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Abstract
The Asia Pacific Economic Cooperation (APEC) Climate Center (APCC) in-
house model (Seamless Coupled Prediction System: SCoPS) has been newly developed
for operational seasonal forecasting. SCoPS has generated ensemble retrospective

forecasts for the period 19822013 and real-time forecasts for the period 2014—current.

In this study, the seasonal prediction skill of the SCoPS hindcast ensemble was
validated compared to those of the previous operation model (APEC Climate Center
Community Climate System Model version 3: APCC CCSM3). This study validated the
spatial and temporal prediction skills of hindcast climatology, large-scale features, and
the seasonal climate variability from both systems. A special focus was the fidelity of
the systems to reproduce and forecast phenomena that are closely related to the East
Asian monsoon system. Overall, both CCSM3 and SCoPS exhibit realistic
representations of the basic climate, although systematic biases are found for surface
temperature and precipitation. The averaged temporal anomaly correlation coefficient
for sea surface temperature, 2-m temperature, and precipitation from SCoPS is higher
than those from CCSM3. Notably, SCoPS well captures the northward migrated
rainband related to the East Asian summer monsoon. The SCoPS simulation also shows
useful skill in predicting the wintertime Arctic Oscillation. Consequently, SCoPS is
more skillful than CCSM3 in predicting seasonal climate variability, including the
ENSO and the Arctic Oscillation. Further, it is clear that the seasonal climate forecast

with SCoPS will be useful for simulating the East Asian monsoon system.

Key words: APCC in-house model, SCoPS, Seasonal prediction, East Asian monsoon
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1. Introduction

It has been demonstrated that a fully coupled general circulation model is the
ultimate tool for subseasonal to seasonal climate prediction. Dynamical prediction
systems have been continuously progressed for operational medium-range weather and
seasonal prediction (e.g., Molteni et al. 1996; Kusunoki et al. 2001; Saha et al. 2006,
2014; Arribas et al. 2011; Molteni et al. 2011; MacLachlan et al. 2015; Lee et al. 2014).
These dynamical prediction models in operational centers are almost fully coupled
climate system models that include comprehensive dynamics and physics of the
atmosphere, land surface, ocean, and sea ice interactions. Many studies have
demonstrated the importance of model resolution and atmospheric physics as well as the
model system on various simulated climate variations. For example, Yao et al. (2016)
suggested that coupled model results with higher resolution lead to improved prediction
skill on produced climate variations over the western equatorial Indian Ocean. Ham et al.
(2014) investigated the effects of an improved coupled system on the simulated seasonal
climate over East Asia.

For this reason, operational coupled seasonal forecast systems, including the
Climate Forecast System from the National Centers for Environmental Prediction
(NCEP CFS) (Saha et al. 2014), European Centre for Medium-Range Weather Forecasts
(ECMWF), United Kingdom Meteorological Office (UKMO), and Meteo-France
(MacLachlan et al. 2015), as well as many other research groups, are continuously
updating their seasonal prediction systems with improved physics and increased
resolution. The horizontal resolution of the ECMWEF Integrated Forecast System has
increased from T159 (System 3; Anderson et al. 2007) to T255 (System 4; Molteni et al.

2011) (from approximately 125 km to 80 km) with model version updating. The UKMO
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has also increased the atmospheric resolution of the seasonal prediction system to
N216L85 (approximately 60 km) in Global Seasonal Forecasting System version 5
(GloSea5) (MacLachlan et al. 2015).

A number of studies mentioned the importance of initialization processes for the
prediction skill in the coupled system. For example, Kug et al. (2010) have developed a
new method that conducting empirical singular vectors for initial perturbation in an
ensemble prediction system. Ham and Rienecker (2012) suggested an improvement in
the EI Nifio-Southern Oscillation (ENSO) prediction using the ensemble generation
method in their 20-year reforecast simulation. Koster et al. (2010) mentioned that there
Is room for improvement in prediction skills for precipitation and surface temperature in
land surface initialization. Recently, the importance of initializations of land surface or
sea ice content is noted at sub-seasonal to seasonal scales. Prodhomme et al. (2016)
showed that realistic initialization of land surface plays a role of improved prediction
skill. Dirkson et al. (2017) suggested that accurate initialization of sea ice thickness can
improve the seasonal prediction skill for Arctic sea ice area and concentration.

Since 2007, the Asia-Pacific Economic Cooperation (APEC) Climate Center

(APCC) has issued global temperature and precipitation prediction information for

every following 3—6 month period via the website (http://www.apcc21.org). These

deterministic and probabilistic forecasts have been produced by the well-validated
multi-model ensemble (MME) prediction (Min et al. 2014). Since 2012, the APCC has
provided seasonal prediction data as one provider to the MME prediction system using
the Community Climate System Model version 3 (CCSM3) with sea surface
temperature (SST) nudging from the Global Ocean Data Assimilation System (GODAS)

(APCC CCSM3; Jeong et al. 2008). Recently, the prediction skill of CCSM3 has met
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the limitations of the old version of the model system with low resolution and simple
initialization. To enhance the quality and application of climate forecast information, the
APCC has developed an in-house prediction model with a research group from the
University of Hawaii, USA. The newly developed high-resolution climate prediction
model, termed the Seamless Coupled Prediction System (SCoPS), is a fully coupled
ocean, atmosphere, land, and sea ice component model with coupled atmosphere-ocean
initialization.

