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Abstract Coupled general circulation models (CGCMs) simulate a diverse range of El Nino-˜
Southern Oscillation (ENSO) behaviors. “Double peaked” El Nino˜  events - where two separate 
centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern 
and western equatorial Pacific - have been evidenced in Coupled Model Intercomparison Project 
version 5 (CMIP5) CGCMs and are without precedent in observations. The characteristic CGCM 
double peaked El Nino˜  may be mistaken for a central Pacific warming event in El Nino˜  compos-
ites, shifted westwards due to the cold tongue bias. In results from the Australian Community 
Climate and Earth System Simulator coupled model, we find that the western Pacific warm 
peak of the double peaked El Nino˜  event emerges due to an excessive westward extension of the 
climatological cold tongue, displacing the region of strong zonal SST gradients towards the west 
Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak 
in SST anomalies, leading to a zonal separation between the warming effect of zonal advection 
(in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection 
and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results 
demonstrate that understanding historical CGCM El Nino˜  behaviors is a necessary precursor to 
interpreting projections of future CGCM El Nino˜  behaviors, such as changes in the frequency of 
eastern Pacific El Nino˜  events, under global warming scenarios. 
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26 1 Introduction 

Coupled General Circulation Models (CGCMs) are among our most effective tools for investigat-
ing the dynamics of El Nino-Southern˜  Oscillation (ENSO) and the response of ENSO to global 
warming (Meehl et al, 2006; Yeh et al, 2006, 2009; Collins et al, 2010; Vecchi and Wittenberg, 
2010). Improvements are continually being made to these models to better represent the salient 
features of ENSO, such as its amplitude, frequency, seasonality, and stability (AchutaRao and 
Sperber, 2006; Guilyardi et al, 2009; Deser et al, 2012; Guilyardi et al, 2012, 2013; Bellenger 
et al, 2014; Kim et al, 2014; Guilyardi et al, 2015). Nevertheless, there is considerable diversity 
in the simulation of ENSO dynamics, both within and across CGCMs (Capotondi et al, 2006; 
Lloyd et al, 2009; Belmadani et al, 2010; Ham and Kug, 2012; Lloyd et al, 2012; Brown et al, 
2013; Capotondi, 2013; Capotondi et al, 2015a,b; Choi et al, 2015) and even more diversity in 
how ENSO will change under global warming (Leloup et al, 2008; Guilyardi et al, 2009; Collins 
et al, 2010; Boucharel et al, 2011; Kim and Jin, 2011; DiNezio et al, 2012; Watanabe et al, 2012; 
Taschetto et al, 2014; Latif et al, 2015). 

It follows that a current focus of ENSO research is in quantifying the realism of behaviors 
simulated by CGCMs, which requires comparison of model output with observed features such 
as sea surface temperature (SST), winds, rainfall, clouds, mixed layer depth, thermocline depth, 
and ocean currents. However, we have glimpsed only a sample of the possible ENSO behaviors 
and spatial diversity that could occur (figure 1). This is at least partly due to the fact that ENSO 
modulates climate on multiple timescales, demonstrating strong interannual variability as well as 
decadal to multidecadal variability (Allan, 2000; Allan et al, 2003; Wittenberg, 2009; Kug et al, 
2010; Choi et al, 2012; Ogata et al, 2013; Meehl et al, 2013; Holbrook et al, 2014; Lee et al, 2014; 
Wittenberg et al, 2014; Wittenberg, 2015), and such long-term variability may not yet be clearly 
distinguishable from our relatively short observational record. The framework schematized in 
figure 1 presents three of the possible scenarios for the range of ENSO behaviors evidenced in 
CGCMs: i) CGCMs simulate realistic behaviors, of which some may mirror the observations; ii) 
CGCMs are unable to simulate present-day ENSO behaviors; or iii) CGCMs capture behaviors 
that are qualitatively similar to those of the real world as well as some unrealistic ones. [Additional 
scenarios to these three discussed here are possible, such as the observational or reanalysis data 
exhibiting biases in their representation of reality, as well as the real-world variability changing 
due to external radiative forcings.] Scenario i) is desirable if we are to use CGCMs to understand 
future externally forced ENSO events, while scenario ii) implies little faith in the ability of 
coupled models to perform this task. Based on results from recent studies (e.g. Wittenberg et al, 
2006; Guilyardi et al, 2009; Brown et al, 2013) scenario iii) is perhaps the most likely, indicating 
that while CGCMs are useful, their underlying biases should be taken into consideration when 
interpreting simulated ENSO behaviors. 

