
Characterizing unforced multi-decadal variability of ENSO: 

A case study with the GFDL CM2.1 coupled GCM 

1	
  
2	
  

 3	
  
 4	
  

A. R. Atwood1*, D. S. Battisti2, A. T. Wittenberg3, W. H. G. Roberts4, D. J. Vimont5 5	
  
 6	
  
 

1UC Berkeley, Geography Dept., Berkeley, CA 94709, USA 

2 University of Washington, Dept. of Atmospheric Sciences, Seattle, WA 98195, USA 

3 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 

4 School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK 

5University of Wisconsin-Madison, Atmospheric and Oceanic Sciences Dept., Madison, WI 53705, USA 

 

7	
  
8	
  
9	
  
10	
  
11	
  
12	
  
13	
  

 14	
  
* Corresponding author. Tel: +1 206-694-3143; fax:  +1 206-6853351 

E-mail address: aatwood@berkeley.edu (Alyssa Atwood). 

15	
  
16	
  

 17	
  
 18	
  
 19	
  

 20	
  
 21	
  
Acknowledgements 

This material is based upon work supported by the National Science Foundation Graduate Research 

Fellowship Program, the Department of Energy Global Change Education Program and the National 

Oceanic and Atmospheric Administration Climate and Global Change Postdoctoral Program under 

fellowships to A. Atwood. Support was provided to D. S. Battisti by the Tamaki Foundation. We thank C. 

Thompson and J. Leloup for their LOAM code and T. Russon for useful discussions that improved this 

manuscript.  

22	
  
23	
  
24	
  
25	
  
26	
  
27	
  
28	
  

http://www.editorialmanager.com/cldy/download.aspx?id=280055&guid=8d5b8ea5-6608-4aad-83ba-cdde23e770a7&scheme=1
http://www.editorialmanager.com/cldy/download.aspx?id=280055&guid=8d5b8ea5-6608-4aad-83ba-cdde23e770a7&scheme=1


	

	 	

 	
 	

        	
          	

           	
          	

        	
        	

            	
   	

       	
        	

     	
         	

        	
         	

            	
  	

       	
        	

          	
            	

        	
    	

 	
      	

 

 

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

ABSTRACT 

Large multi-decadal fluctuations of El Nino-Southern Oscillation (ENSO) variability simulated in a 4,000-

year pre-industrial control run of GFDL CM2.1 have received considerable attention due to implications for 

constraining the causes of past and future changes in ENSO. We evaluated the mechanisms of this low-

frequency ENSO modulation through analysis of the extreme epochs of CM2.1 as well as through the use 

of a linearized intermediate-complexity model of the tropical Pacific, which produces reasonable 

emulations of observed ENSO variability. We demonstrate that the low-frequency ENSO modulation can 

be represented by the simplest model of a linear, stationary process, even in the highly nonlinear CM2.1. 

These results indicate that CM2.1’s ENSO modulation is driven by transient processes that operate at time 

scales that are interannual or shorter. Nonlinearities and/or multiplicative noise in CM2.1 likely exaggerate 

the ENSO modulation by contributing to the overly active ENSO variability. In contrast, simulations with 

the linear model demonstrate that intrinsically-generated tropical Pacific decadal mean state changes do not 

contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state changes actually serve 

to damp the intrinsically-generated ENSO modulation, primarily by stabilizing the ENSO mode during 

strong-ENSO epochs. Like most coupled General Circulation Models, CM2.1 suffers from large biases in 

its ENSO simulation, including ENSO variance that is nearly twice that seen in the last 50 years of 

observations. We find that CM2.1’s overly strong ENSO variance directly contributes to its strong multi-

decadal modulation through broadening the distribution of epochal variance, which increases like the 

square of the long-term variance. These results suggest that the true spectrum of unforced ENSO 

modulation is likely substantially narrower than that in CM2.1. However, relative changes in ENSO 

modulation are similar between CM2.1, the linear model tuned to CM2.1, and the linear model tuned to 

observations, underscoring previous findings that relative changes in ENSO variance can robustly be 

compared across models and observations. 

Keywords: ENSO; multi-decadal variability; GFDL CM2.1; linearized model; nonlinear feedbacks 
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1. Introduction 

The decadal- and longer-scale modulation of ENSO is a critical element of past and future climate 

variations, yet it is poorly constrained by the short observational record (Capotondi et al., 2015; 

Wittenberg, 2015). ENSO variability is thought to have exhibited large changes over the Holocene (Cobb et 

al., 2013; Koutavas et al., 2006; McGregor et al., 2013; Tudhope et al., 2001), however it is not yet known 

to what extent these variations are forced, versus inherent to a noisy coupled ocean-atmosphere system. 

This uncertainty arises in part from poor observational constraints on the unforced intrinsic component of 

ENSO modulation on multi-decadal and longer timescales. 

Given the short observational record of tropical Pacific climate variability, long unforced 

simulations of the climate system with fully coupled General Circulation Models (GCMs) are helpful for 

investigating ENSO variability on decadal and longer timescales (Russon et al., 2014; Wittenberg, 2009). A 

4,000 year-long pre-industrial control run of GFDL CM2.1 (Delworth et al., 2006; Wittenberg et al., 2006) 

has been shown to exhibit strong, unforced, largely unpredictable, multi-decadal changes in ENSO 

variability (Karamperidou et al., 2014; Kug et al., 2010; Wittenberg, 2009; Wittenberg et al., 2014), which 

also influence the background climatological state of the tropical Pacific (Ogata et al., 2013). These large 

low-frequency ENSO modulations suggest that in order to detect a forced change in ENSO variability (e.g. 

from paleoclimate proxies or observations), long records are needed. 

However, large ENSO biases prevalent in GCMs obscure the real-world relevance of the tropical 

climate variability obtained from GCM simulations (Guilyardi, in press). GCMs used in the Fourth and 

Fifth Assessment Reports of the Intergovernmental Panel on Climate Change exhibit a wide range of biases 

in their representation of ENSO variability, including biases in the amplitude of variance, spatial pattern of 

SST variability, distribution of ENSO SST anomalies, and seasonal synchronization of ENSO (An and 

Wang, 2000; Bellenger et al., 2014; Capotondi et al., 2015; Graham et al., 2016; Guilyardi et al., 2012a; 

Guilyardi et al., 2012b; Guilyardi et al., 2009), which has resulted in little agreement on how ENSO is 

likely to change in the future (Cai et al., 2014; Chen et al., 2016; Collins et al., 2010; DiNezio et al., 2012; 

Taschetto et al., 2014; Watanabe et al., 2012). The sources of these ENSO biases are largely unknown, but 

likely result partly from mean state biases in the models. In this study, we investigate the sources of the 
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low-frequency ENSO modulation by performing further analyses of ENSO in the CM2.1 control run, 

observations, and that simulated by a linearized intermediate model of the tropical Pacific. Through this 

process, we evaluate the influence of the overly active interannual variability in CM2.1 on the interdecadal 

modulation of ENSO in an effort to improve constraints on the true spectral characteristics of ENSO in 

nature. 

Because the CM2.1 control simulation is unforced, there are essentially four, non mutually 

exclusive, mechanisms that could cause the large multi-decadal ENSO variability: (1) low frequency 

changes in the tropical Pacific mean state, which alter the stability of the ENSO system; (2) low frequency 

changes in stochastic (weather) processes that influence ENSO; (3) random sampling from a stationary, 

linear process; and (4) nonlinear dynamics, including multiplicative noise, in the ENSO system that spreads 

variance over a range of time scales. Using the linear model, we show that linear dynamics acting in 

response to low frequency changes in the tropical Pacific mean state are not the source of low-frequency 

ENSO modulation in CM2.1. While the influence of low frequency changes in stochastic noise is difficult 

to address using the suite of tools employed in this analysis, we demonstrate using the linear model runs, 

CM2.1, and observations that random variations associated with a stationary, linear process are important. 

Our analyses lead us to conclude that the nonlinearities are also inextricably linked to the multi-decadal 

ENSO modulation in CM2.1, and while they do not dramatically broaden the distribution of variance as 

compared to a linear system with equal (i.e. overly active) ENSO variability, they likely shape the 

distribution of absolute ENSO modulation by contributing to the overly active ENSO variability. 

