcally selected 
due to the large deviation between scatterometer winds and Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) 
predictions. DDM assimilation reduced the root mean square 
error (RMSE) by 15, 28 and 48%, respectively, in each of the 
three examples. 

Index Terms—GNSS-R, GPS, ocean wind, CYGNSS, data 
assimilation, DDM, forward model 

I. INTRODUCTION 

OCEAN remote sensing with Global Navigation Satellite 
System Refectometry (GNSS-R) has been developed 

over the last two decades for use on both airborne and space-
borne platforms. A sequence of satellite technology demon-
strations, starting with the Disaster Monitoring Constellation 
(UK-DMC) [1] and later TechDemoSat-1 (TDS-1) [2] have 
validated the capability of ocean wind speed retrieval from 
GNSS-R signals. On December 15, 2016, NASA launched the 
Cyclone Global Navigation Satellite System (CYGNSS), an 
8-satellite constellation intended to use ocean wind retrievals 
from GNSS-R to improve track and intensity forecasts of 
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tropical cyclones (TCs). GNSS transmissions lie in L-band 
(1-2 GHz), which has a lower rain attenuation than the higher 
frequencies typically used by scatterometers. This can increase 
the available observations within the inner core of a TC. 
Additionally, a constellation of small satellites (enabled by 
the order-of-magnitude lower size, weight and power of a 
refectometry instrument vs. that of an active radar) provides 
better spatial and temporal sampling with up to 32 simultane-
ous measurements per second and an average revisit time of 4 
hours. This high rate of spatial and temporal sampling enables 
improved observation of the rapid intensifcation stage in TC 
development [3]. 

The fundamental GNSS-R observable is the delay-Doppler 
map (DDM), the cross-correlation between a refected GNSS 
signal and a locally generated model of the transmitted signal 
(code and carrier) over a range of delays and Doppler frequen-
cies [4]. The Delay Doppler Mapping Instrument (DDMI) on 
each CYGNSS satellite can nominally track up to four (4) 
GNSS refections, providing one DDM per second at each 
refection over a range of 17 delays and 11 Dopplers, sampled 
at 0.25 chip and 500 Hz, respectively [5]. The CYGNSS 
Science Operation Center (SOC) generates several levels of 
data products from these DDMs. At Level 1a (L1a), the 
DDM is calibrated to absolute power in units of watts. The 
Level 1b data product contains the bistatic radar cross-section 
(BRCS), generated from the DDM by removing the effects of 
satellite geometries, attitudes, direct power and antenna gain 
[6]. Level 2a data consists of the surface wind speed retrieval 
at the specular point with a resolution of 25 km. This retrieval 
uses the average DDM (DDMA) and the leading edge slope 
(LES) observables computed over a 3 × 5 window aligned 
with the specular point delay. Geophysical model functions 
(GMFs) were derived for these observables by ftting a model 
to training data [7]. Two GMFs were developed, one for fully 
developed seas (FDS) and another one for young seas/limited 
fetch (YSLF) conditions, resulting in two versions of the 
wind speed retrieval [8]. A minimum variance estimator is 
used to optimally combine the DDMA and LES retrievals 
[9]. The mean-square slope (MSS) of the ocean surface is 
also provided as a Level 2b data product, obtained directly 
from the BRCS [10]. For all of these retrievals, however, the 
25 km resolution requirement limits the usable region of the 
DDM to only 15 samples around the specular point, discarding 
more than 90% of the available data. The relationship between 
the wind feld away from the specular point, and the DDM 
observables at longer delays and larger Doppler frequencies 
is complicated and generally not invertible due to the delay-
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Doppler ambiguity. In this paper, we propose the use of 
data assimilation (DA) to extract information from a much 
larger region of each sequential DDM to improve model 
representation of the wind feld over a wider area. 

DA has been shown to be an effective method for in-
corporating observations into numerical models to improve 
weather forecasts [11]. In the typical DA approach, a state is 
defned from a discretized geophysical feld and observations 
are processed iteratively to update estimates of this state under 
physically-based constraints. An initial estimate of the state, 
known as the background, is provided and the updated state is 
known as the analysis feld [12]. Assimilation can be based on 
stochastic methods by directly computing the optimal estimate 
(e.g. the Kalman flter [13], [14]) or variational methods by 
minimizing a cost function (e.g. adjoint method, 3D-Var [15], 
[16], 4D-Var [17]). When assimilating indirect observations, 
a linear observation operator that computes the response of 
observable to the physical state is required [13]–[16]. For 
example, a bending angle forward model has been used to 
assimilate GNSS radio occultation measurements [18], [19] 
and a geophysical model function has been used to relate 
scatterometer radar cross-sections to ocean surface wind felds 
[20]. A Jacobian or tangent linear operator is also usually 
required for the optimization process. 

Recent studies have shown the impact of assimilating sim-
ulated or real CYGNSS Level 2 winds using the Gridpoint 
Statistical Interpolation (GSI)-based 3DVAR system [21]–[23] 
and the variational analysis method (VAM) [24], [25]. As 
stated previously, DDM power (a Level 1a product) is a more 
fundamental GNSS-R observable and incorporates information 
from a larger wind feld than only that at the specular point. 
Direct assimilation of DDM power is, therefore, expected to 
better utilize more of the information in the GNSS-R measure-
ment. In this paper, an analytical GNSS-R forward model is 
developed to link the DDM to a gridded wind speed and enable 
assimilation of a calibrated 17×11 DDM (CYGNSS Level 
1a data) into weather forecast models, where the observation 
errors are considered to be uncorrelated. Taking in a gridded 
wind feld and GNSS-R metadata, the forward model produces 
a simulated DDM which will be evaluated through comparison 
with measured CYGNSS DDMs at a defned delay-Doppler 
coordinate. An analytical model for the Jacobian matrix, 
which describes the sensitivity of DDM power in each delay-
Doppler bin to the gridded wind feld, is also derived. These 
models meet all of the requirements for optimal assimilation 
of Level 1a DDM data. Furthermore, all of the code is written 
as a single callable function in the C programming language 
so that it can be easily integrated into any data assimilation 
system. 

