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25 Abstract:   The coarse resolution  soil  moisture  (SM)  data from  NASA SMAP mission has been  

steadily produced with  the  expected performance  since April 2015. These coarse resolution 

observations  could be downscaled  to fine resolution using fine scale observations of SM 

sensitive quantities from  existing satellite  sensors.  For operational users  who need near-real-time  

(NRT)  high resolution SM data, the  downscaling approach  should be feasible for  operational  

implementation,  requiring limited ancillary information  and primarily  depending  on readily 

available  satellite  observations.  Based on these principles,  nine  potential candidate  downscaling  

schemes  were selected for developing an  optimal downscaling strategy. Using  remotely sensed  

land  surface  temperature  (LST) and enhanced vegetation index  (EVI)  observations, the optimal  

downscaling  approach was tested for  operational producing a  NRT 1  km  SM data  product  from 

SMAP. Comprehensive  assessments  on the  1 km  SM  product were  conducted  based on  

agreement statistics  with  in-situ  SM measurements.  Statistical results  show that the accuracy  of 

the original coarse spatial resolution  SMAP SM product  can be significantly improved by 8% by  

the downscaled 1 km  SM.  With respect to the in-situ  measurements, the 1 km  SM  mapping 

capability developed here  presents  a  clear advantage  over  the SMAP/Sentinel  SM data  product; 

and it also provides  better data  availability  for users. This study  suggests  that  a  NRT  1 km SMAP  

SM data  product  could  be routinely  generated  from  SMAP  at the center  for Satellite Applications  

and Research  of NOAA NESDIS for operational users.  
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48 1 Introduction  

Soil  moisture (SM) plays a critical role in  exchange  of water, energy  and car bon  between the 

land  surface  and the atmosphere (Yin et al., 2014). It controls the SM-precipitation feedback at 

continental scale  and  runoff-precipitation response at watershed  scale.  As a  result, SM 

observations  are  widely used in meteorology, hydrology and  climatology  (Peng et al., 2017; Yin 

et al., 2018a, 2019b). The development of ground-based  SM measurement techniques  provides  

an opportunity to  obtain SM estimates at different  soil depths (Robinson et al., 2008,  Dobriyal et 

al., 2012, Vereecken et al., 2014)  with the in situ observations  commonly considered as  the  

“truth” to validate satellite and model   SM  simulations  against. However, such ground  

measurements  typically have  sparse spatial distributions  which  cannot  represent  SM patterns  at 

even regional  let alone global  scale.  

Microwave remote sensing has shown a unique  capability for  quantitative estimating  of  SM  

dynamics  at regional and global scales  (Wang et al., 1987; Jackson  and Schmugge, 1989; 

Jackson and  O'Neill, 1990). C- and X-band  SM data  products have  been  operationally produced  

since 2001,  which include the Advanced Scatterometer (Wagner  et al., 2013), Advanced  

Microwave Scanning Radiometer for  Earth Observing System  (AMSR‐E) (Njoku et al., 2003),  

AMSR2  (JAXA, 2013) and WindSat (Li  et al., 2010). However, they suffer from  the relatively 

short observation wavelength.  Because L-band microwave remote sensing is sensitive to  a 

deeper  subsurface SM (0-5 cm) and  relatively  insensitive  to  vegetation  (Colliander et al., 2017),  

the Soil Moisture and  Ocean Salinity  (SMOS) and Soil Moisture Active  Passive (SMAP)  

satellites  have been  developed  (Kerr et al., 2010; Entekhabi et al., 2010).  Compared to SMOS, 

SMAP presents a more  accurate  SM retrieval due to it  can  reduce  impact by  Radio Frequency 

Interference  (RFI)  contamination  and  its  better antenna  design  (Chan et al., 2016). Passive  L-
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71 band microwave remote sensing  has  also  been generally accepted to have reduced impacts  from  

surface roughness  and the atmosphere (Kerr,  2007). Despite the observed brightness temperature  

(Tb)  having  a more  direct connection  with the surface SM  in the L-band frequency regime, they  

suffer from  having a  moderately coarse spatial resolution (Piles et al., 2011; Wu et al., 2017), 

due to field of view being inversely proportion to the wavelength.  

Radars, especially synthetic  aperture radars  (SARs), can provide higher spatial resolution 

SM, although  the sensitivity of  active microwave observations is  more  subject to surface 

roughness impact. However, it had  been shown by several studies that there is a potential to 

enhance  the spatial resolution  of the retrieved SM by merging the coarse but accurate precision  

microwave retrieval with  the noisy but fine resolution  radar observations. SMAP was thus 

launched in  2015  to address the scale issue  by  using  3 km  resolution active  microwave 

measurements  to downscale  the 40 km  resolution  passive  microwave  SM retrievals (Entekhabi et 

al., 2010). In preparation for  the  SMAP mission, many approaches were  proposed to  explore the  

feasibility  of merging radar backscatter and  radiometer Tb  observations, such as the Bayesian  

merging method (Zhan  et al, 2006),  Triangular method (Merlin  et al., 2006),  Change Detection 

of Radar Backscatter (Narayan et al., 2006), Deterministic  Method (Merlin  et al, 2008), and the 

Combined Modeling  and Remote Sensing method (Merlin  et al, 2005). However,  the reported 

results only provide  testable  explanation and their representativeness  at the global and  multiyear 

scales  was not addressed (Zhan et al., 2006; Sabaghy  et al., 2018). After SMAP  was  launched,  

the baseline and optional downscaling algorithms were  officially implemented to produce fine  

resolution SM retrievals  along  with assuming a near linear relationship between radar backscatter 

and radiometer Tb  data  (Das et al., 2014; Entekhabi et al., 2014, Wu  et al., 2017). With the loss 
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93 of SMAP’s L-band radar from  7 July 2015, the capability   of SMAP’s providing   a  3  km  and 9  km  

resolution SM  product  was lost  (Yin et al., 2018b).   

