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48 Abstract 
 

49 The Asia Pacific Economic Cooperation (APEC) Climate Center (APCC) in- 
 

50 house model (Seamless Coupled Prediction System: SCoPS) has been newly developed 
 

51 for operational seasonal forecasting. SCoPS has generated ensemble retrospective 
 

52 forecasts for the period 1982–2013 and real-time forecasts for the period 2014–current. 
 

53 In this study, the seasonal prediction skill of the SCoPS hindcast ensemble was 
 

54 validated compared to those of the previous operation model (APEC Climate Center 
 

55 Community Climate System Model version 3: APCC CCSM3). This study validated the 
 

56 spatial and temporal prediction skills of hindcast climatology, large-scale features, and 
 

57 the seasonal climate variability from both systems. A special focus was the fidelity of 
 

58 the systems to reproduce and forecast phenomena that are closely related to the East 
 

59 Asian monsoon system. Overall, both CCSM3 and SCoPS exhibit realistic 
 

60 representations of the basic climate, although systematic biases are found for surface 
 

61 temperature and precipitation. The averaged temporal anomaly correlation coefficient 
 

62 for sea surface temperature, 2-m temperature, and precipitation from SCoPS is higher 
 

63 than those from CCSM3. Notably, SCoPS well captures the northward migrated 
 

64 rainband related to the East Asian summer monsoon. The SCoPS simulation also shows 
 

65 useful skill in predicting the wintertime Arctic Oscillation. Consequently, SCoPS is 
 

66 more skillful than CCSM3 in predicting seasonal climate variability, including the 
 

67 ENSO and the Arctic Oscillation. Further, it is clear that the seasonal climate forecast 
 

68 with SCoPS will be useful for simulating the East Asian monsoon system. 
 

69 Key words: APCC in-house model, SCoPS, Seasonal prediction, East Asian monsoon 
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70 1. Introduction 
 

71 It has been demonstrated that a fully coupled general circulation model is the 
 

72 ultimate tool for subseasonal to seasonal climate prediction. Dynamical prediction 
 

73 systems have been continuously progressed for operational medium-range weather and 
 

74 seasonal prediction (e.g., Molteni et al. 1996; Kusunoki et al. 2001; Saha et al. 2006, 
 

75 2014; Arribas et al. 2011; Molteni et al. 2011; MacLachlan et al. 2015; Lee et al. 2014). 
 

76 These dynamical prediction models in operational centers are almost fully coupled 
 

77 climate system models that include comprehensive dynamics and physics of the 
 

78 atmosphere,  land  surface,  ocean,  and  sea  ice  interactions.  Many  studies  have 
 

79 demonstrated the importance of model resolution and atmospheric physics as well as the 
 

80 model system on various simulated climate variations. For example, Yao et al. (2016) 
 

81 suggested that coupled model results with higher resolution lead to improved prediction 
 

82 skill on produced climate variations over the western equatorial Indian Ocean. Ham et al. 
 

83 (2014) investigated the effects of an improved coupled system on the simulated seasonal 
 

84 climate over East Asia. 
 

85 For this reason, operational coupled seasonal forecast systems, including the 
 

86 Climate Forecast System from the National Centers for Environmental Prediction 
 

87 (NCEP CFS) (Saha et al. 2014), European Centre for Medium-Range Weather Forecasts 
 

88 (ECMWF), United Kingdom Meteorological Office (UKMO), and Meteo-France 
 

89 (MacLachlan et al. 2015), as well as many other research groups, are continuously 
 

90 updating their seasonal prediction systems with improved physics and increased 
 

91 resolution. The horizontal resolution of the ECMWF Integrated Forecast System has 
 

92 increased from T159 (System 3; Anderson et al. 2007) to T255 (System 4; Molteni et al. 
 

93 2011) (from approximately 125 km to 80 km) with model version updating. The UKMO 
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94 has also increased the atmospheric resolution of the seasonal prediction system to 
 

95 N216L85 (approximately 60 km) in Global Seasonal Forecasting System version 5 
 

96 (GloSea5) (MacLachlan et al. 2015). 
 

97 A number of studies mentioned the importance of initialization processes for the 
 

98 prediction skill in the coupled system. For example, Kug et al. (2010) have developed a 
 

99 new method that conducting empirical singular vectors for initial perturbation in an 
 

100 ensemble prediction system. Ham and Rienecker (2012) suggested an improvement in 
 

101 the El Niño-Southern Oscillation (ENSO) prediction using the ensemble generation 
 

102 method in their 20-year reforecast simulation. Koster et al. (2010) mentioned that there 
 

103 is room for improvement in prediction skills for precipitation and surface temperature in 
 

104 land surface initialization. Recently, the importance of initializations of land surface or 
 

105 sea ice content is noted at sub-seasonal to seasonal scales. Prodhomme et al. (2016) 
 

106 showed that realistic initialization of land surface plays a role of improved prediction 
 

107 skill. Dirkson et al. (2017) suggested that accurate initialization of sea ice thickness can 
 

108 improve the seasonal prediction skill for Arctic sea ice area and concentration. 
 

109 Since 2007, the Asia-Pacific Economic Cooperation (APEC) Climate Center 
 

110 (APCC) has issued global temperature and precipitation prediction information for 
 

111 every following 3–6 month period via the website (http://www.apcc21.org). These 
 

112 deterministic and probabilistic forecasts have been produced by the well-validated 
 

113 multi-model ensemble (MME) prediction (Min et al. 2014). Since 2012, the APCC has 
 

114 provided seasonal prediction data as one provider to the MME prediction system using 
 

115 the  Community  Climate  System  Model  version  3  (CCSM3)  with  sea  surface 
 

116 temperature (SST) nudging from the Global Ocean Data Assimilation System (GODAS) 
 

117 (APCC CCSM3; Jeong et al. 2008). Recently, the prediction skill of CCSM3 has met 
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118 the limitations of the old version of the model system with low resolution and simple 
 

119 initialization. To enhance the quality and application of climate forecast information, the 
 

120 APCC has developed an in-house prediction model with a research group from the 
 

121 University of Hawaii, USA. The newly developed high-resolution climate prediction 
 

122 model, termed the Seamless Coupled Prediction System (SCoPS), is a fully coupled 
 

123 ocean, atmosphere, land, and sea ice component model with coupled atmosphere-ocean 
 

124 initialization. 
 