Since various validations on historical reforecasts (i.e., hindcast) can provide a
useful guideline for understanding its characteristic, it is very important to further
improve the prediction system. In this paper, the newly developed seasonal prediction
model (SCoPS) is described and evaluated alongside previous operation model (APCC
CCSM3) with a basic validation of the prediction system to reproduce the seasonal
climate variability. We also present analysis of the performance of SCoPS for the East
Asian monsoon system. The paper is divided into the following sections: a brief
description of the APCC CCSM3 and SCoPS framework for hindcast experiments is
provided in section 2; section 3 examines hindcast climatology and prediction skills,
which are closely related to the East Asian climate; and section 4 summarizes the results

and provides major conclusions.

2. Model description
a. APCC CCSM3

CCSM3 has been designed to produce simulations with reasonable fidelity over a
wide range of resolutions and with a variety of atmospheric dynamical frameworks. It is

a community model system for climate simulation, which includes the Community
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Atmosphere Model version 3 (CAM3; Collins et al. 2004, 2006), the Community Land
Surface Model version 3 (CLM3; Oleson et al. 2004; Dickinson et al. 2006), and the
Community Sea lce Model version 5 (CSIM5; Briegleb et al. 2004). The ocean
component is based on the Parallel Ocean Program (POP) version 1.4.3 (Smith and
Gent 2002). Based on generally realistic initial conditions, SST-nudging, an empirical
method for data assimilation, is used for initialization in APCC. Further information on
the APCC CCSM3 is given in Collins et al. (2006), Jeong et al. (2008), and Kim et el.

(2017).

b. SCoPS

The International Pacific Research Center (IPRC) and University of Hawaii (UH)
modeling group have developed a new coupled atmosphere-ocean model (POEM)
which is based on the POP v2.0 model for the oceanic component, the Ocean-
Atmosphere-Sea  Ice-Soil (OASIS v3.0) coupler, and the ECMWF-Hamburg
Atmospheric Model (ECHAM v4.6) as the atmospheric component (Xiang et al. 2012).
A research group at University of Hawaii developed the original version of the in-house
prediction model for APCC under the “Agreement between the APEC Climate center
and the University of Hawaii on the APCC international research project for
development of APCC seamless prediction system”. Based on the POEM system,
SCoPS has been newly developed as a fully coupled climate model for seamless
prediction of weather and climate (APCC project report 2015). SCoPS consists of the
ECHAM version 5.3 (Roeckner et al. 2003, Hagemann et al. 2006) and the Sea Ice
Model version 4.1 (Hunk and Lipscomb 2010). The ocean component is based on the

Parallel Ocean Program (POP) version 1.4.3 (Smith and Gent 2002). Compared with the
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POEM model (Xiang et al. 2012) as well as the previous operational model, APCC
CCSM3, SCoPS has some distinct improvements: a newly developed coupled
atmosphere-ocean initialization, implanting a sea ice model, updated model physics and
coupler versions, and an increase in the atmosphere and ocean model resolutions.
Triangular truncation of the atmosphere component occurs at wavenumber 159
(480 zonal grid and 240 meridional grids in post-processing). A hybrid coordinate
system is used in the vertical direction with top to 10 hPa: a sigma system at the lowest
model level gradually transforms into a pressure system in the lower stratosphere. The
surface temperature is used as a boundary condition to determine the vertical profile
within the five-layer soil model assuming vanishing heat fluxes at the bottom (10-m
depth). The ocean component configuration is 320 (zonal) x 384 (meridional) grid
points (meridionally about 0.3° in the near equatorial region) and 40 vertical levels. A
solar absorption component based on specified monthly mean surface chlorophyll
concentrations (Ohlmann 2003) is imbedded. The CICE v4.1 model details can be found
in the study by Hunk and Lipscomb (2010). These model components are coupled by an
OASIS3-MCT coupler interface (Larson et al. 2005). Atmosphere, ocean, and ice
models exchange 36 variables including SST, surface fluxes, and ice components daily.
High quality climate forecasting relies on and requires improvement of climate
models and use of advanced data assimilation methods that make full use of observation
data. A synthesized atmosphere-ocean initialization scheme has been newly developed
in this system, combining atmospheric 3-dimensional nudging and ocean 3-dimensional
initialization using Ensemble Adjustment Kalman Filter methods (EAKF, Zhang et al.
2007; Anderson 2001). To generate perturbed initial conditions for the ensemble

hindcasts and forecasts, three major steps are taken: 1) generation of model-compatible
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data set from analysis datasets; 2) nudging the model-compatible 3-D reanalysis data

into the model; and 3) generation of perturbed ensemble initial conditions.

c. Hindcast simulation

Both systems have reproduced reforecast simulations for evaluating and calibrating
the model simulation. APCC CCSM3 seasonal reforecasts have 10 ensemble members
using the time-lagged method for a 1-month lead 6-month forecast. For a first-guess
data of January 1, 1982, the atmosphere model is integrated for the period from 1971 to
1981 (11 years) using GODAS SST (Behringer et al. 1998). Using reproducing fluxes in
an atmospheric simulation, the POP ocean model is executed for the same period. For
the period 1982 to 2013, the initial condition for January 1, 1982 is nudged on day 1, 6,
11, 16, 21, and the last 5 days of every month using the GODAS vertical ocean
temperature. Further details on the APCC CCSM3 reforecast are given in Jeong et al.
(2008).