Observations suggest that there is a continuum of El Nino˜  spatial diversity in warming, with 
centers of action located from the eastern equatorial Pacific to the central equatorial Pacific 
(Giese and Ray, 2011; Johnson, 2013; Capotondi et al, 2015b). A recent trend classifies El Nino˜  
events as “eastern Pacific” events or “central Pacific” events depending on the location of max-
imum sea surface temperature warming at the height of the El Nino˜  event (Ashok et al, 2007; 
Kao and Yu, 2009; Yeh et al, 2009; Lee and McPhaden, 2010; Yu and Kim, 2013; Yeh et al, 
2014). [Although, these classifications are qualitative descriptors of diversity, rather than being 
indicative of different modes of spatial variability; Capotondi et al, 2015b.] Nevertheless, the 
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70 patterns of warming simulated by CGCMs do not necessarily closely align with those of observa-
tions or flux-forced ocean general circulation models (OGCMs). For instance, while observations 
and OGCMs show strong, and relatively continuous, variability in SST anomalies (SST 0) along 
the equator from the central to the eastern Pacific, the pattern of SST 0 in CGCMs is split into 
two separate centers of action, in the western-central and eastern Pacific (figure 2). The western-
central Pacific peak of warm SST 0 in figure 2, or indeed in composites of El Nino˜  SST 0 , might 
be interpreted as the CGCM analog of the central Pacific El Nino˜  event, whose center of action 
is shifted westwards due to the cold tongue bias (Wittenberg et al, 2006; Kao and Yu, 2009; Yeh 
et al, 2009; Ham and Kug, 2012; Taschetto et al, 2014). However, systematic inspection of the 
evolution of CGCM El Nino˜  events reveals a “double peaked” pattern of warming in CGCMs 
- with two warm peaks developing concurrently in the eastern and central Pacific (e.g., figure 
3). This double peaked El Nino˜  event is common in Coupled Model Intercomparison Project 
version 5 (CMIP5) CGCMs (figure 4). A double peaked structure was also evident in the SST 0 

variance of CMIP3 models, e.g., the CSIRO-Mk3.0 model (figure 1 of Capotondi et al, 2006). 
The spatial structure of SST 0 is essential for determining the atmospheric response to ENSO. 

This is especially the case near the convectively-active region of the western Pacific warm pool, 
where subtle variations in SST can have large impacts on the location and intensity of atmospheric 
latent heating, and thereby the global atmospheric circulation. This in turn affects not only the 
feedbacks critical to ENSO (Choi et al, 2013, 2015), but also the structure of the atmospheric 
stochastic forcing (Vecchi et al, 2006b; Gebbie et al, 2007), and ENSO’s remote teleconnections 
(Capotondi et al, 2015b; Jia et al, 2015; Yang et al, 2015; Krishnamurthy et al, 2015, 2016; Zhang 
et al, 2016). Thus it is important to assess and understand the biases that CGCMs have in their 
spatial pattern of SST 0 during ENSO, as well as how those biases affect ENSO behavior, remote 
impacts, and ENSO sensitivities to climate change. 

The goal of this paper is to investigate the behavior of the CGCM double peaked El Nino˜  
event, including the mechanisms that underlie its development. We further seek to address 
whether the CGCM double peaked El Nino˜  event is a realistic and likely representation of El 
Nino˜  spatial diversity, or an artifact of coupled model biases. In section 2 we introduce the data 
and techniques used to identify and analyze the double peaked El Nino˜  event. Section 3 presents 
analysis of the double peaked El Nino˜  event in the CMIP5 suite of CGCMs. The dynamics giving 
rise to the double peaked event dynamics are examined in the context of the Australian Com-
munity Climate and Earth System Simulator Coupled Model version 1.3 (Bi et al, 2013a). The 
results are discussed and summarized in section 4. 
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103 2 Data and methods 

2.1 CMIP5 CGCMs 

We analyze the evolution of SST 0 during double peaked El Nino˜  events in pre-industrial control 
(PiControl) and historical simulations of 36 climate models submitted to the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) database (table 1). The nomenclature of the terms 
“PiControl” and “historical” follow Taylor et al (2012). PiControl simulations attempt to capture 
the preindustrial climate equilibrium state and are simulated over several hundreds of years; 
historical simulations represent forced runs using observed atmospheric composition changes 
(atmospheric forcing from both natural and anthropogenic sources) from the mid-19th Century 
to near present day. 

To diagnose the likely mechanisms underpinning the double peaked El Nino˜  event, monthly 
anomalies of SST, and all variables analyzed from the Australian Community Climate and Earth 
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115 System Simulator (ACCESS) simulation, are computed by subtracting the annual cycle from 
the monthly mean outputs. The data are smoothed using a 13-point Parzen filter to remove 
frequencies of sub-annual variability. 

2.2 The ACCESS model 

To investigate the mechanisms underpinning the CGCM double peaked El Nino˜  events, we an-
alyze a PiControl 505-year simulation of ACCESS version 1.3 (ACCESS-CM1.3). The ocean 
component of the ACCESS-CM1.3 simulation is an OGCM that draws its codebase and most 
of its configuration from the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) Modular 
Ocean Model version 4 (MOM4p1) (Griffies, 2009). A full description of the ACCESS compo-
nent models can be found in Bi et al (2013a) and Bi et al (2013b), and their implementation is 
described by Dix et al (2014). 

ACCESS-CM1.3 has been tested against various benchmarks important for the simulation of 
ENSO, finding that its performance and the magnitude of its model biases are comparable to 
other CMIP5 models (Brown et al, 2013; Rashid et al, 2013a,b; Kim et al, 2014; Taschetto et al, 
2014; Rashid and Hirst, 2015). The mean state and biases of the simulated tropical Pacific in 
ACCESS-CM1.3 are further discussed in appendix A. The ocean component of ACCESS-CM1.3 
was previously analyzed in Graham et al (2015). 