Optical and thermal infrared satellite SM sensing started in the 1970  with  several approaches 

developed to  exploit the relationships between surface reflectance  and SM (Carlson et al., 1994; 

Liu  et al., 2002). When SM  is low, evaporative cooling may be low and in turn results in higher 

land surface  temperature  (LST).  A wetter land  surface generally helps plant  growth and thus a  

higher  vegetation index value  observed from  optical/infrared  satellite sensors. Unlike  microwave 

remote sensing, optical and thermal satellite sensors  provide  finer spatial resolution  (Peng et al., 

2017). To overcome the coarse spatial scale limitation of the relatively accurate microwave  

radiometer SM  data, recent attempts to generate  higher  spatial resolution L-band measurements 

using  the fine scale vegetation index and LST  observations  have been well documented (Table 

1).  However, the addition of surface albedo does little to enhance  downscaled SM  estimates  (Wu  

et al., 2017; Knipper  et al., 2018). Specifically,  empirical polynomial  fitting  or regression  

methods typically exploit the relationships  between L-band SM and optical/thermal  observations  

(Table 1). Given correlations  between SM and geoformation  data, topography is  also  generally  

used as ancillary information within  the downscaling approaches (Peng et al., 2017). Long-term  

dense  in situ SM observations  allow training regression models  to generate finer resolution  SM 

retrievals; however,  operational application of  these empirical polynomial  fitting  methods  is 

hampered by requirements  of extensive  in situ SM observations (Zhao et al., 2018; Abbaszadeh 

et al., 2019; Senanayake et al., 2019).  Optimizing land surface  model  (LSM)  variables  to provide  

fine-scale SM estimations for the overlapping  coarse resolution  pixels is also proposed to 

downscale L-band SM observations; yet differences  in climatology between remote sensing  and  

LSM  SM estimates limit  their applicability (Fang et al., 2018).  The semi-physical evaporation-
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116 based  methods (Colliander et al., 2017; Mishra et al., 2018) are possible to  obtain disaggregated 

SM at finer resolution  and have been proposed to  operationally generate a SMOS disaggregated 

SM  product (Molero et al., 2016). Yet,  the reasonable  performance of the evaporation-based  fine  

scale SM in  semi-arid  regions cannot  mirror  the good behavior in wet areas.  Based on  the  

Neural-network approach, using  the monthly Normalized difference vegetation index  (NDVI)  

and topographic index,  a  2.25 km  SMAP SM data  product  is reported, but it  is unable  to retrieve 

fine resolution SM near  coastal regions or for high vegetation covered  areas (Alemohammad et 

al., 2018).  After the SMAP L-band radar stopped operation, integration of L-band radiometer  

brightness temperature  (Tb)  and  C-band Sentinel-1A SAR backscatter  observations  was 

recognized as a feasible approach to produce fine  scale  SMAP SM data  (He et al., 2018;  Li et al., 

2018, Das et al., 2019). However, few  studies have conducted inter-comparisons  of 

performances  at large  scale between C-band SAR- and optical/thermal  observations-based 

downscaling  fine resolution SM  data. Table 1  also shows that ideally  results with  low 

uncertainties were  generally  documented in semi-arid areas, but the feasibility of implementing  

them for operational product generation  is still unknown.  

Current  operational  satellite SM  data  products  are  at a spatial resolution  as coarse as  40 km  

(Yin et al., 2015a, 2019a)  at National  Oceanic and Atmospheric Administration  (NOAA). 

However, operational applications  such as numerical  weather  and seasonal  climate  predictions,  

agricultural drought  and  flood monitoring and wildfire risk  assessment, require  near real time  

(NRT)  finer resolution  SM data.  This study therefore  proposes an  operationally  feasible 

approach to  providing  a  high resolution  SMAP  SM  data  product  at  the center for SaTellite  

Applications  and Research  (STAR)  of NOAA. Three  downscaling algorithms  were selected in 

this paper due to their significance and representativeness  and  inter-compared  including  
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139 evaluation against the SMAP/Sentinel  3 km  product. An  operational pathway of the 1 km  soil  

moisture  product is also described.  

-------------------------------------------------- 

Please Insert Table  1 here.  

-------------------------------------------------- 

140 

141 

142 

143 

144 2 Datasets  

2.1 SMAP  25 km SM  

The SMAP satellite was  launched  on 31 January 2015  to  an altitude  of around 685  km  and  

began to provide science data on 1 April  2015. It  was  designed to provide  the 2-3 day  fine 

resolution SM required for hydrology, climatology and meteorology  by  merging L-band radar 

and radiometer data  (Entekhabi et al., 2010).  The SMAP mission was  targeted to measure  top 5 

cm  surface SM with retrieval errors  below 0.04 m 3/m3 ,  with the  L-band radar and L-band 

radiometer sensors on SMAP designed to penetrate  vegetation with vegetation water content up 

to  5 kg/m2  (Entekhabi  et al., 2010).  With loss  of the L-band radar  on 7 July 2015, however, the 

SMAP satellite lost its  capability  to  directly provide  high resolution global soil moisture data 

products. Fortunately, the SMAP L-band radiometer has been successfully and continuously  

providing high quality coarse resolution Tb  observations  (Yin et al., 2019a)  enabling  the 

operational production of level-2 SM  data  products  (Colliander et al., 2017; Reichle et al., 2017).  

The L-Band radiometer on the SMAP satellite offers 40 km  resolution Tb  observation  with ±1.3  

K radiometric uncertainty. Note that  SMAP SM observations  were resampled  to  a regular  25 km  

× 25 km  grid in this paper.  The SMAP v5.0  (SMAPV5)  SM data  used  here  were obtained from 

National Snow and Ice Data Center.  
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161 2.2  SMAP/Sentinel  3 km  SM product  

After  loss  of the SMAP L-band radar, merging C-band radar and L-band radiometer data  was  

proposed to recover the capability of  producing fine resolution SM (Das et al., 2016). The orbit 

configuration of Sentinel-1A is similar to that of  SMAP, meaning that  their swaths overlap with  

minimal time difference.  Consequently, it has been  recognized  that the C-band SAR data  from  

Sentinel-1A  observations can be  used  as a  substitute  for  the SMAP radar  (Das et al., 2019).  

Specifically,  the SMAP/Sentinel  (SPL2SMAP)  product combines  the coarse  resolution SMAP 

Tb  with the 3 km  C-band backscatter measurements  from  the Sentinel-1A SARs to provide 3 km 

SM data  (Das et al., 2019). It  is important to note that  the C-band radar on Sentinel-1  is not a 

perfect replacement for  SMAP’s   lost L-band  radar, but it is the only  radar trailing  SMAP closely  

enough to  improve  the SMAP’s   radiometer measurements. The  SPL2SMAP  SM data  from  

NASA  (National Aeronautics and Space Administration)  Jet Propulsion Laboratory (JPL) are  

used  to conduct complementary evaluations  on the optimal downscaling strategic.  