SCoPS has generated ensemble retrospective forecasts for the period 1982—-2013

and real-time forecasts for the period 2014—current. Reforecast simulations commenced

at fixed calendar dates — the 1% and 5" of each month — with 5 ensemble members
perturbed following Gaussian distribution and integrated up to 7 months for a 1-month
lead 6-month forecast. The ensemble initial conditions for January 1, 1982 are from the
results from a 100-year free run SCoPS simulation. The initial data is assimilated every
day from January 2, 1982 to December 31, 2013 using NCEP CFS reanalysis data (Saha
et al. 2010) and World Ocean Database subsurface profile data including mechanical
bathythermograph data (MBT), expendable bathythermograph data (XBT), profiling

float data (PFL), ocean station data (OSD), conductivity-temperature-depth data (CTD),



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

drifting buoy data (DRB), and Moored buoy data (MRB) (Boyer et al. 2013). In this
system, the observed temperature (T) and salinity (S) are not only used to correct
themselves but also to correct each other since the conservation of the T-S balance has
been shown to be an important factor in successful data assimilation (Zhang et al. 2007).
Vertically, only the profile data above 400 m is used since the deeper ocean is not
expected to affect the seasonal forecast skill. Spatially, the observational data from the
band between 50° S-50° N is used. Meanwhile, in real-time seasonal forecasting for the

period 2014-current, the real-time combined ocean vertical profile dataset for

temperature and salinity from the international Argo project is used for ocean

initialization.

d. Evaluation

It is very well known that tropical large-scale circulations, such as Hadley, Walker,
and monsoon are the most important driving source of general circulation at low
latitudes, and their interannual variations largely impact climate characteristics in
various regions. Tanaka et al. (2004) attempted to divide the divergent field in the upper
troposphere into represented circulations such as Hadley, Walker, or global monsoon
using the 200-hPa level seasonal velocity potential. They mentioned that the 200-hPa
velocity potential very well represents overall characteristics such as intensity and
variation in tropical circulations because they are each driven by different dynamical
causes. Tanaka et al. (2004) defined the Hadley circulation as the axisymmetric part of
the circulation, which represents the zonal mean field of the velocity potential. The
monsoon circulation is defined as part of the seasonal variation of the deviation field.

For this reason, the seasonal-mean is subtracted from the deviation field to define the
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monsoon circulation. More detailed definitions and analysis from field observations can
be found in Tanaka et al. (2004). In this study, global monsoon circulation information
using upper-level velocity potential from reanalysis and predicted results were evaluated
following the methodology of Tanaka et al. (2004).

For other validations, SST data was obtained from the monthly National Oceanic
and Atmospheric Administration (NOAA) Optimum Interpolation (Ol) SST V2
(Reynolds et al. 2002). The air temperature at 2 m (T2m), mean sea level pressure (SLP),
wind vector, and geopotential height data were obtained from the NCEP reanalysis 2
(RA2) and ERA-Interim reanalysis products (Kanamitsu et al. 2002; Dee et al. 2011)
from 1982. The Global Precipitation Climatology Project (GPCP) version 2.1 combined
precipitation dataset (Adler et al. 2003) and Asian Precipitation — Highly—Resolved
Observational Data Integration Towards Evaluation of the Water Resources

(APHRODITE) datasets (Yatagai et al. 2012) were used.

3. Results
a. Systematic biases

Figure 1 shows the spatial distribution of 1-month lead 3-month mean forecast
biases of surface temperature, obtained from CCSM3 and SCoPS for the seasons of
June-July-August (JJA) and December-January-February (DJF). CCSM3 and SCoPS
represent the observed temperature patterns generally well in both seasons. However,
the CCSM3 simulation shows slight warm or cold biases over the Eurasia region and
significant warm biases over South America. In the SCoPS simulation, systematic
biases in surface temperature prediction are significant, especially warm biases over

North and South America and cold biases over the Eurasian region. Pattern correlation
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coefficients from both models are quite high, around 0.9 for both seasons. These biases
pattern of 1-month lead-time forecast is almost same to those of 4-month lead-time
forecast, although systematic biases get stronger as the lead time increases (not shown).

Figure 2 shows the spatial distribution of precipitation biases of model prediction in
JJA and DJF. The GPCP observations show the peaks of the mean precipitation pattern
over the intertropical convergence zone (ITCZ) on the Pacific as well as the western
Pacific, South China Sea, and equatorial Indian Ocean (not shown here). The CCSM3
and SCoPS hindcast climatology generally well captures the observed wet regions,
although there are different notable biases in the two models. In JJIA, the predicted
precipitation in CCSM3 tends to be overestimated over the equatorial central Pacific
and parts of the Indian Ocean. Dry biases are also found in the Atlantic ITCZ, western
Pacific, parts of the Indian Ocean, and the northeastern Pacific. Conversely, the SCoPS
simulation generally tends to overestimate precipitation over the central Pacific ITCZ,
the Atlantic ITCZ, and maritime continental regions. Some dry biases are also found in
the central equatorial Pacific. In DJF, the CCSM3 hindcast shows wet biases over the
eastern Pacific, northern central Pacific, and western Indian Ocean, and dry biases are
exhibited over the eastern Indian Ocean. Conversely, the SCoPS simulation shows
overestimated rainfall over the central Pacific ITCZ in the winter Northern Hemisphere.
Pattern correlation coefficients from SCoPS are higher than those from CCSM3
throughout both seasons.