2.3 Defining El Nino˜  events 

El Nino˜  events are defined when a 5-month running mean of the unfiltered SST 0 in the Nino˜ -
3.4 region (5◦S-5◦N, 170-120◦W) exceeds 0.4◦C for a period of at least 6 months (Trenberth, 
1997). If a single center of SST 0 warming is isolated to the eastern equatorial Pacific (east of 
approximately 160◦W), the event is classified as an eastern Pacific El Nino.˜  The following method 
is used to distinguish double peaked El Nino˜  events. Locations of maximum warming along the 
equator (2◦S-2◦N) are determined from the centers of warming that enclose SST 0 of a critical 
threshold - here, at least 75% of the maximum SST 0 - for the 2 years surrounding the peak of 
each El Nino˜  event. El Nino˜  events may be “double peaked” when two separate, concurrently 
growing, centers of warming are identified in the evolution of the equatorial SST 0 that each 
exceed the critical threshold. The two peaks must be separated by cooler SST 0 . This definition 
allows us to distinguish between an El Nino˜  event that evolves by propagation from east to west 
versus one in which the two peaks develop concurrently. 

2.4 The mixed layer heat budget 

The mixed layer heat budget equation used in this study is adapted from Vialard et al (2001) 
and is given by 

 0  0  0  0  0  ∂tT = A +A +A +Q + DER0x y z , (1)

where the symbol ∂t represents a partial derivative with respect to time, the apostrophe 0 denotes 
an anomalous quantity, and T 0 is the anomalous potential temperature integrated over the mixed 
layer. The term A0 x on the right-hand side represents the mixed layer averaged anomalous zonal
advection defined as Z 

1 0
 

� 0 0 0 0�A0x = − u∗ ∂ T ∗ ∗
x + u ∂xT ∗ + u∗ ∂xT ∗ dz, (2)

h −h 
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152 where u∗ is the 4-dimensional zonal current, T ∗ is the 4-dimensional potential temperature, and 
the overline notation denotes a climatological quantity. The terms A0 and A0 y z in Eq. (1) rep-
resent anomalous meridional and vertical advection, respectively, and are constructed similarly 
to Eq. (2). The vertical velocity used to calculate A0 z is taken directly from the model output.
Q0 in Eq. (1) is the anomalous net surface heat flux, which can be calculated by summing the 
surface shortwave and longwave radiation, and latent and sensible heat fluxes, and subtracting 
the net shortwave radiation contribution that penetrates through the mixed layer (Qswout ). Q0 

is scaled by the mixed layer depth (MLD, h), the constant specific heat capacity of seawater 
(cp = 3989.24 J kg−1 K−1), and a constant density of seawater (ρ0 = 1035 kg m−3). The term 
DER0 in Eq. (1) represents anomalous residual processes, such as diffusion, turbulent heat fluxes, 
and entrainment into the mixed layer, that are not well resolved when the heat budget is cal-
culated offline. The time-varying MLD over which the terms are averaged is denoted h, and is 
defined as the depth at which the density layer σt deviates from surface values by 0.125 kg m−3 

(calculated offline). Derivatives are computed using centered differences. All heat budget calcu-
lations are performed on monthly mean output of u, v, w, T , and h. 

An offline calculation of the heat budget equation may lead to some terms being over- or 
underestimated, particularly nonlinear or eddy-related terms. For example, tropical instability 
waves (TIWs) that are important for the damping of SST 0 in the eastern equatorial Pacific on 
seasonal to interannual timescales require sub-monthly resolution to be adequately quantified 
(Vialard et al, 2001). The closure between ∂tT 0 calculated directly from the ACCESS models 
and the right-hand side of Eq. (1) will be further affected by uncertainties introduced through 
offline calculations. Finally, the residual term includes heat produced through mixing - a process 
that is not well-resolved in an offline parameterization. Nevertheless, offline calculation of heat 
budget terms has been used widely (Zhang et al, 2007; Huang et al, 2010, 2011; Choi et al, 2012; 
Graham et al, 2014) and is sufficient for our purposes of determining the dominant balance of 
terms giving rise to the CGCM double peaked El Nino.˜  Eq. (1) and its derivation are described 
in more detail in Vialard and Delecluse (1998). 

In what follows, we refer to the depth-averaged (i.e., 3-dimensional, in time, latitude, and 
longitude, rather than the asterisked 4-dimensional) forms of the terms on the right-hand side of 
Eq. (2), and the corresponding terms for A0 and A0 y z . For example, in the case of A0 x , the three
terms on the right-hand side of Eq. (2) simplify to −u∂xT 0 , −u0∂xT , and −u0∂xT 0 . 
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183 3 Results 

3.1 The double peaked El Nino˜  event in CMIP5 CGCMs 

The metric described in section 2.3 is applied to PiControl and historical simulations of 36 CMIP5 
models (table 1). Double peaked El Nino˜  events are common in all of the CGCMs during the 
period over which they are simulated (figure 4). Note that our selection of these 36 CMIP5 
CGCMs is not dependent on them simulating a double peaked El Nino˜  event. Several models 
(e.g., GFDL-ESM2G, ACCESS1-3, IPSL-CM5A-MR, and MPI-ESM-P) have a large number of 
double peaked El Nino˜  events for both PiControl and historical conditions, while several others 
(e.g., FIO-ESM, GISS-E2-R-CC, GISS-E2-R, HadGEM2-CC) have relatively few double peaked 
El Nino˜  events for both PiControl and historical conditions. 