125 Since various validations on historical reforecasts (i.e., hindcast) can provide a 
 

126 useful guideline for understanding its characteristic, it is very important to further 
 

127 improve the prediction system. In this paper, the newly developed seasonal prediction 
 

128 model (SCoPS) is described and evaluated alongside previous operation model (APCC 
 

129 CCSM3) with a basic validation of the prediction system to reproduce the seasonal 
 

130 climate variability. We also present analysis of the performance of SCoPS for the East 
 

131 Asian monsoon system. The paper is divided into the following sections: a brief 
 

132 description of the APCC CCSM3 and SCoPS framework for hindcast experiments is 
 

133 provided in section 2; section 3 examines hindcast climatology and prediction skills, 
 

134 which are closely related to the East Asian climate; and section 4 summarizes the results 
 

135 and provides major conclusions. 

 
136 

 

137 2. Model description 
 

138 a. APCC CCSM3 
 

139 CCSM3 has been designed to produce simulations with reasonable fidelity over a 
 

140 wide range of resolutions and with a variety of atmospheric dynamical frameworks. It is 
 

141 a community model system for climate simulation, which includes the Community 
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142 Atmosphere Model version 3 (CAM3; Collins et al. 2004, 2006), the Community Land 
 

143 Surface Model version 3 (CLM3; Oleson et al. 2004; Dickinson et al. 2006), and the 
 

144 Community Sea Ice Model version 5 (CSIM5; Briegleb et al. 2004). The ocean 
 

145 component is based on the Parallel Ocean Program (POP) version 1.4.3 (Smith and 
 

146 Gent 2002). Based on generally realistic initial conditions, SST-nudging, an empirical 
 

147 method for data assimilation, is used for initialization in APCC. Further information on 
 

148 the APCC CCSM3 is given in Collins et al. (2006), Jeong et al. (2008), and Kim et el. 
 

149 (2017). 

 
150 

 

151 b. SCoPS 
 

152 The International Pacific Research Center (IPRC) and University of Hawaii (UH) 
 

153 modeling group have developed a new coupled atmosphere-ocean model (POEM) 
 

154 which is based on the POP v2.0 model for the oceanic component, the Ocean- 
 

155 Atmosphere-Sea Ice-Soil (OASIS v3.0) coupler, and the ECMWF-Hamburg 
 

156 Atmospheric Model (ECHAM v4.6) as the atmospheric component (Xiang et al. 2012). 
 

157 A research group at University of Hawaii developed the original version of the in-house 
 

158 prediction model for APCC under the “Agreement between the APEC Climate center 
 

159 and the University of Hawaii on the APCC international research project for 
 

160 development of APCC seamless prediction system”. Based on the POEM system, 
 

161 SCoPS has been newly developed as a fully coupled climate model for seamless 
 

162 prediction of weather and climate (APCC project report 2015). SCoPS consists of the 
 

163 ECHAM version 5.3 (Roeckner et al. 2003, Hagemann et al. 2006) and the Sea Ice 
 

164 Model version 4.1 (Hunk and Lipscomb 2010). The ocean component is based on the 
 

165 Parallel Ocean Program (POP) version 1.4.3 (Smith and Gent 2002). Compared with the 
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166 POEM model (Xiang et al. 2012) as well as the previous operational model, APCC 
 

167 CCSM3,  SCoPS  has  some  distinct  improvements:  a  newly  developed  coupled 
 

168 atmosphere-ocean initialization, implanting a sea ice model, updated model physics and 
 

169 coupler versions, and an increase in the atmosphere and ocean model resolutions. 
 

170 Triangular truncation of the atmosphere component occurs at wavenumber 159 
 

171 (480 zonal grid and 240 meridional grids in post-processing). A hybrid coordinate 
 

172 system is used in the vertical direction with top to 10 hPa: a sigma system at the lowest 
 

173 model level gradually transforms into a pressure system in the lower stratosphere. The 
 

174 surface temperature is used as a boundary condition to determine the vertical profile 
 

175 within the five-layer soil model assuming vanishing heat fluxes at the bottom (10-m 
 

176 depth). The ocean component configuration is 320 (zonal) × 384 (meridional) grid 
 

177 points (meridionally about 0.3° in the near equatorial region) and 40 vertical levels. A 
 

178 solar absorption component based on specified monthly mean surface chlorophyll 
 

179 concentrations (Ohlmann 2003) is imbedded. The CICE v4.1 model details can be found 
 

180 in the study by Hunk and Lipscomb (2010). These model components are coupled by an 
 

181 OASIS3-MCT coupler interface (Larson et al. 2005). Atmosphere, ocean, and ice 
 

182 models exchange 36 variables including SST, surface fluxes, and ice components daily. 
 

183 High quality climate forecasting relies on and requires improvement of climate 
 

184 models and use of advanced data assimilation methods that make full use of observation 
 

185 data. A synthesized atmosphere-ocean initialization scheme has been newly developed 
 

186 in this system, combining atmospheric 3-dimensional nudging and ocean 3-dimensional 
 

187 initialization using Ensemble Adjustment Kalman Filter methods (EAKF, Zhang et al. 
 

188 2007; Anderson 2001). To generate perturbed initial conditions for the ensemble 
 

189 hindcasts and forecasts, three major steps are taken: 1) generation of model-compatible 
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190 data set from analysis datasets; 2) nudging the model-compatible 3-D reanalysis data 
 

191 into the model; and 3) generation of perturbed ensemble initial conditions. 

 
192 

 

193 c. Hindcast simulation 
 

194 Both systems have reproduced reforecast simulations for evaluating and calibrating 
 

195 the model simulation. APCC CCSM3 seasonal reforecasts have 10 ensemble members 
 

196 using the time-lagged method for a 1-month lead 6-month forecast. For a first-guess 
 

197 data of January 1, 1982, the atmosphere model is integrated for the period from 1971 to 
 

198 1981 (11 years) using GODAS SST (Behringer et al. 1998). Using reproducing fluxes in 
 

199 an atmospheric simulation, the POP ocean model is executed for the same period. For 
 

200 the period 1982 to 2013, the initial condition for January 1, 1982 is nudged on day 1, 6, 
 

201 11, 16, 21, and the last 5 days of every month using the GODAS vertical ocean 
 

202 temperature. Further details on the APCC CCSM3 reforecast are given in Jeong et al. 
 