As a demonstration, the forward model and Jacobian are 
integrated into the VAM and used to process CYGNSS ob-
servations from a few specifc examples in which the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) 
model shows signifcant differences with scatterometer (AS-
CAT, OSCAT) wind felds. In each of these examples, the 
VAM is shown to improve the agreement between ECMWF 
and scatterometer winds. 

A description of the forward model and Jacobian are pre-

sented in Section II. Section III presents an analysis of the 
model agreement with actual CYGNSS measurements and a 
comparison of the closed-form Jacobian with fnite difference 
calculations. Section IV presents an example application of the 
forward model in the VAM. Section V summarizes the results 
and our conclusion. 

II. MODEL DESCRIPTION 

Inputs to the forward model can separated into four data 
types: Geometry, including the positions and velocities of the 
transmitter, receiver and specular point; Metadata, including 
sample time, GPS PRN code, and specular bin index; Power, 
including the Effective Isotropic Radiated Power (EIRP) of the 
GPS transmitter and antenna parameters of the receiver; Wind 
Field, a gridded wind feld in latitude/longitude coordinates. 
Geometry, Metadata and Power (except the receiver antenna 
patterns) are all from CYGNSS Level 1 data. The gridded 
wind feld has a resolution of 0.125 degree in geodetic 
coordinates. The forward model has two outputs: a modeled 
DDM produced by the forward operator and a Jacobian matrix 
computed by analytically differentiating the forward operator. 
Specifc variables names from the CYGNSS Level 1 data are 
listed in the Appendix. Fundamental code from the CYGNSS 
End-to-End Simulator (E2ES) [26] has been reused. 

A. Forward Operator 

In a GNSS-R receiver, the refected signal, ur(t), is frst 
cross-correlated with a local copy of transmitted signal over a 
range of delays, τ and Doppler frequencies, f Z tk 

Yk(τ, f) = 
1 

ur(t)a(t + τ)e 2πj(f0+f )tdt. (1)
Ti tk −Ti 

Yk(τ, f) is the complex correlation result at time tk, a(t) is 
the baseband signal model (generated from a pseudorandom 
noise (PRN) code using Binary Phase Shift Keyed (BPSK) 
modulation) and Ti is the integration time. N sequential 
complex results are then incoherently averaged. 

NX1 
Z(τ, f) = |Yk(τ, f)|2 (2)

N 
k=1 

For CYGNSS, Ti = 1 ms and N = 1000. Generation of the 
Level 1a data products requires subtracting the noise foor, 
PN , and calibration of the receiver gain, GR, to produce a 
measurement (in units of Watts) of the DDM power at the 
front-end of the receiver [6], [27], 

Z(τ, f)
PDDM (τ, f) = − PN . (3)

GR 

Assume that PDDM (τ, f) is an unbiased measurement, 

PDDM (τ, f) = h(τ, f, x) + ν(τ, f) (4) 

in which h(τ, f, x) is a model for the DDM. The vector 
x contains a set of wind speed values, ordered in geodetic 
latitude and longitude coordinates, which defne the wind feld 
on the ocean surface. The spatial resolution of the wind feld 
used in this forward model is 0.125 degree in latitude and 
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longitude. ν is a zero-mean random variable that represents 
the error of the measurement. 

With knowledge of the wind feld, satellite geometries, and 
power parameters, a widely used model for the DDM, derived 
from the Kirchoff Approximation to Geometric Optics (KA-
GO), can be written as a surface integral [4], ZZ 

λ2PtGtG0 Gr(ρ~) 
σ0 (~h(τ, f, x) = ρ, x(ρ~))3 R2

(4π) t (ρ~)Rr 
2(ρ~) 

× χ2 (τ − τg(ρ~), f − fg (ρ~)) d~ρ. (5) 

The variable of integration, ρ~, is a two-dimensional position 
vector defning points on the ocean surface. λ is the wave-
length of the GPS carrier. PtGt is the GPS EIRP which 
is assumed constant over the entire scattering area. Gr is 
the receiver antenna gain. Rt(ρ~) and Rr(ρ~) are path dis-
tances from the mean ocean surface at ρ~ to the transmit-
ter and receiver, respectively. x(ρ~) is the wind speed at ρ~. 
χ2 (τ − τg(ρ~), f − fg(ρ~)) is the ambiguity function in which 
τg(ρ~) is the “geometric” path delay through a point on the 
mean ocean surface at ρ~ and fg (ρ~) is the corresponding 
Doppler frequency. An additional coeffcient, the excess power 
gain, G0, is included to account for uncalibrated biases. 
G0 = 1 by default, but it can be adjusted to best ft the 
observed data. 
σ0 is the bistatic radar cross section (BRCS). In the KA-

GO model, σ0 depends on the probability density function of 
surface slopes, p(~s, x), 

2 q
4(ρ~)

σ0(~ ρ)) = π |<(~ p(~ ρ), x(~ (6)ρ, x(~ ρ)| s(~ ρ)) 
q4(ρ~)z 

where < is the Fresnel refection coeffcient. ~q(ρ~) is the 
bisector, ! 

~ ~2π Rt(ρ~) Rr(ρ~) 
~ ρ) = (7)q(~ − 

λ Rt(ρ~) Rr(ρ~) 

which can be decomposed into two components: qz perpendic-
ular to the surface and ~q⊥ parallel to the local tangent plane. 
The slope ~s can then be expressed as ~s = −~q⊥/qz . Assuming 
an isotropic normal distribution for the surface slopes, p(~s, x) 
is defned by a single parameter, the omni-directional MSS, 
m, � � 

1 |~s|2 

p(~s, x) = exp − . (8)
2πm(x) 2m(x) 

A common empirical model [28] is used to provide a mono-
tonic relationship between MSS and wind speed. 

m(x) = 0.225(0.003 + 0.00508f) (9)⎧ ⎪x if 0 < x < 3.49⎨ 
f = 6 · ln(x) − 4 if 3.49 < x < 46 (10)⎪⎩

0.411 · x if x > 46 

where the numerical MSS value representing the isotropic 
case, was obtained by averaging the up-wind and cross-wind 
slope variances, m = (σ2 + σ2 )/2.c u 