2. Description of the linearized model 

The Linearized Ocean Atmosphere Model (LOAM; Thompson and Battisti, 2000) is a linearized 

variant of the (Zebiak and Cane, 1987) intermediate complexity model of the tropical Pacific, updated to 

include observationally constrained parameter values and observed climatological mean state fields, 

including ocean currents and vertical thermal structure (Thompson, 1998; Roberts, 2007). LOAM is 

constructed as an anomaly model, such that it calculates the anomalies of its state variables about a set of 

prescribed mean states. These mean state variables determine the details of the behavior of ENSO in the 
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model. Because the mean states are explicitly prescribed in the model, it is an ideal tool to investigate how 

changes in these mean states can alter the behavior of ENSO. Indeed it has been shown (Roberts and 

Battisti, 2011; Roberts et al., 2014) that relatively small changes in the mean states can result in relatively 

large changes in the behavior of ENSO. The set of seasonally varying mean fields required by LOAM are 

the SST, near-surface winds, vertical structure of ocean temperature along the equator, upper ocean 

currents and upwelling. To understand what can cause a change in the behavior of ENSO between two 

climate states it is possible to use individual mean states from either climate to isolate, for example, the 

impact of changing the mean wind. The governing equations in LOAM are provided in the Supplementary 

Material (S.1), along with a summary of the constants and tuning parameters used in LOAM (Table S1; 

Fig. S1). 

Briefly, LOAM is comprised of a 1.5-layer ocean model and a two-layer atmosphere model in 

which heating is a function of SST and surface wind convergence (Gill, 1980). The atmosphere is linear, 

and modeled as a single baroclinic mode on an equatorial β-plane, with mechanical and thermodynamic 

damping. In contrast to the (Zebiak and Cane, 1987) model and the (Battisti, 1988) model, the atmospheric 

convergence feedback has been linearized as in (Battisti and Hirst, 1989). The ocean model consists of an 

active upper layer, governed by the linear shallow water equations on an equatorial β-plane, and a 

motionless lower layer. A 50 m deep Ekman layer, assumed to be in steady state with the surface winds, is 

embedded in the active upper layer. The linearized prognostic equation for sea surface temperature (SST) 

includes three-dimensional advection of temperature anomalies by the climatological currents, anomalous 

advection of the climatological temperature, vertical mixing, and a simple parameterization of the surface 

heat flux (Roberts and Battisti, 2011; Thompson, 1998b). The dependent variables for the ocean are: 

meridional and zonal current, thermocline depth, and SST perturbations. The ocean equations are spectrally 

discretized in the meridional direction by projecting them onto Rossby wave space, and discretized in the 

zonal direction using finite differences. The atmosphere and SST equations are projected onto Hermite 

functions in the meridional direction, and are discretized in the zonal direction using finite differences. 

There are three parameters in LOAM that must be tuned using observations or model output, 

which represent processes not resolved by the idealized model. These three tuning coefficients (one in the 

atmosphere, two in the ocean) are described in the Supplementary Material. They are tuned independently 
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for the LOAM simulations with observed mean states and with CM2.1 mean states, as these two systems 

are fundamentally different. However, the tuning parameters are held constant for all subsequent LOAM 

experiments using the various CM2.1 mean states. In effect, we assume that these coefficients represent a 

specific dynamical configuration of the system that is independent of the mean state changes across CM2.1 

epochs. In this way, any changes in ENSO in the linearized model are due solely to changes in the mean 

state fields and not to the tuning parameters. 

Given a prescribed set of seasonally varying climatological mean fields (SST, near-surface winds, 

vertical structure of ocean temperature along the equator, upper ocean currents and upwelling), LOAM 

simulates the anomalies about the mean state. The underlying assumption in LOAM is that the dynamics of 

the coupled system in the tropical Pacific are described by linear physics. The coupled atmosphere-ocean 

variability in the tropical Pacific can then be characterized in terms of the stability, growth rate and 

frequency of the system's Floquet modes (eigenmodes of the cyclo-stationary annual propagator matrix). 

Because the eigenmodes of the coupled system are damped, the model is stochastically forced (as white 

noise in space and time applied to the SST field). Thompson and Battisti (2001) and (Roberts and Battisti, 

2011) demonstrated that LOAM with observed background states supports a leading mode of the coupled 

system that has a similar spatial structure, decay rate, and period to that estimated from observations fit to 

empirical models (Roberts and Battisti, 2011). The leading (slowest-decaying) Floquet mode in LOAM is 

thus referred to as the ENSO mode. Given observed climatological mean states and white noise forcing, 

LOAM produces reasonably realistic tropical Pacific climate variability, as demonstrated by the spatial 

structure and variance explained by the leading EOFs of tropical Pacific SSTAs and the seasonal variance 

and power spectra of SSTAs averaged over the Niño 3 region (5ºS-5ºN, 150ºW-90ºW; Roberts, 2007; 

Roberts and Battisti, 2011). It has also been shown to capture the character of ENSO in GCMs, as well as 

how ENSO can change in the presence of altered mean states (Roberts et al., 2014). 

In the present study, we run LOAM with mean fields prescribed from each of three 40-year epochs 

that were highlighted in Wittenberg (2009), Karamperidou et al. (2014), and Wittenberg et al. (2014), 

characterized by low (Epoch L), medium (Epoch M) and high (Epoch H) ENSO variance in the CM2.1 pre-

industrial control simulation, and investigate the influence of the changes in tropical Pacific mean state on 

ENSO. These runs are referred to as LOAMEPOCH L, LOAM EPOCH M and LOAM EPOCH H, respectively. 
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LOAM was also run with mean states prescribed to be the average over all three of these epochs, hereafter 

referred to as LOAMCM2.1, as well as from observed mean fields, hereafter referred to as LOAMOBS. In 

LOAM OBS, the ocean temperature, currents, upwelling and wind stress fields are taken from the UMD 

Simple Ocean Data Assimilation reanalysis (SODA; Carton and Giese, 2008) for the period 1958–2001, 

and wind fields are taken from the European Centre for Medium-Range Weather Forecast ERA-40 

reanalysis (http://apps.ecmwf.int/datasets/) for the same period. Stochastic forcing in LOAM is applied by 

adding a normally distributed random number to each of the spectrally and spatially discretized SST 

components in the model. The amplitude of the noise forcing is adjusted so that the variance of Niño 3 SST 

anomalies in LOAM equals that from observations, or from a given epoch of the CM2.1 control simulation. 

Specifically, three different estimates of the noise amplitude are used in the LOAM experiments: (i) FM, in 

which the noise amplitude is adjusted so that the Niño 3 variance in LOAM is equal to that during Epoch 

M; (ii) FCM2.1, in which the noise amplitude is adjusted so that the Niño 3 variance in LOAM is equal to that 

over the first 2000 years of the CM2.1 simulation; and (iii) FOBS, in which the noise amplitude is adjusted 

so that the Niño 3 variance in LOAM is equal to that from the observed Niño 3 index. The SST output is 

smoothed with a 1-2-1 filter to reduce the noise, as in Zebiak and Cane (1987) and Thompson (1998). The 

various LOAM simulations implemented in this study are outlined in Table 1, along with their prescribed 

mean states and noise forcings. 

3. Characteristicsof tropical Pacific variability and extreme ENSO epochsin CM2.1 

The GFDL CM2.1 global atmosphere/ocean/land/ice model has been widely recognized as a top-

performing GCM with regard to its simulation of tropical climate variability, and featured prominently in 

the third Coupled Model Intercomparison Project (CMIP3) and the Intergovernmental Panel on Climate 

Change Fourth Assessment Report (Reichler and Kim, 2008; van Oldenborgh et al., 2005; Wittenberg et 

al., 2006). However, like most coupled GCMs, CM2.1 has biases in its ENSO simulation (Wittenberg et al., 

2006). These include excessive ENSO variance (Fig. 5a,c; Fig. 7 (Takahashi and Dewitte, 2016; 

Wittenberg et al., 2006)) and biased spatial patterns of SST variability, including SST variability that 

extends too far west, is too equatorially-confined, and is underestimated in the far equatorial eastern Pacific 
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(Fig. 4a,c). Such ENSO biases are common in GCMs, and are likely tied to tropical Pacific mean state 

biases (Ham et al., 2013), which in CM2.1 include a cold SST bias along the equator, a warm bias along the 

coast of South America, and equatorial easterlies that are too broad zonally and extend too far into the 

western Pacific ((Wittenberg et al., 2006). 