203 (2008). 
 

204 SCoPS has generated ensemble retrospective forecasts for the period 1982–2013 
 

205 and real-time forecasts for the period 2014–current. Reforecast simulations commenced 

 
206 at fixed calendar dates — the 1st and 5th of each month — with 5 ensemble members 

 

207 perturbed following Gaussian distribution and integrated up to 7 months for a 1-month 
 

208 lead 6-month forecast. The ensemble initial conditions for January 1, 1982 are from the 
 

209 results from a 100-year free run SCoPS simulation. The initial data is assimilated every 
 

210 day from January 2, 1982 to December 31, 2013 using NCEP CFS reanalysis data (Saha 
 

211 et al. 2010) and World Ocean Database subsurface profile data including mechanical 
 

212 bathythermograph data (MBT), expendable bathythermograph data (XBT), profiling 
 

213 float data (PFL), ocean station data (OSD), conductivity-temperature-depth data (CTD), 
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214 drifting buoy data (DRB), and Moored buoy data (MRB) (Boyer et al. 2013). In this 
 

215 system, the observed temperature (T) and salinity (S) are not only used to correct 
 

216 themselves but also to correct each other since the conservation of the T-S balance has 
 

217 been shown to be an important factor in successful data assimilation (Zhang et al. 2007). 
 

218 Vertically, only the profile data above 400 m is used since the deeper ocean is not 
 

219 expected to affect the seasonal forecast skill. Spatially, the observational data from the 
 

220 band between 50° S–50° N is used. Meanwhile, in real-time seasonal forecasting for the 
 

221 period  2014–current,  the  real-time  combined  ocean  vertical  profile  dataset  for 
 

222 temperature and salinity from the international Argo project is used for ocean 
 

223 initialization. 

 
224 

 

225 d. Evaluation 
 

226 It is very well known that tropical large-scale circulations, such as Hadley, Walker, 
 

227 and monsoon are the most important driving source of general circulation at low 
 

228 latitudes, and their interannual variations largely impact climate characteristics in 
 

229 various regions. Tanaka et al. (2004) attempted to divide the divergent field in the upper 
 

230 troposphere into represented circulations such as Hadley, Walker, or global monsoon 
 

231 using the 200-hPa level seasonal velocity potential. They mentioned that the 200-hPa 
 

232 velocity potential very well represents overall characteristics such as intensity and 
 

233 variation in tropical circulations because they are each driven by different dynamical 
 

234 causes. Tanaka et al. (2004) defined the Hadley circulation as the axisymmetric part of 
 

235 the circulation, which represents the zonal mean field of the velocity potential. The 
 

236 monsoon circulation is defined as part of the seasonal variation of the deviation field. 
 

237 For this reason, the seasonal-mean is subtracted from the deviation field to define the 
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238 monsoon circulation. More detailed definitions and analysis from field observations can 
 

239 be found in Tanaka et al. (2004). In this study, global monsoon circulation information 
 

240 using upper-level velocity potential from reanalysis and predicted results were evaluated 
 

241 following the methodology of Tanaka et al. (2004). 
 

242 For other validations, SST data was obtained from the monthly National Oceanic 
 

243 and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST V2 
 

244 (Reynolds et al. 2002). The air temperature at 2 m (T2m), mean sea level pressure (SLP), 
 

245 wind vector, and geopotential height data were obtained from the NCEP reanalysis 2 
 

246 (RA2) and ERA-Interim reanalysis products (Kanamitsu et al. 2002; Dee et al. 2011) 
 

247 from 1982. The Global Precipitation Climatology Project (GPCP) version 2.1 combined 
 

248 precipitation dataset (Adler et al. 2003) and Asian Precipitation — Highly–Resolved 
 

249 Observational Data Integration Towards Evaluation of the Water Resources 
 

250 (APHRODITE) datasets (Yatagai et al. 2012) were used. 

 
251 

 

252 3. Results 
 

253 a. Systematic biases 
 

254 Figure 1 shows the spatial distribution of 1-month lead 3-month mean forecast 
 

255 biases of surface temperature, obtained from CCSM3 and SCoPS for the seasons of 
 

256 June-July-August (JJA) and December-January-February (DJF). CCSM3 and SCoPS 
 

257 represent the observed temperature patterns generally well in both seasons. However, 
 

258 the CCSM3 simulation shows slight warm or cold biases over the Eurasia region and 
 

259 significant warm biases over South America. In the SCoPS simulation, systematic 
 

260 biases in surface temperature prediction are significant, especially warm biases over 
 

261 North and South America and cold biases over the Eurasian region. Pattern correlation 
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262 coefficients from both models are quite high, around 0.9 for both seasons. These biases 
 

263 pattern of 1-month lead-time forecast is almost same to those of 4-month lead-time 
 

264 forecast, although systematic biases get stronger as the lead time increases (not shown). 
 

265 Figure 2 shows the spatial distribution of precipitation biases of model prediction in 
 

266 JJA and DJF. The GPCP observations show the peaks of the mean precipitation pattern 
 

267 over the intertropical convergence zone (ITCZ) on the Pacific as well as the western 
 

268 Pacific, South China Sea, and equatorial Indian Ocean (not shown here). The CCSM3 
 

269 and SCoPS hindcast climatology generally well captures the observed wet regions, 
 

270 although there are different notable biases in the two models. In JJA, the predicted 
 

271 precipitation in CCSM3 tends to be overestimated over the equatorial central Pacific 
 

272 and parts of the Indian Ocean. Dry biases are also found in the Atlantic ITCZ, western 
 

273 Pacific, parts of the Indian Ocean, and the northeastern Pacific. Conversely, the SCoPS 
 

274 simulation generally tends to overestimate precipitation over the central Pacific ITCZ, 
 

275 the Atlantic ITCZ, and maritime continental regions. Some dry biases are also found in 
 

276 the central equatorial Pacific. In DJF, the CCSM3 hindcast shows wet biases over the 
 

277 eastern Pacific, northern central Pacific, and western Indian Ocean, and dry biases are 
 

278 exhibited over the eastern Indian Ocean. Conversely, the SCoPS simulation shows 
 

279 overestimated rainfall over the central Pacific ITCZ in the winter Northern Hemisphere. 
 

280 Pattern correlation coefficients from SCoPS are higher than those from CCSM3 
 

281 throughout both seasons. 
 