To examine seasonal prediction skill, the anomaly temporal correlation coefficient
(TCC) of the sea surface temperature and precipitation between reanalysis data and 1-
month lead hindcast anomalies are calculated for JJA and DJF (Figs. 3 and 4). The TCC

for the sea surface temperature anomaly for each hindcast simulation compared to

10
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NCEP RA2 data are shown in Fig. 3. Generally, the greatest prediction skill for sea
surface temperature is in the tropics, especially in regions related to the ENSO, with the
northern Pacific and equatorial Atlantic also showing high skill in both models. The
SCoPS JJA prediction with 1-month lead shows higher prediction skill over the western
Pacific, equatorial Pacific, and Indian Ocean than CCSM3. For DJF prediction, SCoPS
shows higher skill in the northern Pacific and Indian Ocean than CCSM3. Although the
TCC of temperature indicates the greatest skill over the tropical Pacific, it is quite low
in most of the other areas. An impressive feature of SCoPS is that it maintains a higher
TCC skill over the western northern Pacific and Indian Ocean than CCSM3 for both
seasons.

Figure 4 shows the TCC of precipitation for JJA and DJF prediction with a 1-month
lead. The prediction skill for precipitation is greater over the tropics than the extra-
tropics and greater over ocean than land as known from other studies (Kim et al. 2012;
Peng et al. 2011). These patterns from the seasonal prediction skill of CCSM3 and
SCoPS are not much different from those of other seasonal prediction systems (e.g.,
Wang et al. 2009; Kim et al. 2012; Lee et al. 2014). In both season predictions, it is
clear that the skill of SCoPS is higher than that of CCSM3 over the Indian Ocean and
northern western Pacific, although some regions have lower skill.

Figure 5 shows the seasonal prediction skill as the averaged temporal correlation
coefficient of the sea surface temperature, 2-m temperature, and precipitation anomalies.
TCC is calculated for 1- to 4-month lead 3-month hindcasts (JJA, DJF) globally and for
the East Asian region. The SST prediction skill is higher than the 2-m temperature and
precipitation for JJA and DJF. The results indicate that the prediction skill generally

decreases to the forecast lead time. Also, the prediction skill from SCoPS for all
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333

variables is significantly higher than CCSM3 for the 1-month lead for both seasons and
both regions, although some variables show lower skill for a long lead time. In
particular, the SST prediction skill from SCoPS is about 0.5 for the East Asian region.

Climate variability as well as climatology is also important factor to assess the
seasonal prediction skill. Many studies have analyzed the signal to noise (SN) ratio to
assess the predictability of seasonal prediction system with lead-time (Peng et al. 2011;
Peng et al. 2014). Due to the APCC seasonal forecast system is for 3-month or longer
target season, SN ratio for a fixed target season of JJA from CCSM3 and SCoPS with 1
and 4 month lead-time are shown in figures 6 and 7. Here, ‘signal’ indicates standard
deviations of the ensemble mean, and ‘noise’ indicates standard deviations of ensemble
members about ensemble mean. In other words, the SN ratio is computed as the ratio of
variance of ensemble means, and variance of individual forecasts from the ensemble
mean forecast. Larger (small) SN ratio indicates higher (lower) predictability.

Shown in Fig. 6 is the SN ratio for SST, precipitation, and 200 hPa geopotential
heights from CCSM3 and SCoPS with 1 month lead-time. For SST, SN ratio from both
systems shows highest in the eastern equatorial tropical Pacific related to the ENSO.
CCSM3 show high SN ratio in high latitude region in southern hemisphere, while
SCoPS show that in northern Pacific, Greanland, as well as Atlantics. For SN ratio for
precipitation prediction with 1-month lead forecast is largest in the tropics and decreases
in the extratropical latitudes for both systems. For 200 hPa geopotential height, the high
SN ratio is also concentration in Tropics for both models, but SCoPS show higher SN
ratio in broaden region than CCSM3. Also, the reason of low SN ratio in extrtropics is
large standard deviation of individual forecasts from the ensemble mean forecast (i.e.,

noise) (not shown). This finding about ‘noise’ in extratropics is consistent with Peng et
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al. (2011).

SN ratio for atmospheric variables from CCSM3 and SCoPS with 4 month lead-
time is shown in figure 7. Compared to the results with 1 month lead-time in Fig. 6, SN
ratio for all variables shows decrease to the lead-time. For structure of SN ratio for SST,
precipitation from CCSM3 and SCoPS are not much differ each other. However, for SN
ratio of 200 hPa geopotential height, SCoPS is still higher than CCSM3 in tropics.
These results indicate that large-scale circulation related to the height from SCoPS is
more reliable than that from CCSM3 with long lead-time, although both systems have
quite big uncertainty in precipitation. Also, SST forecasts from both systems quite well
stay high signal with 4-month lead-time, it is due to the SST characteristic with slowing
vary.