2.3 VIIRS  LST Data Product  

The Visible  Infrared  Imaging Radiometer Suite (VIIRS) instrument is a primary  sensor 

onboard the S-NPP satellite that was launched on 28 October  2011. It is designed  to provide  

operational observation continuity  with the Advanced Very High Resolution Radiometer 

(AVHRR) and MODerate resolution Imaging Spectroradiometer (MODIS). VIIRS provides 750-

m  LST observations at nadir  during the S-NPP satellite overpass time at 1:30 am/pm  local time 

(Liu et al., 2015). The VIIRS  level 2 LST data  product  began from  19 January 2012.  The  

validation  results demonstrated that the VIIRS LST  has a good agreement with ground LST  

measurements (Liu et al., 2015, 2019). The level 3 daily gridded VIIRS  LST data  with 1 km  

spatial resolution has  been locally  generated at NOAA-STAR  since 3 May  2017.  The operational 
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184 level 3 VIIRS  LST  will  be operational in  the near  future.  As the three selected downscaling 

approaches require the LST, the 1 km VIIRS  LST data  were used in this paper.    

2.4 Enhanced Vegetation Index  

Compared to the NDVI, the enhanced vegetation index (EVI)  was developed to reduce the 

aerosol  contaminations and canopy background brightness variations (Huete  et al., 2002). Both  

the MYD13A2 V6 product from  Aqua observations and  MOD13A2 V6 product from  Terra  

measurements provide  16-day composites of the  1 km  EVI retrievals, which permit  an eight-day 

phasing in the EVI production  through  combining both data records. The EVI uses  a MODIS-

specific compositing method  that removes low quality  pixels  on the  basis  of product quality  

assurance metrics. In this study, the gridded 8-day 1 km  MODIS EVI data  are  those  distributed 

by NASA.  Compared to the 90-day achieving period of VIIRS EVI  in the NOAA, MODIS 

provides continuous and reliable long-term  EVI  data, which allow the statistical results  in this 

paper  to represent a longer analysis period. Note that cross-sensor  compatibilities of the EVI data  

between VIIRS  and MODIS indicate that their systematic differences are less than 2%  (Miura et 

al., 2018). It should thus be expected  to obtain  similar results  are  obtained  using  VIIRS EVI as  

ancillary information  in future operation.  The 1  km  EVI data  were employed here to  satisfy the 

requirements of the three selected downscaling methods.  

2.5 SCAN in Situ Observations  

The U. S.  Department of Agriculture Soil  Climate  Analysis Network (SCAN)  provides hourly  

measurements with  automatic devices  measuring  the soil dielectric constant  at  depths of 5, 10,  

20, 50, and 100 cm  where  soil  depth permits  (Schaefer et al., 2007).  The data  sets from  each 

SCAN site  were quality controlled by detecting problematic  observations. Specifically, SM  
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206 measurements outside  of  the physically possible  range  were excluded  (Liu  et al., 2011). The SM  

observations  under  frozen conditions  were also excluded  on basis of SCAN soil  temperature  

measurements for the corresponding soil  layer  (Yin et al., 2015a, 2016). The quality controlled 5  

cm  SCAN SM observations were  then aggregated into daily averages. Station  SM records  with  

data  coverage below 70% (510 days)  over the  3 May  2017-30 April 2019  period were also  

excluded (Yin et al., 2015b). Finally, the SM observations from the 148 stations were used in this  

study.    

207 

208 

209 

210 

211 

212 

213 3 Methodology  

With the aim  to operationally generate a NRT  fine resolution SMAP SM data  product at the 

NOAA-STAR, the  downscaling method should include pure  dependent  on satellite  

measurements, have  limited ancillary information requirements, be  computationally fast,  and  

feasible  to implement  as an automated routine.  Based on the fine  scale  observations from  the  

Suomi National Polar-orbiting Partnership (S-NPP), three classical optical/thermal and  

microwave fusion approaches  were  inter-compared,  including i) the triangular  method (Carlson 

et al., 1994; Petropoulos et al., 2009), ii) the vegetation temperature condition index (VTCI)  

method (Wan et al., 2004; Peng et al. 2016),  and iii) soil  wetness  index (SWI)-based UCLA 

method (Jiang and Islam, 2003; Kim  and Hogue, 2012). Utilizing  EVI and different LST  

information,  including daytime, nighttime  and day-time  LST difference  (DTR), nine 

downscaling schemes were designed  and tested  to find out the optimal downscaling strategy.  

3.1 Triangle Method  

The temperature–vegetation  TRIAngle (TRIA)  treats limited water  availability  at the “dry   

edge” and unlimited  water access  at the “wet  edge”   (Sandholt  et al., 2002). The LST  is sensitive  
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228 to SM over bare soil  areas, whereas  the vegetation  index has high sensitivity to  SM over 

vegetated regions (Carlson et al., 1994; Peng et al., 2017).  As a result, SM is parameterized  

based on a triangular distribution  of  fine resolution LST  and EVI. The regression relations can be  

expressed as   

𝑆𝑀𝐴𝑃  =  𝛼𝐸𝑉𝐼∗𝑋∗  +  𝛽                                                                                                           (1)  

where 𝑆𝑀𝐴𝑃   is the gridded 25 km  SMAP  SM. Variables  α   and  β are  the slope and intercept,  

respectively.  While  𝐸𝑉𝐼∗     𝑋∗ and  are given by  

∗  
1    ∑  𝑖=𝑛  =𝑚   𝐸𝑉𝐼 ∑ 𝑗= ∗                                                                                                 

 𝑖=    
 1  (2) 𝑗=1 𝐸𝑉𝐼

𝑚𝑛

  
𝑋 =   ∗  

1 ∑𝑖=𝑛  =
𝑖=1  ∑  𝑗 𝑚

𝑗=1 𝑋∗                                                                                                           (3)  
𝑚𝑛  

where both m  and n  are  25 in this paper and  EVI*  and X*  are defined as (Kim and Hogue, 2012)  