282 To examine seasonal prediction skill, the anomaly temporal correlation coefficient 
 

283 (TCC) of the sea surface temperature and precipitation between reanalysis data and 1- 
 

284 month lead hindcast anomalies are calculated for JJA and DJF (Figs. 3 and 4). The TCC 
 

285 for the sea surface temperature anomaly for each hindcast simulation compared to 
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286 NCEP RA2 data are shown in Fig. 3. Generally, the greatest prediction skill for sea 
 

287 surface temperature is in the tropics, especially in regions related to the ENSO, with the 
 

288 northern Pacific and equatorial Atlantic also showing high skill in both models. The 
 

289 SCoPS JJA prediction with 1-month lead shows higher prediction skill over the western 
 

290 Pacific, equatorial Pacific, and Indian Ocean than CCSM3. For DJF prediction, SCoPS 
 

291 shows higher skill in the northern Pacific and Indian Ocean than CCSM3. Although the 
 

292 TCC of temperature indicates the greatest skill over the tropical Pacific, it is quite low 
 

293 in most of the other areas. An impressive feature of SCoPS is that it maintains a higher 
 

294 TCC skill over the western northern Pacific and Indian Ocean than CCSM3 for both 
 

295 seasons. 
 

296 Figure 4 shows the TCC of precipitation for JJA and DJF prediction with a 1-month 
 

297 lead. The prediction skill for precipitation is greater over the tropics than the extra- 
 

298 tropics and greater over ocean than land as known from other studies (Kim et al. 2012; 
 

299 Peng et al. 2011). These patterns from the seasonal prediction skill of CCSM3 and 
 

300 SCoPS are not much different from those of other seasonal prediction systems (e.g., 
 

301 Wang et al. 2009; Kim et al. 2012; Lee et al. 2014). In both season predictions, it is 
 

302 clear that the skill of SCoPS is higher than that of CCSM3 over the Indian Ocean and 
 

303 northern western Pacific, although some regions have lower skill. 
 

304 Figure 5 shows the seasonal prediction skill as the averaged temporal correlation 
 

305 coefficient of the sea surface temperature, 2-m temperature, and precipitation anomalies. 
 

306 TCC is calculated for 1- to 4-month lead 3-month hindcasts (JJA, DJF) globally and for 
 

307 the East Asian region. The SST prediction skill is higher than the 2-m temperature and 
 

308 precipitation for JJA and DJF. The results indicate that the prediction skill generally 
 

309 decreases to the forecast lead time. Also, the prediction skill from SCoPS for all 
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310 variables is significantly higher than CCSM3 for the 1-month lead for both seasons and 
 

311 both regions, although some variables show lower skill for a long lead time. In 
 

312 particular, the SST prediction skill from SCoPS is about 0.5 for the East Asian region. 
 

313 Climate variability as well as climatology is also important factor to assess the 
 

314 seasonal prediction skill. Many studies have analyzed the signal to noise (SN) ratio to 
 

315 assess the predictability of seasonal prediction system with lead-time (Peng et al. 2011; 
 

316 Peng et al. 2014). Due to the APCC seasonal forecast system is for 3-month or longer 
 

317 target season, SN ratio for a fixed target season of JJA from CCSM3 and SCoPS with 1 
 

318 and 4 month lead-time are shown in figures 6 and 7. Here, ‘signal’ indicates standard 
 

319 deviations of the ensemble mean, and ‘noise’ indicates standard deviations of ensemble 
 

320 members about ensemble mean. In other words, the SN ratio is computed as the ratio of 
 

321 variance of ensemble means, and variance of individual forecasts from the ensemble 
 

322 mean forecast. Larger (small) SN ratio indicates higher (lower) predictability. 
 

323 Shown in Fig. 6 is the SN ratio for SST, precipitation, and 200 hPa geopotential 
 

324 heights from CCSM3 and SCoPS with 1 month lead-time. For SST, SN ratio from both 
 

325 systems shows highest in the eastern equatorial tropical Pacific related to the ENSO. 
 

326 CCSM3 show high SN ratio in high latitude region in southern hemisphere, while 
 

327 SCoPS show that in northern Pacific, Greanland, as well as Atlantics. For SN ratio for 
 

328 precipitation prediction with 1-month lead forecast is largest in the tropics and decreases 
 

329 in the extratropical latitudes for both systems. For 200 hPa geopotential height, the high 
 

330 SN ratio is also concentration in Tropics for both models, but SCoPS show higher SN 
 

331 ratio in broaden region than CCSM3. Also, the reason of low SN ratio in extrtropics is 
 

332 large standard deviation of individual forecasts from the ensemble mean forecast (i.e., 
 

333 noise) (not shown). This finding about ‘noise’ in extratropics is consistent with Peng et 
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334 al. (2011). 
 

335 SN ratio for atmospheric variables from CCSM3 and SCoPS with 4 month lead- 
 

336 time is shown in figure 7. Compared to the results with 1 month lead-time in Fig. 6, SN 
 

337 ratio for all variables shows decrease to the lead-time. For structure of SN ratio for SST, 
 

338 precipitation from CCSM3 and SCoPS are not much differ each other. However, for SN 
 

339 ratio of 200 hPa geopotential height, SCoPS is still higher than CCSM3 in tropics. 
 

340 These results indicate that large-scale circulation related to the height from SCoPS is 
 

341 more reliable than that from CCSM3 with long lead-time, although both systems have 
 

342 quite big uncertainty in precipitation. Also, SST forecasts from both systems quite well 
 

343 stay high signal with 4-month lead-time, it is due to the SST characteristic with slowing 
 

344 vary. 
 

345 It is well known that the ENSO is the main driver of interannual variability in the 
 

346 tropics. A good representation of it and its teleconnections are very important for good 
 

347 climate prediction skill. Figure 8 shows the results of a comparison between the lead 
 

348 time dependence of the SST TCC and RMSE in the Niño 3.4 and Niño 3 regions, with 
 

349 the OISST observational dataset for hindcasts initialized in May and November. Overall, 
 

350 the skill of the Niño indices is generally good, although the skill tends to decrease with 
 

351 lead time. Both SCoPS and CCSM3 exhibit higher skill for the November-initialized 
 

352 hindcast than the May-initialized hindcast. SCoPS shows slightly higher skill than 
 

353 CCSM3 until the 5-month lead time over the Niño 3.4 and Niño 3 regions for the 
 

354 hindcast initialized in November. However, the skill of SCoPS May-initialized hindcast 
 

355 is not much more different than CCSM3 for both indices. However, the RMSE of the 
 

356 SST from SCoPS for the Niño 3.4 region in the run initialized in May is worse than that 
 

357 from CCSM3 (Fig. 8c), due to the fact that there are cold biases in the tropical Pacific in 
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358 the SCoPS prediction. 