It is well known that the ENSO is the main driver of interannual variability in the
tropics. A good representation of it and its teleconnections are very important for good
climate prediction skill. Figure 8 shows the results of a comparison between the lead
time dependence of the SST TCC and RMSE in the Nifio 3.4 and Nifio 3 regions, with
the OISST observational dataset for hindcasts initialized in May and November. Overall,
the skill of the Nifio indices is generally good, although the skill tends to decrease with
lead time. Both SCoPS and CCSM3 exhibit higher skill for the November-initialized
hindcast than the May-initialized hindcast. SCoPS shows slightly higher skill than
CCSM3 until the 5-month lead time over the Nifio 3.4 and Nifio 3 regions for the
hindcast initialized in November. However, the skill of SCoPS May-initialized hindcast
Is not much more different than CCSM3 for both indices. However, the RMSE of the
SST from SCoPS for the Nifio 3.4 region in the run initialized in May is worse than that

from CCSM3 (Fig. 8c), due to the fact that there are cold biases in the tropical Pacific in
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b. East Asian summer climate variability

First, the velocity potential and divergent wind at 200 hPa averaged for JJA are
plotted to examine the summer monsoon variability (Figs. 9a, b, c). In the observed
velocity potential distributions (Fig. 9a), a positive peak with a value of nearly 20 (x 10°
m? s-1) is located northwest of the Philippines in JJA. The minimum is seen over the
southern Atlantic Ocean, with a value of —10 (x 10°® m? s-1). Hereafter, the velocity
potential “units” of measurement are assumed to be 10° m? s~ for simplicity. A strong
divergent wind related to the Hadley circulation is shown from the northern to southern
Hemisphere. The combined Hadley, Walker, and monsoon circulation shows a strong
convection located in the Philippines. Both 1-month lead hindcast simulations generally
represent the 200-hPa velocity potential pattern well, and the positive and negative
peaks are also captured. However, the SCoPS simulation tends to overestimate its
intensity, while the CCSM3 run shows a weak intensity over the peak regions in
summer (Figs. 9b, c).

To extract the monsoon variability, following Tanaka et al. (2004) deviation from
the zonal and annual mean of velocity potential is calculated (Figs. 9d, e, f). In JJA, the
observations show a dominant positive (negative) peak located over East Asia (Pacific
and Atlantic oceans). This is a feature of the Northern Hemisphere summer, which
includes an upper air divergence over East Asia and an upper air convergence over the
Pacific and Atlantic oceans related to the East Asian summer monsoon. A convection
center located near the Philippines in the mean velocity potential field (Fig. 9a) can be

explained by a superposition between one over land associated with the monsoon
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circulation (Fig. 9d) and another near the equator associated with the Walker circulation
(not shown). CCSM3 underestimates the upper air divergence over East Asia and splits
the peak into two over the eastern Pacific, while SCoPS results are closer to the
observations than those from the CCSM3 hindcast (Fig. 9f). Based on the results, we
conclude that the overestimated mean velocity potential in the SCoPS simulation (Fig.
9c) is due to the enhanced Hadley circulation (not shown), and the underestimated mean
velocity potential in CCSM3 (Fig. 9b) is due to the weak simulated monsoon circulation
(Fig. 9e). Also, it is sure that large-scale circulation features from SCoPS can expect to
more realistic variability related to the monsoon than that from CCSM3.

Figure 10 shows the climatological mean precipitation and the 850-hPa zonal wind
over the East Asian region during summer (June-August) in observations (GPCP and
APHRODITE for precipitation; ERA-Interim reanalysis for zonal wind) and hindcasts
from CCSM3 and SCoPS. Note that horizontal resolution of GPCP is 2.5° x 2.5°, while
that of APHRODITE is 0.25° x 0.25° with land-only data. In the climatology for JIA,
two major areas of strong precipitation are observed. One is the main precipitation band
related to the ITCZ over the tropics, and the other one is the extending rainband from
southern China to Japan, which is related to the East Asian summer monsoon (EASM)
(Figs. 10a, b). Local monsoon precipitation maxima are in the oceanic convergence
regions over the northeastern Arabian Sea and the Bay of Bengal, and west of the
Philippines.

CCSMBa reproduces the features well; however, precipitation over the northwestern
Pacific is underestimated, and precipitation over the Indian Ocean and western
equatorial Pacific tends to be overestimated (Fig. 10c). Related to this, the low-level

monsoon flow pattern is shifted to the precipitation region. The precipitation from
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SCoPS shows a slight overestimation. Narrow and strong bands of precipitation are
indicated over the western areas of India, Indochina, and the Philippines in the high-
resolution APHRODITE data. This extremely localized pattern is known to be due to
convection generated by narrow mountain areas (Xie et al. 2006; Lee et al. 2013; Ham
et al. 2016). The observed pattern is very well represented in the SCoPS hindcast, due to
its higher horizontal resolution as compared to CCSM3. Moreover, the SCoPS
simulation represents the area over China, Korea, and Japan remarkably well, where the
seasonal prediction captures the zonally elongated rainband associated with the
Changma front (Fig. 10d).