To accelerate computation, fast Fourier transform (FFT) 
methods can be applied to (5) formluated as a 2D convolution 
[29], [30] 

h(τ, f, x) = Q(τ, f, x) ∗ ∗χ2 (τ, f) , (11) 

between the ambiguity function χ2 (τ, f) and ZZ 
     Q(τ, f,x) = B(ρ~)σ0 (ρ,~  x(ρ~)) 

× δ(τ − τg(ρ~))δ(f − fg (ρ~))dρ.~  (12) 

δ() is the Dirac delta function and 

λ2PtGtG0 Gr(ρ~)
B(ρ~) = .3 R2 (13) 

(4π) t (ρ~)R
2
r (ρ~)

The delay-Doppler space needs to be discretized for com-
puting (11). For application to data assimilation, the modeled 
DDM is also required to use the same delay-Doppler coor-
dinates as the observed DDM, so as to enable calculation of 
difference between the observation and the forward model. 
Specular point position estimates generated by the DDMI on-
board CYGNSS are very coarse and fxed to discrete values. 
Therefore, the true specular point is not generally located 
in the center of a single DDM bin [31]. Fractional precise 

s sspecular bin indices, nτ , n are generated in post-process and f 
s sprovided as part of the metadata listed in Table I [27]. nτ , nf 

are used to shift the delay-Doppler coordinates of the modeled 
DDM to align with those of the observed one. 

Equation (11) is discretized and computed using a 2D FFT 

h[nτ , nf , x] = Q[nτ , nf , x] ∗ ∗Ξ[nτ , nf ] (14) 

in which 
Ξ[nτ , nf ] = χ2 (nτ Δτ, nf Δf) . (15) 

nτ = 1, 2, ..., Nτ and nf = 1, 2, ..., Nf are indices in the 
discrete delay-Doppler space. Δτ and Δf are the delay and 
Doppler increments. For CYGNSS, Nτ = 17, Nf = 11, Δτ = 
0.25Tc where Tc is the period of a GPS C/A code chip in 
seconds and Δf = 1/(2Ti) = 500 Hz. 

Q[nτ , nf , x] is the discrete form of the surface integral 
(12). When the Earth-centered Earth-fxed (ECEF) coordinates 
of the transmitter, receiver and specular point are known, a 
curvilinear system, identifed as the “surface frame” (SURF), 
is created and used to discretize the surface near the specular 
point into a r × v grid at a resolution of 1 km [32]. In this 
paper, the total area covered by this grid is 120 km × 120 
km (vs. 90 km × 90 km in [32]) in order to encompass the 
expected glistening zone for all scenarios. 

A bilinear interpolation is used to interpolate x, provided 
at fxed points in geodetic coordinates, to 1 km grid points in 

0the SURF frame, x . 

0 x = Mx (16) 

0x is a N’ × 1 vector, x is a N × 1 vector and M is a 
N’ × N transformation matrix. N depends on the geometry, 
N 0 = 120 × 120 = 14400, and the computation of M can 
be referenced in [32]. Q[nτ , nf , x] can then be computed 
numerically as 

N 0X� �0Q[nτ , nf , x] = ΔA B(ρ~ i)σ
0(ρ~ i, xi)D[nτ , nf , ρ~ i] 

i=1 
(17) 
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in which ΔA = 10002 is the discrete increment in surface 
area and �� s �� τ (ρ~ ) − τ
D[nτ , nf , ρ~i ] = δ nτ − 

g
ns  

i g 
τ − Δτ�� s�� f (ρ~ )  − f

×  
g is g

δ nf − nf − . (18)
Δf 

δ[ ] is the Kronecker delta function and be stands for rounding 
to the nearest integer. τ s s 

g and fg are path delay and Doppler
frequency at the specular point. τg and τ s 

g are in units of
seconds and fg and fs 

g are in units of Hz. 

B. Jacobian 

The Jacobian matrix is a partial derivative matrix of the 
forward operator, with respect to each wind speed in the input 
vector, x. ⎡ ⎤ 

∂h[1,1,x] ∂h[1,1,x]· · · ⎢ ∂x
.
1 ∂xN ⎥⎢ . . . ⎥⎢ . · · · . ⎥⎢

 ⎢ ∂h[1,Nf ,x]  ∂h[1,Nf ,x] ⎥∂h(x) ⎥
H  = ⎢ · · ·

 = ⎢ ∂x1 ∂xN ⎥
∂h[2,1,x] ∂h[2,1,x] ⎥ . (19) 

∂x ⎢ · · · ⎥⎢ ∂x ∂x ⎥⎢ .
1 

. 
N 

. . ⎥⎣ . · · · . ⎦ 
∂h[Nτ ,Nf ,x]  ∂h[Nτ ,N· f ,x]· ·  

∂x1 ∂xN

To compute (19), equation (14) has to be linearized with 
respect to x0 . However, calculating the derivative with x0 , at 
the 1 km resolution, would be computationally expensive. To 
reduce the computational cost, the SURF frame is resampled at 
a 10 km resolution by selecting K = N 0/100 = 144 points out 
of the N 0 points. The resulting matrix of surface wind speeds 
is then “unrolled” into a K × 1 vector, X . Fig. 1 shows the 
selection of the N 0/100 points in X and their spatial relation 
to x0 and x. Equation (14) then becomes 

h[n X 0
τ , nf , ] = Q [nτ , nf , X] ∗ ∗Ξ[nτ , nf ] (20) 

in which X K
0 � � 

Q [nτ , nf , X] = 100ΔA B(ρ~i )σ
0(ρ~i , Xi)D[nτ , nf , ρ~i ] 

i=1 
(21)

and the discrete increment in surface area is 100ΔA. 
Taking the derivative of (20) with respect to each Xi, we 

obtain 

∂h[nτ , nf , X] 
= Wi[nτ , nf , X] ∗ ∗Ξ[nτ , nf ] (22) 