The evolution of SST 0 composites during double peaked El Nino˜  events from historical simu-
lations of selected CGCMs are compared in figure 3. Despite variations in magnitude and timing 
of El Nino˜  onset between the CMIP5 CGCMs, in each model two warm peaks in SST 0 emerge 
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196 during the first 6 months of the El Nino˜  event. The warm peaks grow simultaneously, and sepa-
rately, during the onset and development of El Nino.˜  

Compared with historical simulations, PiControl simulations are systematically biased to-
wards simulating more double peaked El Nino˜  events (figure 4). 86% of the 36 CGCMs simulate 
a greater proportion of double peaked El Nino˜  events in pre-industrial conditions than in his-
torical conditions. The mean fraction of double peaked El Niño events to all El Nino˜  events in 
PiControl simulations is approximately 40.3% compared with 26.2% in historical simulations. 

The location of the western Pacific warm peak during double peaked El Nino˜  events varies 
from approximately 140◦E to 140◦W in the CMIP5 CGCMs. We investigate whether this is 
related to the magnitude of the cold tongue bias, which has been found to extend El Nino˜ -
related warming in CGCMs further westwards than observed (Taschetto et al, 2014). We use 
the mean location of the dynamic warm pool edge (DWPE) - the isotherm that best captures 
the maximum in the zonal salinity gradient - as a proxy for the magnitude of the cold tongue 
bias. This is because CGCMs with stronger cold tongue biases tend to simulate DWPEs further 
towards the western Pacific warm pool (Brown et al, 2013). The relationship between the cold 
tongue bias and the location of the western Pacific warm peak during double peaked El Nino˜  
events in the CMIP5 CGCMs is illustrated in figure 5. A clear pattern emerges: during double 
peaked El Nino˜  events, models with stronger cold tongue biases also simulate western Pacific 
warm peaks located further towards the western Pacific warm pool. Furthermore, models that 
simulate more double peaked El Nino˜  events tend to have DWPEs shifted further west than 
models with fewer double peaked El Nino˜  events: 14 of the 20 models with the highest fraction 
of double peaked events simulate a DWPE west of the median (≈170◦E). This relationship 
corroborates our earlier result that the fraction of double peaked El Nino˜  events is greater in 
PiControl simulations, where the cold tongue is strengthened relative to historical conditions 
due to a relative decrease in atmospheric CO2 concentrations (Vecchi et al, 2006a; Collins et al, 
2010; Vecchi and Wittenberg, 2010; Watanabe et al, 2012). However, this relationship is not 
necessarily indicative of the full extent of the cold tongue bias in the model. That is, figure 5 
only incorporates the double peaked events that meet the criterion outlined in section 2.3; it does 
not take into account models that simulate other spatial patterns of El Nino˜  that have not been 
evidenced in the observational record (e.g., both CSIRO-Mk3-6-0 and CNRM-CM5 simulate El 
Nino˜  events evolving exclusively in the western Pacific warm pool) and might be a result of the 
cold tongue bias, or indeed other biases, in coupled models. 

We found earlier that double peaked El Nino˜  events are more prevalent in PiControl simu-
lations than in historical simulations. Given the importance of the DWPE in generating double 
peaked El Nino˜  events, we test whether the change in fraction of double peaked El Niño events 
from PiControl to historical simulations is related to mean state changes. Both the change in 
the mean longitude of the DWPE (dDWPE), and the fraction of double peaked El Nino˜  events 
in PiControl simulations (F(piC); i.e., the PiControl mean state), are predictors for the change 
in the fraction of double peaked El Nino˜  events from PiControl to historical (dF). We test the 
dependence of dF on each of these predictors using multiple linear regression. Considering all 
subsets of the two predictors, the model that yields the best fit (R2 = 0.40) has the form 

dF = a ∗ dDWPE + b ∗ F(piC) + c, (3) 

where a, b, and c are constant coefficients. The parameters from the regression analysis are 
highlighted in table 2 and the resulting fitted data in figure 6. The PiControl mean state, F(piC), 
is found to have the greatest effect on the change in fraction of double peaked El Nino˜  events 
simulated. 

In what follows, we examine the evolution of heat budget dynamics during double peaked El 
Nino˜  events in ACCESS-CM1.3. We note that it is possible that the CGCM double peaked El 
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243 Nino˜  event arises due to different mechanisms in different CMIP5 models; however, analysis of 
all CMIP5 models is beyond the scope of the current study. 

3.2 The double peaked El Nino˜  event in ACCESS-CM1.3 

A total of 89 El Nino˜  events are identified in the 505-year PiControl simulation of ACCESS-
CM1.3. Of the CGCM El Nino˜  events, 65 are classified as double peaked events and 10 as eastern 
Pacific events. In a further 12 of the remaining events two distinct peaks of warming are present, 
as in the double peaked El Nino˜  event, but the SST 0 in either the eastern or western peak does 
not meet the threshold to allow classification as a double peaked event. SST 0 for the ACCESS-
CM1.3 double peaked and eastern Pacific El Nino˜  events are composited. The significance of 
the heat budget trends from these composite events is investigated and discussed in appendix B 
(figure A4). 