Figure 11 shows latitude-time cross sections for the summer precipitation cycle and
850-hPa zonal winds on two longitudes (70-80 °E and 120-130 °E), which are related
to the Indian and East Asian monsoon. Because precipitation from CCSM3 and SCoPS
is usually focused on the 1-month lead 3-month prediction skill in operational seasonal
forecasts, four hindcast datasets from runs initialized in February, May, August, and
November were merged to validate the represented annual cycle of precipitation and
winds. Both hindcasts generally represent the seasonal propagation of precipitation in
the Indian (70-80 °E) and East Asian monsoon regions (120-130 °E), compared to the
GPCP and reanalysis data. For example, the northward rainband related to the Indian
monsoon (April to July) is generally well represented. However, the CCSM3 simulation
exhibits a weaker peak in the northward propagated rainband as well as strong
precipitation over the subtropics and tropics, compared to observations. In the SCoPS
simulation, the peak of the northward precipitation band and the low-level wind are
captured, although slightly overestimated. However, note that the GPCP observation

does not represent orographic heavy rainfall well due to its low resolution. For the East

16



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

Asian monsoon region, a split rainband is shown during June to August, with one arm
over South China Sea, related to the ITCZ, and another over the subtropics, which is
related to the Changma front. Both models exhibit the rain peak over the ITCZ well;
however, CCSM3 shows exaggerated precipitation over the equatorial rainband, even in
winter. In the SCoPS annual cycle, the two peak rain seasons are represented quite well,
but slightly overestimated. Remarkably, the northward migrated rainband related to the
Changma during May to August is also captured by SCoPS.

In Fig. 12, the capability of CCSM3 and SCoPS in simulating the spatial pattern
and interannual variability of the Asian summer monsoon is examined using the
monsoon index developed by Lee et al. (2014). The EASM index is defined as the zonal
wind anomaly at 850 hPa, averaged over the region between 5-10° N and 130-150° E
minus the average over 25-30°N and 110-130°E. The JJA-mean monsoon indices
from the ensemble reforecasts initialized in May were used. The correlation coefficient
of the EASM index between the reanalysis and the SCoPS prediction (0.743) is higher
than the CCSM3 prediction (0.519). Based on the results, SCoPS shows a credible
representation of monsoon circulation for this region, with useful levels of skill for the

East Asian summer monsoon prediction.

c. East Asian winter climate variability

The East Asian winter monsoon (EAWM) is the dominant climate feature over East
Asia during the boreal winter. It leads to significant impacts on the weather and climate
over the East Asian regions (Chen et al. 2005; Zhou et al. 2007; Li and Yang 2010;
Jiang et al. 2013). The EAWM consists of subsystems such as the Siberian high,

Aleutian low, East Asian trough, low-level northerly wind, and high-level East Asian jet
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stream. It is well known that a strong EAWM is characterized by a strong Siberian high,
intensified East Asian jet stream, a deepened East Asian trough, strong northerly wind
over East Asia, and frequent cold surges (Ding and Sikka 2006; Park et al. 2011; Jiang
et al. 2013). Many climate forecast models show reasonable skill in the East Asian
summer monsoon prediction. However, the EAWM prediction skill on climate forecast
systems is still not fully known, although a few studies have examined the predictability
of the EAWM in various climate prediction models (Kim et al. 2012; Jiang et al. 2013).
In this study, the climatological characteristics and interannual variation of the EAWM
were compared with observations and reanalysis data to confirm the seasonal prediction
skills. Also, the prediction skill for the Arctic Oscillation (AO), which is known to be a
dominant feature of winter climate variability in East Asia, was evaluated for the
CCSM3 and SCoPS hindcasts initialized in November.

The northern hemisphere winter (DJF) variation in velocity potential for the
climatological mean with 200-hPa divergent winds is shown in Fig. 13. In the observed
distributions, the positive peak shows its full weakness as a value of 12 units and it is
located to the equatorial western Pacific (Fig. 13a). The location of the negative peak is
near western Africa. The center related to the Australian monsoon is located to the north
of Australia. Both hindcast simulations represent the positive and negative peaks of
velocity potential at 200 hPa well (Figs. 13b, c). The SCoPS simulation plots resemble
observations more than the CCSM3 simulation because the divergent wind from
CCSMa3 is stronger than that from SCoPS. Also, the pattern correlation of upper-level
velocity potential fields from SCoPS (0.85) is higher than that from CCSM3 (0.57).

Following Tanaka et al. (2004), the deviation from the zonal and annual mean of

the velocity potential is calculated for the northern hemisphere winter monsoon
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circulation (Figs. 13d, e, f). In the observations, there are negative peaks over East Asia
and positive peaks over the Pacific. A reversal in the pattern between summer and
winter explains the monsoon circulation quite well (See also Figs. 9). The SCoPS
simulation captures the observed peaks related to the East Asian winter monsoon feature,
while the CCSM simulation shows a divided peak over the Australia region. Also, the
SCoPS simulation is closer to the observations in terms of intensity than the CCSM3
hindcast. The pattern correlation of monsoon circulation fields from SCoPS (0.88) is
also significantly higher than that from CCSM3 (0.28).