∂Xi 

in which �
2 q

4(ρ~i ) 
Wi[nτ , nf , X] = 100ΔA B(ρ~i )π |<(ρ~i )| 

q4z(ρ~i ) � ∂P (~s(ρ~i ), Xi)× D[nτ , nf , ρ~i ] . (23) 
∂Xi 

Only the slope-PDF is depenent on the wind speed, so this 
is the only derivative which must be computed. Assuming a 
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Figure 1. Spatial relation of the grid points in three different resolutions: 
(1) grid points in SURF in 1km resolution (x0); (2) grid points in SURF 
in 10km resolution (X). (3) grid points in latitude/longitude coordinates in 
0.125 degree resolution (x). X are evenly distributed among x0 . 

normal distribution allows a closed-form expression for this 
derivative, � � 

∂P (~s(ρ~), X) 1  |~s(ρ~)|2
= − 1 

∂X 2πm2(X) 2m(X) � � 
|~s(ρ~)|2 dm(X) × exp − (24)
2m(X) dX 

in which ⎧⎪⎨ 1.143 × 10−3 if 0 < X < 3.49 
dm(X)

 
−3 

= 6.858×10 if 3.49 < X < 46
dX ⎪⎩ X

4.69773  × 10−4 if X > 46.

A matrix, H0, is formed from Nτ Nf × K (187 × 144 in the 
particular application to CYGNSS) elements of (22). The last 
step is to transform this matrix to geodetic cooordinates. With 
the coordinate transformation in [32], the latitude and longi-
tude of each point in X can be calculated. The transformation 
matrix T from x (at 1 km) to X (at 10 km) 

X = Tx (25)

can be obtained from M averaging blocks of 100 terms.

1 X
Tij = M

 i0j (26)
100

i0∈Ii

Ii is the set of indices of the 100 points in x0 that are neareast 
to Xi. Mi0 j is the i’-th row, j-th column element in matrix 
M , i = 1, 2, ..., K, i0 = 1, 2, ..., N 0 , j = 1, 2, ..., N , and T is 
a matrix in dimension of K × N . Applying the chain rule 

∂h[nτ , nf , x] ∂h[nτ , nf , X] dX1 ∂h[nτ , nf , X] dX2
= +

∂xi ∂X1 dxi ∂X2 dxi

∂h[n  , n  τ f , X] dXK 
+ ...+ , (27)

∂XK dxi 

the Jacobian matrix (19) can be obtained as

H = H0T . (28) 
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III. MODEL ASSESSMENT 

To assess the forward model and identify possible diff-
culties in assimilating DDMs, the model is applied to Hur-
ricane Weather Research and Forecasting (HWRF) synoptic-
scale (0.125 degree resolution) wind felds [33], [34] and 
the resulting DDMs are then compared against CYGNSS 
Level 1a data (version 2.1). CYGNSS measurements collected 
during overpasses of Hurricane Maria on September 23, 2017 
and Cyclone Gita on February 12, 2018 are chosen for this 
comparison. One track in Maria covers the time from 18:03 to 
18:08 UTC and the corresponding HWRF wind feld is from 
the analysis at 18:00 UTC. For Cyclone Gita, the track covers 
the time from 14:03 to 14:05 UTC and is compared with winds 
from the HWRF 2-hour forecast at 14:00 UTC. The picked two 
tracks are the best tracks with good data quality that overpass 
the center of the tropical cyclones during the time. Since the 
time difference between the model and measurement is less 
than 10 minutes in this experiment, change of the wind feld 
in such a short time period can be ignored. The CYGNSS 
specular tracks and wind felds for both cases are shown in Fig. 
2. Measurements from GPS Block IIF satellites are removed 
from consideration because of the inaccurate estimation of 
the fuctuating transmitter power. The analysis wind feld is 
reported with a resolution of 0.125 deg. 

A. Assessment of forward operator 

Data for each variable in Table I were obtained from the 
CYGNSS L1a product at a 1 Hz rate. The receiver antenna 
patterns estimated by pre-launch measurements and on-orbit 
corrections were provided by the CYGNSS SOC [27]. At 
each time of observation, the modeled DDM produced by the 
forward operator was compared with that obtained from the 
L1a data. Fig. 3 shows examples of the forward operator for 
three different cases inside Cyclone Gita exhibiting average 
wind speeds in the glistening zone of 6 m/s (a), 15 m/s (b) 
and 30 m/s (c). It can be observed that for all cases, the 
modeled and observed DDMs have similar power values and 
asymmetric shapes. Two metrics were used to quantify the 
agreement between the forward operator and observations. To 
compare the absolute power between observed and modeled 
DDMs, the average relative difference of effective bins was 
computed, X1 yk(τi, fj ) − hk(τi, fj )

�k = , (29)
N yk(τi, fj )i,j 

where k is the index of the DDM, yk and hk are observed 
and modeled DDM, i and j are indices of effective bins and 
N is the number of effective bins. Effective bins are defned 
as DDM samples having a power larger than 1/10 of the 
DDM peak. Fig. 4 shows the selection of DDM bins using 
this method for two different cases. To compare the shapes 
of the two DDMs, the correlation coeffcient, ρk, between the 
effective bins of the two DDMs is computed from P 
ρk = q i,j (yk(τi, fj ) − ȳ)(hk(τi, fj ) − h̄ 

k) P P 
( (yk(τi, fj ) − ȳ)2)( (hk(τi, fj ) − h̄ 

k)2)i,j i,j 

(30) 

(a) 

(b) 

Figure 2. HWRF wind feld and overpass of CYGNSS specular points 
(yellow lines): (a) Hurricane Maria on September 23, 2017 at 18:00 UTC 
and CYGNSS data on same day at around 18:06 UTC with CYGNSS SV 5 
and GPS PRN 13. (b) Hurricane Gita on February 12, 2018 at 14:00 UTC 
and CYGNSS data on same day at around 14:04 UTC with CYGNSS SV 1 
and GPS PRN 23. 

where ȳ  and ¯ hk are mean values of all effective bins of the 
observed and modeled DDM [31]. When the shapes of the two 
DDMs are more similar, the coeffcient should be closer to 1. 