3.2.1 Heat budget analysis 

The heat budget terms from Eq. (1) are analyzed in the ACCESS-CM1.3 PiControl simulation to 
determine the mechanisms giving rise to the western Pacific warm peak of the double peaked El 
Nino˜  event (figure 7). During the double peaked event, westerly wind anomalies generated near 
the DWPE (163◦E) incite the growth of eastwards zonal current anomalies there. The strong 
zonal current anomalies occur at the maximum in the mean zonal temperature gradient (Picaut 
et al, 1996, 1997; Clarke et al, 2000), which is displaced further to the west than observed 
due to the cold tongue bias (Brown et al, 2013). This leads to the zonal advective feedback 
−u0∂xT achieving its maximum near the DWPE, and dominating the growth of the mixed layer 
temperature anomaly, T 0 , there. Warming induced by the zonal advective feedback then increases 
the positive anomalous mixed layer temperature gradient in the western Pacific, leading to growth 
of the mean zonal advection term −u∂xT 0 in the western Pacific. The climatological westward 
flow of the South Equatorial Current, which is up to 0.4 m s−1 stronger than observed in the 
western-central Pacific in the CGCM than in observations (figure 8), advects the western warm 
patch to the west. 

We next investigate how the ACCESS-CM1.3 double peaked El Nino˜  event differs from the 
eastern Pacific event (figure 7). The western extent of warming extends west of 160◦E during 
both CGCM El Niño events; however, a western warm peak does not develop in the ACCESS-
CM1.3 eastern Pacific event, partly due to an eastwards shift in the patterns of westerly wind 
stresses, which is consistent with previous studies (Rasmusson and Carpenter, 1982; Kalnay 
et al, 1996; Wittenberg, 2004). That is, during the ACCESS-CM1.3 eastern Pacific El Nino˜  
event the maximum in the westerly (i.e., anomalous) equatorial zonal wind stresses is shifted 
further to the east (150-120◦W) than in the ACCESS-CM1.3 double peaked El Nino˜  event 
(150◦E-160◦W), and the westerly wind stresses in the region of the western Pacific warm peak 
(150◦E-180◦) are weaker by approximately 3.4  ×10−3N m −2 on average during the first 24 months 
of the eastern Pacific event than the double peaked El Nino˜  event. As a consequence, the zonal 
advective feedback is smaller by approximately 0.10◦C month−1 in the western Pacific during the 
eastern Pacific El Nino˜  event than during the double peaked event, preventing the development 
of significant warming in the western Pacific. This is consistent with observed El Nino˜  events 
that develop mainly in the eastern Pacific, the growth of which is typically dominated by the 
thermocline feedback (Jin, 1997a,b; Yeh et al, 2014). The nonlinear meridional advection term 
v0∂ T 0 − y provides consistent warming throughout the central Pacific during eastern Pacific El 

Nino˜  events. By contrast, during double peaked events this term is almost negligible in the central 
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287 Pacific, but larger (> 0.15◦C month−1) in the western Pacific, where anomalous meridional 
temperature gradients are amplified. 

The relative contributions of the heat budget terms to the central equatorial Pacific ∂tT 0 

during the double peaked and eastern Pacific El Nino˜  events are shown in figure 9. Here, the 
difference between each heat budget term during double peaked and eastern Pacific El Nino˜  
events (i.e., the bottom panels in figure 7) in the central equatorial Pacific (defined as the local 
minimum in SST 0 variance, 154◦W) is subtracted from the difference in the western-central 
equatorial Pacific (the local maximum in SST 0 variance, 178◦E). The key drivers of the western 
Pacific warm peak are the zonal advection terms −u0∂xT and −u0∂xT 0 , which are the result of 
relatively stronger anomalous zonal equatorial currents acting on the zonal temperature gradient 
at the edge of the western Pacific warm pool. The meridional advection terms −v0∂yT 0 and 
−v∂xT 0 contribute to the growth of ∂tT 0 by meridional spreading of the equatorial SST 0 . The net 
surface anomalous heat flux Q0 grows, rather than damps, the western Pacific warm peak, largely 
due to a positive bias in the shortwave heat flux attributed to unrealistic SST-cloud interactions 
in ACCESS-CM1.3 (Rashid and Hirst, 2015). These unrealistic SST-cloud interactions are partly 
due to a climatological bias in the low cloudiness of ACCESS-CM1.3, associated with an overly 
strong cold tongue compared with observations, and also partly due to overly strong descending 
atmospheric motion. A similar result has been found in the GFDL-CM2.1 CGCM (Wittenberg 
et al, 2006). While residual eddy effects do contribute somewhat to generating the western 
Pacific warm peak, they are relatively weak compared to zonal advection, meridional advection, 
and thermodynamic damping contributions. 
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308 4 Discussion 

Spurious double peaked El Nino˜  events - with two warming peaks developing concurrently in
the eastern and western Pacific - were found to be widespread in CMIP5 CGCMs. The location 
of the western Pacific warm peaks during double peaked El Nino˜  events was correlated with 
the location of the dynamic warm pool edge (DWPE), a proxy for the magnitude of the cold 
tongue bias (Brown et al, 2013). The DWPE was as far west as 155◦E in CMIP5 models. CGCMs 
with more westwards located DWPEs tended to simulate more double peaked El Nino˜  events. 
The consistency in the response of the CMIP5 CGCMs in simulating the double peaked events 
serves to corroborate the cold tongue bias as playing an important role in generating the double 
peaked El Nino˜  events, rather than this event representing a realistic “new flavor” of El Nino.˜  
Consequently, a reasonable supposition is that the ENSO behaviors present in PiControl and 
historical simulations of CGCMs fit within circle iii) in figure 1; that is, they display some 
qualitatively similar features to those observed, but also simulate some unrealistic ones that are 
an artifact of climatological CGCM biases. 