In the lower troposphere, the characteristics of the EAWM are the contrast between
the Siberian high and the Aleutian low. These systems lead to strong northwesterlies
over the eastern marginal regions of the Siberian high (Fig. 14a). This monsoon system
is also related to the East Asian trough along the Korea and Japan regions in the middle
troposphere and the maximization of the jet stream over southeastern Japan in the upper
troposphere (Fig. 14d). The CCSM3 and SCoPS hindcasts represent the climatological
features related to the EAWM well (Figs. 14b, c, e, f). However, the CCSM3 hindcast
shows a stronger Siberian high and Aleutian low, stronger cyclonic circulation in the
trough region, and stronger jet stream than observations. The SCoPS hindcast shows
some biases, including a weak Siberian high and Aleutian low; however, the maximum
jet stream in the upper troposphere and the trough in the middle troposphere are better
captured than in CCSMa3. In addition, the hindcasts have biases in simulating the
divergent maritime continental winds compared to observations, with easterlies from
CCSM3 and westerlies from SCoPS. The 500-hPa geopotential height in the CCSM3
simulation is higher than observed except for northeastern China, resulting in a weaker

than observed East Asian trough. On the other hand, the SCoPS hindcast shows a lower
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geopotential height than observed except along Korea and Japan, resulting in a weaker
than observed trough. SCoPS generally predicts a weaker zonal wind along the westerly
jet stream than observed.

To confirm the prediction skill of the models for interannual variation, the
dynamical EAWM index is shown in Fig. 15. This index was proposed by Li and Yang
(2010) to measure the interannual variability of the EAWM and is defined as the
domain-averaged 200-hPa zonal wind shear. Compared to previous indices, this EAWM
index accounts for several factors influencing the monsoon (e.g., the Arctic Oscillation
and ENSO) and better elucidates the physical processes associated with the EAWM (Li
and Yang 2010; Wang and Chen 2010; Wang et al. 2010). SCoPS realistically represent
the observed variation in most years, with a correlation coefficient of 0.459. However,
CCSM3 shows poorer prediction skill than SCoPS, with a correlation coefficient of
0.245.

The Arctic Oscillation (AQO) is important climate variability with EAWM in East
Asia, especially during boreal winter. Its intensity and variability play a significant role
to surface temperature, precipitation, and large-scale circulation for extratropical region
in northern hemisphere. However, the prediction skill of the AO variation on a seasonal
timescale is still poor in dynamical forecast systems (Johansson 2007; Kim et al. 2012;
MacLachlan et al. 2015). In this study, the represented AO in CCSM3 and SCoPS were
compared with the NCEP reanalysis data. Following the definition of AO by Thompson
and Wallace (1998), the AO index was calculated as the principal component (PC) of
the first empirical orthogonal function (EOF) mode for monthly mean SLP anomalies
during boreal winter (DJF).

Figure 16 shows the results of comparison of the PC time series from RA2, CCSM3,
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and SCoPS, for hindcast simulations with November initialization. Results from the all
ensemble prediction are indicated in red (SCoPS) and blue (CCSM3) shading areas. To
compare the prediction skill, the ensemble-averaged AO indices from both models and
reanalysis were plotted by solid lines. Both PC time series capture the interannual
variation shown in reanalysis data. The anomaly correlation coefficient between the
observed and predicted AO index is 0.58 for SCoPS but only 0.23 for CCSM3.
Especially, the SCoPS simulation captured the variation in strong positive/negative

phase of AO for the recent period of 2009-2012.

Figure 17 shows the SLP patterns regressed onto the leading PC from reanalysis
data and both hindcasts. It was used for individual EOF analysis from each model
ensemble member and a composite map of those regression patterns was plotted. The
pattern from RA2 has a dipole structure over the Arctic, northeastern Pacific, and
Atlantic Ocean (Fig. 17a). CCSM3 represents the negative regression pattern over
Arctic well. However, the positive patterns over Pacific and Atlantic Ocean were totally
not captured. Although SCoPS shows a significant weak AO negative pattern over the
Arctic and the center of the positive regression anomaly over the Atlantic Ocean is
parted, the positive center remains over the northeastern Pacific as in the observation.
The reasonable prediction skill of the AO in SCoPS gives an expectation of good

reliability for extratropical winter surface temperature predictions over East Asia.

4. Summary and conclusion
In this paper, a new APCC in-house model, namely SCoPS, is introduced. SCoPS is
a state-of-the-art seasonal prediction system based on a fully-coupled climate model,

coupling atmosphere, ocean, and sea ice with integrated atmosphere-ocean initialization
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processes. The SCoPS initialized data for 10-member ensembles are assimilated by

NCEP CFS data and several subsurface profile data. The ensemble hindcast runs are
conducted with SCoPS for 32-year runs (1982—-2013).

This study evaluated the systematic biases of hindcast climatology, large-scale
features, and the basic performance of seasonal forecasting for major climate variability
from CCSM3 and SCoPS. A special focus was placed on the fidelity of the systems to
reproduce and forecast phenomena that are closely related to the East Asian monsoon
system. In particular, to validate the large-scale circulation related to the East Asian
monsoon system, the global divergent field in the upper troposphere was used following
Tanaka et al. (2004).

Overall both CCSM3 and SCoPS exhibit realistic representations of the basic
climate state, although systematic biases were found for sea surface temperature, 2-m
temperature, and precipitation. To examine the seasonal prediction skill, the temporal
correlation coefficients of sea surface temperature and precipitation between
observation and the anomalies of each model were also validated for summer and winter.
Generally, the sea surface temperature has its greatest prediction skill in the tropics,
especially in the ENSO region. Both models also exhibit high skill over the northern
Pacific and equatorial Atlantic. SCoPS shows high prediction skill over almost all
regions compared to CCSM3. The averaged temporal anomaly correlation coefficient
for sea surface temperature, 2-m temperature, and precipitation from SCoPS is also
higher than those from CCSM3. However, the RMSE for SST from SCoPS with 1-
month lead for DJF in the Nifio 3 and Nifio 3.4 regions is worse than that from CCSM3.
This is because there are cold biases over the tropical Pacific in SCoPS.