 
359 

 

360 b. East Asian summer climate variability 
 

361 First, the velocity potential and divergent wind at 200 hPa averaged for JJA are 
 

362 plotted to examine the summer monsoon variability (Figs. 9a, b, c). In the observed 

 

363 velocity potential distributions (Fig. 9a), a positive peak with a value of nearly 20 (× 106 

 

364 m2 s–1) is located northwest of the Philippines in JJA. The minimum is seen over the 

 

365 southern Atlantic Ocean, with a value of –10 (× 106 m2 s–1). Hereafter, the velocity 

 

366 potential “units” of measurement are assumed to be 106 m2 s–1 for simplicity. A strong 
 

367 divergent wind related to the Hadley circulation is shown from the northern to southern 
 

368 Hemisphere. The combined Hadley, Walker, and monsoon circulation shows a strong 
 

369 convection located in the Philippines. Both 1-month lead hindcast simulations generally 
 

370 represent the 200-hPa velocity potential pattern well, and the positive and negative 
 

371 peaks are also captured. However, the SCoPS simulation tends to overestimate its 
 

372 intensity, while the CCSM3 run shows a weak intensity over the peak regions in 
 

373 summer (Figs. 9b, c). 
 

374 To extract the monsoon variability, following Tanaka et al. (2004) deviation from 
 

375 the zonal and annual mean of velocity potential is calculated (Figs. 9d, e, f). In JJA, the 
 

376 observations show a dominant positive (negative) peak located over East Asia (Pacific 
 

377 and Atlantic oceans). This is a feature of the Northern Hemisphere summer, which 
 

378 includes an upper air divergence over East Asia and an upper air convergence over the 
 

379 Pacific and Atlantic oceans related to the East Asian summer monsoon. A convection 
 

380 center located near the Philippines in the mean velocity potential field (Fig. 9a) can be 
 

381 explained by a superposition between one over land associated with the monsoon 
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382 circulation (Fig. 9d) and another near the equator associated with the Walker circulation 
 

383 (not shown). CCSM3 underestimates the upper air divergence over East Asia and splits 
 

384 the peak into two over the eastern Pacific, while SCoPS results are closer to the 
 

385 observations than those from the CCSM3 hindcast (Fig. 9f). Based on the results, we 
 

386 conclude that the overestimated mean velocity potential in the SCoPS simulation (Fig. 
 

387 9c) is due to the enhanced Hadley circulation (not shown), and the underestimated mean 
 

388 velocity potential in CCSM3 (Fig. 9b) is due to the weak simulated monsoon circulation 
 

389 (Fig. 9e). Also, it is sure that large-scale circulation features from SCoPS can expect to 
 

390 more realistic variability related to the monsoon than that from CCSM3. 
 

391 Figure 10 shows the climatological mean precipitation and the 850-hPa zonal wind 
 

392 over the East Asian region during summer (June–August) in observations (GPCP and 
 

393 APHRODITE for precipitation; ERA-Interim reanalysis for zonal wind) and hindcasts 
 

394 from CCSM3 and SCoPS. Note that horizontal resolution of GPCP is 2.5° × 2.5°, while 
 

395 that of APHRODITE is 0.25° × 0.25° with land-only data. In the climatology for JJA, 
 

396 two major areas of strong precipitation are observed. One is the main precipitation band 
 

397 related to the ITCZ over the tropics, and the other one is the extending rainband from 
 

398 southern China to Japan, which is related to the East Asian summer monsoon (EASM) 
 

399 (Figs. 10a, b). Local monsoon precipitation maxima are in the oceanic convergence 
 

400 regions over the northeastern Arabian Sea and the Bay of Bengal, and west of the 
 

401 Philippines. 
 

402 CCSM3 reproduces the features well; however, precipitation over the northwestern 
 

403 Pacific is underestimated, and precipitation over the Indian Ocean and western 
 

404 equatorial Pacific tends to be overestimated (Fig. 10c). Related to this, the low-level 
 

405 monsoon flow pattern is shifted to the precipitation region. The precipitation from 
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406 SCoPS shows a slight overestimation. Narrow and strong bands of precipitation are 
 

407 indicated over the western areas of India, Indochina, and the Philippines in the high- 
 

408 resolution APHRODITE data. This extremely localized pattern is known to be due to 
 

409 convection generated by narrow mountain areas (Xie et al. 2006; Lee et al. 2013; Ham 
 

410 et al. 2016). The observed pattern is very well represented in the SCoPS hindcast, due to 
 

411 its higher horizontal resolution as compared to CCSM3. Moreover, the SCoPS 
 

412 simulation represents the area over China, Korea, and Japan remarkably well, where the 
 

413 seasonal prediction captures the zonally elongated rainband associated with the 
 

414 Changma front (Fig. 10d). 
 

415 Figure 11 shows latitude-time cross sections for the summer precipitation cycle and 
 

416 850-hPa zonal winds on two longitudes (70–80 °E and 120–130 °E), which are related 
 

417 to the Indian and East Asian monsoon. Because precipitation from CCSM3 and SCoPS 
 

418 is usually focused on the 1-month lead 3-month prediction skill in operational seasonal 
 

419 forecasts, four hindcast datasets from runs initialized in February, May, August, and 
 

420 November were merged to validate the represented annual cycle of precipitation and 
 

421 winds. Both hindcasts generally represent the seasonal propagation of precipitation in 
 

422 the Indian (70–80 °E) and East Asian monsoon regions (120–130 °E), compared to the 
 

423 GPCP and reanalysis data. For example, the northward rainband related to the Indian 
 

424 monsoon (April to July) is generally well represented. However, the CCSM3 simulation 
 

425 exhibits a weaker peak in the northward propagated rainband as well as strong 
 

426 precipitation over the subtropics and tropics, compared to observations. In the SCoPS 
 

427 simulation, the peak of the northward precipitation band and the low-level wind are 
 