𝐸𝑉𝐼∗  =  
𝐸𝑉𝐼−𝐸𝑉𝐼𝑚𝑖𝑛                                                                                                              (4)  

𝐸𝑉𝐼𝑚𝑎𝑥−𝐸𝑉𝐼𝑚𝑖𝑛  

  𝑋−𝑋
𝑋∗ =  𝑚𝑖𝑛                                                                                                                       (5)  

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛  

The subscripts max  and min  indicate the maximum  and minimum  EVI  or X  over  the study  area,  

respectively.  Based on the established relationship, the 1 km  SM (𝐷𝑆𝑀) can be calculated by  

𝐷𝑆𝑀  =  𝛼𝐸𝑉𝐼  ×  𝑋  +  𝛽                                                                                                            (6)  

where  the downscaling schemes are recognized as TRIA_DAY, TRIA_NIGHT and TRIA_DTR  

when the variable X represents day-time LST, night-time LST and DTR, respectively.  

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

Page 11 of 34 



   
 

 

 

 

 

 

 

 

 

 

 

                              

 

 

 

 

 

 

 

 

245 3.2 VTCI Method  

According to  the temperature–vegetation Triangle, the increasing LST  is reflected at  the  “dry   

edge”   due to  low SM limits  on evapotranspiration which  in turn to raise LST, whereas  unlimited  

SM and maximum   evapotranspiration are   formed at the “wet edge” (Sandholt   et al., 2002). The 

VTCI is thus calculated for each EVI interval (Peng et al., 2017)  

 
𝑋 −𝑋  

𝑉𝑇𝐶𝐼 =  𝑚𝑎𝑥                                                                                                                   (7) 
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛  

where the subscripts max  and min  indicate the maximum and minimum  X  that have the same EVI  

value. Particularly, the VTCI_DAY, VTCI_NIGHT and VTCI_DTR are downscaling schemes  

with the corresponding X  representing day-time LST, night-time LST and DTR,  respectively.  

The relationship between 1 km  SM  (DSM)  and VTCI is given by  

  
  =    ×  

𝑆𝑀𝐴𝑃
𝐷𝑆𝑀 𝑉𝑇𝐶𝐼 1  𝑖=𝑛  𝑗=𝑚                                                                                               (8)                      

∑  ∑  𝑉𝑇𝐶𝐼  
𝑚𝑛  𝑖=1 𝑗=1  

3.3 UCLA Method  

Based on the triangle interpretation  of vegetation index and LST, Jiang and Islam  (2003) 

proposed a  simple method to retrieve evaporative fraction,  which  can  also be  used as a  soil  

wetness index (SWI)  defined as (Kim and Hogue, 2012)  

       
(1−𝜑𝐸𝑉𝐼)∆𝑋  

𝑆𝑊𝐼 = 1 −                                                                                              (9) 
(1−𝐸𝑉𝐼)∆𝑋𝑚𝑎𝑥+𝐸𝑉𝐼∆𝑋𝑒  

where  Xe  indicates the maximum  X  when  the  EVI value  is roughly 1.0, and  ∆𝑋,  ∆𝑋𝑚𝑎𝑥, 

∆𝑋𝑒and  𝜑   are expressed as  

∆𝑋  =  𝑋  −  𝑋𝑚𝑖𝑛                                                                                                                        (10)  
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264 ∆𝑋𝑚𝑎𝑥  =  𝑋𝑚𝑎𝑥  −  𝑋𝑚𝑖𝑛                                                                                                            (11) 

∆𝑋𝑒  =  𝑋𝑒  −  𝑋𝑚𝑖𝑛                                                                                                                     (12) 

  
∆𝑋

𝜑  = 1 − 𝑒                                                                                                                          (13) 
∆𝑋𝑚𝑎𝑥  

The downscaling schemes are  recognized as UCLA_DAY,  UCLA_NIGHT and UCLA_DTR 

when the X  represents day-time LST, night-time LST  and DTR, respectively. The  1 km  SMAP 

SM is then derived by  

 
 𝐷𝑆𝑀  =  𝑆𝑊𝐼  ×  

𝑆𝑀𝐴𝑃 
1    𝑖=𝑛    𝑗=𝑚                                                                                              (14) 

∑ ∑ 𝑆𝑊𝐼  
𝑚𝑛  𝑖=1 𝑗=1  

3.4 Performance Measures  

Based on the quality controlled SCAN  SM observations (O), evaluation  metrics  in  this paper 

include correlation coefficient (r),  root  mean square error (RMSE)  and unbiased RMSE 

(ubRMSE), which can be expressed as  

𝑖=𝑛  ∑
 

(𝑀 ̅ ̅
𝑟 = 𝑖=1 𝑖−𝑀)(𝑂𝑖−𝑂)

𝑀,𝑂                                                                                              (15)  
 √∑𝑖=𝑛 ̅ 2  ∑𝑖=𝑛    (𝑀 �̅�)2

𝑖−𝑀) (𝑂𝑖=1 𝑖−𝑖=1

∑𝑖=𝑛  2  

𝑅𝑀𝑆𝐸  =  √ (𝑀 −𝑂 )𝑖=1 𝑖 𝑖
                                                                                                        (16) 

𝑛  

𝑖    

 √
( )2 −𝑂

𝑢𝑏𝑅𝑀𝑆𝐸   
𝑀

=  ∑
=𝑛

𝑖=1 𝑖 𝑖
                                                                                                    (17) 

𝑛  

where M  is satellite SM  and n  is the sample size.  Similarly, root mean square deviation (RMSD)  

and r  are also employed to assess the differences between SPL2SMAP  (S)  and  the downscaled 

SM  (D)  retrievals  in this paper as  
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 ∑𝑖=𝑛   

    √ (𝑆 −𝐷 )2

𝑅𝑀𝑆𝐷 = 𝑖=1 𝑖 𝑖
                                                                                                         (18) 

𝑛  

𝑖=𝑛  ∑
 

(𝑆𝑖−𝑆)(𝐷𝑖−�̅�
 

)
𝑟 =1

𝑆,𝐷  = 𝑖                                                                                                (19)  
 √∑𝑖=𝑛 2  ∑𝑖=𝑛    (𝑆𝑖=1 𝑖−𝑆) (𝐷𝑖=1 𝑖−𝐷)2

281 

̅
282 

̅

283 4  Validation  of Downscaling Methods  

Comprehensive assessments on advantages and disadvantages of the above  approaches were 

conducted based on agreement statistics with the quality controlled SCAN  SM  measurements.  