The 4,000 year-long pre-industrial control run of GFDL CM2.1 exhibits large variations in ENSO 

behavior on multi-decadal time scales, which have been the focus of a number of recent studies 

(Karamperidou et al., 2014; Wittenberg, 2009; Wittenberg et al., 2014). In the control run of this model, the 

variance of Niño 3 SSTAs during a given 40-year epoch can vary by over a factor of four (from 0.7 – 3.0 

°C2; Fig. 1). In this paper we focus on three 40-year periods in the CM2.1 control run that were highlighted 

in (Wittenberg, 2009), (Karamperidou et al., 2014), and (Wittenberg et al., 2014), to represent the diversity 

of the model’s ENSO variability. The time series of Niño 3 SSTAs for each period are shown in Fig. 1b-d. 

Years 1151 – 1190 (Epoch L) represent a period of extreme low variability (variance of Niño 3 SSTAs = 

0.7 °C2). Years 531-570 (Epoch M) are characterized by variability that is similar to the mean of the first 

2,000 years (variance of Niño 3 SSTAs = 1.8 C2), with fairly normally-distributed Niño 3 SSTAs that have 

a regular periodicity. Years 1711-1750 (Epoch H) are characterized by numerous intense warm events 

(variance of Niño 3 SSTAs = 3.0 C2) that are farther apart in time and have less regular periodicity than 

those in Epoch M. 

The leading patterns of tropical Pacific SST variability in each epoch are shown in Fig. 2. 

Empirical orthogonal functions (EOFs) 1-3 display roughly similar characteristics across epochs. Notably, 

a lower fraction of the total variance is explained by the first two EOFs in Epoch L relative to the other 

epochs and EOFs 2 and 3 appear to be mixed in Epoch M (their eigenvalues are not distinguishable). Fig. 3 

shows that compared to the long-term variance, the region of maximum variance in Epoch L is reduced and 

shifted east, while that in Epoch H is amplified and shifted west. 

4. ENSO in a linearized intermediate model versusGFDL CM2.1 

As part of our analysis to investigate the sources of the low-frequency ENSO modulation in 

CM2.1, we employ a linearized anomaly model of the tropical Pacific (LOAM). The rationale for this 
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approach is that it has been shown that all but the strongest observed ENSO events are well represented by 

linear dynamics (Penland and Sardeshmukh, 1995; Roberts and Battisti, 2011). Furthermore, comparison of 

the linear model simulations to the fully nonlinear CM2.1 simulation enables a rough partitioning of the 

linear and nonlinear components of ENSO evolution in CM2.1. 

The LOAM simulation with mean fields prescribed from the CM2.1 climatology averaged over all 

120 years of the three epochs (LOAMCM2.1), demonstrates spatial and temporal patterns of tropical Pacific 

SSTA variability that compare well in some aspects to CM2.1, while other features are notably dissimilar 

(Figs. 4-7). Differences include the region of maximum variance, which does not extend as far west in 

LOAMCM2.1 and is broader meridionally and weaker near the eastern boundary than in CM2.1 (c.f. Fig. 

4c,d). In addition, Niño 3 SSTAs in CM2.1 display large asymmetry in the amplitude of warm versus cold 

events (Fig. 5c; Fig. 6), indicating the presence of strong nonlinearities in CM2.1 (Choi et al., 2013 2015). 

In contrast, Niño 3 SSTAs in LOAM are linear by construction (Fig. 5d, Fig. 6). The power spectrum of 

the first 2,000 years of Niño 3 SSTAs in CM2.1, much like the observations, shows a broad spectral peak 

between 2-5 yr (median period 3.4 yr), while the power spectrum in LOAMCM2.1 is much more sharply 

peaked (median period 3.2 yr; Fig. 7). These results suggest that ENSO nonlinearities and/or multiplicative 

noise, which are not included in LOAM, may be important contributors to the temporal and spatial 

structure of ENSO in CM2.1. 

In nature, ENSO is strongly synchronized to the calendar year, with ENSO events tending to peak 

in boreal winter (Fig. 8a). In contrast, ENSO in CM2.1 displays weak seasonality, with Niño 3 SSTA 

variance peaking in boreal summer (Fig. 8c). Given CM2.1 mean states, ENSO in LOAM displays a 

notably distinct seasonality from CM2.1, with variance reaching a minimum in May/June and peaking 

around Sept. (Fig. 8d). The differences in seasonality between LOAMCM2.1 and LOAM tuned to 

observations (LOAMOBS, panels b and d in Fig. 8) are likely related to the biased annual cycle in CM2.1, 

through its influence on the seasonal growth rate of ENSO. In particular, the CM2.1 climatological wind 

field features an overly muted and delayed relaxation of the trades during boreal spring and an 

enhancement of the trades during boreal summer and fall that is too strong and does not persist into the 

winter. The trade wind biases are associated with a stronger semi-annual cycle in the tropical Pacific than is 

observed (Wittenberg, 2009). 
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These results indicate that LOAM is able to capture some, but not all of the important features of 

ENSO behavior in CM2.1. Shortcomings of LOAM include the absence of surface heat flux dependence on 

wind speed (which may account for the difference in SST variability in the western Pacific and in the 

subtropics in CM2.1 versus LOAM; c.f. Fig. 4c,d). In addition, LOAM omits all nonlinear dynamics, 

including nonlinear dependence of atmospheric heating and wind stress anomalies on SST anomalies and 

nonlinear ocean dynamics (Chen et al., 2016; Choi et al., 2013; Takahashi and Dewitte, 2016). However, 

that LOAM has successfully managed to capture many of the fundamental characteristics of observed 

ENSO (Roberts and Battisti, 2011; Thompson and Battisti, 2001) as well as capture changes to ENSO from 

mean state changes in other CGCMs (Roberts et al., 2014) suggests that the inability of LOAM to 

characterize some of the important features of ENSO in CM2.1 is because CM2.1’s ENSO does not  

conform to the assumptions that are in LOAM, e.g. due to the strong nonlinearities in CM2.1. 

Given the success of LOAM in simulating many observed features of ENSO variability, the linear 

model provides an excellent opportunity to contrast the linear components of ENSO evolution with the full 

nonlinear evolution in CM2.1. It also allows investigation of how the mean state contributes to the (linear 

component of the) differences in variance between the L, M, and H epochs. We thus use LOAM to 

evaluate the linear component of the ENSO dynamics, sensitivities, and feedbacks in CM2.1. While this 

linear component is dominant in observations, it appears to be less so in CM2.1. The misfit of LOAM’s  

ENSO to CM2.1’s ENSO is then one measure of the importance of nonlinearities in CM2.1. 

5. Driversof low frequency ENSO modulation in CM2.1 

Because the CM2.1 control simulation is unforced, there are essentially four, non mutually 

exclusive, mechanisms that could cause the large multi-decadal ENSO variability: (1) low frequency 

changes in the tropical Pacific mean state, which alter the stability of the ENSO system; (2) low frequency 

changes in stochastic (weather) processes that influence ENSO; (3) random sampling from a stationary, 

linear process; and (4) nonlinear dynamics, including multiplicative noise, in the ENSO system that spreads 

variance over a range of time scales-- e.g. nonlinear interaction between the annual cycle and internal 
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modes of variability in the tropical Pacific that produce deterministic chaos (see e.g. Timmermann et al., 

2002). We discuss each of these possible mechanisms, below: 

i. Influenceof tropical Pacific mean state changeson ENSO in the linear model 

In their examination of the multi-decadal rectification of ENSO modulation in CM2.1, Ogata et al. 