The mechanisms giving rise to the double peaked event were further investigated in ACCESS-
CM1.3. During double peaked El Nino˜  events in ACCESS-CM1.3, the westwards extension of the 
equatorial Pacific cold tongue region (eastern extent of the western Pacific dynamical warm pool 
edge) modified the location of peak warming and dynamical behavior in the western Pacific. In 
particular, the overly intense and westward-extended cold tongue in CGCMs led to two biases 
that altered the El Nino˜  feedbacks compared with eastern Pacific El Nino˜  events: (i) an exces-
sive climatological zonal temperature gradient (∂xT ) in the western equatorial Pacific that was 
displaced too far west of the strong climatological vertical temperature gradient in the eastern 
equatorial Pacific; and (ii) atmospheric deep-convective cloudiness that was displaced too far west 
and off-equator. The westward-shifted ∂xT led to a western displacement of the zonal advective 
feedback (−u0∂xT ) relative to vertical advective feedbacks (−w∂zT 0 and −w0∂zT ), generating 
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333 a secondary western equatorial warm peak. In addition, the intense cold tongue displaced the 
atmospheric convective zones westward and poleward, leading to insufficient damping of this 
secondary western peak in SST 0 by cloud shading. These results highlight the importance of 
a CGCM’s climatology to the dynamics and spatial structure of ENSO and motivate further 
attention to understanding and correcting mean state biases in CGCMs. 

Here, we have focused on just one manifestation of CGCM El Nino˜  diversity: the double 
peaked pattern of SST warming. Given the similarity in mechanisms giving rise to the western 
Pacific warm peak of the double peaked event and the central Pacific El Nino˜  event (Yeh et al, 
2014), it is possible that the double peaked El Nino˜  event could be mistaken for a westwards-
shifted central Pacific El Niño, particularly in composite El Nino˜  events. Furthermore, differences 
between CGCMs can lead to behaviors that have not yet been observed (e.g., the El Nino˜  event 
that evolves entirely in the western Pacific warm pool in CSIRO-Mk3.6.0). It follows that studies 
of future ENSO events, such as changes in the frequency of El Nino˜  spatial behaviors under 
global warming scenarios, should be cautiously interpreted in light of historical representations 
of El Niño diversity. 
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354 [Appendix A] 

The mean state and biases in ACCESS-CM1.3 

The mean SST from ACCESS-CM1.3 and SST bias, with respect to the Bureau of Meteorology Research Centre 
(BMRC) SST reanalyses (Smith, 1995) over the period 1980-2004, is illustrated in figure A1. ACCESS-CM1.3 is 
up to 1◦C cooler than the reanalysis data in the equatorial Pacific cold tongue region (180-100◦E), and up to 
2◦C warmer east of 100◦W along the coast of South America. ACCESS-CM1.3 displays a warm bias in the South 
Pacific, in the region of the South Pacific Convergence Zone, and in the tropical North Pacific (5◦N, 160-110◦W). 

The standard   deviation of tropical Pacific SST 0 is indicative of the spatial diversity in ENSO variability 
(figure 2). Variability in the eastern equatorial Pacific in ACCESS-CM1.3 is weaker than in the reanalysis data 
(the difference in standard deviation is up to 0.6◦C at approximately 100◦W), including < 0.3◦C from 160-

◦W, and slightly  140 stronger (> 0.2◦C) west of 180◦ longitude in a secondary western peak. Note that the 
 standard deviation of SST 0 illustrated in figure 2 is qualitatively similar to the leading mode of an EOF analysis 

of ACCESS-CM1.3 SST 0 , which also displays the double peaked pattern of warming and represents 44% of the 
 SST 0 variability in ACCESS-CM1.3 (figure not shown). 

The annual means of the equatorial surface heat fluxes for ACCESS-CM1.3 are compared with those from 
the Objectively Analyzed air-sea Fluxes (OAFlux; provided by the Woods Hole Oceanographic Institute (WHOI) 
OAFlux project, available at http://oaflux.whoi.edu), the TropFlux reanalyses (Kumar et al, 2012), and the 
Coordinated Ocean-ice Reference Experiments version 2 (CORE-II, which are used to force ACCESS-OM; Griffies 
et al, 2012) in figure A2. The annual mean equatorial longwave radiation and sensible heat flux simulated by 
ACCESS-CM1.3 are within the range of uncertainty estimated from OAFlux, TropFlux, and CORE-II. Latent 
heat fluxes in  ACCESS-CM1.3 are up to 46 W m−2 less than those of the reanalyses, particularly in the eastern 
equatorial Pacific. Equatorial shortwave radiation values simulated by ACCESS-CM1.3 in boreal winter are up 
to 38 W m−2 different from TropFlux. 