With respect  to the SCAN  observations, Figure 1 shows correlations coefficients  (r) for 25 km  

SMAPV5 and l km  UCLA_DTR SM  data  during the 3 May 2017 to 30 April 2019 period.  

Overall,  the UCLA_DTR 1 km  SM  presents a  similar pattern with  the original 25  km  SMAP. 

Both SMAPV5 and  UCLA_DTR  present  a good agreement with in situ observations  on the  

CONUS domain  except  for few  scattered  stations in the Great  Plaints and northeastern area. 

With respect  to the quality controlled in situ SM measurements, the SMAPV5  exhibited stronger  

correlations  (r>0.70)  at 41.5% SCAN sites, which increased slightly  to 42.6% by the  

UCLA_DTR.  

-------------------------------------------------- 

Please Insert Figure  1 here.  

-------------------------------------------------- 

Figure 2 shows differences in correlation coefficients  between the SMAPV5  and 1 km  SMAP 

SM estimations over the  3 May 2017- 30 April  2019 period.  Sites  in  blue colors  indicate  that the  

downscaled 1 km  SMAP SM had a stronger agreement with SCAN  measurements, whereas  in 

red  colors  mean  that  the SMAPV5 performed  better.  Overall, both TRIA  and VTCI methods  

presented  modest  performance in comparison with the  SMAPV5,  while the situation  was  
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302 markedly  improved by the UCLA  approach. Over  the UCLA_DAY and UCLA_NIGHT cases,  

the UCLA_DTR  was  more  successful in  respecting  the dynamic  trends of the SCAN 

measurements. Specifically,  relative to  the  SMAPV5 (r=0.642), the CONUS domain-averaged 

correlation coefficients  were reduced by 0.06 (9.4% reduction  versus SMAPV5), 0.058 (9.0%  

reduction), and 0.046 (7.2% reduction) by the VTCI_DAY, VTCI_NIGHT  and VICI_DTR, 

respectively  (Table 1). Similarly, the TRIA  method  showed a humble behavior  with the CONUS  

domain-averaged correlation coefficients  spanning  from  0.576 to 0.582.  With benefits of  day-

time,  night-time and diurnal VIIRS LST  information, the CONUS domain-averaged correlation  

coefficients  for the corresponding UCLA downscaling schemes  were 0.640, 0.632 and 0.642,  

respectively.  The  UCLA_DTR showed  the strongest  consistency  with the SCAN observations in 

the nine downscaling  schemes, being  also the only  one that  is comparable to the 25 km  

SMAPV5.  

-------------------------------------------------- 

Please Insert Figure  2  here.  

-------------------------------------------------- 

 The original 25 km  SMAP SM data  product presented  reasonable  uncertainties  

(RMSE≤0.1m3/m3)  in  the  mid-western  CONUS, while having a modest  performance  in the 

eastern  area  which  is covered by  dense vegetation (Figure 3a).UCLA_DTR showed a relatively 

better performance with respect to  the quality controlled in situ observations  (Figure 3b). 

Compared to SMAPV5,  the 1 km  SM on basis of UCLA_DTR downscaling strategy exhibited 

lower  RMSEs,  not only  in the sparsely vegetated west areas  but also in  the densely vegetated 

Mississippi river region (Figure 4f). Statistical  results  demonstrate  that  the original 25  km  SMAP  

SM had a performance of  RMSE≤0.05m 3/m3  at  22.3% of SCAN sites, while the UCLA_DTR  
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325 archived this  at 28.4% of sites  (6.1% increase versus SMAPV5). Meanwhile, the SMAPV5  SM  

showed reasonable performance (RMSE≤0.1m3/m3) at 74.3%  SCAN  sites, which can be  

increased to 79.1% (4.8% increase versus SMAPV5)  by the  UCLA_DTR  1 km SM.    

-------------------------------------------------- 

Please Insert Figure  3  here.  

-------------------------------------------------- 

With respect to the quality controlled SCAN  SM  observations, Figure  4  exhibits  differences  

in RMSE  between the original SMAPV5 and the downscaled  1 km  SMAP  soil  moisture  

estimations from  3  May 2017 to 30 April  2019 period.  Relative to the original SMAP, the TRIA-

based  1 km  SMAP exhibited  larger errors in the eastern  CONUS  and the western  mountain areas  

(Figure 4).  The VTCI-based 1 km  SM was found  to be  comparable to  SMAPV5  in the mid-west  

CONUS, but presented  a modest  performance in the densely vegetated areas  (Figure 4).  

However,  compared to SMAPV5,  the uncertainties  were clearly reduced by the UCLA  

downscaling  schemes  not only in the western  mountain areas  but also in the densely vegetated  

eastern  CONUS. Specifically,  compared to SMAPV5  (0.089  m 3/m3), the CONUS domain-

averaged  RMSEs were increased by  0.008 m 3/m3  (9.0%  increase  versus SMAPV5), 0.008 m 3/m3  

(9.0% increase)  and 0.002 m 3/m3  (2.3% increase)  by VTCI_DAY, VTCI_NIGHT and  

VICI_DTR,  respectively (Table 2).  Similarly,  over  the  25 km  SMAPV5, the CONUS domain-

averaged  errors  were increased by  0.002 m 3/m3  (2.3% increase  versus SMAPV5) and  0.003  

m 3/m3  (3.4% increase) by VTCI_DAY and VTCI_NIGHT, respectively,  while reduced by 0.003 

m 3/m3  (3.4% reduction) by VTCI_DTR. Relative  to the 25 km  SMAP, the UCLA  method 

showed  a better performance with the CONUS domain-averaged RMSEs reduced by 0.05 m 3/m3  
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347 (5.6%  reduction  versus SMAPV5), 0.03 m 3/m3  (3.4% reduction) and 0.07 m 3/m3  (7.9% 

reduction) by UCLA_DAY, UCLA_NIGHT and UCLA_DTR, respectively.  

-------------------------------------------------- 

Please Insert Figure  4  here.  