(2013) demonstrated that mean state changes during the different CM2.1 epochs may be generated by the 

extreme ENSO behavior (that is, they are the residual impact of the ENSO cycles during each epoch), as 

also suggested by (Vimont, 2005), (Wittenberg, 2009), and (Wittenberg et al., 2014). The concept that 

ENSO is highly sensitive to mean state changes in the tropical Pacific has been widely explored and 

demonstrated, typically in studies that invoke intermediate complexity models of varying descriptions 

(Battisti and Hirst, 1989; Dewitte, 2000; Roberts et al., 2014; Wittenberg, 2002; Zebiak and Cane, 1987). It 

has further been suggested that the post-1970’s shift in ENSO characteristics may be related to changes in  

the tropical Pacific background state (An and Wang, 2000). 

We sought to evaluate the impacts of the tropical Pacific mean state changes in CM2.1 on ENSO 

by prescribing the annual cycle of tropical Pacific climatology averaged separately over the three 

representative CM2.1 epochs in LOAM. The differences in annually-averaged tropical Pacific climatology 

among these epochs are shown in Figs. 9 and 10. Progressing from Epoch L to Epoch H, the mean states 

are characterized by weakening of the surface easterly trade winds in the western and central equatorial 

Pacific, warming of the ocean surface and subsurface in the eastern equatorial Pacific, and cooling in the 

western equatorial Pacific (Fig. 9; Fig. 10) -- consistent with the results of Ogata et al. (2013) in their 

examination of the multi-decadal rectification of ENSO modulation in CM2.1. 

When the mean states from the three CM2.1 epochs are prescribed in LOAM, the relative changes 

in the variance of Niño 3 SSTAs in the linear model are opposite to those observed in the CM2.1 

simulation: the variance is lowest in Epoch H and highest in Epoch L (Table 1; Fig. 11). In Epoch H, the 

decreased ENSO variance relative to Epoch M is due to a decrease in the growth rate of the ENSO mode. 

In Epoch L, the increase in variance relative to Epoch M is tied to the increased growth rate of the lower 

order coupled modes (not shown). Collectively, our results lend support to the idea that tropical Pacific 
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mean state changes are not the primary cause of the intrinsically-generated extreme ENSO epochs in the 

CM2.1 control run. 

That the LOAM simulations demonstrate the sensitivity of the linear component of ENSO to 

changes in the tropical Pacific mean state (Table 1), is suggestive of a two-way feedback mechanism 

between low frequency ENSO modulation and tropical Pacific mean state changes in CM2.1, wherein: (1) 

stochastic forcing and nonlinearity produce low frequency ENSO modulation, which rectify into tropical 

Pacific mean state changes due to the ENSO asymmetries in CM2.1; (2) these rectified mean state changes 

then feed back negatively on the ENSO growth rates, thus tempering the ENSO modulation. For example, 

as shown in Ogata et al. (2013), strong-ENSO epochs in CM2.1 weaken the multi-decadal zonal SST 

gradient and zonal winds in the central to western equatorial Pacific (Fig 9c), and thus weaken the zonal tilt 

of the thermocline (Fig 10b). According to the stability analysis performed with LOAM, these mean state 

changes act to stabilize the coupled system and weaken ENSO (Table 1). Along the same lines, weak-

ENSO epochs in CM2.1 strengthen the multi-decadal zonal SST gradient and zonal wind stress in the 

central to western equatorial Pacific (Fig. 9B), and thus strengthen the zonal tilt of the thermocline (Fig. 

10A). The LOAM stability analysis indicates that these mean state changes act to destabilize the lower 

order modes (not shown) and thereby modestly strengthen the ENSO variability (Table 1; Fig. 11). 

Further experiments were performed with LOAM, in which individual components of the mean 

states of Epochs H and L were substituted into the Epoch M simulation. Results from these experiments 

(not shown) indicate two primary mechanisms of increased stability of the coupled system in Epoch H. 

First, the weaker climatological trade winds lead to reduced coupling via the linear dependence of the wind 

stress anomalies on the mean wind speed in LOAM (see Eqn. 18 in Supplemental Material; (see Eqn. 18 in 

Supplemental Material; Battisti and Hirst, 1989). Second, a weaker mean zonal tilt of the equatorial 

thermocline leads to weaker contribution of anomalous upwelling to SST changes (i.e. weakened upwelling 

feedback; see Eqns. 1-3 in the Supplementary Material). Details of these feedback processes can be found 

in (Thompson, 1998a, b) and (Roberts and Battisti, 2011). The primary mechanisms of decreased stability 

of the coupled system in Epoch L are the same as those discussed above, only with opposite sign (e.g. 

stronger climatological winds enhance coupling). 

12 
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There are two caveats to the proposed negative feedback mechanism between the tropical Pacific 

mean state changes and low frequency ENSO modulation in CM2.1. First, nonlinearities in CM2.1 may act 

to compensate for these large “mean state induced” changes in the linear stability, thereby tempering the 

sensitivity of ENSO to mean state changes. Second, because LOAM does not include state-dependent noise 

forcing, any influence that the mean state changes may have on the noise forcing are not considered in this 

analysis. 

ii. Influenceof changes in atmospheric noise on low-frequency ENSO modulation 

The results highlighted in the previous section suggest that mean state changes in the tropical 

Pacific do not explain the periods of extreme ENSO variability in CM2.1 -- suggesting that the ENSO 

modulation in CM2.1 is instead driven by atmospheric noise and/or nonlinear dynamics. These results are 

consistent with the results presented in (Wittenberg et al., 2014), who showed that the occurrence of 

extreme-ENSO epochs in CM2.1 were in fact unpredictable. 

Multi-decadal fluctuations of ENSO variability could arise through low frequency changes in the 

structure and/or amplitude of the atmospheric noise forcing (either internal or external to the tropical 

Pacific), including a multiplicative dependence of westerly wind bursts on the zonal extent of the Pacific 

warm pool (Graham et al., 2016). While an attempt was made to characterize the noise forcing in the three 

CM2.1 epochs using a Linear Inverse Model (LIM; e.g. Penland and Sardeshmukh, 1995), it was concluded 

that 40 years of CM2.1 data was not long enough to robustly constrain the dynamics of the coupled system 

(see S.2 in the Supplemental Material for details). These results are in contrast to those from (Newman et 

al., 2011), in which 42 years was deemed sufficient to constrain a LIM trained on observational data. These 

results again highlight the difference between ENSO in CM2.1 and ENSO in nature -- the LIM fit to 

CM2.1’s strongly-modulated ENSO system is less robust to short epochs than the LIM fit to observations. 

Because of these issues, the possible role of changes in atmospheric noise forcing on CM2.1’s ENSO  

modulation has yet to be evaluated. 

iii. Low-frequency ENSO modulation through randomly sampling a stationary, linear process 

13 



	

	

         	
       	

             	
          	

         	
         	

             	
             	

               	
        	

            	
         	

     	
      	

          	
             	

          	
       	
           	

            	
            	

         	
        	

       	
          	

         	
          	

         	

 

 

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

Independent from any changes in the background climate state or the structure or amplitude of 

atmospheric noise forcing, multi-decadal variations in ENSO variability arise solely due to random 

sampling from a system governed by linear, stationary dynamics. For a stationary, linear process with well-

defined long-term variance, and for epochs that randomly and independently sample the underlying 

distribution of multi-decadal ENSO variance, the probability distribution function (PDF) of epochal 

variance will match that of a 2 distribution (Russon et al., 2014). 

In order to compare a 2 distribution to the ENSO modulation present in CM2.1, the probability 

distribution of ENSO variance (hereafter defined as the variance of Niño 3 SSTAs) in 40-year intervals was 

plotted from the first 2,000 years of the CM2.1 simulation alongside 2 distributions (Fig. 12), calculated 

using Eqns. 1-2, below (from Russon et al., 2014). To further compare CM2.1’s ENSO modulation with  

that of a linear system with additive noise, the 2,000-year LOAM simulation with CM2.1 mean states and 

CM2.1-tuned noise, and the 2,000-year LOAM simulation with observed mean states and observation-

tuned noise were also plotted. 