428 captured, although slightly overestimated. However, note that the GPCP observation 
 

429 does not represent orographic heavy rainfall well due to its low resolution. For the East 
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430 Asian monsoon region, a split rainband is shown during June to August, with one arm 
 

431 over South China Sea, related to the ITCZ, and another over the subtropics, which is 
 

432 related to the Changma front. Both models exhibit the rain peak over the ITCZ well; 
 

433 however, CCSM3 shows exaggerated precipitation over the equatorial rainband, even in 
 

434 winter. In the SCoPS annual cycle, the two peak rain seasons are represented quite well, 
 

435 but slightly overestimated. Remarkably, the northward migrated rainband related to the 
 

436 Changma during May to August is also captured by SCoPS. 
 

437 In Fig. 12, the capability of CCSM3 and SCoPS in simulating the spatial pattern 
 

438 and interannual variability of the Asian summer monsoon is examined using the 
 

439 monsoon index developed by Lee et al. (2014). The EASM index is defined as the zonal 
 

440 wind anomaly at 850 hPa, averaged over the region between 5–10° N and 130–150° E 
 

441 minus the average over 25–30° N and 110–130° E. The JJA-mean monsoon indices 
 

442 from the ensemble reforecasts initialized in May were used. The correlation coefficient 
 

443 of the EASM index between the reanalysis and the SCoPS prediction (0.743) is higher 
 

444 than the CCSM3 prediction (0.519). Based on the results, SCoPS shows a credible 
 

445 representation of monsoon circulation for this region, with useful levels of skill for the 
 

446 East Asian summer monsoon prediction. 

 
447 

 

448 c. East Asian winter climate variability 
 

449 The East Asian winter monsoon (EAWM) is the dominant climate feature over East 
 

450 Asia during the boreal winter. It leads to significant impacts on the weather and climate 
 

451 over the East Asian regions (Chen et al. 2005; Zhou et al. 2007; Li and Yang 2010; 
 

452 Jiang et al. 2013). The EAWM consists of subsystems such as the Siberian high, 
 

453 Aleutian low, East Asian trough, low-level northerly wind, and high-level East Asian jet 
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454 stream. It is well known that a strong EAWM is characterized by a strong Siberian high, 
 

455 intensified East Asian jet stream, a deepened East Asian trough, strong northerly wind 
 

456 over East Asia, and frequent cold surges (Ding and Sikka 2006; Park et al. 2011; Jiang 
 

457 et al. 2013). Many climate forecast models show reasonable skill in the East Asian 
 

458 summer monsoon prediction. However, the EAWM prediction skill on climate forecast 
 

459 systems is still not fully known, although a few studies have examined the predictability 
 

460 of the EAWM in various climate prediction models (Kim et al. 2012; Jiang et al. 2013). 
 

461 In this study, the climatological characteristics and interannual variation of the EAWM 
 

462 were compared with observations and reanalysis data to confirm the seasonal prediction 
 

463 skills. Also, the prediction skill for the Arctic Oscillation (AO), which is known to be a 
 

464 dominant feature of winter climate variability in East Asia, was evaluated for the 
 

465 CCSM3 and SCoPS hindcasts initialized in November. 
 

466 The northern hemisphere winter (DJF) variation in velocity potential for the 
 

467 climatological mean with 200-hPa divergent winds is shown in Fig. 13. In the observed 
 

468 distributions, the positive peak shows its full weakness as a value of 12 units and it is 
 

469 located to the equatorial western Pacific (Fig. 13a). The location of the negative peak is 
 

470 near western Africa. The center related to the Australian monsoon is located to the north 
 

471 of Australia. Both hindcast simulations represent the positive and negative peaks of 
 

472 velocity potential at 200 hPa well (Figs. 13b, c). The SCoPS simulation plots resemble 
 

473 observations more than the CCSM3 simulation because the divergent wind from 
 

474 CCSM3 is stronger than that from SCoPS. Also, the pattern correlation of upper-level 
 

475 velocity potential fields from SCoPS (0.85) is higher than that from CCSM3 (0.57). 
 

476 Following Tanaka et al. (2004), the deviation from the zonal and annual mean of 
 

477 the velocity potential is calculated for the northern hemisphere winter monsoon 
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478 circulation (Figs. 13d, e, f). In the observations, there are negative peaks over East Asia 
 

479 and positive peaks over the Pacific. A reversal in the pattern between summer and 
 

480 winter explains the monsoon circulation quite well (See also Figs. 9). The SCoPS 
 

481 simulation captures the observed peaks related to the East Asian winter monsoon feature, 
 

482 while the CCSM simulation shows a divided peak over the Australia region. Also, the 
 

483 SCoPS simulation is closer to the observations in terms of intensity than the CCSM3 
 

484 hindcast. The pattern correlation of monsoon circulation fields from SCoPS (0.88) is 
 

485 also significantly higher than that from CCSM3 (0.28). 
 

486 In the lower troposphere, the characteristics of the EAWM are the contrast between 
 

487 the Siberian high and the Aleutian low. These systems lead to strong northwesterlies 
 

488 over the eastern marginal regions of the Siberian high (Fig. 14a). This monsoon system 
 

489 is also related to the East Asian trough along the Korea and Japan regions in the middle 
 

490 troposphere and the maximization of the jet stream over southeastern Japan in the upper 
 

491 troposphere (Fig. 14d). The CCSM3 and SCoPS hindcasts represent the climatological 
 

492 features related to the EAWM well (Figs. 14b, c, e, f). However, the CCSM3 hindcast 
 

493 shows a stronger Siberian high and Aleutian low, stronger cyclonic circulation in the 
 

494 trough region, and stronger jet stream than observations. The SCoPS hindcast shows 
 

495 some biases, including a weak Siberian high and Aleutian low; however, the maximum 
 

496 jet stream in the upper troposphere and the trough in the middle troposphere are better 
 

497 captured than in CCSM3. In addition, the hindcasts have biases in simulating the 
 

498 divergent maritime continental winds compared to observations, with easterlies from 
 

499 CCSM3 and westerlies from SCoPS. The 500-hPa geopotential height in the CCSM3 
 

500 simulation is higher than observed except for northeastern China, resulting in a weaker 
 

501 than observed East Asian trough. On the other hand, the SCoPS hindcast shows a lower 
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502 geopotential height than observed except along Korea and Japan, resulting in a weaker 
 

503 than observed trough. SCoPS generally predicts a weaker zonal wind along the westerly 
 

504 jet stream than observed. 
 