Fig. 5 shows the average relative differences, �k, for the two 
tracks in Hurricane Maria and Cyclone Gita. Fig. 6 shows the 
correlation coeffcients, ρk, for these same tracks. Wind speeds 
at the specular point along these tracks are also plotted on these 
fgures. In Fig. 5, it can be seen that the relative difference 
mostly remains below 30%, except for some low wind speed 
cases for Hurricane Maria. The correlation coeffcient plotted 
in Fig. 6 is mostly larger than 0.9, while there is a decrease 
in high wind speed cases. Both fgures show that the DDMs 
calculated by the forward operator are generally in agreement 
with CYGNSS measured ones. 

Under the ideal case, the only cause of the difference 
between observation and model is the difference between the 
model wind feld and the real winds. Adjustment of the model 
winds, to minimize this difference, is the essential principle 
of data assimilation. However, there are several other uncer-
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(a) 

(b) 

(c) 

Figure 3. Comparisons between observed DDM and modeled DDM at three 
different cases for Cyclone Gita on February 12, 2018: wind speed average 
over the glistening zone = 6 m/s (a), 15 m/s (b), and 35 m/s (c). DDM values 
are in the unit of Watt. 
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Figure 4. Selection of effective DDM bins (red circles), using 1/10 of the 
peak power in two cases for Cyclone Gita on February 12, 2018: wind speed 
= 5 m/s (left) and 30 m/s (right). DDM values are in the unit of Watt. 
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Figure 5. Relative power differences between modeled DDMs and observed 
DDMs of the two tracks in (a) Hurricane Maria and (b) Cyclone Gita. 

tainties that infuence the performance of the forward model. 
These must be understood and accounted for in any practical 
data assimilation scheme. In our comparison, we selected cases 
in which the time difference between observation and model 
(less than 10 minutes) are small enough such that temporal 
change of wind feld can be ignored. The HWRF analysis 
(Maria) and 2-hour short forecast (Gita) were found to be 
highly consistent with the best track data according to a 
verifcation report [35]. Using these examples, we evaluated 
four (4) sources of uncertainty: 

1) Low wind speed: swell and specular refection: Ocean 
surface roughness is not only sensitive to short waves 
driven by the local wind but also to long waves forced 
by non-local swell [36], [37]. At medium or high wind 
speed cases, the local wind plays the dominant role and 
the effect of swell can be ignored. However, at very low 
wind speed cases ( / 5 m/s), the local wind is weak 
and the swell may be evident. In the forward model, 
MSS is computed as an empirical function of only 
the local wind speed [28], incorporating no information 
about swell. Ocean swell can be characterized by the 
signifcant wave height (SWH) or MSS from a wave 
model (i.e. WAVEWATCH III [38] or WAM [39]). 
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Figure 6. Correlation coeffcients between modeled DDMs and observed 
DDMs of the two tracks in (a) Hurricane Maria and (b) Cyclone Gita. 

Bayesian estimation has also been applied to correct for 
the effect of long waves using SWH [40]. Those methods 
need auxiliary data of the sea state in addition to the 
wind speed, which could complicate the forward model. 
At the present time, data assimilation is parameterized in 
terms of wind speed (or wind vector) only. Furthermore, 
at low wind speed, the ocean surface may be smooth 
enough such that coherent scattering exists and the KA-
GO model would no longer be applicable [41]. These un-
modeled effects are possible causes of the high relative 
differences observed for low wind speeds as shown 
in Fig. 5. To avoid the effect of swell and coherent 
scattering, quality controls on the background wind 
speed (i.e., a threshold on the minimum wind speed) 
or the relative difference in equation (29) can be used 
to flter out the cases which may exhibit those effects. 

2) DDM power bias: A bias is observed in both cases in 
Fig. 5, in which the relative power differences are all 
above zero for Maria and all below zero for Gita. One of 
the major sources for this bias is the inaccurate estimated 
GPS transmitter EIRP. For CYGNSS, the GPS EIRP is 
estimated using measurements from the zenith naviga-
tion antenna on each CYGNSS satellite and a ground-
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Figure 7. Relative power differences with and without adding the excess 
power in each modeled DDM and the excess power along the track: (a) Maria 
(b) Gita. 

based GPS power monitor [42], [43]. Accuracy of the 
EIRP estimate can be infuenced by variation in the 
transmitter power and calibration of the zenith antenna 
pattern. To evaluate this infuence, the excess power gain 
G0 in equation (14) was estimated independently. For 
each modeled DDM, the excess power is adjusted by 
ftting all effective bins in the modeled DDM against 
the observed DDM using a least square method. Fig. 7 
shows the relative power differences with and without 
adjusting G0 and the excess power along the track for 
Hurricane Maria and Cyclone Gita. Samples for wind 
speed at the specular point under 5 m/s have already 
been removed from this comparison, due to aforemen-
tioned concerns about swell and coherent scattering. The 
relative differences become much closer to zero and the 
bias is removed after adding the excess power for both 
cases. It shows that the excess power parameter in the 
forward model can be used to effectively correct the 
bias. Errors in the receiver antenna pattern, resulting 
from changes from exposure to the space environment, 
for example, would also introduce different power error 
of each DDM bin. These can be assumed to remain 
constant through the mission and can thus their effect 
on the bias can also be calibrated. In the initial studies 
in this paper, a maximum threshold on the relative power 
difference in equation (29) will be set for quality control. 

3) Inaccurate specular point location: The specular point 
delay and Doppler, reported by the DDMI, are very 
coarse, due to the simplifed geometry model used for 
on-board open-loop tracking and the limited precision 
of discrete steps (0.25 chip, 500 Hz). Specular point 
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Figure 8. DDMs computed by the forward model using specular delay bins 
of 7.0, 7.5, 8.0 (from left to right). One example of the Hurricnae Maria case 
was selected with the specular point at 26.5◦N, 72.8◦W. 
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Figure 9. Correlation coeffcients between the observed DDM and modeled 
DDM using different specular delay bin index with a delay step of 0.2 bin. 
One example of the Hurricnae Maria case was selected with the specular point 
at 26.5◦N, 72.8◦W. 

delay and Doppler are re-computed on the ground by 
the CYGNSS SOC using a more accurate method of 
specular point calculation and a higher fdelity mean sea 
surface model [27]. These higher precision specular bin 
indices, ns , ns

τ f , are obtained from the CYGNSS L1a 
metadata and used in the forward model (14). However, 
some errors still remain as a result of errors in the 
sea surface height model, local height variation, and 
C/A code tracking error, resulting in some misalignment 
between the observed and modeled DDMs. Fig. 8 il-
lustrates this effect and shows change in the modeled 
DDMs with displacement of the specular point delay 
in the step of 0.5 bin. Fig. 9 shows the correlation 
coeffcients between the observed DDM and modeled 
DDM using different specular delay bin index. Correla-
tion coeffcient between the observed and modeled DDM 
can be used as quality control to flter out cases with 
large error in the specular point position, as this metric 
represents the shape similarity between the two. 