While one might expect the temporal properties of ENSO in the low-dimensional, linear system in 

LOAM to be notably distinct from the high dimensional, fully nonlinear CM2.1, the distribution of multi-

decadal ENSO variance is notably similar in CM2.1 and the linear model, with the exception of a slightly 

broader distribution in CM2.1. A two-sample Kolmogorov-Smirnov test of the variance histograms 

indicates that the null hypothesis (that the two data sets were drawn from the same distribution) cannot be 

rejected. The correspondence of the CM2.1 histogram with the 2 distribution indicates that ENSO statistics 

even in the highly nonlinear CM2.1 are roughly stationary at multi-decadal time scales. This result is 

consistent with the finding by (Wittenberg, 2009) and (Wittenberg et al., 2014) who showed that the warm 

events in CM2.1 resembled a memory-less interannual process with no decadal-scale predictability. These 

findings demonstrate that the low-frequency ENSO modulation in CM2.1 is driven by transient processes 

that operate at time scales that are interannual or shorter. 

Like most coupled GCMs, CM2.1 has biases in its ENSO simulation (Wittenberg et al., 2006). 

Importantly, these biases include excessive ENSO variance in CM2.1 (Fig. 5a,c; Fig. 7 (Takahashi and 

Dewitte, 2016; Wittenberg et al., 2006)). In order evaluate the influence of this overly strong ENSO 

variance on the low-frequency ENSO modulation, the variance distribution from the LOAM simulation 
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tuned to observations (LOAMOBS + FOBS; red histogram in Fig. 12) was compared to the distribution from 

the LOAM simulation tuned to CM2.1 (LOAMCM2.1 + FCM2.1; black histogram in Fig. 12). The results 

demonstrate that the distribution with weaker ENSO variance (LOAMOBS + FOBS) is much more sharply 

peaked about its respective mean than the distribution with stronger ENSO variance (LOAMCM2.1 + FCM2.1). 

Indeed, the range of multi-decadal variance in CM2.1 (and LOAM tuned to CM2.1) is twice that produced 

by LOAM tuned to observations. 

There is a simple statistical reason for this, which explains how CM2.1’s strong ENSO variance is 

directly related to its strong inter-epoch modulation of ENSO variance (Fig. 12). Given a normal 

distribution with variance σ2, the expected distribution of the sample variance of a random sample of size n 

is 

      

where  is the Chi-square distribution with n-1 degrees of freedom.  can be estimated from: 

 

  
 

      
 

 

where  is a dimensionless factor by which the effective degrees of freedom are reduced relative to the 

number of data points in each interval (here, 480) and is constrained by the autocorrelation of the Nino 3 

SSTA data. The autocorrelation function ( ) is summed over the number of time steps (L) needed to reach 

the first two sign changes in the autocorrelation function (von Storch and Zwiers, 2003; Russon et al., 

2014). Now suppose that ENSO is memoryless beyond a few years -- as in CM2.1, in which the wait times 

between El Niño events are Poisson-distributed at decadal and longer scales (Wittenberg, 2009), with no 

apparent decadal predictability of ENSO amplitude (Wittenberg et al., 2014). Further suppose that the 

Niño 3 SST anomalies have long-term variance σ2, and that each 40-year epoch contains n effectively-

independent samples of the Niño 3 SST anomalies.  The inter-epoch spread of the epochal variance, i.e. the 

variance modulation, would then increase like the square of the long-term variance σ2: 

 

Var  
 

Var    
 

    
 

   
 

In simple terms, a weak memoryless ENSO can only exhibit weak variance, while a strong memoryless 

ENSO can exhibit either strong or weak variance – resulting in much more variance modulation. This 
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disparity is largely removed if the relative change in variance (with respect to the long-term variance) is 

compared instead (Fig. 12b). In this case the empirical distributions are highly similar, and thus a -40 to + 

55% change in ENSO variance in a given 40-year interval (representing 2.5-97.5% of the CM2.1 

distribution) is similarly likely in the CM2.1, LOAMCM2.1 and LOAMOBS simulations. 

To summarize: these results indicate that the distribution of ENSO variance in CM2.1 is 

dramatically broadened with respect to the linear system with ENSO variance tuned to that observed over 

the past 50 years. However, the broad CM2.1 distribution is entirely consistent with the distribution 

expected from a linear system that has excessive ENSO variance. The correspondence of the CM2.1 

histogram with that from the linear model and the 2 distribution indicates that ENSO statistics in CM2.1 

are roughly stationary at multi-decadal time scales, demonstrating that the low-frequency ENSO 

modulation in CM2.1 is driven by transient processes that operate at time scales that are interannual or 

shorter. Taken together, the results from the linear LOAM and nonlinear CM2.1 show that a memory-less 

interannual ENSO, whether linear or highly nonlinear, will generate interdecadal variance modulation that 

resembles a 2 distribution, and that the variance modulation increases sharply as ENSO strengthens. In this 

way, CM2.1’s overly strong ENSO variance directly contributes to its strong multi-decadal modulation. In 

absolute terms, the multi-decadal modulation in CM2.1 is twice that produced by a linear system tuned to 

the ENSO variance observed over the past 50 years. In contrast, the relative changes in ENSO modulation 

are notably similar between the linear and nonlinear models, with the exception of a slightly broader 

distribution in the nonlinear CM2.1. These results underscore the findings of Russon et al. (2014) that only 

relative changes in multi-decadal ENSO variance can robustly be compared across models and 

observations. 

(iv) The influence of nonlinearities on low-frequency ENSO modulation in CM2.1 

While the results presented in Section (iii) demonstrate that the nonlinearities in CM2.1 do not 

dramatically broaden the distribution of variance ascompared to a linear system with equal ENSO 

variability, this does not imply that nonlinearities are entirely unimportant in determining the multi-decadal 

modulation of ENSO. The nonlinearities may in fact be critical to the multi-decadal ENSO modulation by 

contributing to the overly active ENSO variability that causes the enhanced multi-decadal modulation, e.g. 
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441 through  enhancing  the growth  of  strong  El Nino  events  (e.g.  Takahashi and  Dewitte, 2016).1  Additional 

simulations  with  LOAM  suggest  that linear  dynamics operating  on  the biased  CM2.1  mean  states are  not 

the source  of  the overactive ENSO activity  in  CM2.1  (see  S.3  in  the Supplementary  Material)  -- which  in  

turn  further  suggests  that nonlinear  dynamics  and  multiplicative noise likely  play  an  important role in  

driving  the excessive ENSO variance,  and  thus  low-frequency  ENSO modulation,  present in  CM2.1.  

Results  presented  below  indeed  demonstrate that these nonlinearities  are inextricably  linked  to  the low-

frequency  ENSO modulation  in  CM2.1.  

The coupled  ocean-atmosphere system  appears  to  be substantially  more nonlinear  in  CM2.1  than  

has been  observed  over  the past 50  years  (Fig.  13-14).  A  key  nonlinearity  in  CM2.1  is  the response of  the 

central Pacific low-level wind  (and  zonal wind  stress)  anomalies  to  SST  anomalies–   indicative of  the 

Bjerknes feedback  that is central to  the physics of  ENSO (Battisti and  Hirst, 1989).  This  feedback  is  

approximately  linear  for  all but the strongest El Nino  events  in  the observations,  while a highly  nonlinear  

feedback is   present in  CM2.1  (Fig.  13; Fig.  S2). These results  suggest  that the highly  nonlinear  response of  

the atmosphere to  central Pacific SST  anomalies may  be responsible for  the  growth of  strong  El Nino  

events i n  CM2.1.  