-------------------------------------------------- 

After  the radar stopped  operation,  the SMAP SM data  product had  been continuously  

generated with the radiometer (Yin et al., 2018).  The SMAP is expected to archive accurate SM  

with the expected performance that  ubRMSE  is less than 0.04 m 3/m3  (Chan et al., 2016;  

Colliander  et al., 2017). With respect to the quality controlled  SCAN  measurements, the  original  

25 km  SMAP  SM meets  the requirement  well  in  the mid-western  and southeastern  CONUS, 

whereas  larger  ubRMSEs  can be  found  in the Mississippi river and northeastern  areas (Figure  

5a). Relatively, the  UCLA_DTR shows a consistently successful behavior on the CONUS  

domain (Figure 5b). Specifically,  statistical results document that  SMAPV5  showed a 

performance  of ubRMSE≤0.04 m 3/m3at 21.6% of SCAN sites,  which increased to 31.8% (10.2% 

increase versus SMAPV5)  by the  UCLA_DTR. Validation results also show  that  SMAPV5  

exhibited a  good performance (ubRMSE less than 0.05 m 3/m3) at 49.3% SCAN  sites, while the 

UCLA_DTR performs reasonably  at 61.8%  (12.5% increase versus SMAPV5)  of  SCAN sites.    

-------------------------------------------------- 

Please Insert Figure  5  here.  

-------------------------------------------------- 

Statistical  results document that  the CONUS domain-averaged ubRMSE for SMAPV5  was 

0.054 m 3/m3 , which increased by 0.006 m 3/m3  (11.1%  increase  versus SMAPV5), 0.005 m 3/m3  

(9.3% increase), 0.008 m 3/m3  (14.8% increase),  0.009 m 3/m3  (16.7% increase) and 0.006 m 3/m3  
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370 (11.1%  increase)  by  VTCI_DAY, VTCI_NIGHT, TRIA_DAY, TRIA_NIGHT and  TRIA_DTR, 

respectively  (Figure 6). However,  compared to the 25 km  SMAP, UCLA_DAY, UCLA_NIGHT 

and UCLA_DTR exhibited  better performance  with reduced  ubRMSEs by 0.003 m 3/m3  (5.7% 

reduction), 0.001 m 3/m3  (1.9% reduction) and 0.004 m 3/m3  (7.4%  reduction), respectively (Table  

2).  

-------------------------------------------------- 

Please Insert Figure  6  here.  

-------------------------------------------------- 

-------------------------------------------------- 

Please Insert Table  2  here.  

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 --------------------------------------------------

381 5  Complementary Evaluations with Comparing with SPL2SMAP  

The downscaled 1 km  SMAP SM based on the  UCLA_DTR method was upscaled to 3 km  

spatial resolution (UCLA_DTRup) to match the grid of the 3 km  SPL2SMAP  SM data  product.  

Figure 7  shows the UCLA_DTRup  versus the SPL2SMAP SM over  the  CONUS domain from  1  

May 2017 to 30 April  2019. The correlation coefficient r  value  is 0.834, which implies  that  

variation trends between UCLA_DTRup  and SPL2SMAP  SM match well. However, the large  

RMSD  value  (0.071 m 3/m3) indicates that  their  differences are  remarkable. In particular, it  can 

be found  that  the UCLA_DTRup  and SPL2SMAP  match  well  in dry (SM less than 0.2 m 3/m3) 

areas.  However, wetter patterns  of SPL2SMAP  in the wet areas  led to  the lower sample density  

area with shading in the blue color departing from  the ideal regression curve. The situation was  

significantly  improved when  the 3  km  SPL2SMAP  was quality controlled by  excluding  the  

measurements outside of the physically possible range (SM greater  than 0.50  m 3/m3). After  

quality control, the UCLA_DTRup  showed  a robust  agreement with the SPL2SMAP  with the 
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394 regression curve  shifting toward the perfectly matched line. Benefits of the quality  control  are 

also seen by  improvements in r  value from  0.834 to 0.845, and  the RMSD  from  0.071  m 3/m3  to  

0.057 m 3/m3 .  

-------------------------------------------------- 

Please Insert Figure  7  here.  

-------------------------------------------------- 

Based on the quality controlled SCAN  measurements, validations  on SPL2SMAP  and  

UCLA_DTRup  3 km  SM estimations  were conducted on the CONUS domain  (Figure 8). The 

SPL2SMAP  is well consistent  with the SCAN  observations  in the middle-southern  and north-

western  CONUS, while having  a  modest  performance in the western-mountain  and central-

eastern  areas  (Figure 8a).  However,  the UCLA_DTRup  presents  a much stronger agreement with  

in situ observations over the entire CONUS domain except in the middle-southern  region.  

Specifically,  statistical  results  indicate that  SPL2SMAP  had  r>0.5 at 67.8% SCAN sites, while  

UCLA_DTRup  had  reasonable behavior r>0.5 at 78.5%  stations (10.7% increase  versus  

SPL2SMAP). The CONUS domain-averaged correlation coefficient  for the SPL2SMAP  was  

0.532, which increased to 0.620 (16.5%  increase versus SPL2SMAP)  by the UCLA_DTRup  

(Figure 8b).  

Regarding the  uncertainties,  SPL2SMAP  showed  a strong gradient of lower RMSEs in the  

west to higher errors in the east  (Figure 8c). Compared to the SPL2SMAP, the UCLA_DTRup  

typically exhibited  a better performance in densely vegetated areas and a comparable  behavior in  

sparsely vegetated regions. Specifically, UCLA_DTRup  showed  reasonable uncertainties  

(RMSE ≤0.1 m 3/m3) at 75.2% of SCAN sit es, yet it  is declined to 65.3% by the SPL2SMAP. The  

CONUS domain-averaged RMSE  for  the NASA  3 km  SMAP  was 0.0975  m 3/m3 , which was  
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417 reduced by 0.014  m 3/m3  (14.4%  reduction  versus SPL2SMAP) by the UCLA_DTRup  (Figure 

8d).  