4) High wind speed: The empirical relationship between 
wind speed and MSS in equation (9) was derived by 
ftting a large collection of airborne GNSS-R observa-
tions from high-elevation satellites against wind speed 
measurements [28]. In the very high wind speed region 
near the hurricane eyewall, the model should be used 
cautiously because of the complicated sea state, breaking 
of the waves or unavailability of the sea surface slope 
information [44]. The decrease in correlation coeffcient 
in Fig. 6 when the wind speed is high could be possibly 
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Figure 10. An example of the Jacobian matrix computed from the Hurricane 
Maria case when the specular point is near the hurricane eyewall. The specular 
point is at 26.5◦N, 72.8◦W. 

caused by this model representativeness error. Discard-
ing observations with background wind speed exceeding 
a threshold (' 35 m/s) can be used as an additional 
quality control flter. 

The discussion above shows that, while the forward model 
accurately represents the relationship between the scattered 
and surface conditions over the full extent of the DDM in 
most cases, there are some important discrepancies which 
must be understood and accounted for. We propose that these 
effects can be mitigated through limiting the useable range 
of wind speeds, estimating the excess power gain, G0, and 
defning quality control tests on the relative power difference 
and correlation coeffcient between the observed and modeled 
DDM. 

B. Validation of the Jacobian 

The Jacobian matrix represents the sensitivity of each sam-
ple of the DDM to the wind speed at each surface grid point. 
An example of the matrix, shown in Fig. 10, is computed for 
Hurricane Maria at a time when the specular point is near the 
hurricane eyewall. The two dimensions of this matrix are the 
DDM values (organized with delay and Doppler unrolled into 
a vector) and surface wind speeds (organized with latitude and 
longitude unrolled into a vector). Some rows and columns in 
the matrix are zero because they correspond to delays earlier 
than the specular point or later than the largest iso-delay 
ellipse. The scattered power in some is so small that they are 
dominated by noise and thus the Jacobian is effectively zero. 
High absolute values in Fig. 10 matrix represent the sensitivity 
of the DDM bins to wind speeds at specifc locations falling 
within the corresponding delay and Doppler range. 

To visually present the matrix, a given column representing 
the sensitivity of all DDM samples to the surface wind speed 
at a specifc surface point, can be expanded into a matrix 
in delay and Doppler coordinates. Two examples are shown 
in Fig. 11. This shows that information about one surface 
point is present in multiple DDM samples with some degree 
of independence. Similarly, a given row representing the 
sensitivity of a specifc sample of the DDM to a region of 
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Figure 11. Two cases for sensitivity of wind speed in a grid point to all DDM 
bins computed from the Jacobian matrix in Fig. 10. In each case, a grid point 
(red circle) of the wind feld is selected in the left plot. The sensitivity of the 
power in all DDM bins with respect to wind speed of the selected grid point 
is shown in the right plot. 

wind speeds on the surface grid is shown in Fig. 12. Note 
that the delay-Doppler ambiguity can be observed in Fig. 
12(b) in which two geographically separated regions on the 
surface both contribute to the observation made at one delay 
and Doppler. 

The Jacobian matrix computed by equation (28) was derived 
in a closed form by differentiating the forward operator, as-
suming all geometries, power and wind speed are homogenous 
within each 10 km cell, rather than the 1 km grid used 
in the forward operator. This linearization and the 10-km 
approximation may induce errors in the computation of the 
Jacobian matrix. To validate the Jacobian matrix, the matrix 
is computed by the fnite difference of the forward model (at 
1 km resolution) using a step of 0.0001 m/s. Fig. 13 shows 
a comparison of Jacobian matrices by fnite difference vs. 
that from the analytical form. It can be seen that they have 
similar patterns. The relative difference is shown in Fig. 13(c). 
After discarding the meaningless zero values in the matrix, 
the relative error is about 0.19 in average and the correlation 
coeffcient between the two matrices is 0.92. In the same way, 
Jacobian matrices of the track of 100 DDMs for Hurricane 
Maria were validated by the fnite difference with an average 
relative error is 0.20 and average correlation coeffcient is 0.90 
for the track. Although the analytical form may exhibit some 
error due to the larger grid size, it is much effcient with 
approximately one-tenth of the computation time of the fnite 
difference method. 
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Figure 12. Two cases for sensitivity of a DDM bin power to wind speeds on 
all grid points computed from the Jacobian matrix in Fig. 10. In each case, 
a DDM bin (red square) is selected in the left plot; The senstivity of wind 
speed in the wind feld grid with respect to the power of the selected DDM 
bin is shown in the right plot, where the saturation of the red color represents 
the absolute value of the sensitivity. 

Figure 13. Comparison of the Jacobian matrices computed by fnite difference 
and analytical form for the Jacobian matrix in Fig. 10. The three plots are the 
analytical version (a), fnite difference version (b) and the relative difference 
between the two (c). 

IV. MODEL APPLICATION 

In this section, we will demonstrate application of the for-
ward model in data assimilation using a Variational Analysis 
Method (VAM) [20], [45]. Our intent is to defne the algorithm 
and provide examples demonstrating that observations from 
the full DDM (CYGNSS Level 1a data products) can be 
successfully used with the VAM to improve estimates of the 
ocean wind feld. With this goal in mind, we have selected a 
few specifc test cases in which there are large deviations (Root 
Mean Square Error (RMSE) ≥ 2.0 m/s) between ECMWF 
forecast model winds and scatterometer observations, and then 
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show the reduction in this difference after processing the 
observed DDMs through the VAM. These results should be 
interpreted as a demonstration of this approach and not as a 
general assessment of its performance over a large, globally 
distributed, set of winds as would be necessary to make a 
quantitative and statistically signifcant assessment. Such large 
scale studies, however, are presently in progress. 