Previous  studies have  also  suggested  that the key  nonlinearities relevant to  ENSO in  CM2.1  are in  

the atmosphere (Chen  et al.,  2016; Choi et al.,  2013; Takahashi and  Dewitte, 2016). Possible sources  of  the 

nonlinear  response of  the atmosphere to  SST  anomalies in  CM2.1  may  include  a nonlinear  moisture 

convergence  feedback, changes  in  the character  of  the central Pacific  atmospheric boundary  layer  

associated  with  shifts  in  the edge of  the warm  pool convective region,  the nonlinear  relationship  between  

specific humidity  and  surface air  temperature in  the tropics,  and  state-dependent multiplicative noise 

forcing  (see  S.4  in  the  Supplementary  Material  for  further  discussion; (e.g.  the eastward  shift of  westerly  

wind  events,  as  the warm  pool shifts  eastward  during  the onset of  El Nino  events; Graham  et al.,  2016; 
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1	  However,  it is  also  possible that the strong  nonlinearity  in  CM2.1  is  a symptom,  rather  than  a cause of  its  
strong  ENSO variability.  The strong  climatological cold  tongue in  CM2.1  suggests  that the model has 
overactive ocean-dynamical cooling.  If  this  is  indeed  the case,  hyperactive (but possibly  still linear)  
subsurface ENSO feedbacks  may  be the driver  of  its  higher  amplitude  SSTAs.   In  a model with  a 
climatological equatorial cold  bias (which  shifts  the atmospheric convective zones farther  to  the west and  
farther  off-equator),  those greater  SSTAs  then  produce  a greater  atmospheric nonlinearity  Choi, K.Y.,  
Vecchi, G.A.,  Wittenberg,  A.T.,  2013.  ENSO Transition,  Duration,  and  Amplitude Asymmetries:  Role of  
the Nonlinear  Wind  Stress  Coupling  in  a Conceptual Model.  Journal of  Climate 26,  9462-9476.. 	
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Levine, in press; Vecchi et al., 2006). Each of these nonlinearities may be amplified by the background 

state biases in the Pacific of CM2.1, including an excessive contrast between the off-equatorial 

convergence zones (which are too rainy) and the eastern equatorial cold tongue (over which the atmosphere 

is too clear and dry). This enhanced contrast could strengthen the atmospheric nonlinearity near the 

equator, by giving convection more room to increase during El Nino and less room to decrease during La 

Niña (Chen et al., 2016). Whatever the source(s) of the overly nonlinear Bjerknes feedback in the central 

Pacific in CM2.1, it appears to give rise to larger ENSO events than those yet observed. 

Evidence for an important role of such transient nonlinearities in driving the low-frequency ENSO 

modulation in CM2.1 can be seen by evaluating the SST and wind/windstress anomalies separately for the 

high- and low-variance ENSO epochs. High-variance ENSO epochs in CM2.1 are populated by more 

extreme ENSO events (panels A and B of Fig. 13), which are governed by a highly nonlinear Bjerknes 

feedback in the central Pacific. The threshold behavior of zonal wind and wind stress anomalies in the 

central Pacific during these epochs in response to warm SST anomalies are evidence of this strong 

nonlinearity (Fig. 13b; Fig. 14b; as identified in Takahashi and Dewitte, 2016), as is the large positive 

skewness in central Pacific wind stress anomalies (Fig. 14D) and in eastern Pacific SST anomalies (Fig. 

15D). In contrast, the low-variance epochs are characterized by weaker ENSO events with more linear 

behavior (Fig. 13A,B; panel C of Fig. 14 and 16). From these results we conclude that (1) the physics of the 

coupled ocean-atmosphere system in CM2.1 are close to linear for the weaker ENSO epochs, resembling 

the past 50 years; and (2) CM2.1’s high-variance ENSO epochs (such as Epoch H; Fig. 1D) are generated 

by a collection of stochastically-driven extreme ENSO events that are highly nonlinear. From these 

analyses we conclude that transient nonlinearities or multiplicative noise help drive the low-frequency 

ENSO modulation in CM2.1. This is consistent with previous results showing that CM2.1’s ENSO  

modulation is decadally unpredictable (Wittenberg et al., 2014) and produces rectified effects on the 

decadal mean state (Ogata et al., 2013). 

6. Conclusions 

Large, unforced, multi-decadal changes in ENSO variability have been previously reported from 

the long pre-industrial control run of GFDL CM2.1. We evaluated the possible sources of this low-
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frequency ENSO modulation, by characterizing the extreme ENSO epochs in CM2.1 and employing a 

linearized intermediate-complexity model of the tropical Pacific (LOAM). 

Simulations with the linear model demonstrate that intrinsically-generated tropical Pacific decadal 

mean state changes produced through a rectified nonlinear response to the low frequency ENSO 

modulation do not contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state 

changes actually serve to damp the ENSO modulation, primarily by stabilizing the ENSO mode during 

strong-ENSO epochs. These results point to a possible feedback loop between ENSO and the mean state --

whereby noise and nonlinearities produce extreme ENSO epochs, which are then counteracted by linear 

feedbacks from the mean state. However, it is also possible that in CM2.1, nonlinearities and/or state-

dependent noise forcing give rise to mean state feedbacks that are not predicted by the linear model. 

The presence of low frequency changes in stochastic (weather) processes is difficult to address 

using the suite of tools employed in this analysis and thus its contribution to the low-frequency ENSO 

modulation in CM2.1 has yet to be evaluated. However, we demonstrate (using the linear model runs, 

CM2.1, and observations) that the low-frequency ENSO modulation can be well described by the simplest 

model of a linear, stationary process. These results indicate that even in the highly nonlinear CM2.1, ENSO 

statistics are roughly stationary at multi-decadal time scales (in the absence of external forcings); and the 

intrinsic low-frequency ENSO modulation in CM2.1 is driven by transient processes operating at 

interannual or shorter time scales. One might expect nonlinearities, multiplicative noise, and other physics 

not included in the simple linear model to contribute significantly to the spectral broadening of ENSO, in 

both the observations and CM2.1. However, we show that their effects on the level of ENSO modulation 

appear to be weak, compared to the effects of the strong ENSO variance in CM2.1. 

We demonstrate that nonlinearities are inextricably linked to the multi-decadal ENSO modulation 

in CM2.1. High-variance ENSO epochs in CM2.1 are populated by extreme ENSO events that are 

characterized by a highly nonlinear Bjerknes feedback in the central Pacific; low-variance epochs are 

characterized by weaker ENSO events with more linear behavior. While nonlinearities in CM2.1 do not 

dramatically broaden the distribution of variance compared to a linear system with equal long-term ENSO 

variance, the nonlinearities likely shape the amplitude distribution of ENSO modulation by contributing to 
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an overactive ENSO (e.g. by intensifying strong El Nino events), which then broadens the distribution of 

epochal ENSO variance. 

These results have important implications for understanding the past, present, and future of ENSO. 

Taken at face value, CM2.1’s strong unforced decadal-to-centennial modulation of ENSO would suggest 

that existing observational records might be too short to rule out such modulation in the real world (e.g. a 

factor of four spread in the variance of Niño 3 SSTAs during different 40-year epochs). Therefore, to detect 

a forced change in ENSO variability, e.g. using proxy recorders like Pacific corals to characterize the pre-

instrumental epoch, either the records would have to be long or the change large. However, our results 

suggest that if the past 50 years of observations are representative of the average interannual variance of 

ENSO in the real world, then the true spectrum of unforced ENSO modulation is, in absolute terms, likely 

substantially narrower than that suggested by CM2.1. Forced changes might therefore be detectable using 

relatively short records. However, when relative, rather than absolute, changes in ENSO variance are 

compared, the distributions of variance are remarkably insensitive to the differing ENSO characteristics. 

The statistics of the relative changes in ENSO variance might therefore be extrapolated from the fully 

nonlinear CM2.1 to other systems (e.g. those with less variable and/or more linear ENSOs). 

Lastly, we note that tropical Pacific mean state changes due to future greenhouse gas increases are 

projected to grow substantially larger than the unforced mean state changes seen between the weak-ENSO 

versus strong-ENSO epochs in CM2.1 (Wittenberg, 2015; Xie et al., 2010).  Given projected future climate 

changes in the tropical Pacific, the LOAM-inferred ENSO sensitivity would suggest substantial and 

detectable changes in ENSO that are consistent with actual forced CM2.1 scenarios (Wittenberg, 2015). On 

the other hand, the LOAM-inferred ENSO sensitivity would also suggest that the mean state biases 

prevalent in GCMs could have large impacts on how ENSO responds to forcings -- underscoring the 

critical need to reduce these biases, in order to make reliable projections of the future of ENSO. 
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670  	 Table 1: ENSO characteristics  in  LOAM simulations.  