The mean state of the tropical Pacific MLD in ACCESS-CM1.3 and bias with respect to the UK Met Office 

(UKMO) subsurface ocean temperature and salinity data (Ingleby and Huddleston, 2007) over the period 1980-

2005 are compared in figure A3. The ACCESS-CM1.3 MLDs are up to 50m deeper than the UKMO MLDs in 

bands stretching between 170◦E and 150◦W north and south of the equator. 
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381 [Appendix B] 

Significance of the double peaked El Nino˜  event in ACCESS-CM1.3 

Here, we investigate whether the composited double peaked El Nino˜  events are significantly different from the 
composited eastern Pacific El Nino˜  events. First, the double peaked and eastern Pacific El Nino˜  events from the 
PiControl simulation of ACCESS-CM1.3 are randomly separated into two groups, groups a and b, and composited. 
We name these composites µx of sample size nx, where x ∈ {DP 1.3a, DP 1.3b, EP 1.3a, EP 1.3b}. We also consider 
the double peaked El Nino˜  events from the PiControl simulation of ACCESS-CM1.0 and separate them into two 
composites - µDP 1.0a and µDP 1.0b - with sample sizes nDP 1.0a and nDP 1.0b, respectively. 

The variable for testing the significance of the difference between composites is the Student’s t-distribution: 

µcx − µcy
t = q , and (4)

1 S + 1
nx ny 

− c c(nx 1)σ2 + (n 2
y − 1)σ  

  
S2 = x y

, (5) 
nx + ny − 2 

where nx + ny − 2 is the number of independent observations for the parameter t, and x and y represent the 
composited El Nino˜  events being tested. The significance value (p-value) from each test case is calculated using a 
two-sided Student’s t-test. 

We define a simple test to establish the significance of the El Nino˜  composite events: namely, the double 
peaked and eastern Pacific El Nino˜  events are significantly different if the following conditions are satisfied during 
the evolution of the El Nino˜  event (i.e., the first 24 months of the composite): 

Test 1: the differences between the DP1.3a and EP1.3a composites are greater than the differences between the 
DP1.3a and DP1.3b composites; 

Test 2: the differences between the DP1.3b and EP1.3b composites are greater than the differences between the 
EP1.3a and EP1.3b composites; 

Test 3: the differences between DP1.3a events from ACCESS-CM1.3 and DP1.0a events from ACCESS-CM1.0 
are greater than the differences between the DP1.3a and DP1.3b events from ACCESS-CM1.3; and 

Test 4: the differences between DP1.3b events from ACCESS-CM1.3 and DP1.0b events from ACCESS-CM1.0 
are greater than the differences between DP1.0a and DP1.0b events from ACCESS-CM1.0. 

The random sampling is repeated 100 times and median values for the differences between the composites, t, and 
p across the samples are calculated. The results for tests 1-4 are illustrated in figure A4. 

For test 1, the median difference between DP1.3a and EP1.3a is approximately ±2 times greater than the 
difference between DP1.3a and DP1.3b, which is in the range [−0.37, 0.19]◦C for the 100 samples generated. The 
differences in DP1.3a and EP1.3a are greater than one standard deviation across the western-central equatorial 
Pacific during the 12 months prior to the peak of the El Nino˜  event. The greatest differences in the eastern 
equatorial Pacific occur during the two months prior to and eight months following the peak of the El Nino˜  event. 
Differences between DP1.3a and DP1.3b across the 100 samples are not statistically significant. A similar result is 
found for test 2. Even in the PiControl simulations, the sample size of eastern Pacific events in ACCESS-CM1.3 
is relatively small – 10 in total – such that the difference between EP1.3a and EP1.3b is likely to be biased by 
individual events. 

The results of tests 3 and 4 illustrate that double peaked events from the ACCESS-CM1.3 model are more 
similar to each other than to events from ACCESS-CM1.0. Again, the median difference between double peaked 
events within each model simulation is small (within the range [−0.22, 0.40]◦C for the ACCESS-CM1.0 simulation), 
while the median differences in double peaked events between the two models are close to ±2◦C during the 
development of the El Nino˜  event throughout the equatorial Pacific and in the western and eastern Pacific during 
the decay periods of the El Nino˜  event (the differences are greater than one standard deviation from the mean in 
each case). These results provide evidence that the composite double peaked and eastern Pacific El Nino˜  events 
from ACCESS-CM1.3 are sufficiently different to ensure significance in the trends analysis. 
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Fig. 1 Venn diagram representing possible relationships between the ENSO behaviors simulated by CGCMs 
(red dashed circles), the full range of possible ENSO behaviors under present-day conditions (blue circle) and 
the observed ENSO behaviors (green circle). The green circle extends slightly outside the blue circle to represent 
observational errors, such as in measurement or reconstruction. We also note that the blue circle is itself evolving 
on decadal to centennial timescales due to natural internal variability, as well as due to external radiative forcings. 
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Fig. 2 Standard deviation of sea surface temperature anomalies (shading) in the a Bureau of Meteorology 
Research Centre SST reanalyses (Smith, 1995), and b historical simulation of ACCESS-CM1.3. Data are in units 
of ◦C and the contour interval is 0.025◦C. Contours of the standard deviation at the 0.075◦C interval are overlaid. 