Notably, SCoPS captures the northward migrated rainband related to the East Asian
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summer monsoon system. Further, SCoPS shows a higher correlation coefficient
between the observed and predicted monsoon indices than CCSM3 for both summer
and winter seasons. The SCoPS simulation shows useful skill in predicting the Arctic
Oscillation. Consequently, SCoPS is more skillful than CCSM3 in predicting the
seasonal climate variability, including the ENSO, East Asian summer and winter
monsoon, and the Arctic Oscillation.

Based on these results, the SCoPS seasonal forecast results are provided to the
APCC multi-model ensemble (MME) system as a new APCC operational model, which
is changed from CCSM3 since November 2017. Validation of real-time forecast skill is
an ongoing work-in-progress. Other climate variabilities including ENSO, Indian Nifio,
Atlantic Nifio, Pacific-North America pattern will be evaluated. Moreover, an

operational subseasonal forecast system is on the drawing board.
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Fig. 1. Spatial distribution of climatological summer (left) and winter (right)
of the surface temperature biases (model minus observation) for (a), (c)
CCSM3 and (b), (d) SCoPS. Top-right value indicates the pattern correlation

coefficient between observation and each prediction.
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Fig. 2. Same as Fig. 1, but for precipitation.
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Fig. 3. Prediction skill of the sea surface temperature between observation
and (a) CCSMa3 for JJA and (b) SCoPS hindcast with 1-month lead 3-month
mean hindcast for JJA. (c) The difference between (a) and (b). Prediction
skill of the sea surface temperature between observation and (d) CCSM3 for
DJF and (e) SCoPS hindcast with 1-month lead 3-month mean hindcast for
DJF. (f) The difference between (d) and (e). Black thick lines in (a) to (e)
indicates the area statistically significant at the 95% level.
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Fig. 4. Same as Fig. 3, but for precipitation.
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Fig. 6. Signal-to-Noise (SN) ratio for (a), (d) SSTs, (b), (d) rainfall, and (c),
(f) 200 hPa geopotential heights from CCSM3 and SCoPS for 1-month lead
time. The SN ratio is computed as the ratio of standard deviation of
ensemble means, and standard deviation of individual forecasts from the
ensemble mean forecast. Larger (small) SN ratio is indicative of higher

(lower) predictability.
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Fig. 8. (a) Temporal correlation coefficient of Nifio 3.4 indices, (b) root mean
square error of Nifio 3.4 indices, (c) temporal correlation coefficient of Nifio 3
indices, and (d) root mean square error of Nifio 3 indices from CCSM3 (blue),
SCoPS with May-initialized hindcast (black dashed lines), and SCoPS with
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Fig. 9. Seasonal mean velocity potential and divergent wind at 200 hPa for
the (a) reanalysis data, (b) CCSM3, and (c) SCoPS hindcast period (1982—
2013) with 1-month lead time for JJA. The monsoon circulations, which are
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(a) JJA : GPCP precipitation (c) JJA : CCSMS Precipitation
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864 hPa (contour) from (a) GPCP and ERA-interim, (b) APHRODITE
865  precipitation, (¢) CCSM3, and (d) SCoPS during June to August, averaged
866  over 32 years (1982—2013). Initial month for both hindcasts is May (1-

867  month lead time).
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Fig. 11. Latitude-time cross section of climatological mean precipitation and
850-hPa zonal wind from (a) GPCP and ERA-interim over the Indian region
(70-80 E®), (b) CCSM3 over the Indian region, (c) SCoPS over the Indian
region, (d) GPCP and ERA-interim over the East Asian region (120—130 E®),
(e) CCSM3 over the East Asian region, and (f) SCoPS over the East Asian

region.
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Fig. 12. The summer (JJA) EASM (East Asian Summer Monsoon) indices
with correlation coefficients from reanalysis data, CCSM3, and SCoPS
hindcasts. EASM is defined as the zonal wind anomaly at 850 hPa, averaged

over the region of 5-10 °N and 130—150 °E minus that over 25—-30 °N and
110-130 °E by Lee et al. (2014).
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Fig. 13. Same as Fig. 9, but for hindcast with starting November.
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Fig. 14. Climatological mean sea level pressure (left; shaded), wind vector
at 850 hPa (left; contour), geopotential height (right; shaded), and zonal
wind at 200 hPa (right; contour) from reanalysis data (top), CCSM3
(middle), and SCoPS (bottom) during December to February, averaged over
32 years (1982—-2013). Initial month for both hindcasts is November (1-

month lead time).
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Fig. 16. Ensemble-averaged AO index from reanalysis (black), CCSM3
(blue), and SCoPS (red). Filled areas indicate the results from all ensemble
simulation for CCSM3 (blue) and SCoPS (red). Percentages in left bottom
string indicate explained variance (averaged explained variance from each
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for 1982—2013 from (a) reanalysis data, (b) CCSM3, and (c) SCoPS

simulations with 1-month lead time.
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