Additionally, the SPL2SMAP  showed lower  ubRMSEs in the western and south-eastern  

CONUS, whereas a modest  performance  was found  in the Mississippi River  and the north-

eastern areas (Figure 8e). Particularly, the 3 km  SMAP  met the target of the SMAP  mission  

(ubRMSE less than 0.04 m 3/m3) at 17.4% SCAN sites, while  dramatically increasing to 34.7%  

(17.3%  increase versus SPL2SMAP) by the  UCLA_DTRup. Besides, the SPL2SMAP  

documented a reasonable performance (ubRMSE less than 0.05  m 3/m3) at 38.8% stations, raising 

to 62.8%  (24.0% increase versus SPL2SMAP) by the UCLA_DTRup  (Figure 8e). The CONUS 

domain-averaged ubRMSEs for SPL2SMAP  and UCLA_DTRup were 0.065 m 3/m3  and 0.049  

m 3/m3  (32.7% reduction  versus SPL2SMAP), respectively.  

With respect to  the quality controlled SCAN  SM measurements, validation metrics including 

correlation coefficients,  RMSE  and ubRMSE  showed that the UCLA_DTRup had an  

overwhelming  advantage over  the 3 km  NASA  SPL2SMAP  SM product,  with significantly  

decreased uncertainties and raised  the agreement with  in  situ observations. To  inter-compare 

SPL2SMAP  and the downscaled SM estimations in a fair way, the  UCLA_DTR was upscaled to  

3 km  spatial resolution, but it  can’t   overshadow   the better  performance of the downscaled 1 km 

SM. Given UCLA_DTR 1 km  SM presents a much better behavior (Table 2) in comparison with  

UCLA_DTRup, the statistical results  can certainly mirror the developed 1 km  SMAP data  

product on the basis that the  UCLA_DTR  method may achieve accurate fine spatial resolution 

SM.  
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439 -------------------------------------------------- 

Please Insert Figure  8  here.  

-------------------------------------------------- 

Data availability is defined as the fraction of available day  number  for  each land grid over 

total day number  during the study period (Yin et al., 2019a). On the CONUS  domain, the 

longitude-averaged data  availability  (LDA) for the original 25 km  SMAP presented  a strong 

west-east gradient  with 70% longitude-averaged  data  availability (LDA) in the western  regions  

and 50%  LDA in the densely  vegetated eastern  area  (Figure  9).  Based on fine resolution C-band  

Sentinel-1 backscatters, SMAP Tb  was  downscaled to generated the 3  km  SMAP  SM data.  

Revisit time for Sentinel-1 is 12-day,  but the combination of Sentinel-1A and -1B offers  a 6-day  

repeat cycle. The low revisit rate of Sentinel-1 leads to  small  LDA spanning  from  10% to 15%  

for  the SPL2SMAP  SM  product (Figure 9).  Compared to the  NASA  3  km  SMAP, the LDA  can 

be significantly  improved by the downscaled 1 km  SM data. In the eastern  CONUS, LDA for the 

1 km  SMAP was around 20%, while reaching  to 45% in the western  CONUS. The low LDA  for  

the UCLA_DTR  1 km  in the eastern  areas is not only  resulted  from  the strong west-east LDA 

gradient of the original coarse  resolution SMAP,  but also affected by the larger cloud cover in  

the eastern  wetter  areas.  

-------------------------------------------------- 

Please Insert Figure  9  here.  

-------------------------------------------------- 
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459 6  Operational Pathway  

Building on  the satellite  LST  and EVI measurements, the UCLA_DTR-based 1 km  SMAP  

SM  had the best  performance  out of the 9 downscaling schemes tested with  respect to the quality  
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462 controlled  SCAN  observations. The strong station-to-station and year-to-year  consistency of the 

results shown in Sections  4  and 5  document that  the validations are  qualitatively stable and  

should be representative of a longer  analysis  period, permitting operational production of the  

NRT  1  km  SMAP SM at NOAA-STAR using  the UCLA_DTR method.  Since the LST  and VI  

products are  available daily only, the 1  km  SM product can only be  generated daily with a 

latency limited by the SMAP TB.  The NASA official SMAPV5  SM product used  for  this study  

allowed  the 1 km  and  the NASA 3 km  SPL2SMAP  SM  data  to be inter-compared in a fair way.  

NOAA-STAR has developed the NRT 25 km  SMAP SM  with about 2-hour latency, which is 

much shorter than  the  official SMAP data product at NASA (Zhan et al., 2016).  

The 1 km  SMAP SM algorithm  consists of the following major  functions  as Figure  10: 1) a 

pre-processing function is designed to  ingest  the required input data including  1 km  VIIRS LST 

and EVI  retrievals, as well as  the SMAP SM data. The process is  stopped if any validity or 

quality assessment is invalid. 2) The NRT branch runs  when  the NOAA-STAR  NRT SMAP is  

available. The NRT daily 1 km  SMAP SM data  will be produced  using  the  UCLA_DTR 

downscaling  strategy if  the current  processing  time is the end  of the day.  Based on quality  

assessments  of the input data, quality  flag bits are generated grid-by-grid   with “0” indicating bad 

and “1” representing good. 3) Daily metadata  and quality  flag layers  are  produced and the 

corresponding status report file  generated, and then the NRT daily 1 km  SMAP SM product is  

delivered  to  operational users. 4) The  NASA  official SMAPV5  is expected to have  the highest 

quality compared  to other coarse resolution radiometer SM retrievals.  Thus, an archive run is 

activated to  produce  a  daily 1 km  SMAP SM product for archiving  after 48-hour  using  the  

SMAPV5. Similarly, quality flag bits are  also generated grid-by-grid with “0” indicating bad and   
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484 “1” representing good.   The daily  archived  1  km  SMAP  SM product is then delivered  to  

operational users.  

-------------------------------------------------- 

Please Insert Figure  10  here.  

-------------------------------------------------- 

Figure 11  shows sample maps for SMAPV5 25 km  and the downloaded 1 km  SMAP SM  

retrievals over the sub-region from  -118˚E, 37.5˚N to 115˚E, 39˚N on August 3, 2018. The 1 km  

and 25 km  SMAP SM maps display quite similar wet and  dry patterns over  the sub-region  

domain. The original 25 km  SMAP SM shows a strong west-to-east gradient  over the sub-region,  

which can be well captured by the downscaled 1  km  SM. As expected, the UCLA_DTR 1 km  

SM presents much more  spatial detail, which  may highlight the advantages of the 1  km  SMAP  

SM.  

-------------------------------------------------- 

Please Insert Figure  11  here.  