14 Felicity S. Graham et al. 

-1

0

+1

+2 ACCESS1-0 BNU-ESM CCSM4

-1

0

+1

+2 CESM1-FASTCHEM CMCC-CM CSIRO-Mk3-6-0

180 ◦ 100 ◦W
-1

0

+1

+2 GFDL-ESM2M

180 ◦ 100 ◦W

MRI-CGCM3

180 ◦ 100 ◦W

NorESM1-M

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

Longitude ( ◦ )

Y
ea

r

Fig. 3 Examples of the evolution of SST 0 for the 36 months surrounding composite double peaked El Niño events 
from historical simulations of nine CMIP5 models (as indicated). Data are in units of ◦C (with contour intervals 
of 0.1◦C) and are averaged over 2◦S-2◦N. 



15 Understanding the double peaked El Niño in coupled GCMs 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FIO-ESM

GISS-E2-R-CC
HadGEM2-ES

CSIRO-Mk3-6-0
GFDL-ESM2M

GISS-E2-R
HadGEM2-CC
NorESM1-ME

CESM1-WACCM
CNRM-CM5
CMCC-CMS
ACCESS1-0

CanESM2
BCC-CSM1-1-m

NorESM1-M
MIROC5

CESM1-CAM5
CNRM-CM5-2

CMCC-CM
BCC-CSM1-1

IPSL-CM5A-LR
CCSM4

CESM1-BGC
GFDL-CM3

MPI-ESM-LR
GISS-E2-H

CMCC-CESM
CESM1-FASTCHEM

MRI-CGCM3
IPSL-CM5B-LR

MIROC-ESM
GISS-E2-H-CC

MPI-ESM-P
IPSL-CM5A-MR

ACCESS1-3
GFDL-ESM2G

H
is

to
ric

al
 s

im
ul

at
io

ns

FIO-ESM
GISS-E2-R-CC
GISS-E2-R
CanESM2
HadGEM2-CC
BCC-CSM1-1-m
GISS-E2-H
HadGEM2-ES
ACCESS1-0
CESM1-WACCM
CMCC-CM
NorESM1-ME
BCC-CSM1-1
CNRM-CM5-2
IPSL-CM5B-LR
GISS-E2-H-CC
CMCC-CESM
CNRM-CM5
GFDL-CM3
CESM1-CAM5
MIROC-ESM
GFDL-ESM2M
CESM1-BGC
NorESM1-M
CESM1-FASTCHEM
CMCC-CMS
MRI-CGCM3
CCSM4
MPI-ESM-LR
IPSL-CM5A-LR
MPI-ESM-P
CSIRO-Mk3-6-0
IPSL-CM5A-MR
MIROC5
ACCESS1-3
GFDL-ESM2G

P
iC

on
tro

l s
im

ul
at

io
ns

Fraction of double peaked El Niño events
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Fig. 5 Mean position of the western Pacific warm peak in a composite double peaked El Niño year versus the 
mean position of the dynamic warm pool edge in PiControl and historical simulations of 36 CMIP5 CGCMs. 
Markers representing each CGCM are sized by the fraction of double peaked events to the total number of El 
Niño events (see table 1). The large grey circle represents the mean longitude of a composite eastern Pacific El 
Niño event (x-axis) versus the mean longitude of the dynamic warm pool edge (y-axis) for a 60-year simulation 
(1948-2007) of the flux-forced ACCESS-OM model. This ACCESS-OM simulation does not have any El Niño 
events classified as double peaked using the definition in section 2.3. 
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b the fraction of double peaked El Niño events in the PiControl simulations (F(piC) and the change in the 
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least squares regression, and in panel c represents the 1:1 line between the actual and predicted values. The R2 

values from the multiple linear regression analysis are reported. 
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Fig. 7 Evolution of heat budget terms for the 36 months surrounding composite double peaked (top panels) 
El Niño events and eastern Pacific (middle panels) El Niño events from ACCESS-CM1.3. The bottom panels 
show the difference between the double peaked and eastern Pacific El Niño events. Data are averaged over 2◦S-

−22◦N. Wind stress anomaly (τ 0 ) data are in units of N m (contour interval 0.01 N m−2), and the units of thex 
remaining panels are ◦C month−1 (contour interval 0.01◦C month−01). The interval between 0 and +1 represents 
the first year of the El Niño composite event. Note the difference in the color scale between the tendency term 
and the remaining heat budget feedbacks. The terms represented in each column are, from left: the mixed layer 
temperature tendency anomaly, the standard error (SE) of the mixed layer temperature tendency anomaly, the 
zonal wind stress anomaly, the zonal advective feedback (−u0∂xT ), the mean zonal advection term (−u∂xT 0), the 
anomalous zonal advection term, and the meridional heat budget terms. 
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èt
èo
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Table 2 Fitted values and confidence intervals for the parameters in equation (3). 

Parameter Estimate 95% confidence interval 
Min Max 

a -0.0049 -0.010 0 
b -0.44 -0.65 -0.23 
c 0.043 -0.049 0.14 
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