A. Method 

VAM is a tool to assimilate multi-platform measurements 
into a vector wind feld [20]. Wind vectors are usually more 
valuable than wind speeds in data assimilation as they im-
plicitly provide additional dynamical information (divergence, 
vorticity) of the wind feld. VAM fnds the minimum of the 
objective cost function J , 

J(β) = Jb(β) + Jddm(β) + Jc(β), (31) 

where β = [u1, u2, ..., uN , v1, v2, ..., vN ] is a vector con-
taining the analysis wind feld in u (East) and v (North) 
components. N is the number of grid points in the wind 
feld. Jb(β) is the wind background term presenting the misft 
between the analysis and the backgound, 

1 � �T � �
λ β  βb J (β) = − β − βb 

b b 
σ2 (32)
β 

where βb is the background wind feld vector and σ2 
β is the

variance of each wind vector component in the background. 
Jddm(β) is the DDM observation term presenting the misft 
between the analysis and the observation, 

  Jddm(β) = λddm(hβ(β) − y)TR−1(hβ(β) − y) (33) 

in which y is the DDM observation organized into a vector and 
R is the DDM observation error covariance matrix. hβ(β) = 
h(x) is the vector of DDM samples computed by the forward 
operator in section II-A using the analysis wind speed feld, �q q q �T 

x = u2 + v2, u2 + v2 , 2 2
1 1 2 2  ..., uN + vN . (34)

Jc(β) is the smoothness and constraint term including Lapla-
cian, divergence, and vorticity of the difference between the 
background and analysis, 

Jc(β) = λlapJlap(β) + λdivJdiv(β) + λvorJvor(β) (35) 

where Jlap(β), Jdiv(β), and Jvor(β) are computed as de-
scribed in [20]. λb, λddm, λlap, λdiv and λvor are weighting 
factors of each term. The Jdiv and Jvor terms are derived 
from the Navier-Stokes equations for viscous fuid motion 
and therefore implicitly constrain the VAM to fnd solutions 
that in part satisfy those equations. The combination of terms 
measuring departures from the background, Jb and Jc, in 
the VAM defne the background error covariance as in more 
traditional 3D-VAR or 4D-VAR analysis systems. Because the 
VAM is tailored for 2 dimensions and only for the surface wind 
components (u, v), it can be viewed as a specialized version 
of 3D-VAR. 

To minimize the cost function J(β), the gradient has to be 
calculated, 

∂J(β) ∂Jb(β) ∂Jddm(β) ∂Jc(β) 
= + + (36) 

∂β ∂β ∂β ∂β 

specially, 

∂Jddm(β) 
= T 2λ H R−1

 ddm β (hβ(β) − y) (37)
∂β

where Hβ is the partial derivative matrix respect to u, v 
components and can be related to the Jacobian matrix H 
computed in section II-B by ⎡ ⎤ 

H1,∗ � Lu H1,∗ � Lv ⎢⎢H2,∗ � Lu H2,∗ � Lv ⎥⎥
Hβ = ⎢ . . ⎥ (38)⎣ . . . . ⎦ 

HP,∗ � Lu HP,∗ � Lv 

Hi,∗ is the i-th row of the H matrix. Row vectors � �
u1 u u

Lu = , 2 N 
, ..., (39) 

x1 x2 xN 

and � � 
v

 1 v2 vN 
Lv = , , ..., (40) 

x1 x2 xN 

are partial derivatives of x respect to the u and v components.
The operator � represents the element-wise multiplication
between two vectors and P = Nτ Nf is the number of DDM 
bins. 

The initial value of the analysis β is set to equal to the 
background. The minimization problem is solved by a Quasi-
Newton algorithm [46]. 

B. Experiment description 

10-m ocean surface wind vectors provided by ECMWF 
forecasts [47] were used as the background and DDMs from 
the CYGNSS v2.1 Level 1 data were used for the observation. 
Scatterometer (SCAT) winds from ASCAT and OSCAT 25 
km wind products were used for validation. The SCAT wind 
components have been validated to have a bias less than 0.01 
m/s and error standard deviation of less than 1 m/s using a 
triple collocation [48], [49]. Three 20-minute periods of data 
from June 2017 are chosen for the experiment. Collocations 
have been made between CYGNSS specular points and SCAT 
wind vector cell (WVC) with a criterion of 25 km in distance 
and 40 minutes in time. All CYGNSS data with quality fags 
not equal to zero and those from GPS block-IIF transmitters 
(with larger power estimation error) have been fltered out. 
As mentioned in Section III, additional quality control checks 
were applied to remove DDMs for which the forward model 
can not be expected to be valid. These checks were applied 
prior to processing each DDM: 1) Background wind speed at 
the specular point between 2 m/s and 35 m/s; 2) Maximum 
relative power difference < 100%; 3) Correlation coeffcient 
> 0.9; 4) Signal-to-noise ratio (SNR) ≥ 3 dB and 5) Incidence 
angle ≤ 60◦ . About 28% of the data were discarded by these 
quality control checks. 

The original ECMWF forecasts were quadratically inter-
polated into the center time of every 20-minute period and 
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Figure 14. Wind feld maps of the ECMWF background, analysis from DDM assimilation and increment of three cases at (a) 19:10 UTC on June 9, 2017, 
(b) 7:30 UTC on June 17, 2017 and (c) 1:50 UTC on June 18, 2017. The CYGNSS specular point tracks are shown as the white circles in the background 
maps. 

bilinearly interpolated onto the 0.125 degree spatial grid. 
CYGNSS DDMs were then assimilated into the background 
using the VAM, as described in IV-A, to produce the analysis. 
Wind speed at the CYGNSS specular points from both the 
background and analysis are then compared with SCAT winds. 
Three example cases, all with an RMSE between background 
wind feld and SCAT data larger than 2 m/s, were selected to 
serve as a demonstration of possible improvements with data 
assimilation. Center times of the three cases were 19:10 UTC 
at June 9 (a), 7:30 UTC at June 17 (b) and 1:50 UTC at June 
18 (c). 