671 

  LOAM   CM2.1 or 
 obs 

  Run name   Mean state  Variance 
  tuned to 

 Noise forcing 
ampl. (   C) a   CD 

b
Mode 

 period 
 (yr) c 

Mode 
growth 

rate 
 (yr-1) d 

Varian
 in LOA

e  

 ce 
 M 

 Variance 
  in CM2.1 

   or obs e 

 LOAMEPOCH L+ 
 FM 

  Epoch L  -  0.104  1.82E-3  3.2  0.49  2.2  0.7 

  LOAMEPOCH M + 
 FM 

  Epoch M   Epoch M  0.104  1.82E-3  3.0  0.49  1.8  1.8 

  LOAMEPOCH H + 
 FM 

  Epoch H  -  0.104  1.82E-3  3.0  0.43  1.3  3.0 

  LOAMCM2.1 + FM 
 Epoch 

  L,M,H avg  -  0.104  1.82E-3  3.0  0.48  1.8  1.7f 

 LOAMCM2.1 + 
 FCM2.1 

 Epoch 
  L,M,H avg 

 4,000-yr 
 CM2.1  0.102  1.82E-3  3.1  0.48  1.7  1.7f 

 LOAMCM2.1 + 
 FOBS 

 Epoch 
  L,M,H avg  -  0.054  1.82E-3  3.1  0.48  0.5  1.7f 

  LOAMOBS + FOBS  obs  obs  0.054  1.85E-3  2.8  0.44  0.8  0.8 

a The amplitude of  the noise forcing  in  LOAMEPOCH  M was  prescribed  so  that the variance  of  Nino  3  SSTAs  

in  LOAM matched  that in  CM2.1  Epoch  M.  This  same noise  forcing  was used  in  all other  LOAM 

simulations,  aside from  LOAMOBS  + FOBS  and  LOAMCM2.1 + FOBS,  in  which  the  noise amplitude was  

prescribed  based  on  the Niño  3  variance  from  the last 40  years  of  observations.  

b  Atmospheric drag  coefficient  (see  Supplementary  Material).  

c  Period  of  the ENSO mode.  

d  Mode growth  rate,  expressed  as  the fractional change in  the  amplitude of  the ENSO mode over  the course 

of  a year.  Growth  rates less  than  1  indicate  damped  modes.  

e  Variance  of  3-month  running  mean  Nino  3  SSTAs.  

f  Variance  of  Nino  3  SSTAs  across  4,000  years  of  CM2.1  
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Figure Captions 

Fig. 1 Time series of 3-month running mean Niño 3 SSTAs in A) observations (ERSST.v3b, 1971-2010) 

and CM2.1 epochs B) Epoch L, C) Epoch M, and D) Epoch H. The variance of each time series is 

indicated in the top left corner of each panel. 

Fig. 2 Normalized EOF 1-3 of tropical Pacific SSTAs from A-C) detrended observations (ERSST.v3b, 

1971-2010) and CM2.1 epochs D-F) Epoch L, G-I) Epoch M, and J-L) Epoch H. The fraction of total 

SSTA variance captured by each pattern is indicated in the top left corner of each panel. ** EOF 2 and 3 in 

Epoch M are not statistically distinguishable, based on the method of North (1982). 

Fig. 3 Variance of tropical Pacific SSTAs in A) 500 years of the CM2.1 control run and the CM2.1 epochs 

B) Epoch L, C) Epoch M, and D) Epoch H. In subpanels (E-H), the variances are normalized with respect 

to the maximum in each plot. 

Fig. 4 EOF 1 of tropical Pacific SSTAs from A) observations (ERSST.v3b, 1971-2010), B) 200 years of 

LOAM run with observed mean fields, C) 200 years of the CM2.1 control-run simulation, and D) 200 years 

of LOAM run with mean fields from CM2.1 (averaged over Epoch L, M, H). The fraction of total SSTA 

variance captured by EOF 1 is indicated in the top left corner of each panel. 

Fig. 5 3-month running mean Niño 3 SSTAs in A) observations (ERSST.v3b, 1880 – 2010), B) 130 years 

of the 2,000-year LOAM with mean states from observations, C) 130 years of the 4,000-year control run of 

CM2.1, and D) 130 years of the 4,000-year LOAM with mean states from CM2.1 (averaged over Epoch L, 

M, H). The variance of each complete time series is indicated in the top left corner of each panel. Only the 

last 50 years of observational data was used to calculate the variance in panel (A), as only the period from 

1961-2010 was used to tune the LOAMOBS run. 
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Fig. 6 Cumulative probability distributions of Niño 3 SSTAs in detrended observations (black; NOAA 

ERSST v3b, 1880 – 2011 AD), 2,000 years of the CM2.1 control run (red). Gaussian distributions with the 

mean and standard deviation estimated from the data are plotted as dashed lines. The LOAMOBS and 

LOAMCM2.1 curves have been omitted for clarity, but overlay the Gaussian distributions fit to observations 

and CM2.1, respectively. 

Fig. 7 Power spectra of 3-month running mean Niño 3 SSTAs in observations (solid black; NOAA 

ERSST.v3b, 1880 – 2011), the 4,000-year LOAM tuned to observations (dashed black), the 4,000-year 

control run of CM2.1 (solid grey) and the 4,000-year LOAM tuned to CM2.1 (dashed grey). The power 

spectra were computed using a forward Fast Fourier Transform; they preserve variance so that the area 

under the curve equals the variance of the detrended Niño 3 timeseries. 

Fig. 8 Variance of 3-month running mean Niño 3 SSTAs as a function of month in A) observations 

(ERSST.v3b, 1880-2010), B) the 4,000 year LOAM with observed mean states, C) the 4,000 year CM2.1 

control run, and D) the 4,000 year LOAM run with CM2.1 mean states. 

Fig. 9 A) Mean annual tropical Pacific SST and near-surface winds in CM2.1 Epoch M and differences in 

mean surface winds between CM2.1 epochs: B) Epoch L – M; C) Epoch H – M. 

Fig. 10 Differences in mean annual equatorial Pacific upper ocean temperature profiles (colors; averaged 

between 2°S:2°N) in CM2.1 epochs: A) Epoch L - M and B) Epoch H – M. Unfilled contours are the mean 

annual equatorial temperature in Epoch M. The contour interval is 2°C and the bold contour is the 20°C 

isotherm. 

Fig. 11 Variance of Niño 3 SSTAs in LOAM versus CM2.1. The LOAM simulations correspond to 

LOAMEPOCH L + FM, LOAMEPOCH M + FM, LOAMEPOCH H + FM and LOAMCM2.1 + FM in Table 1. The 

diameter of the data points is proportional to the growth rate of the ENSO mode. The dotted 1:1 line is 

plotted for visual reference. 
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Fig. 12 Probability distributions of 40-year variance of Niño 3 SSTAs  bars  plotted with χ2 distributions  

(lines) for the 4,000-year CM2.1 run (black), the 4,000-year LOAMCM2.1+FCM2.1 run (blue), the 4,000-year 

LOAMOBS+FOBS run (red), and the 4,000-year LOAMCM2.1+ FOBS run  green . The χ2 distributions were  

calculated using Eqns. (1)-(2). The grey shaded bar represents the range of observed variance in 40-yr 

intervals across the 20th century and the vertical line represents the observed variance during the period 

1961-2010 (from NOAA ERSST v3b 1961-2010). B) PDFs from subpanel (A) converted into relative 

differences in variance, with respect to the long-term variance in each simulation. 

Fig. 13 Monthly zonal wind stress anomalies in the western Pacific (left column) and central Pacific (right 

column) versus Niño 3 SSTAs in 500 years of the CM2.1 control simulation (top row) or observations 

(bottom row; 1958-2001; SODA zonal windstress and ERSST v3b SST data). The CM2.1 data are divided 

into two subsets- the “high variance epochs” subset contains data from periods in which the 40-year 

running mean variance of Niño 3 SSTAs  2.0 C2, while the “low variance epochs” subset contains data  

from periods in which the 40-year running mean variance of Niño 3 SSTAs  1.0 C2. For the WP data (left 

column) zonal wind anomalies were averaged over the Niño 4 region (160°E:150°W, 5°S:5°N) for 

observations and over 150°E:160°W, 5°S:5°N for CM2.1 (representing the region of peak zonal wind 

anomalies in each data set). For the CP data (right column), the zonal wind anomalies were averaged over 

the Nino 3.4 region (170°W:120°E, 5°S:5°N) for both CM2.1 and observations. 