505 To confirm the prediction skill of the models for interannual variation, the 
 

506 dynamical EAWM index is shown in Fig. 15. This index was proposed by Li and Yang 
 

507 (2010) to measure the interannual variability of the EAWM and is defined as the 
 

508 domain-averaged 200-hPa zonal wind shear. Compared to previous indices, this EAWM 
 

509 index accounts for several factors influencing the monsoon (e.g., the Arctic Oscillation 
 

510 and ENSO) and better elucidates the physical processes associated with the EAWM (Li 
 

511 and Yang 2010; Wang and Chen 2010; Wang et al. 2010). SCoPS realistically represent 
 

512 the observed variation in most years, with a correlation coefficient of 0.459. However, 
 

513 CCSM3 shows poorer prediction skill than SCoPS, with a correlation coefficient of 
 

514 0.245. 
 

515 The Arctic Oscillation (AO) is important climate variability with EAWM in East 
 

516 Asia, especially during boreal winter. Its intensity and variability play a significant role 
 

517 to surface temperature, precipitation, and large-scale circulation for extratropical region 
 

518 in northern hemisphere. However, the prediction skill of the AO variation on a seasonal 
 

519 timescale is still poor in dynamical forecast systems (Johansson 2007; Kim et al. 2012; 
 

520 MacLachlan et al. 2015). In this study, the represented AO in CCSM3 and SCoPS were 
 

521 compared with the NCEP reanalysis data. Following the definition of AO by Thompson 
 

522 and Wallace (1998), the AO index was calculated as the principal component (PC) of 
 

523 the first empirical orthogonal function (EOF) mode for monthly mean SLP anomalies 
 

524 during boreal winter (DJF). 
 

525 Figure 16 shows the results of comparison of the PC time series from RA2, CCSM3, 
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526 and SCoPS, for hindcast simulations with November initialization. Results from the all 
 

527 ensemble prediction are indicated in red (SCoPS) and blue (CCSM3) shading areas. To 
 

528 compare the prediction skill, the ensemble-averaged AO indices from both models and 
 

529 reanalysis were plotted by solid lines. Both PC time series capture the interannual 
 

530 variation shown in reanalysis data. The anomaly correlation coefficient between the 
 

531 observed and predicted AO index is 0.58 for SCoPS but only 0.23 for CCSM3. 
 

532 Especially, the SCoPS simulation captured the variation in strong positive/negative 
 

533 phase of AO for the recent period of 2009–2012. 
 

534 Figure 17 shows the SLP patterns regressed onto the leading PC from reanalysis 
 

535 data and both hindcasts. It was used for individual EOF analysis from each model 
 

536 ensemble member and a composite map of those regression patterns was plotted. The 
 

537 pattern from RA2 has a dipole structure over the Arctic, northeastern Pacific, and 
 

538 Atlantic Ocean (Fig. 17a). CCSM3 represents the negative regression pattern over 
 

539 Arctic well. However, the positive patterns over Pacific and Atlantic Ocean were totally 
 

540 not captured. Although SCoPS shows a significant weak AO negative pattern over the 
 

541 Arctic and the center of the positive regression anomaly over the Atlantic Ocean is 
 

542 parted, the positive center remains over the northeastern Pacific as in the observation. 
 

543 The reasonable prediction skill of the AO in SCoPS gives an expectation of good 
 

544 reliability for extratropical winter surface temperature predictions over East Asia. 

 
545 

 

546 4. Summary and conclusion 
 

547 In this paper, a new APCC in-house model, namely SCoPS, is introduced. SCoPS is 
 

548 a state-of-the-art seasonal prediction system based on a fully-coupled climate model, 
 

549 coupling atmosphere, ocean, and sea ice with integrated atmosphere-ocean initialization 
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550 processes. The SCoPS initialized data for 10-member ensembles are assimilated by 
 

551 NCEP CFS data and several subsurface profile data. The ensemble hindcast runs are 
 

552 conducted with SCoPS for 32-year runs (1982–2013). 
 

553 This study evaluated the systematic biases of hindcast climatology, large-scale 
 

554 features, and the basic performance of seasonal forecasting for major climate variability 
 

555 from CCSM3 and SCoPS. A special focus was placed on the fidelity of the systems to 
 

556 reproduce and forecast phenomena that are closely related to the East Asian monsoon 
 

557 system. In particular, to validate the large-scale circulation related to the East Asian 
 

558 monsoon system, the global divergent field in the upper troposphere was used following 
 

559 Tanaka et al. (2004). 
 

560 Overall both CCSM3 and SCoPS exhibit realistic representations of the basic 
 

561 climate state, although systematic biases were found for sea surface temperature, 2-m 
 

562 temperature, and precipitation. To examine the seasonal prediction skill, the temporal 
 

563 correlation coefficients of sea surface temperature and precipitation between 
 

564 observation and the anomalies of each model were also validated for summer and winter. 
 

565 Generally, the sea surface temperature has its greatest prediction skill in the tropics, 
 

566 especially in the ENSO region. Both models also exhibit high skill over the northern 
 

567 Pacific and equatorial Atlantic. SCoPS shows high prediction skill over almost all 
 

568 regions compared to CCSM3. The averaged temporal anomaly correlation coefficient 
 

569 for sea surface temperature, 2-m temperature, and precipitation from SCoPS is also 
 

570 higher than those from CCSM3. However, the RMSE for SST from SCoPS with 1- 
 

571 month lead for DJF in the Niño 3 and Niño 3.4 regions is worse than that from CCSM3. 
 

572 This is because there are cold biases over the tropical Pacific in SCoPS. 
 

573 Notably, SCoPS captures the northward migrated rainband related to the East Asian 
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574 summer monsoon system. Further, SCoPS shows a higher correlation coefficient 
 

575 between the observed and predicted monsoon indices than CCSM3 for both summer 
 

576 and winter seasons. The SCoPS simulation shows useful skill in predicting the Arctic 
 

577 Oscillation. Consequently, SCoPS is more skillful than CCSM3 in predicting the 
 

578 seasonal climate variability, including the ENSO, East Asian summer and winter 
 

579 monsoon, and the Arctic Oscillation. 
 