In the VAM cost function (31), the standard deviation of 
the ECMWF background wind component σβ is set to 1 m/s. 
The DDM error covariance matrix is assumed to be diagonal 
with relative error in the DDM observation of 10%. 

R = diag[(0.1y)2] (41) 

diag() indicates a 187 × 187 diagonal matrix generated from 
a vector. The weighting factors are set through trial and 
error, based upon the resulting improvement in the analy-
sis wind feld. Specifc numbers used in these results are: 
(λb, λddm, λlap, λdiv, λvor) = (4, 1/4, 200, 400, 100). 

C. Results 

In the experiment, 579 DDMs in case (a), 593 DDMs in 
case (b) and 175 DDMs in case (c) were assimilated. The 
wind feld maps of the background, analysis and increment 
in each case are shown in Fig. 14. The CYGNSS specular 
point tracks are also shown in the background maps in each 
case. It can be observed that the assimilation of a track of 
DDMs can impact a swath of wind feld with a width of around 
200 km. The comparison between the background (ECMWF) 
winds and analysis (ECMWF-CYGNSS) winds to the SCAT 
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Figure 15. Scatter plots of the background (ECMWF) winds and analysis 
(ECMWF-CYGNSS) winds versus the scatterometer (SCAT) winds (“truth”) 
in the three cases at (a) 19:10 UTC on June 9, 2017, (b) 7:30 UTC on June 
17, 2017 and (c) 1:50 UTC on June 18, 2017. The RMSE is listed at the 
bottom-right angle in each plot. 

winds (“truth”) at the specular points is shown in Fig. 15. It 
shows that the wind speeds in the analysis are more correlated 
with the “truth” than are the background winds. The RMSE 
decreases from 2.45, 2.13, and 2.19 m/s to 1.77, 1.11, and 1.86 
m/s after the DDM assimilation in the three cases. Although 
three cases are not suffcient to make a general conclusion 
about the beneft of DDM assimilation to numerical weather 
prediction (NWP), they are presented here to demonstrate that 
this approach is possible and that it can show improvements 
in certain cases with large initial errors. 

V. CONCLUSION 

A generalized forward model for assimilating GNSS-R 
DDMs into numerical weather models has been presented. 
Assimilation of full DDMs could incorporate more informa-
tion into forecast models than what is provided by baseline 

CYGNSS Level 2 wind products. The forward model takes 
in a small set of satellite parameters (e.g. CYGNSS Level 1a 
products and antenna patterns) and a gridded wind feld. Its 
output is the modeled DDM and Jacobian matrix. 

Performance of the forward model was assessed on two 
tracks of CYGNSS data from Hurricane Maria and Cyclone 
Gita by comparing observed and computed DDMs. Results 
of this comparison show agreement with relative differences 
under 30% and correlation coeffcients larger than 90%. Lim-
itations of the forward model have been presented, including 
effects of swell, observation bias, specular positioning error 
and limitations of the KA-GO theory especially at high wind 
speed cases. Quality controls on wind speed, relative power 
difference and correlation coeffcient between the observed 
and modeled DDM were defned based upon these defcien-
cies. An analytical Jacobian matrix was validated by com-
parison with one computed by fnite differences. The average 
relative error between the analytical version and a Jacobian 
computed by fnite difference is 20%. The average correlation 
coeffcient between the two is 0.90. 

A VAM was introduced to demonstrate assimilation of 
DDMs using the forward model. Three examples exhibiting 
large differences bewteen the ECMWF background and scat-
terometer wind felds were selected for this demonstration. 
All three results shows improvement in agreement with scat-
terometer data, reducing the RMSE by 15, 28 and 48%. These 
examples demonstrate the mechanism and show the potential 
beneft of assimilating DDMs directly into NWP models. A 
larger study of this improvement, over a globally-distributed 
set of observations, will be necessary to provide a statistically 
signifcant evaluation. 

Although the model was developed for CYGNSS, it can be 
applied to any other spaceborne GNSS-R missions which pro-
vide DDM measurements. As long as the satellite geometries, 
power parameters and metadata listed in section II are also 
provided, the DDMs can be assimilated into NWP models by 
the forward model. 
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APPENDIX 

The variables in the CYGNSS Level 1 v2.1 data used by 
the forward model in section II are listed in Table I. 
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Table I 
PARAMETERS OF CYGNSS LEVEL 1 DATA USED IN THE FORWARD MODEL 

Data Type Variable Name Type Units Description Symbol 
Geometry tx pos x int meter Transmitter posistion X (none) 
Geometry tx pos y int meter Transmitter posistion Y (none) 
Geometry tx pos z int meter Transmitter posistion Z (none) 
Geometry tx vel x int m/s Transmitter velocity X (none) 
Geometry tx vel y int m/s Transmitter velocity Y (none) 
Geometry tx vel z int m/s Transmitter velocity Z (none) 
Geometry sc pos x int meter Receiver posistion X (none) 
Geometry sc pos y int meter Receiver posistion Y (none) 
Geometry sc pos z int meter Receiver posistion Z (none) 
Geometry sc vel x int m/s Receiver velocity X (none) 
Geometry sc vel y int m/s Receiver velocity Y (none) 
Geometry sc vel z int m/s Receiver velocity Z (none) 
Geometry sp pos x int meter Specular point posistion X (none) 
Geometry sp pos y int meter Specular point posistion Y (none) 
Geometry sp pos z int meter Specular point posistion Z (none) 

Power gps eirp watt foat Watts GPS EIRP PtGt 

Power ddm ant int (none) The antenna that received signal (none) 
Metadata prn code int (none) GPS PRN code (none) 
Metadata ddm ant int (none) The antenna that received signal (none) 
Metadata ddm sp delay row foat (none) Specular delay bin index ns 

τ 
Metadata ddm sp dopp col foat (none) Specular Doppler bin index ns 

f 
Metadata ddm timestamp utc int (none) DDM sample time (none) 
Metadata quality fags int (none) DDM quality fags (none) 
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