-------------------------------------------------- 
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499 7  Conclusions  

Based on satellite LST  and EVI  observations, a  fine scale SMAP soil  moisture data product 

was developed to meet  the requirements  of regional  meteorological, hydrological and  

agricultural applications.  The advantages of the downscaling technique  include  simplicity,  

feasibility of operational  implementation,  pure  reliance  on remote sensing  measurements, 

computationally fast  and  limited ancillary information requirements.  With respect  to  the quality 

controlled SCAN  observations, the UCLA_DTR method showed the most successful  

performance out of the 9 downscaling schemes,  raising correlation  coefficients  and decreasing  
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507 uncertainties. Compared to the original coarse spatial resolution SMAP, the downscaled 1 km  

SM data product presents much more  spatial details.  As expected,  the  accuracy level is 

significantly improved with the advance of  the fine scale  satellite SM measurements.   

Compared to the  NASA 3 km  SMAP/Sentinel  product, the accuracy level was  significantly 

improved. The downscaled 1 km  SMAP SM data  product also provides larger data availability, 

although the VIIRS observations  used as ancillary information can be affected by  cloud 

coverage.  Building on  the results shown in this paper, a near  real time 1 km  SMAP  SM data  

product is proposed to be  developed  at NOAA-NESDIS  (National Environmental Satellite, Data, 

and Information Service)-STAR.  
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Table  1 Summary  of the commonly used L-Band downscaling  methods  during the 2015-2019 

period. Abbreviations  LST, NDVI, EVI and NDWI  indicate land surface temperature,  

normalized difference vegetation index, enhanced vegetation index and normalized difference  

water  index, respectively. Abbreviations DISPATCH, ALEXI and WGEW  are  DISaggregation  

based on Physical And  Theoretical scale CHange, Atmospheric Land  EXchange Inverse  and 

Walnut  Gulch Experimental Watershed, respectively.  

 

 

 

 

 

 

 

       

 

 

 

  

 

 
 

 
   

 

 

  

 

 

  

 

  

 

  

 

 

 

 

 

  

 

  

 

 

 

  

 

  

 

 

 

 

  

 

 

 

 
 

 

 

  
 

 

 

 

 
 

  
 

 

 

 

  
  

 

 

 

 

 

 

 

 

 

 
 

 

 

  

 

 

  

 

  

 

 

 

 

 
 

  
  

  

 
 

 
  

 

 
 

  

 

  

  

703 

704 

705 

706 

707 

708 

709 

710 

711 

Method Ancillary Info Study Region Climate Study Period Accuracy Reference 

Simplified 

water-cloud 

model 

Sentinel-1A SAR backscatter 

Southern 

Ontario, 

Canada 

Semiarid 
May and July 

of 2016 
ubRMSE=0.05 m 3/m3 Li et al., 2018 

Regression 

tree model 

LST, long-term in situ SM, 

NDVI, land cover and soil texture 

Goulburn 

River 

catchment, 

Australia 

Semiarid 2015-2016 

Enhanced  9 km: 

ubRMSE=0.07 m 3/m3 

Enhanced 25 km: 

ubRMSE=0.05 m 3/m3 

Senanayake et 

al., 2019 

Ensemble 

Learning 

Method 

NDVI, LST, precipitation, 

elevation, soil texture, and in situ 

SM 

CONUS ‒

1 April 2015 

~31 December 

2015 

ubRMSE= 0.047 

m 3/m3 for SCAN, 

ubRMSE= 0.040 

m 3/m3 for USCRN, 

Abbaszadeh et 

al., 2019 

Random 

Forest 

Regression 

Thermal 

Inertia Theory 

LST, LAI, NDVI, EVI, Albedo, 

NDWI, Elevation, slope, and 

aspect 

NDVI, Model surface skin 

Temperature and 0-10 cm SM, 

LST 

Iberian 

Peninsula 

WGEW, 

Arizona, USA 

Semiarid 

Semiarid 

April 1 2015 

to December 

31, 2016 

August 2015 

ubRMSE=0.022 m 3/m3 

ubRMSE=0.009~0.02 

m3/m3 

Zhao et al., 

2018 

Fang et al., 

2018 

Neural-

network 

Monthly NDVI, topographic 

index 
Global ‒

1 April 2015 

until 31 March 

2017 

ubRMSE=0.065 

m3/m3 

Alemohammad 

et al., 2018 

second-order 

polynomial 

regression 

formula 

Night LST, and EVI 
WGEW, 

Arizona, USA 
Semiarid 

April 1, 2015 

~ October 4, 

2016 

ubRMSE=0.42~0.046 

m 3/m3 for SMOS and 

ubRMSE=0.036~0.037 

m 3/m3 for SMAP 

Knipper et al., 

2018 

soil 

evaporative 

efficiency-Soil 

Moisture 

NDVI, LST 
Southern 

Arizona, USA 
Semiarid August 2015 

ubRMSE=0.035 m 3/m3 Colliander et 

al., 2017 

relationship 

DISPATCH 
Model temperature, elevation, 

ALEXI evaporation 
CONUS ‒

Apr 2015–Nov 

2016 
0.062 to 0.064 m 3/m3 Mishra et al., 

2018 
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 721 

714 

715 

716 

717 Table  2  Summary  of the statistical comparison results  when averaged across the CONUS, 

including correlation coefficient (r), RMSE  (m3/m3), and ubRMSE  (m3/m3). Italic bold indicates  

the optimal metric, while the abbreviations DAY, NIGHT and DTR means fusion schemes using  

day-time LST, night-time LST  and day-night LST difference, respectively.  
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Metrics   SMAPV5 
 VTCI  UCLA  TRIA 

 DAY  NIGHT  DTR  DAY  NIGHT  DTR  DAY  NIGHT  DTR 

 R 

 RMSE 

ubRMSE  

 0.642 

 0.089 

 0.054 

 0.582 

 0.091 

 0.060 

 0.584 

 0.092 

 0.059 

 0.596 

 0.086 

 0.054 

 0.640 

 0.084 

 0.051 

 0.632 

 0.086 

 0.053 

 0.642 

 0.082 

 0.049 

 0.576 

 0.097 

 0.062 

 0.574 

 0.097 

 0.063 

 0.582 

 0.091 

 0.060 
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