580 Based on these results, the SCoPS seasonal forecast results are provided to the 
 

581 APCC multi-model ensemble (MME) system as a new APCC operational model, which 
 

582 is changed from CCSM3 since November 2017. Validation of real-time forecast skill is 
 

583 an ongoing work-in-progress. Other climate variabilities including ENSO, Indian Niño, 
 

584 Atlantic  Niño,  Pacific-North  America  pattern  will  be  evaluated.  Moreover,  an 
 

585 operational subseasonal forecast system is on the drawing board. 

 
586 
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787 

788 
 

789 

790 Fig. 1. Spatial distribution of climatological summer (left) and winter (right) 

791 of the surface temperature biases (model minus observation) for (a), (c) 

792 CCSM3 and (b), (d) SCoPS. Top-right value indicates the pattern correlation 

793 coefficient between observation and each prediction. 
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795 

796 
 

797  

798 

 

799 Fig. 2. Same as Fig. 1, but for precipitation. 
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800 

801  
 

802 Fig. 3. Prediction skill of the sea surface temperature between observation 

803 and (a) CCSM3 for JJA and (b) SCoPS hindcast with 1-month lead 3-month 

804 mean hindcast for JJA. (c) The difference between (a) and (b). Prediction 

805 skill of the sea surface temperature between observation and (d) CCSM3 for 

806 DJF and (e) SCoPS hindcast with 1-month lead 3-month mean hindcast for 

807 DJF. (f) The difference between (d) and (e). Black thick lines in (a) to (e) 

808 indicates the area statistically significant at the 95% level. 
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810 

 

811  
 

812 Fig. 4. Same as Fig. 3, but for precipitation. 
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814 

  815

816 

817 Fig. 5. Averaged TCC (a) for global SST, (b) East Asia SST, (c) global 2-m 

818 temperature, (d) East Asia 2-m temperature, (e) global precipitation, and (f) 

819 East Asia precipitation from CCSM3 (blue) and SCoPS (black) with 3- 

820 month mean hindcast for JJA and DJF. 
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824 

825 

826 Fig. 6. Signal-to-Noise (SN) ratio for (a), (d) SSTs, (b), (d) rainfall, and (c), 

827 (f) 200 hPa geopotential heights from CCSM3 and SCoPS for 1-month lead 

828 time. The SN ratio is computed as the ratio of standard deviation of 

829 ensemble means, and standard deviation of individual forecasts from the 

830 ensemble mean forecast. Larger (small) SN ratio is indicative of higher 

831 (lower) predictability. 
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834 

835 

836 Fig. 7. Same as Fig. 6, but for 4-month lead time. 
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841

842 

843 Fig. 8. (a) Temporal correlation coefficient of Niño 3.4 indices, (b) root mean 

844 square error of Niño 3.4 indices, (c) temporal correlation coefficient of Niño 3 

845 indices, and (d) root mean square error of Niño 3 indices from CCSM3 (blue), 

846 SCoPS with May-initialized hindcast (black dashed lines), and SCoPS with 

847 November-initialized (black solid lines) hindcast. 
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849 

850 

851    

852 

 

853 Fig. 9. Seasonal mean velocity potential and divergent wind at 200 hPa for 

854 the (a) reanalysis data, (b) CCSM3, and (c) SCoPS hindcast period (1982– 

855 2013) with 1-month lead time for JJA. The monsoon circulations, which are 

856 defined by the seasonal variation of the velocity potential are plotted with 

857 divergent wind for the (d) reanalysis data, (e) CCSM3, and (f) SCoPS 

858 hindcast. The units are 106 m2 s–1. 
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862 

 

863 Fig. 10. Climatological mean precipitation (shaded) and zonal wind at 850 

864 hPa (contour) from (a) GPCP and ERA-interim, (b) APHRODITE 

865 precipitation, (c) CCSM3, and (d) SCoPS during June to August, averaged 

866 over 32 years (1982–2013). Initial month for both hindcasts is May (1- 

867 month lead time). 
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869 

870    

871 

 

872 Fig. 11. Latitude-time cross section of climatological mean precipitation and 

873 850-hPa zonal wind from (a) GPCP and ERA-interim over the Indian region 

874 (70–80 E°), (b) CCSM3 over the Indian region, (c) SCoPS over the Indian 

875 region, (d) GPCP and ERA-interim over the East Asian region (120–130 E°), 

876 (e) CCSM3 over the East Asian region, and (f) SCoPS over the East Asian 

877 region. 
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879 

880  

881 

882 

883 Fig. 12. The summer (JJA) EASM (East Asian Summer Monsoon) indices 

884 with correlation coefficients from reanalysis data, CCSM3, and SCoPS 

885 hindcasts. EASM is defined as the zonal wind anomaly at 850 hPa, averaged 

886 over the region of 5–10 °N and 130–150 °E minus that over 25–30 °N and 

887 110–130 °E by Lee et al. (2014). 
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889 

890    

891 

 

892 Fig. 13. Same as Fig. 9, but for hindcast with starting November. 
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895 

 

896    

897 

 

898 Fig. 14. Climatological mean sea level pressure (left; shaded), wind vector 

899 at 850 hPa (left; contour), geopotential height (right; shaded), and zonal 

900 wind  at  200 hPa  (right;  contour)  from  reanalysis  data  (top),  CCSM3 

901 (middle), and SCoPS (bottom) during December to February, averaged over 

902 32 years (1982–2013). Initial month for both hindcasts is November (1- 

903 month lead time). 
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905 

906 

907  

908 

909 

910 Fig. 15. Normalized EAWM indices from reanalysis (black), CCSM3 (olive), 

911 SCoPS (coral). EAWM is defined as the index from Li and Yang (2010). 
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914 

915 

 

916 

917 

918 Fig. 16. Ensemble-averaged AO index from reanalysis (black), CCSM3 

919 (blue), and SCoPS (red). Filled areas indicate the results from all ensemble 

920 simulation for CCSM3 (blue) and SCoPS (red). Percentages in left bottom 

921 string indicate explained variance (averaged explained variance from each 

922 ensemble member) from the pattern. 
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924 

925  

926 

927 

928 Fig. 17. DJF mean sea level pressure anomaly regressed onto the leading PC 

929 for 1982–2013 from (a) reanalysis data, (b) CCSM3, and (c) SCoPS 

930 simulations with 1-month lead time. 
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