Fig. 14 Skewness of tropical Pacific zonal wind stress anomalies in A) 500 years of the CM2.1 control 

simulation; B) observations (SODA v2.0.2-4, 1958-2007); C) low variance epochs in CM2.1 and D) high 

variance epochs in CM2.1. The CM2.1 data are divided into two subsets- the “low variance epochs” subset  

(C) contains data from periods in which the 40-year running mean variance of Niño 3 SSTAs  1.0 C2 

while the “high variance epochs” subset (D) contains data from periods in which the 40-year running mean 

variance of Niño 3 SSTAs  2.0 C2. 

Fig. 15 As in Fig. 14, but for SSTAs. Observational data is from ERSST.v3b, for the period 1951-2010. 
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Fig. 1 Time series of 3-month running mean Niño 3 
SSTAs in A) observations (ERSST.v3b, 1971-2010) and 
CM2.1 epochs B) Epoch L, C) Epoch M, and D) Epoch 
H.  The variance of each time series is indicated in the 
top left corner of each panel. 
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Fig. 2 Normalized EOF 1-3 of tropical Pacific SSTAs from A-C) detrended observations (ERSST.v3b, 1971-2010) and CM2.1  
epochs D-F) Epoch L, G-I) Epoch M, and J-L) Epoch H.  The fraction of total SSTA variance captured by each pattern is indicated  
in the top left corner of each panel. ** EOF 2 and 3 in Epoch M are not statistically distinguishable, based on the method of North  
(1982). 
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Fig. 3 Variance of tropical Pacific SSTAs in A) 500 years of the CM2.1 control run and the CM2.1 
epochs B) Epoch L, C) Epoch M, and D) Epoch H. In subpanels (E-H), the variances are normal-
ized with respect to the maximum in each plot. 
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Fig. 4 EOF 1 of tropical Pacific SSTAs from A) observations (ERSST.v3b, 1971-2010), B) 200 
years of LOAM run with observed mean fields, C) 200 years of the CM2.1 control-run 
simulation, and D) 200 years of LOAM run with mean fields from CM2.1 (averaged over 
Epoch L, M, H). The fraction of total SSTA variance captured by EOF 1 is indicated in the top 
left corner of each panel. 
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Fig. 5 3-month running mean Niño 3 SSTAs in A) observations (ERSST.v3b, 1880 – 2010), 
B) 130 years of the 4,000-year LOAM with mean states from observations, C) 130 years of 
the 4,000-year control run of CM2.1, and D) 130 years of the 4,000-year LOAM with mean 
states from CM2.1 (averaged over L, M, H). The variance of each complete time series is 
indicated in the top left corner of each panel. Only the last 50 years of observational data was 
used to calculate the variance in panel (A), as only the period from 1961-2010 was used to 
tune the LOAM

OBS 
 run.
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Fig. 6 Cumulative probability distributions of Niño 3 SST   As 
in detrended observations (black; NOAA  ERSST  v3b, 1880   
– 2011 AD), 2,000 years of the CM2.1 control run (red).        
Gaussian distributions with the  mean and standard    
deviation estimated from the data are plotted as dashed     
lines. The LOAM 

obs 
and LOAM 

CM2.1 
 curves  have been  

omitted for clarity, but perfectly overlay the Guassian   
distributions fit to observations and CM2.1, respectively  . 
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Fig. 7 Power spectra of 3-month running mean Niño 3     
SSTAs in observations (solid black; NOAA ERSST.v3b,  
1880–2011), the 4,000-year LOAM tuned to observa  -
tions (dashed black), the 4,000-year control run of    
CM2.1 (solid grey) and the 4,000-year LOAM tuned to   
CM2.1 (dashed grey). The power spectra were comput  -
ed using a forward Fast Fourier Transform; they  
preserve variance so that the area under the curve    
equals the variance of the detrended Niño 3  timeseries.  



  

 

 
 

  
 

 

J F M A M J J A S O N D  J F M A M J J A S O N D  

A) Obs C) CM2.1 

B) LOAM (obs) D) LOAM (CM2.1) 

J F  M  A  M  J J A  S  O  N  D  J F  M  A  M  J J A  S  O  N  D  

N
iñ

o
 3

V
a

ri
a

n
ce

 (
ºC

2
) 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

N
iñ

o
 3

V
a

ria
n

ce
 (ºC

2) 

Fig. 8  Variance of 3-month running mean Niño 3 SST       As as a function   
of month in A) observations (ERSST.v3b, 1880-2010), B) the 4,000 
year LOAM with observed mean states, C) the 4,000 year CM2.1 
control run, and D) the 4,000 year LOAM run with CM2.1 mean states. 
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Fig. 9  A) Mean annual tropical Pacific SST     and near-surface   
winds in CM2.1 Epoch M and differences in mean surface winds    
between CM2.1 epochs: B) Epoch  L  – M; C) Epoch H – M.       
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Fig. 10 Differences in mean annual equatorial Pacific upper  
ocean temperature profiles (colors; averaged between  
2°S:2°N) in CM2.1 epochs: A) Epoch L - M and B) Epoch H  
– M. Unfilled contours are the mean annual equatorial  
temperature in Epoch M. The contour interval is 2°C and the  
bold contour is the 20°C isotherm.  
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Fig. 11 Variance of Niño 3 SSTAs in LOAM versus CM2.1. 

The LOAM simulations correspond to LOAM + F ,
Epoch L M 

LOAM  + F , LOAM + F and LOAM + F
Epoch M M Epoch H M CM2.1 M 

in Table 1. The diameter of the data points is proportional to 
the growth rate of the ENSO mode. The dotted 1:1 line is 
plotted for visual reference. 
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Fig. 12 A) Probability distributions of 40-year variance of Niño 3 SSTAs (bars) plotted with S2 

distributions (lines) for the 4,000-year CM2.1 run (blue), the 4,000-year LOAM +F run
CM2.1 CM2.1 

(black), the 4,000-year LOAM +F  run (red), and the 4,000-year LOAM +F run
OBS OBS CM2.1 OBS 

(green). The S2 distributions were calculated using Eqns. (1)-(2). The grey shaded bar represents 
the range of observed variance in 40-yr intervals across the 20th century and the vertical line 
represents the observed variance during the period 1961-2010 (from NOAA ERSST v3b 
1961-2010). B) PDFs from subpanel (A) converted into relative differences in variance, with 
respect to the long-term variance in each simulation. 
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Fig. 13 Monthly zonal wind stress anomalies in the western Pacific (left column) and central Pacific 
(right column) versus Niño 3 SSTAs in 500 years of the CM2.1 control simulation (top row) or 
observations (bottom row; 1958-2001; SODA zonal windstress and ERSST v3b SST data). The 
CM2.1 data are divided into two subsets- the “high variance epochs” subset contains data from 
periods in which the 40-year running mean variance of Niño 3 SSTAs S 2.0°C2, while the “low 
variance epochs” subset contains data from periods in which the 40-year running mean variance of 
Niño 3 SSTAs T 1.0°C2. For the WP data (left column) zonal wind anomalies were averaged over the 
Niño 4 region (160°E:150°W, 5°S:5°N) for observations and over 150°E:160°W, 5°S:5°N for CM2.1 
(representing the region of peak zonal wind anomalies in each data set). For the CP data (right 
column), the zonal wind anomalies were averaged over the Nino 3.4 region (170°W:120°E, 5°S:5°N) 
for both CM2.1 and observations. 
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Fig. 14 Skewness of tropical Pacific zonal wind stress anomalies in A) 500 years of the CM2.1 control simulation; B) observa-
tions (SODA v2.0.2-4, 1958-2007); C) low variance epochs in CM2.1 and D) high variance epochs in CM2.1. The CM2.1 data are 
divided into two subsets- the “low variance epochs” subset (C) contains data from periods in which the 40-year running mean 
variance of Niño 3 SSTAs k 1.0°C2 while the “high variance epochs” subset (D) contains data from periods in which the 40-year 
running mean variance of Niño 3 SSTAs l 2.0°C2. 
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Fig. 15 As in Fig. 16, but for SSTAs. Observational data is from ERSST.v3b, for the period 1951-2010. 
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